core.c 142.2 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio/consumer.h>
27
#include <linux/of.h>
28
#include <linux/regmap.h>
29
#include <linux/regulator/of_regulator.h>
30 31 32
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
33
#include <linux/module.h>
34

35 36 37
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

38
#include "dummy.h"
39
#include "internal.h"
40

M
Mark Brown 已提交
41 42
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 44 45 46 47 48 49 50 51
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

52 53
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
54 55
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
56
static LIST_HEAD(regulator_ena_gpio_list);
57
static LIST_HEAD(regulator_supply_alias_list);
58
static bool has_full_constraints;
59

60 61
static struct dentry *debugfs_root;

62
/*
63 64 65 66 67 68
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
69
	const char *dev_name;   /* The dev_name() for the consumer */
70
	const char *supply;
71
	struct regulator_dev *regulator;
72 73
};

74 75 76 77 78 79 80
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
81
	struct gpio_desc *gpiod;
82 83 84 85
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

99
static int _regulator_is_enabled(struct regulator_dev *rdev);
100
static int _regulator_disable(struct regulator *regulator);
101 102 103
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104
static int _notifier_call_chain(struct regulator_dev *rdev,
105
				  unsigned long event, void *data);
106 107
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
108 109
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
110 111 112
static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
				      int min_uV, int max_uV,
				      suspend_state_t state);
113 114 115
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
116
static void _regulator_put(struct regulator *regulator);
117

118 119 120 121 122 123 124 125 126 127
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

128 129
static bool have_full_constraints(void)
{
130
	return has_full_constraints || of_have_populated_dt();
131 132
}

133 134 135 136 137 138 139 140 141 142 143 144 145
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

146 147 148
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
149
 * @ww_ctx:		w/w mutex acquire context
150 151 152 153 154 155 156
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
157 158
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
159
{
160 161 162 163 164 165 166
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
167
			rdev->ref_cnt++;
168 169 170 171 172 173 174
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
175
		}
176 177
	} else {
		lock = true;
178 179
	}

180 181 182 183 184 185 186 187
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
188 189
}

190 191 192 193 194 195 196 197 198 199 200
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
void regulator_lock(struct regulator_dev *rdev)
201
{
202
	regulator_lock_nested(rdev, NULL);
203
}
204
EXPORT_SYMBOL_GPL(regulator_lock);
205 206 207 208 209 210 211 212

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
213
void regulator_unlock(struct regulator_dev *rdev)
214
{
215
	mutex_lock(&regulator_nesting_mutex);
216

217 218 219
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
220
	}
221 222 223 224

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
225
}
226
EXPORT_SYMBOL_GPL(regulator_unlock);
227

228
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
229
{
230 231 232 233 234
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
235

236 237 238 239 240 241 242
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

243 244
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
245
{
246
	struct regulator_dev *c_rdev;
247
	int i;
248

249 250
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
251 252 253 254

		if (!c_rdev)
			continue;

255
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
256 257 258
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
259

260 261
		regulator_unlock(c_rdev);
	}
262 263
}

264 265 266 267
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
268
{
269
	struct regulator_dev *c_rdev;
270
	int i, err;
271

272 273
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
274

275 276
		if (!c_rdev)
			continue;
277

278 279 280 281 282 283 284
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
285

286 287 288 289 290 291 292
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

293
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
294 295 296 297 298 299 300 301
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
302 303
		}
	}
304 305 306 307 308 309 310

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
311 312
}

313
/**
314 315 316 317 318
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
319
 * Unlock all regulators related with rdev by coupling or supplying.
320
 */
321 322
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
323
{
324 325
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
326 327 328
}

/**
329 330
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
331
 * @ww_ctx:			w/w mutex acquire context
332 333
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
334
 * all regulators related with rdev by coupling or supplying.
335
 */
336 337
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
338
{
339 340 341
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
342

343
	mutex_lock(&regulator_list_mutex);
344

345
	ww_acquire_init(ww_ctx, &regulator_ww_class);
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
367 368
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
			if (regnode)
				return regnode;
		} else {
			return regnode;
		}
	}
	return NULL;
}

400 401 402 403 404 405
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
406
 * returns the device node corresponding to the regulator if found, else
407 408 409 410 411 412 413 414 415 416 417 418 419
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
420 421 422 423
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

424 425
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
426 427 428 429 430
		return NULL;
	}
	return regnode;
}

431 432 433 434 435 436
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

437
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
438
		rdev_err(rdev, "voltage operation not allowed\n");
439 440 441 442 443 444 445 446
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

447 448
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
449
			 *min_uV, *max_uV);
450
		return -EINVAL;
451
	}
452 453 454 455

	return 0;
}

456 457 458 459 460 461
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

462 463 464 465
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
466 467
				     int *min_uV, int *max_uV,
				     suspend_state_t state)
468 469
{
	struct regulator *regulator;
470
	struct regulator_voltage *voltage;
471 472

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
473
		voltage = &regulator->voltage[state];
474 475 476 477
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
478
		if (!voltage->min_uV && !voltage->max_uV)
479 480
			continue;

481 482 483 484
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
485 486
	}

487
	if (*min_uV > *max_uV) {
488 489
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
490
		return -EINVAL;
491
	}
492 493 494 495

	return 0;
}

496 497 498 499 500 501
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

502
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
503
		rdev_err(rdev, "current operation not allowed\n");
504 505 506 507 508 509 510 511
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

512 513
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
514
			 *min_uA, *max_uA);
515
		return -EINVAL;
516
	}
517 518 519 520 521

	return 0;
}

/* operating mode constraint check */
522 523
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
524
{
525
	switch (*mode) {
526 527 528 529 530 531
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
532
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
533 534 535
		return -EINVAL;
	}

536
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
537
		rdev_err(rdev, "mode operation not allowed\n");
538 539
		return -EPERM;
	}
540 541 542 543 544 545 546 547

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
548
	}
549 550

	return -EINVAL;
551 552
}

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

571 572 573
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
574
	struct regulator_dev *rdev = dev_get_drvdata(dev);
575 576
	ssize_t ret;

577
	regulator_lock(rdev);
578
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
579
	regulator_unlock(rdev);
580 581 582

	return ret;
}
583
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
584 585 586 587

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
588
	struct regulator_dev *rdev = dev_get_drvdata(dev);
589 590 591

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
592
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
593

594 595
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
596 597 598
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

599
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
600
}
601
static DEVICE_ATTR_RO(name);
602

603
static const char *regulator_opmode_to_str(int mode)
604 605 606
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
607
		return "fast";
608
	case REGULATOR_MODE_NORMAL:
609
		return "normal";
610
	case REGULATOR_MODE_IDLE:
611
		return "idle";
612
	case REGULATOR_MODE_STANDBY:
613
		return "standby";
614
	}
615 616 617 618 619 620
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
621 622
}

D
David Brownell 已提交
623 624
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
625
{
626
	struct regulator_dev *rdev = dev_get_drvdata(dev);
627

D
David Brownell 已提交
628 629
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
630
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
631 632 633

static ssize_t regulator_print_state(char *buf, int state)
{
634 635 636 637 638 639 640 641
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
642 643 644 645
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
646 647
	ssize_t ret;

648
	regulator_lock(rdev);
649
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
650
	regulator_unlock(rdev);
D
David Brownell 已提交
651

652
	return ret;
D
David Brownell 已提交
653
}
654
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
655

D
David Brownell 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
689 690 691
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
692 693 694
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
695 696 697 698 699 700 701 702
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

703 704 705
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
706
	struct regulator_dev *rdev = dev_get_drvdata(dev);
707 708 709 710 711 712

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
713
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
714 715 716 717

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
718
	struct regulator_dev *rdev = dev_get_drvdata(dev);
719 720 721 722 723 724

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
725
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
726 727 728 729

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
730
	struct regulator_dev *rdev = dev_get_drvdata(dev);
731 732 733 734 735 736

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
737
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
738 739 740 741

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
742
	struct regulator_dev *rdev = dev_get_drvdata(dev);
743 744 745 746 747 748

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
749
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
750 751 752 753

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
754
	struct regulator_dev *rdev = dev_get_drvdata(dev);
755 756 757
	struct regulator *regulator;
	int uA = 0;

758
	regulator_lock(rdev);
759 760 761 762
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
763
	regulator_unlock(rdev);
764 765
	return sprintf(buf, "%d\n", uA);
}
766
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
767

768 769
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
770
{
771
	struct regulator_dev *rdev = dev_get_drvdata(dev);
772 773
	return sprintf(buf, "%d\n", rdev->use_count);
}
774
static DEVICE_ATTR_RO(num_users);
775

776 777
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
778
{
779
	struct regulator_dev *rdev = dev_get_drvdata(dev);
780 781 782 783 784 785 786 787 788

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
789
static DEVICE_ATTR_RO(type);
790 791 792 793

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
794
	struct regulator_dev *rdev = dev_get_drvdata(dev);
795 796 797

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
798 799
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
800 801 802 803

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
804
	struct regulator_dev *rdev = dev_get_drvdata(dev);
805 806 807

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
808 809
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
810 811 812 813

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
814
	struct regulator_dev *rdev = dev_get_drvdata(dev);
815 816 817

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
818 819
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
820 821 822 823

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
824
	struct regulator_dev *rdev = dev_get_drvdata(dev);
825

D
David Brownell 已提交
826 827
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
828
}
829 830
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
831 832 833 834

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
835
	struct regulator_dev *rdev = dev_get_drvdata(dev);
836

D
David Brownell 已提交
837 838
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
839
}
840 841
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
842 843 844 845

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
846
	struct regulator_dev *rdev = dev_get_drvdata(dev);
847

D
David Brownell 已提交
848 849
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
850
}
851 852
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
853 854 855 856

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
857
	struct regulator_dev *rdev = dev_get_drvdata(dev);
858

D
David Brownell 已提交
859 860
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
861
}
862 863
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
864 865 866 867

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
868
	struct regulator_dev *rdev = dev_get_drvdata(dev);
869

D
David Brownell 已提交
870 871
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
872
}
873 874
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
875 876 877 878

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
879
	struct regulator_dev *rdev = dev_get_drvdata(dev);
880

D
David Brownell 已提交
881 882
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
883
}
884 885 886
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
908

909 910
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
911
static int drms_uA_update(struct regulator_dev *rdev)
912 913 914 915 916
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

917 918 919 920
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
921 922
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
923
		return 0;
924
	}
925

926 927
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
928 929
		return 0;

930 931
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
932
		return -EINVAL;
933 934

	/* calc total requested load */
935 936 937 938
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
939

940 941
	current_uA += rdev->constraints->system_load;

942 943 944 945 946 947
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
		/* get output voltage */
		output_uV = _regulator_get_voltage(rdev);
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

966 967 968 969 970 971 972 973 974 975 976
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
977

978 979 980
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
981 982 983
	}

	return err;
984 985 986
}

static int suspend_set_state(struct regulator_dev *rdev,
987
				    suspend_state_t state)
988 989
{
	int ret = 0;
990 991 992 993
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
994
		return 0;
995

996
	/* If we have no suspend mode configuration don't set anything;
997 998
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
999
	 */
1000 1001
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
1002 1003
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
1004
			rdev_warn(rdev, "No configuration\n");
1005 1006 1007
		return 0;
	}

1008 1009
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1010
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1011 1012
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1013
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1014 1015 1016
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1017
	if (ret < 0) {
1018
		rdev_err(rdev, "failed to enabled/disable\n");
1019 1020 1021 1022 1023 1024
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1025
			rdev_err(rdev, "failed to set voltage\n");
1026 1027 1028 1029 1030 1031 1032
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1033
			rdev_err(rdev, "failed to set mode\n");
1034 1035 1036 1037
			return ret;
		}
	}

1038
	return ret;
1039 1040 1041 1042 1043
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1044
	char buf[160] = "";
1045
	size_t len = sizeof(buf) - 1;
1046 1047
	int count = 0;
	int ret;
1048

1049
	if (constraints->min_uV && constraints->max_uV) {
1050
		if (constraints->min_uV == constraints->max_uV)
1051 1052
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1053
		else
1054 1055 1056 1057
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1058 1059 1060 1061 1062 1063
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
1064 1065
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1066 1067
	}

1068
	if (constraints->uV_offset)
1069 1070
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1071

1072
	if (constraints->min_uA && constraints->max_uA) {
1073
		if (constraints->min_uA == constraints->max_uA)
1074 1075
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1076
		else
1077 1078 1079 1080
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1081 1082 1083 1084 1085 1086
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1087 1088
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1089
	}
1090

1091
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1092
		count += scnprintf(buf + count, len - count, "fast ");
1093
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1094
		count += scnprintf(buf + count, len - count, "normal ");
1095
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1096
		count += scnprintf(buf + count, len - count, "idle ");
1097
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1098
		count += scnprintf(buf + count, len - count, "standby");
1099

1100
	if (!count)
1101
		scnprintf(buf, len, "no parameters");
1102

1103
	rdev_dbg(rdev, "%s\n", buf);
1104 1105

	if ((constraints->min_uV != constraints->max_uV) &&
1106
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1107 1108
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1109 1110
}

1111
static int machine_constraints_voltage(struct regulator_dev *rdev,
1112
	struct regulation_constraints *constraints)
1113
{
1114
	const struct regulator_ops *ops = rdev->desc->ops;
1115 1116 1117 1118
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1119 1120
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1121
		int current_uV = _regulator_get_voltage(rdev);
1122 1123

		if (current_uV == -ENOTRECOVERABLE) {
1124
			/* This regulator can't be read and must be initialized */
1125 1126 1127 1128 1129 1130 1131 1132 1133
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
			current_uV = _regulator_get_voltage(rdev);
		}

1134
		if (current_uV < 0) {
1135 1136 1137
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1138 1139
			return current_uV;
		}
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1160 1161
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1162
			ret = _regulator_do_set_voltage(
1163
				rdev, target_min, target_max);
1164 1165
			if (ret < 0) {
				rdev_err(rdev,
1166 1167
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1168 1169
				return ret;
			}
1170
		}
1171
	}
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1184 1185
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1186
		if (count == 1 && !cmin) {
1187
			cmin = 1;
1188
			cmax = INT_MAX;
1189 1190
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1191 1192
		}

1193 1194
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1195
			return 0;
1196

1197
		/* else require explicit machine-level constraints */
1198
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1199
			rdev_err(rdev, "invalid voltage constraints\n");
1200
			return -EINVAL;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1220 1221 1222
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1223
			return -EINVAL;
1224 1225 1226 1227
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1228 1229
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1230 1231 1232
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1233 1234
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1235 1236 1237 1238
			constraints->max_uV = max_uV;
		}
	}

1239 1240 1241
	return 0;
}

1242 1243 1244
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1245
	const struct regulator_ops *ops = rdev->desc->ops;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1272 1273
static int _regulator_do_enable(struct regulator_dev *rdev);

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1286
	const struct regulation_constraints *constraints)
1287 1288
{
	int ret = 0;
1289
	const struct regulator_ops *ops = rdev->desc->ops;
1290

1291 1292 1293 1294 1295 1296
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1297 1298
	if (!rdev->constraints)
		return -ENOMEM;
1299

1300
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1301
	if (ret != 0)
1302
		return ret;
1303

1304
	ret = machine_constraints_current(rdev, rdev->constraints);
1305
	if (ret != 0)
1306
		return ret;
1307

1308 1309 1310 1311 1312
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1313
			return ret;
1314 1315 1316
		}
	}

1317
	/* do we need to setup our suspend state */
1318
	if (rdev->constraints->initial_state) {
1319
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1320
		if (ret < 0) {
1321
			rdev_err(rdev, "failed to set suspend state\n");
1322
			return ret;
1323 1324
		}
	}
1325

1326
	if (rdev->constraints->initial_mode) {
1327
		if (!ops->set_mode) {
1328
			rdev_err(rdev, "no set_mode operation\n");
1329
			return -EINVAL;
1330 1331
		}

1332
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1333
		if (ret < 0) {
1334
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1335
			return ret;
1336
		}
1337 1338 1339 1340 1341 1342
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1343 1344
	}

1345 1346
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1347 1348 1349
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1350
			return ret;
1351 1352 1353
		}
	}

S
Stephen Boyd 已提交
1354 1355 1356 1357
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1358
			return ret;
S
Stephen Boyd 已提交
1359 1360 1361
		}
	}

S
Stephen Boyd 已提交
1362 1363 1364 1365
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1366
			return ret;
S
Stephen Boyd 已提交
1367 1368 1369
		}
	}

1370 1371 1372 1373 1374
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1375
			return ret;
1376 1377 1378
		}
	}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1390 1391 1392 1393
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1394 1395 1396 1397 1398 1399 1400 1401 1402
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1403 1404 1405 1406 1407
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
			rdev_err(rdev, "failed to enable\n");
			return ret;
		}
1408
		rdev->use_count++;
1409 1410
	}

1411
	print_constraints(rdev);
1412
	return 0;
1413 1414 1415 1416
}

/**
 * set_supply - set regulator supply regulator
1417 1418
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1419 1420 1421 1422 1423 1424
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1425
		      struct regulator_dev *supply_rdev)
1426 1427 1428
{
	int err;

1429 1430
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1431 1432 1433
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1434
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1435 1436
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1437
		return err;
1438
	}
1439
	supply_rdev->open_count++;
1440 1441

	return 0;
1442 1443 1444
}

/**
1445
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1446
 * @rdev:         regulator source
1447
 * @consumer_dev_name: dev_name() string for device supply applies to
1448
 * @supply:       symbolic name for supply
1449 1450 1451 1452 1453 1454 1455
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1456 1457
				      const char *consumer_dev_name,
				      const char *supply)
1458 1459
{
	struct regulator_map *node;
1460
	int has_dev;
1461 1462 1463 1464

	if (supply == NULL)
		return -EINVAL;

1465 1466 1467 1468 1469
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1470
	list_for_each_entry(node, &regulator_map_list, list) {
1471 1472 1473 1474
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1475
			continue;
1476 1477
		}

1478 1479 1480
		if (strcmp(node->supply, supply) != 0)
			continue;

1481 1482 1483 1484 1485 1486
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1487 1488 1489
		return -EBUSY;
	}

1490
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1491 1492 1493 1494 1495 1496
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1497 1498 1499 1500 1501 1502
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1503 1504
	}

1505 1506 1507 1508
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1509 1510 1511 1512 1513 1514 1515
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1516
			kfree(node->dev_name);
1517 1518 1519 1520 1521
			kfree(node);
		}
	}
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1571
#define REG_STR_SIZE	64
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1585
	regulator_lock(rdev);
1586 1587 1588 1589
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1590 1591
		regulator->dev = dev;

1592
		/* Add a link to the device sysfs entry */
1593 1594
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1595
		if (size >= REG_STR_SIZE)
1596
			goto overflow_err;
1597 1598 1599

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1600
			goto overflow_err;
1601

1602
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1603 1604
					buf);
		if (err) {
1605
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1606
				  dev->kobj.name, err);
1607
			/* non-fatal */
1608
		}
1609
	} else {
1610
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611
		if (regulator->supply_name == NULL)
1612
			goto overflow_err;
1613 1614 1615 1616
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1617
	if (!regulator->debugfs) {
1618
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1619 1620 1621 1622
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1623
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1624
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1625
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1626 1627 1628
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1629
	}
1630

1631 1632 1633 1634 1635
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1636
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1637 1638 1639
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1640
	regulator_unlock(rdev);
1641 1642 1643 1644
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1645
	regulator_unlock(rdev);
1646 1647 1648
	return NULL;
}

1649 1650
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1651 1652
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1653
	if (!rdev->desc->ops->enable_time)
1654
		return rdev->desc->enable_time;
1655 1656 1657
	return rdev->desc->ops->enable_time(rdev);
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1706 1707 1708 1709 1710
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1711
 */
1712
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1713
						  const char *supply)
1714
{
1715
	struct regulator_dev *r = NULL;
1716
	struct device_node *node;
1717 1718
	struct regulator_map *map;
	const char *devname = NULL;
1719

1720 1721
	regulator_supply_alias(&dev, &supply);

1722 1723 1724
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1725
		if (node) {
1726 1727 1728
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1729

1730
			/*
1731 1732
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1733
			 */
1734
			return ERR_PTR(-EPROBE_DEFER);
1735
		}
1736 1737 1738
	}

	/* if not found, try doing it non-dt way */
1739 1740 1741
	if (dev)
		devname = dev_name(dev);

1742
	mutex_lock(&regulator_list_mutex);
1743 1744 1745 1746 1747 1748
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1749 1750
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1751 1752
			r = map->regulator;
			break;
1753
		}
1754
	}
1755
	mutex_unlock(&regulator_list_mutex);
1756

1757 1758 1759 1760
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1761 1762 1763 1764
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1765 1766
}

1767 1768 1769 1770 1771 1772
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

1773
	/* No supply to resolve? */
1774 1775 1776 1777 1778 1779 1780
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1781 1782 1783 1784
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1785 1786 1787 1788
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1789 1790
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1791
			get_device(&r->dev);
1792 1793 1794 1795 1796
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1797 1798
	}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1812 1813
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1814 1815
	if (ret < 0) {
		put_device(&r->dev);
1816
		return ret;
1817
	}
1818 1819

	ret = set_supply(rdev, r);
1820 1821
	if (ret < 0) {
		put_device(&r->dev);
1822
		return ret;
1823
	}
1824

1825 1826 1827 1828 1829 1830
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1831
		ret = regulator_enable(rdev->supply);
1832
		if (ret < 0) {
1833
			_regulator_put(rdev->supply);
1834
			rdev->supply = NULL;
1835
			return ret;
1836
		}
1837 1838 1839 1840 1841
	}

	return 0;
}

1842
/* Internal regulator request function */
1843 1844
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1845 1846
{
	struct regulator_dev *rdev;
1847
	struct regulator *regulator;
1848
	const char *devname = dev ? dev_name(dev) : "deviceless";
1849
	int ret;
1850

1851 1852 1853 1854 1855
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1856
	if (id == NULL) {
1857
		pr_err("get() with no identifier\n");
1858
		return ERR_PTR(-EINVAL);
1859 1860
	}

1861
	rdev = regulator_dev_lookup(dev, id);
1862 1863
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1864

1865 1866 1867 1868 1869 1870
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1871

1872 1873 1874 1875 1876
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1877

1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1891

1892 1893 1894 1895
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1896

1897 1898 1899
		default:
			return ERR_PTR(-ENODEV);
		}
1900 1901
	}

1902 1903
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1904 1905
		put_device(&rdev->dev);
		return regulator;
1906 1907
	}

1908
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1909
		regulator = ERR_PTR(-EBUSY);
1910 1911
		put_device(&rdev->dev);
		return regulator;
1912 1913
	}

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1924 1925 1926
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1927 1928
		put_device(&rdev->dev);
		return regulator;
1929 1930
	}

1931
	if (!try_module_get(rdev->owner)) {
1932
		regulator = ERR_PTR(-EPROBE_DEFER);
1933 1934 1935
		put_device(&rdev->dev);
		return regulator;
	}
1936

1937 1938 1939
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1940
		put_device(&rdev->dev);
1941
		module_put(rdev->owner);
1942
		return regulator;
1943 1944
	}

1945
	rdev->open_count++;
1946
	if (get_type == EXCLUSIVE_GET) {
1947 1948 1949 1950 1951 1952 1953 1954 1955
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1956 1957
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);

1958 1959
	return regulator;
}
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1976
	return _regulator_get(dev, id, NORMAL_GET);
1977
}
1978 1979
EXPORT_SYMBOL_GPL(regulator_get);

1980 1981 1982 1983 1984 1985 1986
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1987 1988 1989
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2003
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2004 2005 2006
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2007 2008 2009 2010 2011 2012
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2013
 * or IS_ERR() condition containing errno.
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2029
	return _regulator_get(dev, id, OPTIONAL_GET);
2030 2031 2032
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2033
/* regulator_list_mutex lock held by regulator_put() */
2034
static void _regulator_put(struct regulator *regulator)
2035 2036 2037
{
	struct regulator_dev *rdev;

2038
	if (IS_ERR_OR_NULL(regulator))
2039 2040
		return;

2041 2042
	lockdep_assert_held_once(&regulator_list_mutex);

2043 2044 2045
	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

2046 2047
	rdev = regulator->rdev;

2048 2049
	debugfs_remove_recursive(regulator->debugfs);

2050
	if (regulator->dev) {
2051
		device_link_remove(regulator->dev, &rdev->dev);
2052 2053

		/* remove any sysfs entries */
2054
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2055 2056
	}

2057
	regulator_lock(rdev);
2058 2059
	list_del(&regulator->list);

2060 2061
	rdev->open_count--;
	rdev->exclusive = 0;
2062
	put_device(&rdev->dev);
2063
	regulator_unlock(rdev);
2064

2065
	kfree_const(regulator->supply_name);
2066 2067
	kfree(regulator);

2068
	module_put(rdev->owner);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2083 2084 2085 2086
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2164 2165
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2166
					 struct device *alias_dev,
2167
					 const char *const *alias_id,
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2205
					    const char *const *id,
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2216 2217 2218 2219 2220
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2221
	struct gpio_desc *gpiod;
2222

2223
	gpiod = config->ena_gpiod;
2224

2225
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2226
		if (pin->gpiod == gpiod) {
2227
			rdev_dbg(rdev, "GPIO is already used\n");
2228 2229 2230 2231 2232
			goto update_ena_gpio_to_rdev;
		}
	}

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2233
	if (pin == NULL)
2234 2235
		return -ENOMEM;

2236
	pin->gpiod = gpiod;
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2254
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2255 2256 2257 2258
			if (pin->request_count <= 1) {
				pin->request_count = 0;
				list_del(&pin->list);
				kfree(pin);
2259 2260
				rdev->ena_pin = NULL;
				return;
2261 2262 2263 2264 2265 2266 2267
			} else {
				pin->request_count--;
			}
		}
	}
}

2268
/**
2269 2270 2271 2272
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2286
			gpiod_set_value_cansleep(pin->gpiod, 1);
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2297
			gpiod_set_value_cansleep(pin->gpiod, 0);
2298 2299 2300 2301 2302 2303 2304
			pin->enable_count = 0;
		}
	}

	return 0;
}

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2374
			 * detected and we get a penalty of
2375 2376 2377 2378 2379 2380 2381 2382 2383
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2384
	if (rdev->ena_pin) {
2385 2386 2387 2388 2389 2390
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2391
	} else if (rdev->desc->ops->enable) {
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2404
	_regulator_enable_delay(delay);
2405 2406 2407 2408 2409 2410

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2470
/* locks held by regulator_enable() */
2471
static int _regulator_enable(struct regulator *regulator)
2472
{
2473
	struct regulator_dev *rdev = regulator->rdev;
2474
	int ret;
2475

2476 2477
	lockdep_assert_held_once(&rdev->mutex.base);

2478
	if (rdev->use_count == 0 && rdev->supply) {
2479
		ret = _regulator_enable(rdev->supply);
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2490

2491 2492 2493
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2494

2495 2496 2497 2498
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2499
			if (!regulator_ops_is_valid(rdev,
2500 2501
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2502
				goto err_consumer_disable;
2503
			}
2504

2505
			ret = _regulator_do_enable(rdev);
2506
			if (ret < 0)
2507
				goto err_consumer_disable;
2508

2509 2510
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2511
		} else if (ret < 0) {
2512
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2513
			goto err_consumer_disable;
2514
		}
2515
		/* Fallthrough on positive return values - already enabled */
2516 2517
	}

2518 2519 2520
	rdev->use_count++;

	return 0;
2521

2522 2523 2524
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2525
err_disable_supply:
2526
	if (rdev->use_count == 0 && rdev->supply)
2527
		_regulator_disable(rdev->supply);
2528 2529

	return ret;
2530 2531 2532 2533 2534 2535
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2536 2537 2538 2539
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2540
 * NOTE: the output value can be set by other drivers, boot loader or may be
2541
 * hardwired in the regulator.
2542 2543 2544
 */
int regulator_enable(struct regulator *regulator)
{
2545
	struct regulator_dev *rdev = regulator->rdev;
2546
	struct ww_acquire_ctx ww_ctx;
2547
	int ret;
2548

2549
	regulator_lock_dependent(rdev, &ww_ctx);
2550
	ret = _regulator_enable(regulator);
2551
	regulator_unlock_dependent(rdev, &ww_ctx);
2552

2553 2554 2555 2556
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2557 2558 2559 2560 2561 2562
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2563
	if (rdev->ena_pin) {
2564 2565 2566 2567 2568 2569
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2570 2571 2572 2573 2574 2575 2576

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2577 2578 2579 2580 2581 2582
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2583 2584 2585 2586 2587
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2588
/* locks held by regulator_disable() */
2589
static int _regulator_disable(struct regulator *regulator)
2590
{
2591
	struct regulator_dev *rdev = regulator->rdev;
2592 2593
	int ret = 0;

2594
	lockdep_assert_held_once(&rdev->mutex.base);
2595

D
David Brownell 已提交
2596
	if (WARN(rdev->use_count <= 0,
2597
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2598 2599
		return -EIO;

2600
	/* are we the last user and permitted to disable ? */
2601 2602
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2603 2604

		/* we are last user */
2605
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2606 2607 2608 2609 2610 2611
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2612
			ret = _regulator_do_disable(rdev);
2613
			if (ret < 0) {
2614
				rdev_err(rdev, "failed to disable\n");
2615 2616 2617
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2618 2619
				return ret;
			}
2620 2621
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2622 2623 2624 2625 2626 2627
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2628

2629 2630 2631
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2632 2633 2634
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2635
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2636
		ret = _regulator_disable(rdev->supply);
2637

2638 2639 2640 2641 2642 2643 2644
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2645 2646 2647
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2648
 *
2649
 * NOTE: this will only disable the regulator output if no other consumer
2650 2651
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2652 2653 2654
 */
int regulator_disable(struct regulator *regulator)
{
2655
	struct regulator_dev *rdev = regulator->rdev;
2656
	struct ww_acquire_ctx ww_ctx;
2657
	int ret;
2658

2659
	regulator_lock_dependent(rdev, &ww_ctx);
2660
	ret = _regulator_disable(regulator);
2661
	regulator_unlock_dependent(rdev, &ww_ctx);
2662

2663 2664 2665 2666 2667
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2668
static int _regulator_force_disable(struct regulator_dev *rdev)
2669 2670 2671
{
	int ret = 0;

2672
	lockdep_assert_held_once(&rdev->mutex.base);
2673

2674 2675 2676 2677 2678
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2679 2680 2681
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2682 2683
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2684
		return ret;
2685 2686
	}

2687 2688 2689 2690
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2704
	struct regulator_dev *rdev = regulator->rdev;
2705
	struct ww_acquire_ctx ww_ctx;
2706 2707
	int ret;

2708
	regulator_lock_dependent(rdev, &ww_ctx);
2709

2710
	ret = _regulator_force_disable(regulator->rdev);
2711

2712 2713
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2714 2715 2716 2717 2718 2719

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2720 2721
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2722

2723
	regulator_unlock_dependent(rdev, &ww_ctx);
2724

2725 2726 2727 2728
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2729 2730 2731 2732
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2733
	struct ww_acquire_ctx ww_ctx;
2734
	int count, i, ret;
2735 2736
	struct regulator *regulator;
	int total_count = 0;
2737

2738
	regulator_lock_dependent(rdev, &ww_ctx);
2739

2740 2741 2742 2743 2744 2745 2746 2747
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
		}
2762
	}
2763
	WARN_ON(!total_count);
2764

2765 2766 2767 2768
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2769 2770 2771 2772 2773
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2774
 * @ms: milliseconds until the regulator is disabled
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2787 2788 2789
	if (!ms)
		return regulator_disable(regulator);

2790
	regulator_lock(rdev);
2791
	regulator->deferred_disables++;
2792 2793
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2794
	regulator_unlock(rdev);
2795

2796
	return 0;
2797 2798 2799
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2800 2801
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2802
	/* A GPIO control always takes precedence */
2803
	if (rdev->ena_pin)
2804 2805
		return rdev->ena_gpio_state;

2806
	/* If we don't know then assume that the regulator is always on */
2807
	if (!rdev->desc->ops->is_enabled)
2808
		return 1;
2809

2810
	return rdev->desc->ops->is_enabled(rdev);
2811 2812
}

2813 2814
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2826
			regulator_lock(rdev);
2827 2828
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2829
			regulator_unlock(rdev);
2830
	} else if (rdev->is_switch && rdev->supply) {
2831 2832
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2847 2848 2849 2850
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2851 2852 2853 2854 2855 2856 2857
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2858 2859 2860
 */
int regulator_is_enabled(struct regulator *regulator)
{
2861 2862
	int ret;

2863 2864 2865
	if (regulator->always_on)
		return 1;

2866
	regulator_lock(regulator->rdev);
2867
	ret = _regulator_is_enabled(regulator->rdev);
2868
	regulator_unlock(regulator->rdev);
2869 2870

	return ret;
2871 2872 2873
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2886 2887 2888
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2889
	if (!rdev->is_switch || !rdev->supply)
2890 2891 2892
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2903
 * zero if this selector code can't be used on this system, or a
2904 2905 2906 2907
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2908
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2909 2910 2911
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2944 2945
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2946 2947 2948 2949

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2950 2951
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2971 2972
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3010
	struct regulator_dev *rdev = regulator->rdev;
3011 3012
	int i, voltages, ret;

3013
	/* If we can't change voltage check the current voltage */
3014
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3015 3016
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3017
			return min_uV <= ret && ret <= max_uV;
3018 3019 3020 3021
		else
			return ret;
	}

3022 3023 3024 3025 3026
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3041
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3042

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3057 3058 3059 3060 3061
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3062 3063 3064
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3114 3115 3116 3117 3118 3119 3120 3121 3122
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3123 3124
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3125 3126 3127 3128 3129 3130
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3131 3132

	if (ramp_delay == 0) {
3133
		rdev_dbg(rdev, "ramp_delay not set\n");
3134 3135 3136 3137 3138 3139
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3140 3141 3142 3143
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3144
	int delay = 0;
3145
	int best_val = 0;
3146
	unsigned int selector;
3147
	int old_selector = -1;
3148
	const struct regulator_ops *ops = rdev->desc->ops;
3149
	int old_uV = _regulator_get_voltage(rdev);
3150 3151 3152

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3153 3154 3155
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3156 3157 3158 3159
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3160
	if (_regulator_is_enabled(rdev) &&
3161 3162
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3163 3164 3165 3166
		if (old_selector < 0)
			return old_selector;
	}

3167
	if (ops->set_voltage) {
3168 3169
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3170 3171

		if (ret >= 0) {
3172 3173 3174
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3175 3176 3177 3178
			else
				best_val = _regulator_get_voltage(rdev);
		}

3179
	} else if (ops->set_voltage_sel) {
3180
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3181
		if (ret >= 0) {
3182
			best_val = ops->list_voltage(rdev, ret);
3183 3184
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3185 3186 3187
				if (old_selector == selector)
					ret = 0;
				else
3188 3189
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3190 3191 3192
			} else {
				ret = -EINVAL;
			}
3193
		}
3194 3195 3196
	} else {
		ret = -EINVAL;
	}
3197

3198 3199
	if (ret)
		goto out;
3200

3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3218
		}
3219
	}
3220

3221 3222 3223
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3224 3225
	}

3226 3227 3228 3229 3230 3231
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3232 3233
	}

3234
	if (best_val >= 0) {
3235 3236
		unsigned long data = best_val;

3237
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3238 3239
				     (void *)data);
	}
3240

3241
out:
3242
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3243 3244 3245 3246

	return ret;
}

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3273
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3274 3275
					  int min_uV, int max_uV,
					  suspend_state_t state)
3276 3277
{
	struct regulator_dev *rdev = regulator->rdev;
3278
	struct regulator_voltage *voltage = &regulator->voltage[state];
3279
	int ret = 0;
3280
	int old_min_uV, old_max_uV;
3281
	int current_uV;
3282

3283 3284 3285 3286
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3287
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3288 3289
		goto out;

3290
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3291
	 * return successfully even though the regulator does not support
3292 3293
	 * changing the voltage.
	 */
3294
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3295 3296
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
3297 3298
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3299 3300 3301 3302
			goto out;
		}
	}

3303
	/* sanity check */
3304 3305
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3306 3307 3308 3309 3310 3311 3312 3313
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3314

3315
	/* restore original values in case of error */
3316 3317 3318 3319
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3320

3321 3322
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3323
	if (ret < 0)
3324
		goto out2;
3325

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
out:
	return 0;
out2:
	voltage->min_uV = old_min_uV;
	voltage->max_uV = old_max_uV;

	return ret;
}

static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
				      int max_uV, suspend_state_t state)
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3342 3343 3344
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3345 3346
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3347 3348 3349 3350 3351 3352
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3353
			goto out;
3354 3355
		}

M
Mark Brown 已提交
3356
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3357 3358
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3359
			goto out;
3360 3361 3362 3363 3364 3365 3366
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3367
			goto out;
3368 3369 3370 3371 3372 3373 3374
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3375
				best_supply_uV, INT_MAX, state);
3376 3377 3378
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3379
			goto out;
3380 3381 3382
		}
	}

3383 3384 3385 3386 3387
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3388
	if (ret < 0)
3389
		goto out;
3390

3391 3392
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3393
				best_supply_uV, INT_MAX, state);
3394 3395 3396 3397 3398 3399 3400
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3401
out:
3402
	return ret;
3403 3404
}

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
		*current_uV = _regulator_get_voltage(rdev);

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int max_spread = constraints->max_spread;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
	int i, ret;
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3482
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3493

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

		tmp_act = _regulator_get_voltage(c_rdevs[i]);
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
			ret = _regulator_get_voltage(rdev);
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	bool best_c_rdev_done, c_rdev_done[MAX_COUPLED];
	unsigned int delta, best_delta;

	c_rdevs = c_desc->coupled_rdevs;
	n_coupled = c_desc->n_coupled;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		n_coupled = 1;

	if (c_desc->n_resolved < n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	for (i = 0; i < n_coupled; i++)
		c_rdev_done[i] = false;

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

			if (c_rdev_done[i])
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3658

3659 3660
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3661

3662 3663 3664 3665 3666 3667 3668 3669
		if (ret < 0)
			goto out;

		c_rdev_done[best_c_rdev] = best_c_rdev_done;

	} while (n_coupled > 1);

out:
3670 3671 3672
	return ret;
}

3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3693 3694
	struct ww_acquire_ctx ww_ctx;
	int ret;
3695

3696
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3697

3698 3699
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3700

3701
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3702

3703 3704 3705 3706
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3719
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3773 3774
	struct ww_acquire_ctx ww_ctx;
	int ret;
3775 3776 3777 3778 3779

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3780
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3781 3782 3783 3784

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3785
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3786 3787 3788 3789 3790

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3804 3805
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3806 3807 3808 3809 3810
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3811 3812 3813 3814 3815
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3816
	/* Currently requires operations to do this */
3817
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3840
/**
3841 3842
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3843 3844 3845 3846 3847 3848
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3849
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3850
 * set_voltage_time_sel() operation.
3851 3852 3853 3854 3855
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3856
	int old_volt, new_volt;
3857

3858 3859 3860
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3861

3862 3863 3864
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3865 3866 3867 3868 3869
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3870
}
3871
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3872

3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3884
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3885 3886
	int ret, min_uV, max_uV;

3887
	regulator_lock(rdev);
3888 3889 3890 3891 3892 3893 3894 3895

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3896
	if (!voltage->min_uV && !voltage->max_uV) {
3897 3898 3899 3900
		ret = -EINVAL;
		goto out;
	}

3901 3902
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3903 3904 3905 3906 3907 3908

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3909
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3910 3911 3912 3913 3914 3915
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3916
	regulator_unlock(rdev);
3917 3918 3919 3920
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3921 3922
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3923
	int sel, ret;
3924 3925 3926 3927 3928 3929 3930 3931
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3932 3933 3934 3935 3936
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3937 3938 3939 3940

			return _regulator_get_voltage(rdev->supply->rdev);
		}
	}
3941 3942 3943 3944 3945

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3946
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3947
	} else if (rdev->desc->ops->get_voltage) {
3948
		ret = rdev->desc->ops->get_voltage(rdev);
3949 3950
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3951 3952
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3953
	} else if (rdev->supply) {
3954
		ret = _regulator_get_voltage(rdev->supply->rdev);
3955
	} else {
3956
		return -EINVAL;
3957
	}
3958

3959 3960
	if (ret < 0)
		return ret;
3961
	return ret - rdev->constraints->uV_offset;
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
3975
	struct ww_acquire_ctx ww_ctx;
3976 3977
	int ret;

3978
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3979
	ret = _regulator_get_voltage(regulator->rdev);
3980
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3981 3982 3983 3984 3985 3986 3987 3988

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
3989
 * @min_uA: Minimum supported current in uA
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4008
	regulator_lock(rdev);
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4023
	regulator_unlock(rdev);
4024 4025 4026 4027
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4028 4029 4030 4031 4032 4033 4034 4035 4036
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4037 4038 4039 4040
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4041
	regulator_lock(rdev);
4042
	ret = _regulator_get_current_limit_unlocked(rdev);
4043
	regulator_unlock(rdev);
4044

4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4078
	int regulator_curr_mode;
4079

4080
	regulator_lock(rdev);
4081 4082 4083 4084 4085 4086 4087

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4088 4089 4090 4091 4092 4093 4094 4095 4096
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4097
	/* constraints check */
4098
	ret = regulator_mode_constrain(rdev, &mode);
4099 4100 4101 4102 4103
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4104
	regulator_unlock(rdev);
4105 4106 4107 4108
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4109 4110 4111 4112 4113 4114 4115 4116 4117
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4118 4119 4120 4121
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4122
	regulator_lock(rdev);
4123
	ret = _regulator_get_mode_unlocked(rdev);
4124
	regulator_unlock(rdev);
4125

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4141 4142 4143 4144 4145
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4146
	regulator_lock(rdev);
4147 4148 4149 4150 4151 4152 4153 4154 4155

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4156
	regulator_unlock(rdev);
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4174
/**
4175
 * regulator_set_load - set regulator load
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4198 4199 4200 4201 4202 4203 4204 4205
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4206
 * On error a negative errno is returned.
4207
 */
4208
int regulator_set_load(struct regulator *regulator, int uA_load)
4209 4210
{
	struct regulator_dev *rdev = regulator->rdev;
4211 4212
	int old_uA_load;
	int ret = 0;
4213

4214
	regulator_lock(rdev);
4215
	old_uA_load = regulator->uA_load;
4216
	regulator->uA_load = uA_load;
4217 4218 4219 4220 4221
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4222
	regulator_unlock(rdev);
4223

4224 4225
	return ret;
}
4226
EXPORT_SYMBOL_GPL(regulator_set_load);
4227

4228 4229 4230 4231
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4232
 * @enable: enable or disable bypass mode
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4247
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4248 4249
		return 0;

4250
	regulator_lock(rdev);
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4274
	regulator_unlock(rdev);
4275 4276 4277 4278 4279

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4280 4281 4282
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4283
 * @nb: notifier block
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4298
 * @nb: notifier block
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4310 4311 4312
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4313
static int _notifier_call_chain(struct regulator_dev *rdev,
4314 4315 4316
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4317
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4344 4345
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4356 4357 4358 4359 4360 4361 4362
	if (ret != -EPROBE_DEFER)
		dev_err(dev, "Failed to get supply '%s': %d\n",
			consumers[i].supply, ret);
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4363
	while (--i >= 0)
4364 4365 4366 4367 4368 4369
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4370 4371 4372 4373 4374 4375 4376
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4392
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4393
	int i;
4394
	int ret = 0;
4395

4396
	for (i = 0; i < num_consumers; i++) {
4397 4398
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4399
	}
4400 4401 4402 4403

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4404
	for (i = 0; i < num_consumers; i++) {
4405 4406
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4407
			goto err;
4408
		}
4409 4410 4411 4412 4413
	}

	return 0;

err:
4414 4415 4416 4417 4418 4419 4420
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4434 4435
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4436 4437 4438 4439 4440 4441
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4442
	int ret, r;
4443

4444
	for (i = num_consumers - 1; i >= 0; --i) {
4445 4446 4447 4448 4449 4450 4451 4452
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4453
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4454 4455 4456
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4457
			pr_err("Failed to re-enable %s: %d\n",
4458 4459
			       consumers[i].supply, r);
	}
4460 4461 4462 4463 4464

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4483
	int ret = 0;
4484

4485
	for (i = 0; i < num_consumers; i++) {
4486 4487 4488
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4489 4490
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4491 4492 4493 4494 4495 4496 4497
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4521
 * @rdev: regulator source
4522
 * @event: notifier block
4523
 * @data: callback-specific data.
4524 4525 4526
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4527
 * Note lock must be held by caller.
4528 4529 4530 4531
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4532
	lockdep_assert_held_once(&rdev->mutex.base);
4533

4534 4535 4536 4537 4538 4539
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4556
	case REGULATOR_MODE_STANDBY:
4557 4558
		return REGULATOR_STATUS_STANDBY;
	default:
4559
		return REGULATOR_STATUS_UNDEFINED;
4560 4561 4562 4563
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4591 4592 4593 4594
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4595 4596
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4597
{
4598
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4599
	struct regulator_dev *rdev = dev_to_rdev(dev);
4600
	const struct regulator_ops *ops = rdev->desc->ops;
4601 4602 4603 4604 4605 4606 4607
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4608 4609

	/* some attributes need specific methods to be displayed */
4610 4611 4612 4613 4614 4615 4616
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4617
	}
4618

4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4634
	/* constraints need specific supporting methods */
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4670

4671 4672 4673
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4674 4675 4676

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4677
	kfree(rdev);
4678 4679
}

4680 4681
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4694
	if (!rdev->debugfs) {
4695 4696 4697 4698 4699 4700 4701 4702
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4703 4704
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4705 4706
}

4707 4708
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4709 4710 4711 4712 4713 4714
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4715 4716
}

4717
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4731 4732
		if (!c_rdev)
			continue;
4733

4734
		regulator_lock(c_rdev);
4735

4736 4737
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4738

4739
		regulator_unlock(c_rdev);
4740

4741 4742
		regulator_resolve_coupling(c_rdev);
	}
4743 4744
}

4745
static void regulator_remove_coupling(struct regulator_dev *rdev)
4746
{
4747 4748 4749 4750
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
4751

4752
	n_coupled = c_desc->n_coupled;
4753

4754 4755
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
4756

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
4780 4781
}

4782
static int regulator_init_coupling(struct regulator_dev *rdev)
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
{
	int n_phandles;

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

	if (n_phandles + 1 > MAX_COUPLED) {
		rdev_err(rdev, "too many regulators coupled\n");
		return -EPERM;
	}

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

	/* regulator, which can't change its voltage, can't be coupled */
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
		rdev_err(rdev, "voltage operation not allowed\n");
		return -EPERM;
	}

	if (rdev->constraints->max_spread <= 0) {
		rdev_err(rdev, "wrong max_spread value\n");
		return -EPERM;
	}

	if (!of_check_coupling_data(rdev))
		return -EPERM;

	return 0;
}

4825 4826
/**
 * regulator_register - register regulator
4827
 * @regulator_desc: regulator to register
4828
 * @cfg: runtime configuration for regulator
4829 4830
 *
 * Called by regulator drivers to register a regulator.
4831 4832
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4833
 */
4834 4835
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4836
		   const struct regulator_config *cfg)
4837
{
4838
	const struct regulation_constraints *constraints = NULL;
4839
	const struct regulator_init_data *init_data;
4840
	struct regulator_config *config = NULL;
4841
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4842
	struct regulator_dev *rdev;
4843 4844
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
4845
	struct device *dev;
4846
	int ret, i;
4847

4848
	if (cfg == NULL)
4849
		return ERR_PTR(-EINVAL);
4850 4851 4852 4853 4854 4855
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
4856

4857
	dev = cfg->dev;
4858
	WARN_ON(!dev);
4859

4860 4861 4862 4863
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
4864

4865
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
4866 4867 4868 4869
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
4870

4871 4872 4873
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
4874 4875
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
4876 4877 4878 4879

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
4880 4881
		ret = -EINVAL;
		goto rinse;
4882
	}
4883 4884
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
4885 4886
		ret = -EINVAL;
		goto rinse;
4887
	}
4888

4889
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4890 4891 4892 4893
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
4894

4895 4896 4897 4898 4899 4900 4901
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
4902 4903
		ret = -ENOMEM;
		goto rinse;
4904 4905
	}

4906
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4907
					       &rdev->dev.of_node);
4908 4909 4910 4911 4912
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
4913
	 * a descriptor, we definitely got one from parsing the device
4914 4915 4916 4917
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
4918 4919 4920 4921 4922
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

4923
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
4924
	rdev->reg_data = config->driver_data;
4925 4926
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
4927 4928
	if (config->regmap)
		rdev->regmap = config->regmap;
4929
	else if (dev_get_regmap(dev, NULL))
4930
		rdev->regmap = dev_get_regmap(dev, NULL);
4931 4932
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4933 4934 4935
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4936
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4937

4938
	/* preform any regulator specific init */
4939
	if (init_data && init_data->regulator_init) {
4940
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
4941 4942
		if (ret < 0)
			goto clean;
4943 4944
	}

4945
	if (config->ena_gpiod) {
4946
		mutex_lock(&regulator_list_mutex);
4947
		ret = regulator_ena_gpio_request(rdev, config);
4948
		mutex_unlock(&regulator_list_mutex);
4949
		if (ret != 0) {
4950 4951
			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
				 ret);
4952
			goto clean;
4953
		}
4954 4955 4956
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
4957 4958
	}

4959
	/* register with sysfs */
4960
	rdev->dev.class = &regulator_class;
4961
	rdev->dev.parent = dev;
4962
	dev_set_name(&rdev->dev, "regulator.%lu",
4963
		    (unsigned long) atomic_inc_return(&regulator_no));
4964

4965
	/* set regulator constraints */
4966 4967 4968 4969
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
4970
		rdev->supply_name = init_data->supply_regulator;
4971
	else if (regulator_desc->supply_name)
4972
		rdev->supply_name = regulator_desc->supply_name;
4973

4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

4986 4987
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
4988 4989
		goto wash;

4990
	/* add consumers devices */
4991
	if (init_data) {
4992
		mutex_lock(&regulator_list_mutex);
4993 4994 4995
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
4996
				init_data->consumer_supplies[i].supply);
4997
			if (ret < 0) {
4998
				mutex_unlock(&regulator_list_mutex);
4999 5000 5001 5002
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5003
		}
5004
		mutex_unlock(&regulator_list_mutex);
5005
	}
5006

5007 5008 5009 5010 5011
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5012
	dev_set_drvdata(&rdev->dev, rdev);
5013 5014 5015 5016 5017 5018
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

5019
	rdev_init_debugfs(rdev);
5020

5021 5022 5023 5024 5025
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5026 5027 5028
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5029
	kfree(config);
5030
	return rdev;
D
David Brownell 已提交
5031

5032
unset_supplies:
5033
	mutex_lock(&regulator_list_mutex);
5034
	unset_regulator_supplies(rdev);
5035
	mutex_unlock(&regulator_list_mutex);
5036
wash:
5037
	kfree(rdev->constraints);
5038
	mutex_lock(&regulator_list_mutex);
5039
	regulator_ena_gpio_free(rdev);
5040
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5041
clean:
5042 5043
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
D
David Brownell 已提交
5044
	kfree(rdev);
5045
	kfree(config);
5046 5047 5048
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5049
	return ERR_PTR(ret);
5050 5051 5052 5053 5054
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5055
 * @rdev: regulator to unregister
5056 5057 5058 5059 5060 5061 5062 5063
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5064 5065 5066
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5067
		regulator_put(rdev->supply);
5068
	}
5069

5070
	mutex_lock(&regulator_list_mutex);
5071

5072
	debugfs_remove_recursive(rdev->debugfs);
5073
	flush_work(&rdev->disable_work.work);
5074
	WARN_ON(rdev->open_count);
5075
	regulator_remove_coupling(rdev);
5076
	unset_regulator_supplies(rdev);
5077
	list_del(&rdev->list);
5078
	regulator_ena_gpio_free(rdev);
5079
	device_unregister(&rdev->dev);
5080 5081

	mutex_unlock(&regulator_list_mutex);
5082 5083 5084
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5085
#ifdef CONFIG_SUSPEND
5086
/**
5087
 * regulator_suspend - prepare regulators for system wide suspend
5088
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5089 5090 5091
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5092
static int regulator_suspend(struct device *dev)
5093
{
5094
	struct regulator_dev *rdev = dev_to_rdev(dev);
5095
	suspend_state_t state = pm_suspend_target_state;
5096 5097 5098 5099 5100
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
5101

5102
	return ret;
5103
}
5104

5105
static int regulator_resume(struct device *dev)
5106
{
5107
	suspend_state_t state = pm_suspend_target_state;
5108
	struct regulator_dev *rdev = dev_to_rdev(dev);
5109
	struct regulator_state *rstate;
5110
	int ret = 0;
5111

5112
	rstate = regulator_get_suspend_state(rdev, state);
5113
	if (rstate == NULL)
5114
		return 0;
5115

5116
	regulator_lock(rdev);
5117

5118
	if (rdev->desc->ops->resume &&
5119 5120
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
5121
		ret = rdev->desc->ops->resume(rdev);
5122

5123
	regulator_unlock(rdev);
5124

5125
	return ret;
5126
}
5127 5128
#else /* !CONFIG_SUSPEND */

5129 5130
#define regulator_suspend	NULL
#define regulator_resume	NULL
5131 5132 5133 5134 5135

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5136 5137
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5138 5139 5140
};
#endif

M
Mark Brown 已提交
5141
struct class regulator_class = {
5142 5143 5144 5145 5146 5147 5148
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5166 5167
/**
 * rdev_get_drvdata - get rdev regulator driver data
5168
 * @rdev: regulator
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5205
 * @rdev: regulator
5206 5207 5208 5209 5210 5211 5212
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5213 5214 5215 5216 5217 5218
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5219 5220 5221 5222 5223 5224
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5225 5226 5227 5228 5229 5230
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5231
#ifdef CONFIG_DEBUG_FS
5232
static int supply_map_show(struct seq_file *sf, void *data)
5233 5234 5235 5236
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5237 5238 5239
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5240 5241
	}

5242 5243
	return 0;
}
5244
DEFINE_SHOW_ATTRIBUTE(supply_map);
5245

5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5268 5269 5270 5271 5272 5273
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5274
	struct summary_data summary_data;
5275
	unsigned int opmode;
5276 5277 5278 5279

	if (!rdev)
		return;

5280
	opmode = _regulator_get_mode_unlocked(rdev);
5281
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5282 5283
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5284
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5285
		   regulator_opmode_to_str(opmode));
5286

5287
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
5288 5289
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5308
		if (consumer->dev && consumer->dev->class == &regulator_class)
5309 5310 5311 5312
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5313 5314
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5315 5316 5317

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5318 5319
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5320
				   consumer->uA_load / 1000,
5321 5322
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5323 5324
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5325 5326 5327 5328 5329 5330 5331 5332
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5333 5334 5335
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5336

5337 5338
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5376 5377

	regulator_unlock(rdev);
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5408 5409
	mutex_lock(&regulator_list_mutex);

5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5436 5437

	mutex_unlock(&regulator_list_mutex);
5438 5439
}

5440
static int regulator_summary_show_roots(struct device *dev, void *data)
5441
{
5442 5443
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5444

5445 5446
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5447

5448 5449
	return 0;
}
5450

5451 5452
static int regulator_summary_show(struct seq_file *s, void *data)
{
5453 5454
	struct ww_acquire_ctx ww_ctx;

5455 5456
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5457

5458 5459
	regulator_summary_lock(&ww_ctx);

5460 5461
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5462

5463 5464
	regulator_summary_unlock(&ww_ctx);

5465 5466
	return 0;
}
5467 5468
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5469

5470 5471
static int __init regulator_init(void)
{
5472 5473 5474 5475
	int ret;

	ret = class_register(&regulator_class);

5476
	debugfs_root = debugfs_create_dir("regulator", NULL);
5477
	if (!debugfs_root)
5478
		pr_warn("regulator: Failed to create debugfs directory\n");
5479

5480
#ifdef CONFIG_DEBUG_FS
5481 5482
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5483

5484
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5485
			    NULL, &regulator_summary_fops);
5486
#endif
5487 5488 5489
	regulator_dummy_init();

	return ret;
5490 5491 5492 5493
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5494

5495
static int __init regulator_late_cleanup(struct device *dev, void *data)
5496
{
5497 5498 5499
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5500 5501
	int enabled, ret;

5502 5503 5504
	if (c && c->always_on)
		return 0;

5505
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5506 5507
		return 0;

5508
	regulator_lock(rdev);
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5539
	regulator_unlock(rdev);
5540 5541 5542 5543 5544 5545

	return 0;
}

static int __init regulator_init_complete(void)
{
5546 5547 5548 5549 5550 5551 5552 5553 5554
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5565
	/* If we have a full configuration then disable any regulators
5566 5567 5568
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5569
	 */
5570 5571
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5572 5573 5574

	return 0;
}
5575
late_initcall_sync(regulator_init_complete);