core.c 125.1 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
55
static LIST_HEAD(regulator_ena_gpio_list);
56
static LIST_HEAD(regulator_supply_alias_list);
57
static bool has_full_constraints;
58

59 60
static struct dentry *debugfs_root;

61
/*
62 63 64 65 66 67
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
68
	const char *dev_name;   /* The dev_name() for the consumer */
69
	const char *supply;
70
	struct regulator_dev *regulator;
71 72
};

73 74 75 76 77 78 79
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
80
	struct gpio_desc *gpiod;
81 82 83 84 85
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

99
static int _regulator_is_enabled(struct regulator_dev *rdev);
100
static int _regulator_disable(struct regulator_dev *rdev);
101 102 103
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104
static int _notifier_call_chain(struct regulator_dev *rdev,
105
				  unsigned long event, void *data);
106 107
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
108 109 110
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
111
static void _regulator_put(struct regulator *regulator);
112

113 114 115 116 117 118 119 120 121 122
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

123 124
static bool have_full_constraints(void)
{
125
	return has_full_constraints || of_have_populated_dt();
126 127
}

128 129 130 131 132 133 134 135 136 137 138 139 140
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

141 142 143 144 145 146 147 148
static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
{
	if (rdev && rdev->supply)
		return rdev->supply->rdev;

	return NULL;
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
 * @subclass:		mutex subclass used for lockdep
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
static void regulator_lock_nested(struct regulator_dev *rdev,
				  unsigned int subclass)
{
	if (!mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current) {
			rdev->ref_cnt++;
			return;
		}
		mutex_lock_nested(&rdev->mutex, subclass);
	}

	rdev->ref_cnt = 1;
	rdev->mutex_owner = current;
}

static inline void regulator_lock(struct regulator_dev *rdev)
{
	regulator_lock_nested(rdev, 0);
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
static void regulator_unlock(struct regulator_dev *rdev)
{
	if (rdev->ref_cnt != 0) {
		rdev->ref_cnt--;

		if (!rdev->ref_cnt) {
			rdev->mutex_owner = NULL;
			mutex_unlock(&rdev->mutex);
		}
	}
}

199 200 201 202 203
/**
 * regulator_lock_supply - lock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_lock_supply(struct regulator_dev *rdev)
204
{
205
	int i;
206

207 208
	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
		regulator_lock_nested(rdev, i);
209 210 211
}

/**
212 213
 * regulator_unlock_supply - unlock a regulator and its supplies
 * @rdev:         regulator source
214
 */
215
static void regulator_unlock_supply(struct regulator_dev *rdev)
216
{
217
	struct regulator *supply;
218

219 220 221
	while (1) {
		regulator_unlock(rdev);
		supply = rdev->supply;
222

223 224
		if (!rdev->supply)
			return;
225

226
		rdev = supply->rdev;
227 228 229
	}
}

230 231 232 233 234 235
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
236
 * returns the device node corresponding to the regulator if found, else
237 238 239 240 241 242 243 244 245 246 247 248 249
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
250 251
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
252 253 254 255 256
		return NULL;
	}
	return regnode;
}

257 258 259 260 261 262
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

263
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
264
		rdev_err(rdev, "voltage operation not allowed\n");
265 266 267 268 269 270 271 272
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

273 274
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
275
			 *min_uV, *max_uV);
276
		return -EINVAL;
277
	}
278 279 280 281

	return 0;
}

282 283 284 285 286 287
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

288 289 290 291
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
292 293
				     int *min_uV, int *max_uV,
				     suspend_state_t state)
294 295
{
	struct regulator *regulator;
296
	struct regulator_voltage *voltage;
297 298

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
299
		voltage = &regulator->voltage[state];
300 301 302 303
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
304
		if (!voltage->min_uV && !voltage->max_uV)
305 306
			continue;

307 308 309 310
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
311 312
	}

313
	if (*min_uV > *max_uV) {
314 315
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
316
		return -EINVAL;
317
	}
318 319 320 321

	return 0;
}

322 323 324 325 326 327
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

328
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
329
		rdev_err(rdev, "current operation not allowed\n");
330 331 332 333 334 335 336 337
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

338 339
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
340
			 *min_uA, *max_uA);
341
		return -EINVAL;
342
	}
343 344 345 346 347

	return 0;
}

/* operating mode constraint check */
348 349
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
350
{
351
	switch (*mode) {
352 353 354 355 356 357
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
358
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
359 360 361
		return -EINVAL;
	}

362
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
363
		rdev_err(rdev, "mode operation not allowed\n");
364 365
		return -EPERM;
	}
366 367 368 369 370 371 372 373

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
374
	}
375 376

	return -EINVAL;
377 378
}

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

397 398 399
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
400
	struct regulator_dev *rdev = dev_get_drvdata(dev);
401 402
	ssize_t ret;

403
	regulator_lock(rdev);
404
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
405
	regulator_unlock(rdev);
406 407 408

	return ret;
}
409
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
410 411 412 413

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
414
	struct regulator_dev *rdev = dev_get_drvdata(dev);
415 416 417

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
418
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
419

420 421
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
422 423 424
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

425
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
426
}
427
static DEVICE_ATTR_RO(name);
428

429
static const char *regulator_opmode_to_str(int mode)
430 431 432
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
433
		return "fast";
434
	case REGULATOR_MODE_NORMAL:
435
		return "normal";
436
	case REGULATOR_MODE_IDLE:
437
		return "idle";
438
	case REGULATOR_MODE_STANDBY:
439
		return "standby";
440
	}
441 442 443 444 445 446
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
447 448
}

D
David Brownell 已提交
449 450
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
451
{
452
	struct regulator_dev *rdev = dev_get_drvdata(dev);
453

D
David Brownell 已提交
454 455
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
456
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
457 458 459

static ssize_t regulator_print_state(char *buf, int state)
{
460 461 462 463 464 465 466 467
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
468 469 470 471
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
472 473
	ssize_t ret;

474
	regulator_lock(rdev);
475
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
476
	regulator_unlock(rdev);
D
David Brownell 已提交
477

478
	return ret;
D
David Brownell 已提交
479
}
480
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
481

D
David Brownell 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
515 516 517
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
518 519 520
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
521 522 523 524 525 526 527 528
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

529 530 531
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
532
	struct regulator_dev *rdev = dev_get_drvdata(dev);
533 534 535 536 537 538

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
539
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
540 541 542 543

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
544
	struct regulator_dev *rdev = dev_get_drvdata(dev);
545 546 547 548 549 550

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
551
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
552 553 554 555

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
556
	struct regulator_dev *rdev = dev_get_drvdata(dev);
557 558 559 560 561 562

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
563
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
564 565 566 567

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
568
	struct regulator_dev *rdev = dev_get_drvdata(dev);
569 570 571 572 573 574

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
575
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
576 577 578 579

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
580
	struct regulator_dev *rdev = dev_get_drvdata(dev);
581 582 583
	struct regulator *regulator;
	int uA = 0;

584
	regulator_lock(rdev);
585
	list_for_each_entry(regulator, &rdev->consumer_list, list)
586
		uA += regulator->uA_load;
587
	regulator_unlock(rdev);
588 589
	return sprintf(buf, "%d\n", uA);
}
590
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
591

592 593
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
594
{
595
	struct regulator_dev *rdev = dev_get_drvdata(dev);
596 597
	return sprintf(buf, "%d\n", rdev->use_count);
}
598
static DEVICE_ATTR_RO(num_users);
599

600 601
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
602
{
603
	struct regulator_dev *rdev = dev_get_drvdata(dev);
604 605 606 607 608 609 610 611 612

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
613
static DEVICE_ATTR_RO(type);
614 615 616 617

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
618
	struct regulator_dev *rdev = dev_get_drvdata(dev);
619 620 621

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
622 623
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
624 625 626 627

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
628
	struct regulator_dev *rdev = dev_get_drvdata(dev);
629 630 631

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
632 633
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
634 635 636 637

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
638
	struct regulator_dev *rdev = dev_get_drvdata(dev);
639 640 641

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
642 643
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
644 645 646 647

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
648
	struct regulator_dev *rdev = dev_get_drvdata(dev);
649

D
David Brownell 已提交
650 651
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
652
}
653 654
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
655 656 657 658

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
659
	struct regulator_dev *rdev = dev_get_drvdata(dev);
660

D
David Brownell 已提交
661 662
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
663
}
664 665
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
666 667 668 669

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
670
	struct regulator_dev *rdev = dev_get_drvdata(dev);
671

D
David Brownell 已提交
672 673
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
674
}
675 676
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
677 678 679 680

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
681
	struct regulator_dev *rdev = dev_get_drvdata(dev);
682

D
David Brownell 已提交
683 684
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
685
}
686 687
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
688 689 690 691

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
692
	struct regulator_dev *rdev = dev_get_drvdata(dev);
693

D
David Brownell 已提交
694 695
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
696
}
697 698
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
699 700 701 702

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
703
	struct regulator_dev *rdev = dev_get_drvdata(dev);
704

D
David Brownell 已提交
705 706
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
707
}
708 709 710
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
732

733 734
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
735
static int drms_uA_update(struct regulator_dev *rdev)
736 737 738 739 740
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

741 742
	lockdep_assert_held_once(&rdev->mutex);

743 744 745 746
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
747
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
748 749
		return 0;

750 751
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
752 753
		return 0;

754 755
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
756
		return -EINVAL;
757 758 759

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
760
		current_uA += sibling->uA_load;
761

762 763
	current_uA += rdev->constraints->system_load;

764 765 766 767 768 769
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
		/* get output voltage */
		output_uV = _regulator_get_voltage(rdev);
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

788 789 790 791 792 793 794 795 796 797 798
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
799

800 801 802
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
803 804 805
	}

	return err;
806 807 808
}

static int suspend_set_state(struct regulator_dev *rdev,
809
				    suspend_state_t state)
810 811
{
	int ret = 0;
812 813 814 815
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
816
		return 0;
817 818

	/* If we have no suspend mode configration don't set anything;
819 820
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
821
	 */
822 823
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
824 825
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
826
			rdev_warn(rdev, "No configuration\n");
827 828 829
		return 0;
	}

830 831
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
832
		ret = rdev->desc->ops->set_suspend_enable(rdev);
833 834
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
835
		ret = rdev->desc->ops->set_suspend_disable(rdev);
836 837 838
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

839
	if (ret < 0) {
840
		rdev_err(rdev, "failed to enabled/disable\n");
841 842 843 844 845 846
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
847
			rdev_err(rdev, "failed to set voltage\n");
848 849 850 851 852 853 854
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
855
			rdev_err(rdev, "failed to set mode\n");
856 857 858 859
			return ret;
		}
	}

860
	return ret;
861 862 863 864 865
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
866
	char buf[160] = "";
867
	size_t len = sizeof(buf) - 1;
868 869
	int count = 0;
	int ret;
870

871
	if (constraints->min_uV && constraints->max_uV) {
872
		if (constraints->min_uV == constraints->max_uV)
873 874
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
875
		else
876 877 878 879
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
880 881 882 883 884 885
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
886 887
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
888 889
	}

890
	if (constraints->uV_offset)
891 892
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
893

894
	if (constraints->min_uA && constraints->max_uA) {
895
		if (constraints->min_uA == constraints->max_uA)
896 897
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
898
		else
899 900 901 902
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
903 904 905 906 907 908
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
909 910
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
911
	}
912

913
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
914
		count += scnprintf(buf + count, len - count, "fast ");
915
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
916
		count += scnprintf(buf + count, len - count, "normal ");
917
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
918
		count += scnprintf(buf + count, len - count, "idle ");
919
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
920
		count += scnprintf(buf + count, len - count, "standby");
921

922
	if (!count)
923
		scnprintf(buf, len, "no parameters");
924

925
	rdev_dbg(rdev, "%s\n", buf);
926 927

	if ((constraints->min_uV != constraints->max_uV) &&
928
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
929 930
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
931 932
}

933
static int machine_constraints_voltage(struct regulator_dev *rdev,
934
	struct regulation_constraints *constraints)
935
{
936
	const struct regulator_ops *ops = rdev->desc->ops;
937 938 939 940
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
941 942
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
943
		int current_uV = _regulator_get_voltage(rdev);
944 945 946 947 948 949 950 951 952 953 954 955

		if (current_uV == -ENOTRECOVERABLE) {
			/* This regulator can't be read and must be initted */
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
			current_uV = _regulator_get_voltage(rdev);
		}

956
		if (current_uV < 0) {
957 958 959
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
960 961
			return current_uV;
		}
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
982 983
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
984
			ret = _regulator_do_set_voltage(
985
				rdev, target_min, target_max);
986 987
			if (ret < 0) {
				rdev_err(rdev,
988 989
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
990 991
				return ret;
			}
992
		}
993
	}
994

995 996 997 998 999 1000 1001 1002 1003 1004 1005
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1006 1007
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1008
		if (count == 1 && !cmin) {
1009
			cmin = 1;
1010
			cmax = INT_MAX;
1011 1012
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1013 1014
		}

1015 1016
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1017
			return 0;
1018

1019
		/* else require explicit machine-level constraints */
1020
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1021
			rdev_err(rdev, "invalid voltage constraints\n");
1022
			return -EINVAL;
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1042 1043 1044
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1045
			return -EINVAL;
1046 1047 1048 1049
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1050 1051
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1052 1053 1054
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1055 1056
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1057 1058 1059 1060
			constraints->max_uV = max_uV;
		}
	}

1061 1062 1063
	return 0;
}

1064 1065 1066
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1067
	const struct regulator_ops *ops = rdev->desc->ops;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1094 1095
static int _regulator_do_enable(struct regulator_dev *rdev);

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1108
	const struct regulation_constraints *constraints)
1109 1110
{
	int ret = 0;
1111
	const struct regulator_ops *ops = rdev->desc->ops;
1112

1113 1114 1115 1116 1117 1118
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1119 1120
	if (!rdev->constraints)
		return -ENOMEM;
1121

1122
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1123
	if (ret != 0)
1124
		return ret;
1125

1126
	ret = machine_constraints_current(rdev, rdev->constraints);
1127
	if (ret != 0)
1128
		return ret;
1129

1130 1131 1132 1133 1134
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1135
			return ret;
1136 1137 1138
		}
	}

1139
	/* do we need to setup our suspend state */
1140
	if (rdev->constraints->initial_state) {
1141
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1142
		if (ret < 0) {
1143
			rdev_err(rdev, "failed to set suspend state\n");
1144
			return ret;
1145 1146
		}
	}
1147

1148
	if (rdev->constraints->initial_mode) {
1149
		if (!ops->set_mode) {
1150
			rdev_err(rdev, "no set_mode operation\n");
1151
			return -EINVAL;
1152 1153
		}

1154
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1155
		if (ret < 0) {
1156
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1157
			return ret;
1158 1159 1160
		}
	}

1161 1162 1163
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1164 1165 1166
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1167
			rdev_err(rdev, "failed to enable\n");
1168
			return ret;
1169 1170 1171
		}
	}

1172 1173
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1174 1175 1176
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1177
			return ret;
1178 1179 1180
		}
	}

S
Stephen Boyd 已提交
1181 1182 1183 1184
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1185
			return ret;
S
Stephen Boyd 已提交
1186 1187 1188
		}
	}

S
Stephen Boyd 已提交
1189 1190 1191 1192
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1193
			return ret;
S
Stephen Boyd 已提交
1194 1195 1196
		}
	}

1197 1198 1199 1200 1201
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1202
			return ret;
1203 1204 1205
		}
	}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1217
	print_constraints(rdev);
1218
	return 0;
1219 1220 1221 1222
}

/**
 * set_supply - set regulator supply regulator
1223 1224
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1225 1226 1227 1228 1229 1230
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1231
		      struct regulator_dev *supply_rdev)
1232 1233 1234
{
	int err;

1235 1236
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1237 1238 1239
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1240
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1241 1242
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1243
		return err;
1244
	}
1245
	supply_rdev->open_count++;
1246 1247

	return 0;
1248 1249 1250
}

/**
1251
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1252
 * @rdev:         regulator source
1253
 * @consumer_dev_name: dev_name() string for device supply applies to
1254
 * @supply:       symbolic name for supply
1255 1256 1257 1258 1259 1260 1261
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1262 1263
				      const char *consumer_dev_name,
				      const char *supply)
1264 1265
{
	struct regulator_map *node;
1266
	int has_dev;
1267 1268 1269 1270

	if (supply == NULL)
		return -EINVAL;

1271 1272 1273 1274 1275
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1276
	list_for_each_entry(node, &regulator_map_list, list) {
1277 1278 1279 1280
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1281
			continue;
1282 1283
		}

1284 1285 1286
		if (strcmp(node->supply, supply) != 0)
			continue;

1287 1288 1289 1290 1291 1292
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1293 1294 1295
		return -EBUSY;
	}

1296
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1297 1298 1299 1300 1301 1302
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1303 1304 1305 1306 1307 1308
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1309 1310
	}

1311 1312 1313 1314
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1315 1316 1317 1318 1319 1320 1321
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1322
			kfree(node->dev_name);
1323 1324 1325 1326 1327
			kfree(node);
		}
	}
}

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1377
#define REG_STR_SIZE	64
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1391
	regulator_lock(rdev);
1392 1393 1394 1395
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1396 1397
		regulator->dev = dev;

1398
		/* Add a link to the device sysfs entry */
1399 1400
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1401
		if (size >= REG_STR_SIZE)
1402
			goto overflow_err;
1403 1404 1405

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1406
			goto overflow_err;
1407

1408
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1409 1410
					buf);
		if (err) {
1411
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1412
				  dev->kobj.name, err);
1413
			/* non-fatal */
1414
		}
1415
	} else {
1416
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1417
		if (regulator->supply_name == NULL)
1418
			goto overflow_err;
1419 1420 1421 1422
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1423
	if (!regulator->debugfs) {
1424
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1425 1426 1427 1428
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1429
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1430
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1431
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1432 1433 1434
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1435
	}
1436

1437 1438 1439 1440 1441
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1442
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1443 1444 1445
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1446
	regulator_unlock(rdev);
1447 1448 1449 1450
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1451
	regulator_unlock(rdev);
1452 1453 1454
	return NULL;
}

1455 1456
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1457 1458
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1459
	if (!rdev->desc->ops->enable_time)
1460
		return rdev->desc->enable_time;
1461 1462 1463
	return rdev->desc->ops->enable_time(rdev);
}

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1512 1513 1514 1515 1516
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1517
 */
1518
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1519
						  const char *supply)
1520
{
1521
	struct regulator_dev *r = NULL;
1522
	struct device_node *node;
1523 1524
	struct regulator_map *map;
	const char *devname = NULL;
1525

1526 1527
	regulator_supply_alias(&dev, &supply);

1528 1529 1530
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1531
		if (node) {
1532 1533 1534
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1535

1536
			/*
1537 1538
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1539
			 */
1540
			return ERR_PTR(-EPROBE_DEFER);
1541
		}
1542 1543 1544
	}

	/* if not found, try doing it non-dt way */
1545 1546 1547
	if (dev)
		devname = dev_name(dev);

1548
	mutex_lock(&regulator_list_mutex);
1549 1550 1551 1552 1553 1554
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1555 1556
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1557 1558
			r = map->regulator;
			break;
1559
		}
1560
	}
1561
	mutex_unlock(&regulator_list_mutex);
1562

1563 1564 1565 1566
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1567 1568 1569 1570
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1571 1572
}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1587 1588 1589 1590
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1591 1592 1593 1594
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1595 1596
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1597
			get_device(&r->dev);
1598 1599 1600 1601 1602
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1603 1604
	}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1618 1619
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1620 1621
	if (ret < 0) {
		put_device(&r->dev);
1622
		return ret;
1623
	}
1624 1625

	ret = set_supply(rdev, r);
1626 1627
	if (ret < 0) {
		put_device(&r->dev);
1628
		return ret;
1629
	}
1630 1631

	/* Cascade always-on state to supply */
1632
	if (_regulator_is_enabled(rdev)) {
1633
		ret = regulator_enable(rdev->supply);
1634
		if (ret < 0) {
1635
			_regulator_put(rdev->supply);
1636
			rdev->supply = NULL;
1637
			return ret;
1638
		}
1639 1640 1641 1642 1643
	}

	return 0;
}

1644
/* Internal regulator request function */
1645 1646
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1647 1648
{
	struct regulator_dev *rdev;
1649
	struct regulator *regulator;
1650
	const char *devname = dev ? dev_name(dev) : "deviceless";
1651
	int ret;
1652

1653 1654 1655 1656 1657
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1658
	if (id == NULL) {
1659
		pr_err("get() with no identifier\n");
1660
		return ERR_PTR(-EINVAL);
1661 1662
	}

1663
	rdev = regulator_dev_lookup(dev, id);
1664 1665
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1666

1667 1668 1669 1670 1671 1672
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1673

1674 1675 1676 1677 1678
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1679

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1693

1694 1695 1696 1697
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1698

1699 1700 1701
		default:
			return ERR_PTR(-ENODEV);
		}
1702 1703
	}

1704 1705
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1706 1707
		put_device(&rdev->dev);
		return regulator;
1708 1709
	}

1710
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1711
		regulator = ERR_PTR(-EBUSY);
1712 1713
		put_device(&rdev->dev);
		return regulator;
1714 1715
	}

1716 1717 1718
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1719 1720
		put_device(&rdev->dev);
		return regulator;
1721 1722
	}

1723
	if (!try_module_get(rdev->owner)) {
1724
		regulator = ERR_PTR(-EPROBE_DEFER);
1725 1726 1727
		put_device(&rdev->dev);
		return regulator;
	}
1728

1729 1730 1731
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1732
		put_device(&rdev->dev);
1733
		module_put(rdev->owner);
1734
		return regulator;
1735 1736
	}

1737
	rdev->open_count++;
1738
	if (get_type == EXCLUSIVE_GET) {
1739 1740 1741 1742 1743 1744 1745 1746 1747
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1748 1749
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);

1750 1751
	return regulator;
}
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1768
	return _regulator_get(dev, id, NORMAL_GET);
1769
}
1770 1771
EXPORT_SYMBOL_GPL(regulator_get);

1772 1773 1774 1775 1776 1777 1778
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1779 1780 1781
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1795
	return _regulator_get(dev, id, EXCLUSIVE_GET);
1796 1797 1798
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1799 1800 1801 1802 1803 1804
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1805
 * or IS_ERR() condition containing errno.
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1821
	return _regulator_get(dev, id, OPTIONAL_GET);
1822 1823 1824
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1825
/* regulator_list_mutex lock held by regulator_put() */
1826
static void _regulator_put(struct regulator *regulator)
1827 1828 1829
{
	struct regulator_dev *rdev;

1830
	if (IS_ERR_OR_NULL(regulator))
1831 1832
		return;

1833 1834
	lockdep_assert_held_once(&regulator_list_mutex);

1835 1836
	rdev = regulator->rdev;

1837 1838
	debugfs_remove_recursive(regulator->debugfs);

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	if (regulator->dev) {
		int count = 0;
		struct regulator *r;

		list_for_each_entry(r, &rdev->consumer_list, list)
			if (r->dev == regulator->dev)
				count++;

		if (count == 1)
			device_link_remove(regulator->dev, &rdev->dev);

		/* remove any sysfs entries */
1851
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1852 1853
	}

1854
	regulator_lock(rdev);
1855 1856
	list_del(&regulator->list);

1857 1858
	rdev->open_count--;
	rdev->exclusive = 0;
1859
	put_device(&rdev->dev);
1860
	regulator_unlock(rdev);
1861

1862
	kfree_const(regulator->supply_name);
1863 1864
	kfree(regulator);

1865
	module_put(rdev->owner);
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1880 1881 1882 1883
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1961 1962
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1963
					 struct device *alias_dev,
1964
					 const char *const *alias_id,
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2002
					    const char *const *id,
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2013 2014 2015 2016 2017
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2018
	struct gpio_desc *gpiod;
2019 2020
	int ret;

2021 2022 2023 2024
	if (config->ena_gpiod)
		gpiod = config->ena_gpiod;
	else
		gpiod = gpio_to_desc(config->ena_gpio);
2025

2026
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2027
		if (pin->gpiod == gpiod) {
2028 2029 2030 2031 2032 2033
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

2034 2035 2036 2037 2038 2039 2040
	if (!config->ena_gpiod) {
		ret = gpio_request_one(config->ena_gpio,
				       GPIOF_DIR_OUT | config->ena_gpio_flags,
				       rdev_get_name(rdev));
		if (ret)
			return ret;
	}
2041 2042 2043

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
2044 2045
		if (!config->ena_gpiod)
			gpio_free(config->ena_gpio);
2046 2047 2048
		return -ENOMEM;
	}

2049
	pin->gpiod = gpiod;
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2068
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2069 2070
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2071
				gpiod_put(pin->gpiod);
2072 2073
				list_del(&pin->list);
				kfree(pin);
2074 2075
				rdev->ena_pin = NULL;
				return;
2076 2077 2078 2079 2080 2081 2082
			} else {
				pin->request_count--;
			}
		}
	}
}

2083
/**
2084 2085 2086 2087
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2101 2102
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2113 2114
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
2115 2116 2117 2118 2119 2120 2121
			pin->enable_count = 0;
		}
	}

	return 0;
}

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2201
	if (rdev->ena_pin) {
2202 2203 2204 2205 2206 2207
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2208
	} else if (rdev->desc->ops->enable) {
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2221
	_regulator_enable_delay(delay);
2222 2223 2224 2225 2226 2227

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2228 2229 2230
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
2231
	int ret;
2232

2233 2234
	lockdep_assert_held_once(&rdev->mutex);

2235
	/* check voltage and requested load before enabling */
2236
	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2237
		drms_uA_update(rdev);
2238

2239 2240 2241 2242
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2243 2244
			if (!regulator_ops_is_valid(rdev,
					REGULATOR_CHANGE_STATUS))
2245 2246
				return -EPERM;

2247
			ret = _regulator_do_enable(rdev);
2248 2249 2250
			if (ret < 0)
				return ret;

2251 2252
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2253
		} else if (ret < 0) {
2254
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2255 2256
			return ret;
		}
2257
		/* Fallthrough on positive return values - already enabled */
2258 2259
	}

2260 2261 2262
	rdev->use_count++;

	return 0;
2263 2264 2265 2266 2267 2268
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2269 2270 2271 2272
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2273
 * NOTE: the output value can be set by other drivers, boot loader or may be
2274
 * hardwired in the regulator.
2275 2276 2277
 */
int regulator_enable(struct regulator *regulator)
{
2278 2279
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2280

2281 2282 2283
	if (regulator->always_on)
		return 0;

2284 2285 2286 2287 2288 2289
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

2290
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
2291
	ret = _regulator_enable(rdev);
2292
	mutex_unlock(&rdev->mutex);
2293

2294
	if (ret != 0 && rdev->supply)
2295 2296
		regulator_disable(rdev->supply);

2297 2298 2299 2300
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2301 2302 2303 2304 2305 2306
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2307
	if (rdev->ena_pin) {
2308 2309 2310 2311 2312 2313
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2314 2315 2316 2317 2318 2319 2320

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2321 2322 2323 2324 2325 2326
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2327 2328 2329 2330 2331
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2332
/* locks held by regulator_disable() */
2333
static int _regulator_disable(struct regulator_dev *rdev)
2334 2335 2336
{
	int ret = 0;

2337 2338
	lockdep_assert_held_once(&rdev->mutex);

D
David Brownell 已提交
2339
	if (WARN(rdev->use_count <= 0,
2340
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2341 2342
		return -EIO;

2343
	/* are we the last user and permitted to disable ? */
2344 2345
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2346 2347

		/* we are last user */
2348
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2349 2350 2351 2352 2353 2354
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2355
			ret = _regulator_do_disable(rdev);
2356
			if (ret < 0) {
2357
				rdev_err(rdev, "failed to disable\n");
2358 2359 2360
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2361 2362
				return ret;
			}
2363 2364
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2365 2366 2367 2368
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
2369
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2370 2371 2372 2373
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2374

2375 2376 2377 2378 2379 2380 2381
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2382 2383 2384
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2385
 *
2386
 * NOTE: this will only disable the regulator output if no other consumer
2387 2388
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2389 2390 2391
 */
int regulator_disable(struct regulator *regulator)
{
2392 2393
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2394

2395 2396 2397
	if (regulator->always_on)
		return 0;

2398
	mutex_lock(&rdev->mutex);
2399
	ret = _regulator_disable(rdev);
2400
	mutex_unlock(&rdev->mutex);
2401

2402 2403
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2404

2405 2406 2407 2408 2409
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2410
static int _regulator_force_disable(struct regulator_dev *rdev)
2411 2412 2413
{
	int ret = 0;

2414 2415
	lockdep_assert_held_once(&rdev->mutex);

2416 2417 2418 2419 2420
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2421 2422 2423
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2424 2425
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2426
		return ret;
2427 2428
	}

2429 2430 2431 2432
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2446
	struct regulator_dev *rdev = regulator->rdev;
2447 2448
	int ret;

2449
	mutex_lock(&rdev->mutex);
2450
	regulator->uA_load = 0;
2451
	ret = _regulator_force_disable(regulator->rdev);
2452
	mutex_unlock(&rdev->mutex);
2453

2454 2455 2456
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2457

2458 2459 2460 2461
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2462 2463 2464 2465 2466 2467
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

2468
	regulator_lock(rdev);
2469 2470 2471 2472 2473 2474

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

2475 2476 2477 2478 2479 2480 2481 2482
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2483 2484 2485 2486 2487 2488
	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

2489
	regulator_unlock(rdev);
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2518 2519 2520
	if (regulator->always_on)
		return 0;

2521 2522 2523
	if (!ms)
		return regulator_disable(regulator);

2524
	regulator_lock(rdev);
2525
	rdev->deferred_disables++;
2526 2527
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2528
	regulator_unlock(rdev);
2529

2530
	return 0;
2531 2532 2533
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2534 2535
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2536
	/* A GPIO control always takes precedence */
2537
	if (rdev->ena_pin)
2538 2539
		return rdev->ena_gpio_state;

2540
	/* If we don't know then assume that the regulator is always on */
2541
	if (!rdev->desc->ops->is_enabled)
2542
		return 1;
2543

2544
	return rdev->desc->ops->is_enabled(rdev);
2545 2546
}

2547 2548
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2560
			regulator_lock(rdev);
2561 2562
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2563
			regulator_unlock(rdev);
2564
	} else if (rdev->is_switch && rdev->supply) {
2565 2566
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2581 2582 2583 2584
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2585 2586 2587 2588 2589 2590 2591
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2592 2593 2594
 */
int regulator_is_enabled(struct regulator *regulator)
{
2595 2596
	int ret;

2597 2598 2599
	if (regulator->always_on)
		return 1;

2600
	mutex_lock(&regulator->rdev->mutex);
2601
	ret = _regulator_is_enabled(regulator->rdev);
2602
	mutex_unlock(&regulator->rdev->mutex);
2603 2604

	return ret;
2605 2606 2607
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2620 2621 2622
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2623
	if (!rdev->is_switch || !rdev->supply)
2624 2625 2626
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2637
 * zero if this selector code can't be used on this system, or a
2638 2639 2640 2641
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2642
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2643 2644 2645
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2678 2679
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2680 2681 2682 2683

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2684 2685
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2705 2706
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2744
	struct regulator_dev *rdev = regulator->rdev;
2745 2746
	int i, voltages, ret;

2747
	/* If we can't change voltage check the current voltage */
2748
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2749 2750
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2751
			return min_uV <= ret && ret <= max_uV;
2752 2753 2754 2755
		else
			return ret;
	}

2756 2757 2758 2759 2760
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2775
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2776

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2843 2844 2845 2846 2847 2848 2849 2850 2851
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
2852 2853
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
2854 2855 2856 2857 2858 2859
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
2860 2861

	if (ramp_delay == 0) {
2862
		rdev_dbg(rdev, "ramp_delay not set\n");
2863 2864 2865 2866 2867 2868
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

2869 2870 2871 2872
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2873
	int delay = 0;
2874
	int best_val = 0;
2875
	unsigned int selector;
2876
	int old_selector = -1;
2877
	const struct regulator_ops *ops = rdev->desc->ops;
2878
	int old_uV = _regulator_get_voltage(rdev);
2879 2880 2881

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2882 2883 2884
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2885 2886 2887 2888
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2889
	if (_regulator_is_enabled(rdev) &&
2890 2891
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
2892 2893 2894 2895
		if (old_selector < 0)
			return old_selector;
	}

2896
	if (ops->set_voltage) {
2897 2898
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2899 2900

		if (ret >= 0) {
2901 2902 2903
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
2904 2905 2906 2907
			else
				best_val = _regulator_get_voltage(rdev);
		}

2908
	} else if (ops->set_voltage_sel) {
2909
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2910
		if (ret >= 0) {
2911
			best_val = ops->list_voltage(rdev, ret);
2912 2913
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2914 2915 2916
				if (old_selector == selector)
					ret = 0;
				else
2917 2918
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2919 2920 2921
			} else {
				ret = -EINVAL;
			}
2922
		}
2923 2924 2925
	} else {
		ret = -EINVAL;
	}
2926

2927 2928
	if (ret)
		goto out;
2929

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
2947
		}
2948
	}
2949

2950 2951 2952
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
2953 2954
	}

2955 2956 2957 2958 2959 2960
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
2961 2962
	}

2963
	if (best_val >= 0) {
2964 2965
		unsigned long data = best_val;

2966
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2967 2968
				     (void *)data);
	}
2969

2970
out:
2971
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2972 2973 2974 2975

	return ret;
}

2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3002
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3003 3004
					  int min_uV, int max_uV,
					  suspend_state_t state)
3005 3006
{
	struct regulator_dev *rdev = regulator->rdev;
3007
	struct regulator_voltage *voltage = &regulator->voltage[state];
3008
	int ret = 0;
3009
	int old_min_uV, old_max_uV;
3010
	int current_uV;
3011 3012
	int best_supply_uV = 0;
	int supply_change_uV = 0;
3013

3014 3015 3016 3017
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3018
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3019 3020
		goto out;

3021
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3022
	 * return successfully even though the regulator does not support
3023 3024
	 * changing the voltage.
	 */
3025
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3026 3027
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
3028 3029
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3030 3031 3032 3033
			goto out;
		}
	}

3034
	/* sanity check */
3035 3036
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3037 3038 3039 3040 3041 3042 3043 3044
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3045

3046
	/* restore original values in case of error */
3047 3048 3049 3050
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3051

3052
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
3053
	if (ret < 0)
3054
		goto out2;
3055

3056 3057 3058
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3059 3060
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3061 3062 3063 3064 3065 3066
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3067
			goto out2;
3068 3069
		}

M
Mark Brown 已提交
3070
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3071 3072
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3073
			goto out2;
3074 3075 3076 3077 3078 3079 3080
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3081
			goto out2;
3082 3083 3084 3085 3086 3087 3088
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3089
				best_supply_uV, INT_MAX, state);
3090 3091 3092
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3093
			goto out2;
3094 3095 3096
		}
	}

3097 3098 3099 3100 3101
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3102
	if (ret < 0)
3103
		goto out2;
3104

3105 3106
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3107
				best_supply_uV, INT_MAX, state);
3108 3109 3110 3111 3112 3113 3114
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3115
out:
3116
	return ret;
3117 3118 3119
out2:
	voltage->min_uV = old_min_uV;
	voltage->max_uV = old_max_uV;
3120 3121 3122 3123

	return ret;
}

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	int ret = 0;

3146
	regulator_lock_supply(regulator->rdev);
3147

3148 3149
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3150

3151
	regulator_unlock_supply(regulator->rdev);
3152

3153 3154 3155 3156
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

	rstate->enabled = en;

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
	int ret = 0;

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3229
	regulator_lock_supply(regulator->rdev);
3230 3231 3232 3233

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3234
	regulator_unlock_supply(regulator->rdev);
3235 3236 3237 3238 3239

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3253 3254
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3255 3256 3257 3258 3259
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3260 3261 3262 3263 3264
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3265
	/* Currently requires operations to do this */
3266
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3289
/**
3290 3291
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3292 3293 3294 3295 3296 3297
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3298
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3299
 * set_voltage_time_sel() operation.
3300 3301 3302 3303 3304
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3305
	int old_volt, new_volt;
3306

3307 3308 3309
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3310

3311 3312 3313
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3314 3315 3316 3317 3318
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3319
}
3320
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3321

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3333
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3334 3335
	int ret, min_uV, max_uV;

3336
	regulator_lock(rdev);
3337 3338 3339 3340 3341 3342 3343 3344

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3345
	if (!voltage->min_uV && !voltage->max_uV) {
3346 3347 3348 3349
		ret = -EINVAL;
		goto out;
	}

3350 3351
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3352 3353 3354 3355 3356 3357

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3358
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3359 3360 3361 3362 3363 3364
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3365
	regulator_unlock(rdev);
3366 3367 3368 3369
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3370 3371
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3372
	int sel, ret;
3373 3374 3375 3376 3377 3378 3379 3380
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3381 3382 3383 3384 3385
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3386 3387 3388 3389

			return _regulator_get_voltage(rdev->supply->rdev);
		}
	}
3390 3391 3392 3393 3394

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3395
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3396
	} else if (rdev->desc->ops->get_voltage) {
3397
		ret = rdev->desc->ops->get_voltage(rdev);
3398 3399
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3400 3401
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3402
	} else if (rdev->supply) {
3403
		ret = _regulator_get_voltage(rdev->supply->rdev);
3404
	} else {
3405
		return -EINVAL;
3406
	}
3407

3408 3409
	if (ret < 0)
		return ret;
3410
	return ret - rdev->constraints->uV_offset;
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

3426
	regulator_lock_supply(regulator->rdev);
3427 3428 3429

	ret = _regulator_get_voltage(regulator->rdev);

3430
	regulator_unlock_supply(regulator->rdev);
3431 3432 3433 3434 3435 3436 3437 3438

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
3439
 * @min_uA: Minimum supported current in uA
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

3458
	regulator_lock(rdev);
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
3473
	regulator_unlock(rdev);
3474 3475 3476 3477
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

3478 3479 3480 3481 3482 3483 3484 3485 3486
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

3487 3488 3489 3490
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

3491
	regulator_lock(rdev);
3492
	ret = _regulator_get_current_limit_unlocked(rdev);
3493
	regulator_unlock(rdev);
3494

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3528
	int regulator_curr_mode;
3529

3530
	regulator_lock(rdev);
3531 3532 3533 3534 3535 3536 3537

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

3538 3539 3540 3541 3542 3543 3544 3545 3546
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

3547
	/* constraints check */
3548
	ret = regulator_mode_constrain(rdev, &mode);
3549 3550 3551 3552 3553
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
3554
	regulator_unlock(rdev);
3555 3556 3557 3558
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

3559 3560 3561 3562 3563 3564 3565 3566 3567
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

3568 3569 3570 3571
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

3572
	regulator_lock(rdev);
3573
	ret = _regulator_get_mode_unlocked(rdev);
3574
	regulator_unlock(rdev);
3575

3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

3591 3592 3593 3594 3595
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

3596
	regulator_lock(rdev);
3597 3598 3599 3600 3601 3602 3603 3604 3605

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
3606
	regulator_unlock(rdev);
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

3624
/**
3625
 * regulator_set_load - set regulator load
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
3648
 * On error a negative errno is returned.
3649
 */
3650
int regulator_set_load(struct regulator *regulator, int uA_load)
3651 3652
{
	struct regulator_dev *rdev = regulator->rdev;
3653
	int ret;
3654

3655
	regulator_lock(rdev);
3656
	regulator->uA_load = uA_load;
3657
	ret = drms_uA_update(rdev);
3658
	regulator_unlock(rdev);
3659

3660 3661
	return ret;
}
3662
EXPORT_SYMBOL_GPL(regulator_set_load);
3663

3664 3665 3666 3667
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3668
 * @enable: enable or disable bypass mode
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

3683
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3684 3685
		return 0;

3686
	regulator_lock(rdev);
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

3710
	regulator_unlock(rdev);
3711 3712 3713 3714 3715

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3716 3717 3718
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3719
 * @nb: notifier block
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3734
 * @nb: notifier block
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3746 3747 3748
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3749
static int _notifier_call_chain(struct regulator_dev *rdev,
3750 3751 3752
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3753
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
3780 3781
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
3782 3783
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3784 3785
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3786 3787 3788 3789 3790 3791 3792 3793
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3794
	while (--i >= 0)
3795 3796 3797 3798 3799 3800
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3801 3802 3803 3804 3805 3806 3807
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3823
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3824
	int i;
3825
	int ret = 0;
3826

3827 3828 3829 3830 3831 3832 3833
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3834 3835 3836 3837

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3838
	for (i = 0; i < num_consumers; i++) {
3839 3840
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3841
			goto err;
3842
		}
3843 3844 3845 3846 3847
	}

	return 0;

err:
3848 3849 3850 3851 3852 3853 3854
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3868 3869
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3870 3871 3872 3873 3874 3875
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3876
	int ret, r;
3877

3878
	for (i = num_consumers - 1; i >= 0; --i) {
3879 3880 3881 3882 3883 3884 3885 3886
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3887
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3888 3889 3890
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
3891
			pr_err("Failed to re-enable %s: %d\n",
3892 3893
			       consumers[i].supply, r);
	}
3894 3895 3896 3897 3898

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3917
	int ret = 0;
3918

3919
	for (i = 0; i < num_consumers; i++) {
3920 3921 3922
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

3923 3924
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
3925 3926 3927 3928 3929 3930 3931
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3955
 * @rdev: regulator source
3956
 * @event: notifier block
3957
 * @data: callback-specific data.
3958 3959 3960
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3961
 * Note lock must be held by caller.
3962 3963 3964 3965
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
3966 3967
	lockdep_assert_held_once(&rdev->mutex);

3968 3969 3970 3971 3972 3973
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3990
	case REGULATOR_MODE_STANDBY:
3991 3992
		return REGULATOR_STATUS_STANDBY;
	default:
3993
		return REGULATOR_STATUS_UNDEFINED;
3994 3995 3996 3997
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4025 4026 4027 4028
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4029 4030
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4031
{
4032
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4033
	struct regulator_dev *rdev = dev_to_rdev(dev);
4034
	const struct regulator_ops *ops = rdev->desc->ops;
4035 4036 4037 4038 4039 4040 4041
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4042 4043

	/* some attributes need specific methods to be displayed */
4044 4045 4046 4047 4048 4049 4050
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4051
	}
4052

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4068
	/* some attributes are type-specific */
4069 4070
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
4071 4072

	/* constraints need specific supporting methods */
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4108

4109 4110 4111
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4112 4113 4114

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4115
	kfree(rdev);
4116 4117
}

4118 4119
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4132
	if (!rdev->debugfs) {
4133 4134 4135 4136 4137 4138 4139 4140
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4141 4142
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4143 4144
}

4145 4146
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4147 4148 4149 4150 4151 4152
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4153 4154
}

4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
static int regulator_fill_coupling_array(struct regulator_dev *rdev)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

		if (c_rdev) {
			c_desc->coupled_rdevs[i] = c_rdev;
			c_desc->n_resolved++;
		}
	}

	if (rdev->coupling_desc.n_resolved < n_coupled)
		return -1;
	else
		return 0;
}

static int regulator_register_fill_coupling_array(struct device *dev,
						  void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (!IS_ENABLED(CONFIG_OF))
		return 0;

	if (regulator_fill_coupling_array(rdev))
		rdev_dbg(rdev, "unable to resolve coupling\n");

	return 0;
}

static int regulator_resolve_coupling(struct regulator_dev *rdev)
{
	int n_phandles;

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

	if (n_phandles + 1 > MAX_COUPLED) {
		rdev_err(rdev, "too many regulators coupled\n");
		return -EPERM;
	}

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

	/* regulator, which can't change its voltage, can't be coupled */
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
		rdev_err(rdev, "voltage operation not allowed\n");
		return -EPERM;
	}

	if (rdev->constraints->max_spread <= 0) {
		rdev_err(rdev, "wrong max_spread value\n");
		return -EPERM;
	}

	if (!of_check_coupling_data(rdev))
		return -EPERM;

	/*
	 * After everything has been checked, try to fill rdevs array
	 * with pointers to regulators parsed from device tree. If some
	 * regulators are not registered yet, retry in late init call
	 */
	regulator_fill_coupling_array(rdev);

	return 0;
}

4245 4246
/**
 * regulator_register - register regulator
4247
 * @regulator_desc: regulator to register
4248
 * @cfg: runtime configuration for regulator
4249 4250
 *
 * Called by regulator drivers to register a regulator.
4251 4252
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4253
 */
4254 4255
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4256
		   const struct regulator_config *cfg)
4257
{
4258
	const struct regulation_constraints *constraints = NULL;
4259
	const struct regulator_init_data *init_data;
4260
	struct regulator_config *config = NULL;
4261
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4262
	struct regulator_dev *rdev;
4263
	struct device *dev;
4264
	int ret, i;
4265

4266
	if (regulator_desc == NULL || cfg == NULL)
4267 4268
		return ERR_PTR(-EINVAL);

4269
	dev = cfg->dev;
4270
	WARN_ON(!dev);
4271

4272 4273 4274
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

4275 4276
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
4277 4278
		return ERR_PTR(-EINVAL);

4279 4280 4281
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
4282 4283
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
4284 4285 4286 4287 4288 4289

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
4290 4291 4292 4293
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
4294

4295 4296 4297 4298
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

4309
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4310 4311 4312 4313 4314 4315
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

4316
	mutex_init(&rdev->mutex);
4317
	rdev->reg_data = config->driver_data;
4318 4319
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
4320 4321
	if (config->regmap)
		rdev->regmap = config->regmap;
4322
	else if (dev_get_regmap(dev, NULL))
4323
		rdev->regmap = dev_get_regmap(dev, NULL);
4324 4325
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4326 4327 4328
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4329
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4330

4331
	/* preform any regulator specific init */
4332
	if (init_data && init_data->regulator_init) {
4333
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
4334 4335
		if (ret < 0)
			goto clean;
4336 4337
	}

4338 4339 4340
	if (config->ena_gpiod ||
	    ((config->ena_gpio || config->ena_gpio_initialized) &&
	     gpio_is_valid(config->ena_gpio))) {
4341
		mutex_lock(&regulator_list_mutex);
4342
		ret = regulator_ena_gpio_request(rdev, config);
4343
		mutex_unlock(&regulator_list_mutex);
4344 4345 4346
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
4347
			goto clean;
4348 4349 4350
		}
	}

4351
	/* register with sysfs */
4352
	rdev->dev.class = &regulator_class;
4353
	rdev->dev.parent = dev;
4354
	dev_set_name(&rdev->dev, "regulator.%lu",
4355
		    (unsigned long) atomic_inc_return(&regulator_no));
4356

4357
	/* set regulator constraints */
4358 4359 4360 4361
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
4362
		rdev->supply_name = init_data->supply_regulator;
4363
	else if (regulator_desc->supply_name)
4364
		rdev->supply_name = regulator_desc->supply_name;
4365

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

4378 4379 4380 4381 4382 4383 4384
	mutex_lock(&regulator_list_mutex);
	ret = regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0)
		goto wash;

4385
	/* add consumers devices */
4386
	if (init_data) {
4387
		mutex_lock(&regulator_list_mutex);
4388 4389 4390
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
4391
				init_data->consumer_supplies[i].supply);
4392
			if (ret < 0) {
4393
				mutex_unlock(&regulator_list_mutex);
4394 4395 4396 4397
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
4398
		}
4399
		mutex_unlock(&regulator_list_mutex);
4400
	}
4401

4402 4403 4404 4405 4406
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

4407 4408 4409 4410 4411 4412 4413
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

	dev_set_drvdata(&rdev->dev, rdev);
4414
	rdev_init_debugfs(rdev);
4415 4416 4417 4418

	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
4419
	kfree(config);
4420
	return rdev;
D
David Brownell 已提交
4421

4422
unset_supplies:
4423
	mutex_lock(&regulator_list_mutex);
4424
	unset_regulator_supplies(rdev);
4425
	mutex_unlock(&regulator_list_mutex);
4426
wash:
4427
	kfree(rdev->constraints);
4428
	mutex_lock(&regulator_list_mutex);
4429
	regulator_ena_gpio_free(rdev);
4430
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
4431 4432
clean:
	kfree(rdev);
4433 4434
	kfree(config);
	return ERR_PTR(ret);
4435 4436 4437 4438 4439
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
4440
 * @rdev: regulator to unregister
4441 4442 4443 4444 4445 4446 4447 4448
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

4449 4450 4451
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
4452
		regulator_put(rdev->supply);
4453
	}
4454
	mutex_lock(&regulator_list_mutex);
4455
	debugfs_remove_recursive(rdev->debugfs);
4456
	flush_work(&rdev->disable_work.work);
4457
	WARN_ON(rdev->open_count);
4458
	unset_regulator_supplies(rdev);
4459
	list_del(&rdev->list);
4460
	regulator_ena_gpio_free(rdev);
4461
	mutex_unlock(&regulator_list_mutex);
4462
	device_unregister(&rdev->dev);
4463 4464 4465
}
EXPORT_SYMBOL_GPL(regulator_unregister);

4466
#ifdef CONFIG_SUSPEND
4467
static int _regulator_suspend(struct device *dev, void *data)
4468 4469
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
4470
	suspend_state_t *state = data;
4471 4472
	int ret;

4473
	regulator_lock(rdev);
4474
	ret = suspend_set_state(rdev, *state);
4475
	regulator_unlock(rdev);
4476 4477 4478 4479

	return ret;
}

4480
/**
4481
 * regulator_suspend - prepare regulators for system wide suspend
4482 4483 4484 4485
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
4486
static int regulator_suspend(struct device *dev)
4487
{
4488
	suspend_state_t state = pm_suspend_target_state;
4489

4490
	return class_for_each_device(&regulator_class, NULL, &state,
4491
				     _regulator_suspend);
4492
}
4493

4494
static int _regulator_resume(struct device *dev, void *data)
4495
{
4496
	int ret = 0;
4497
	struct regulator_dev *rdev = dev_to_rdev(dev);
4498 4499 4500 4501 4502
	suspend_state_t *state = data;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, *state);
	if (rstate == NULL)
4503
		return 0;
4504

4505
	regulator_lock(rdev);
4506

4507
	if (rdev->desc->ops->resume &&
4508 4509
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
4510
		ret = rdev->desc->ops->resume(rdev);
4511

4512
	regulator_unlock(rdev);
4513

4514
	return ret;
4515 4516
}

4517
static int regulator_resume(struct device *dev)
4518
{
4519 4520 4521
	suspend_state_t state = pm_suspend_target_state;

	return class_for_each_device(&regulator_class, NULL, &state,
4522
				     _regulator_resume);
4523 4524
}

4525 4526
#else /* !CONFIG_SUSPEND */

4527 4528
#define regulator_suspend	NULL
#define regulator_resume	NULL
4529 4530 4531 4532 4533

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4534 4535
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
4536 4537 4538
};
#endif

M
Mark Brown 已提交
4539
struct class regulator_class = {
4540 4541 4542 4543 4544 4545 4546
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

4564 4565
/**
 * rdev_get_drvdata - get rdev regulator driver data
4566
 * @rdev: regulator
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
4603
 * @rdev: regulator
4604 4605 4606 4607 4608 4609 4610
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

4623
#ifdef CONFIG_DEBUG_FS
4624
static int supply_map_show(struct seq_file *sf, void *data)
4625 4626 4627 4628
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
4629 4630 4631
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
4632 4633
	}

4634 4635
	return 0;
}
4636

4637 4638 4639
static int supply_map_open(struct inode *inode, struct file *file)
{
	return single_open(file, supply_map_show, inode->i_private);
4640
}
4641
#endif
4642 4643

static const struct file_operations supply_map_fops = {
4644
#ifdef CONFIG_DEBUG_FS
4645 4646 4647 4648
	.open = supply_map_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
4649
#endif
4650
};
4651

4652
#ifdef CONFIG_DEBUG_FS
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

4675 4676 4677 4678 4679 4680
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
4681
	struct summary_data summary_data;
4682
	unsigned int opmode;
4683 4684 4685 4686

	if (!rdev)
		return;

4687 4688 4689
	regulator_lock_nested(rdev, level);

	opmode = _regulator_get_mode_unlocked(rdev);
4690
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
4691 4692
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
4693
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
4694
		   regulator_opmode_to_str(opmode));
4695

4696
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4697 4698
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4717
		if (consumer->dev && consumer->dev->class == &regulator_class)
4718 4719 4720 4721
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
4722 4723
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4724 4725 4726

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
4727 4728
			seq_printf(s, "%37dmA %5dmV %5dmV",
				   consumer->uA_load / 1000,
4729 4730
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4731 4732 4733 4734 4735 4736 4737 4738
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

4739 4740 4741
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
4742

4743 4744
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
4745 4746

	regulator_unlock(rdev);
4747 4748
}

4749
static int regulator_summary_show_roots(struct device *dev, void *data)
4750
{
4751 4752
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
4753

4754 4755
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
4756

4757 4758
	return 0;
}
4759

4760 4761
static int regulator_summary_show(struct seq_file *s, void *data)
{
4762 4763
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
4764

4765 4766
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785

	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

4786 4787
static int __init regulator_init(void)
{
4788 4789 4790 4791
	int ret;

	ret = class_register(&regulator_class);

4792
	debugfs_root = debugfs_create_dir("regulator", NULL);
4793
	if (!debugfs_root)
4794
		pr_warn("regulator: Failed to create debugfs directory\n");
4795

4796 4797
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
4798

4799
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4800
			    NULL, &regulator_summary_fops);
4801

4802 4803 4804
	regulator_dummy_init();

	return ret;
4805 4806 4807 4808
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
4809

4810
static int __init regulator_late_cleanup(struct device *dev, void *data)
4811
{
4812 4813 4814
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
4815 4816
	int enabled, ret;

4817 4818 4819
	if (c && c->always_on)
		return 0;

4820
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4821 4822
		return 0;

4823
	regulator_lock(rdev);
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
4854
	regulator_unlock(rdev);
4855 4856 4857 4858 4859 4860

	return 0;
}

static int __init regulator_init_complete(void)
{
4861 4862 4863 4864 4865 4866 4867 4868 4869
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

4880
	/* If we have a full configuration then disable any regulators
4881 4882 4883
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
4884
	 */
4885 4886
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
4887

4888 4889 4890
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_fill_coupling_array);

4891 4892
	return 0;
}
4893
late_initcall_sync(regulator_init_complete);