core.c 150.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

M
Mark Brown 已提交
36 37
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 39 40 41 42 43 44 45 46
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

47 48
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
49 50
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
51
static LIST_HEAD(regulator_ena_gpio_list);
52
static LIST_HEAD(regulator_supply_alias_list);
53
static LIST_HEAD(regulator_coupler_list);
54
static bool has_full_constraints;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69
};

70 71 72 73 74 75 76
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
77
	struct gpio_desc *gpiod;
78 79 80 81
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

95
static int _regulator_is_enabled(struct regulator_dev *rdev);
96
static int _regulator_disable(struct regulator *regulator);
97 98
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99
static int _notifier_call_chain(struct regulator_dev *rdev,
100
				  unsigned long event, void *data);
101 102
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
103 104
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
105 106 107
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
108
static void destroy_regulator(struct regulator *regulator);
109
static void _regulator_put(struct regulator *regulator);
110

111
const char *rdev_get_name(struct regulator_dev *rdev)
112 113 114 115 116 117 118 119 120
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

121 122
static bool have_full_constraints(void)
{
123
	return has_full_constraints || of_have_populated_dt();
124 125
}

126 127 128 129 130 131 132 133 134 135 136 137 138
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

139 140 141
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
142
 * @ww_ctx:		w/w mutex acquire context
143 144 145 146 147 148 149
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
150 151
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
152
{
153 154 155 156 157 158 159
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
160
			rdev->ref_cnt++;
161 162 163 164 165 166 167
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
168
		}
169 170
	} else {
		lock = true;
171 172
	}

173 174 175 176 177 178 179 180
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
181 182
}

183 184 185 186 187 188 189 190 191 192
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
193
static void regulator_lock(struct regulator_dev *rdev)
194
{
195
	regulator_lock_nested(rdev, NULL);
196 197 198 199 200 201 202 203 204
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
205
static void regulator_unlock(struct regulator_dev *rdev)
206
{
207
	mutex_lock(&regulator_nesting_mutex);
208

209 210 211
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
212
	}
213 214 215 216

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
217 218
}

219
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220
{
221 222 223 224 225
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226

227 228 229 230 231 232 233
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

234 235
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
236
{
237
	struct regulator_dev *c_rdev;
238
	int i;
239

240 241
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242 243 244 245

		if (!c_rdev)
			continue;

246
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
247 248 249
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
250

251 252
		regulator_unlock(c_rdev);
	}
253 254
}

255 256 257 258
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
259
{
260
	struct regulator_dev *c_rdev;
261
	int i, err;
262

263 264
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
265

266 267
		if (!c_rdev)
			continue;
268

269 270 271 272 273 274 275
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
276

277 278 279 280 281 282 283
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

284
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
285 286 287 288 289 290 291 292
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
293 294
		}
	}
295 296 297 298 299 300 301

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
302 303
}

304
/**
305 306 307 308 309
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
310
 * Unlock all regulators related with rdev by coupling or supplying.
311
 */
312 313
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
314
{
315 316
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
317 318 319
}

/**
320 321
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
322
 * @ww_ctx:			w/w mutex acquire context
323 324
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
325
 * all regulators related with rdev by coupling or supplying.
326
 */
327 328
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
329
{
330 331 332
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
333

334
	mutex_lock(&regulator_list_mutex);
335

336
	ww_acquire_init(ww_ctx, &regulator_ww_class);
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
358 359
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
382 383
			if (regnode)
				goto err_node_put;
384
		} else {
385
			goto err_node_put;
386 387 388
		}
	}
	return NULL;
389 390 391 392

err_node_put:
	of_node_put(child);
	return regnode;
393 394
}

395 396 397 398 399 400
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
401
 * returns the device node corresponding to the regulator if found, else
402 403 404 405 406 407 408 409 410 411 412 413 414
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
415 416 417 418
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

419 420
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
421 422 423 424 425
		return NULL;
	}
	return regnode;
}

426
/* Platform voltage constraint check */
427 428
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
429 430 431
{
	BUG_ON(*min_uV > *max_uV);

432
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
433
		rdev_err(rdev, "voltage operation not allowed\n");
434 435 436 437 438 439 440 441
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

442 443
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
444
			 *min_uV, *max_uV);
445
		return -EINVAL;
446
	}
447 448 449 450

	return 0;
}

451 452 453 454 455 456
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

457 458 459
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
460 461 462
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
463 464
{
	struct regulator *regulator;
465
	struct regulator_voltage *voltage;
466 467

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
468
		voltage = &regulator->voltage[state];
469 470 471 472
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
473
		if (!voltage->min_uV && !voltage->max_uV)
474 475
			continue;

476 477 478 479
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
480 481
	}

482
	if (*min_uV > *max_uV) {
483 484
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
485
		return -EINVAL;
486
	}
487 488 489 490

	return 0;
}

491 492 493 494 495 496
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

497
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
498
		rdev_err(rdev, "current operation not allowed\n");
499 500 501 502 503 504 505 506
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

507 508
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
509
			 *min_uA, *max_uA);
510
		return -EINVAL;
511
	}
512 513 514 515 516

	return 0;
}

/* operating mode constraint check */
517 518
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
519
{
520
	switch (*mode) {
521 522 523 524 525 526
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
527
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
528 529 530
		return -EINVAL;
	}

531
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
532
		rdev_err(rdev, "mode operation not allowed\n");
533 534
		return -EPERM;
	}
535 536 537 538 539 540 541 542

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
543
	}
544 545

	return -EINVAL;
546 547
}

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return NULL;

	/* If we have no suspend mode configuration don't set anything;
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
	 */
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
			rdev_warn(rdev, "No configuration\n");
		return NULL;
	}

	return rstate;
}

590 591 592
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
593
	struct regulator_dev *rdev = dev_get_drvdata(dev);
594
	int uV;
595

596
	regulator_lock(rdev);
597
	uV = regulator_get_voltage_rdev(rdev);
598
	regulator_unlock(rdev);
599

600 601 602
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
603
}
604
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
605 606 607 608

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
609
	struct regulator_dev *rdev = dev_get_drvdata(dev);
610 611 612

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
613
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
614

615 616
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
617 618 619
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

620
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
621
}
622
static DEVICE_ATTR_RO(name);
623

624
static const char *regulator_opmode_to_str(int mode)
625 626 627
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
628
		return "fast";
629
	case REGULATOR_MODE_NORMAL:
630
		return "normal";
631
	case REGULATOR_MODE_IDLE:
632
		return "idle";
633
	case REGULATOR_MODE_STANDBY:
634
		return "standby";
635
	}
636 637 638 639 640 641
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
642 643
}

D
David Brownell 已提交
644 645
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
646
{
647
	struct regulator_dev *rdev = dev_get_drvdata(dev);
648

D
David Brownell 已提交
649 650
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
651
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
652 653 654

static ssize_t regulator_print_state(char *buf, int state)
{
655 656 657 658 659 660 661 662
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
663 664 665 666
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
667 668
	ssize_t ret;

669
	regulator_lock(rdev);
670
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
671
	regulator_unlock(rdev);
D
David Brownell 已提交
672

673
	return ret;
D
David Brownell 已提交
674
}
675
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
676

D
David Brownell 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
710 711 712
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
713 714 715
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
716 717 718 719 720 721 722 723
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

724 725 726
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
727
	struct regulator_dev *rdev = dev_get_drvdata(dev);
728 729 730 731 732 733

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
734
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
735 736 737 738

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
739
	struct regulator_dev *rdev = dev_get_drvdata(dev);
740 741 742 743 744 745

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
746
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
747 748 749 750

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
751
	struct regulator_dev *rdev = dev_get_drvdata(dev);
752 753 754 755 756 757

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
758
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
759 760 761 762

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
763
	struct regulator_dev *rdev = dev_get_drvdata(dev);
764 765 766 767 768 769

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
770
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
771 772 773 774

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
775
	struct regulator_dev *rdev = dev_get_drvdata(dev);
776 777 778
	struct regulator *regulator;
	int uA = 0;

779
	regulator_lock(rdev);
780 781 782 783
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
784
	regulator_unlock(rdev);
785 786
	return sprintf(buf, "%d\n", uA);
}
787
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
788

789 790
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
791
{
792
	struct regulator_dev *rdev = dev_get_drvdata(dev);
793 794
	return sprintf(buf, "%d\n", rdev->use_count);
}
795
static DEVICE_ATTR_RO(num_users);
796

797 798
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
799
{
800
	struct regulator_dev *rdev = dev_get_drvdata(dev);
801 802 803 804 805 806 807 808 809

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
810
static DEVICE_ATTR_RO(type);
811 812 813 814

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
815
	struct regulator_dev *rdev = dev_get_drvdata(dev);
816 817 818

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
819 820
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
821 822 823 824

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
825
	struct regulator_dev *rdev = dev_get_drvdata(dev);
826 827 828

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
829 830
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
831 832 833 834

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
835
	struct regulator_dev *rdev = dev_get_drvdata(dev);
836 837 838

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
839 840
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
841 842 843 844

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
845
	struct regulator_dev *rdev = dev_get_drvdata(dev);
846

D
David Brownell 已提交
847 848
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
849
}
850 851
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
852 853 854 855

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
856
	struct regulator_dev *rdev = dev_get_drvdata(dev);
857

D
David Brownell 已提交
858 859
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
860
}
861 862
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
863 864 865 866

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
867
	struct regulator_dev *rdev = dev_get_drvdata(dev);
868

D
David Brownell 已提交
869 870
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
871
}
872 873
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
874 875 876 877

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
878
	struct regulator_dev *rdev = dev_get_drvdata(dev);
879

D
David Brownell 已提交
880 881
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
882
}
883 884
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
885 886 887 888

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
889
	struct regulator_dev *rdev = dev_get_drvdata(dev);
890

D
David Brownell 已提交
891 892
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
893
}
894 895
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
896 897 898 899

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
900
	struct regulator_dev *rdev = dev_get_drvdata(dev);
901

D
David Brownell 已提交
902 903
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
904
}
905 906 907
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
929

930 931
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
932
static int drms_uA_update(struct regulator_dev *rdev)
933 934 935 936 937
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

938 939 940 941
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
942 943
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
944
		return 0;
945
	}
946

947 948
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
949 950
		return 0;

951 952
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
953
		return -EINVAL;
954 955

	/* calc total requested load */
956 957 958 959
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
960

961 962
	current_uA += rdev->constraints->system_load;

963 964 965 966 967 968
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
969
		/* get output voltage */
970
		output_uV = regulator_get_voltage_rdev(rdev);
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

987 988 989 990 991 992 993 994 995 996 997
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
998

999 1000 1001
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
1002 1003 1004
	}

	return err;
1005 1006
}

1007 1008
static int __suspend_set_state(struct regulator_dev *rdev,
			       const struct regulator_state *rstate)
1009 1010
{
	int ret = 0;
1011

1012 1013
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1014
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1015 1016
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1017
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1018 1019 1020
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1021
	if (ret < 0) {
1022
		rdev_err(rdev, "failed to enabled/disable\n");
1023 1024 1025 1026 1027 1028
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1029
			rdev_err(rdev, "failed to set voltage\n");
1030 1031 1032 1033 1034 1035 1036
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1037
			rdev_err(rdev, "failed to set mode\n");
1038 1039 1040 1041
			return ret;
		}
	}

1042
	return ret;
1043 1044
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
static int suspend_set_initial_state(struct regulator_dev *rdev)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev,
			rdev->constraints->initial_state);
	if (!rstate)
		return 0;

	return __suspend_set_state(rdev, rstate);
}

1057 1058 1059
static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1060
	char buf[160] = "";
1061
	size_t len = sizeof(buf) - 1;
1062 1063
	int count = 0;
	int ret;
1064

1065
	if (constraints->min_uV && constraints->max_uV) {
1066
		if (constraints->min_uV == constraints->max_uV)
1067 1068
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1069
		else
1070 1071 1072 1073
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1074 1075 1076 1077
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1078
		ret = regulator_get_voltage_rdev(rdev);
1079
		if (ret > 0)
1080 1081
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1082 1083
	}

1084
	if (constraints->uV_offset)
1085 1086
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1087

1088
	if (constraints->min_uA && constraints->max_uA) {
1089
		if (constraints->min_uA == constraints->max_uA)
1090 1091
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1092
		else
1093 1094 1095 1096
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1097 1098 1099 1100 1101 1102
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1103 1104
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1105
	}
1106

1107
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1108
		count += scnprintf(buf + count, len - count, "fast ");
1109
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1110
		count += scnprintf(buf + count, len - count, "normal ");
1111
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1112
		count += scnprintf(buf + count, len - count, "idle ");
1113
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1114
		count += scnprintf(buf + count, len - count, "standby ");
1115

1116
	if (!count)
1117 1118 1119 1120 1121 1122
		count = scnprintf(buf, len, "no parameters");
	else
		--count;

	count += scnprintf(buf + count, len - count, ", %s",
		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1123

1124
	rdev_dbg(rdev, "%s\n", buf);
1125 1126

	if ((constraints->min_uV != constraints->max_uV) &&
1127
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1128 1129
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1130 1131
}

1132
static int machine_constraints_voltage(struct regulator_dev *rdev,
1133
	struct regulation_constraints *constraints)
1134
{
1135
	const struct regulator_ops *ops = rdev->desc->ops;
1136 1137 1138 1139
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1140 1141
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1142
		int current_uV = regulator_get_voltage_rdev(rdev);
1143 1144

		if (current_uV == -ENOTRECOVERABLE) {
1145
			/* This regulator can't be read and must be initialized */
1146 1147 1148 1149 1150 1151
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1152
			current_uV = regulator_get_voltage_rdev(rdev);
1153 1154
		}

1155
		if (current_uV < 0) {
1156 1157 1158
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1159 1160
			return current_uV;
		}
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1181 1182
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1183
			ret = _regulator_do_set_voltage(
1184
				rdev, target_min, target_max);
1185 1186
			if (ret < 0) {
				rdev_err(rdev,
1187 1188
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1189 1190
				return ret;
			}
1191
		}
1192
	}
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1205 1206
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1207
		if (count == 1 && !cmin) {
1208
			cmin = 1;
1209
			cmax = INT_MAX;
1210 1211
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1212 1213
		}

1214 1215
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1216
			return 0;
1217

1218
		/* else require explicit machine-level constraints */
1219
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1220
			rdev_err(rdev, "invalid voltage constraints\n");
1221
			return -EINVAL;
1222 1223
		}

1224 1225 1226 1227
		/* no need to loop voltages if range is continuous */
		if (rdev->desc->continuous_voltage_range)
			return 0;

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1245 1246 1247
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1248
			return -EINVAL;
1249 1250 1251 1252
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1253 1254
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1255 1256 1257
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1258 1259
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1260 1261 1262 1263
			constraints->max_uV = max_uV;
		}
	}

1264 1265 1266
	return 0;
}

1267 1268 1269
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1270
	const struct regulator_ops *ops = rdev->desc->ops;
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1297 1298
static int _regulator_do_enable(struct regulator_dev *rdev);

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1311
	const struct regulation_constraints *constraints)
1312 1313
{
	int ret = 0;
1314
	const struct regulator_ops *ops = rdev->desc->ops;
1315

1316 1317 1318 1319 1320 1321
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1322 1323
	if (!rdev->constraints)
		return -ENOMEM;
1324

1325
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1326
	if (ret != 0)
1327
		return ret;
1328

1329
	ret = machine_constraints_current(rdev, rdev->constraints);
1330
	if (ret != 0)
1331
		return ret;
1332

1333 1334 1335 1336 1337
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1338
			return ret;
1339 1340 1341
		}
	}

1342
	/* do we need to setup our suspend state */
1343
	if (rdev->constraints->initial_state) {
1344
		ret = suspend_set_initial_state(rdev);
1345
		if (ret < 0) {
1346
			rdev_err(rdev, "failed to set suspend state\n");
1347
			return ret;
1348 1349
		}
	}
1350

1351
	if (rdev->constraints->initial_mode) {
1352
		if (!ops->set_mode) {
1353
			rdev_err(rdev, "no set_mode operation\n");
1354
			return -EINVAL;
1355 1356
		}

1357
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1358
		if (ret < 0) {
1359
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1360
			return ret;
1361
		}
1362 1363 1364 1365 1366 1367
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1368 1369
	}

1370 1371
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1372 1373 1374
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1375
			return ret;
1376 1377 1378
		}
	}

S
Stephen Boyd 已提交
1379 1380 1381 1382
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1383
			return ret;
S
Stephen Boyd 已提交
1384 1385 1386
		}
	}

S
Stephen Boyd 已提交
1387 1388 1389 1390
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1391
			return ret;
S
Stephen Boyd 已提交
1392 1393 1394
		}
	}

1395 1396 1397 1398 1399
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1400
			return ret;
1401 1402 1403
		}
	}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1415 1416 1417 1418
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1419 1420 1421 1422 1423 1424 1425 1426 1427
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1428 1429 1430 1431 1432
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
			rdev_err(rdev, "failed to enable\n");
			return ret;
		}
1433 1434 1435

		if (rdev->constraints->always_on)
			rdev->use_count++;
1436 1437
	}

1438
	print_constraints(rdev);
1439
	return 0;
1440 1441 1442 1443
}

/**
 * set_supply - set regulator supply regulator
1444 1445
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1446 1447 1448 1449 1450 1451
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1452
		      struct regulator_dev *supply_rdev)
1453 1454 1455
{
	int err;

1456 1457
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1458 1459 1460
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1461
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1462 1463
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1464
		return err;
1465
	}
1466
	supply_rdev->open_count++;
1467 1468

	return 0;
1469 1470 1471
}

/**
1472
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1473
 * @rdev:         regulator source
1474
 * @consumer_dev_name: dev_name() string for device supply applies to
1475
 * @supply:       symbolic name for supply
1476 1477 1478 1479 1480 1481 1482
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1483 1484
				      const char *consumer_dev_name,
				      const char *supply)
1485
{
1486
	struct regulator_map *node, *new_node;
1487
	int has_dev;
1488 1489 1490 1491

	if (supply == NULL)
		return -EINVAL;

1492 1493 1494 1495 1496
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
	if (new_node == NULL)
		return -ENOMEM;

	new_node->regulator = rdev;
	new_node->supply = supply;

	if (has_dev) {
		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (new_node->dev_name == NULL) {
			kfree(new_node);
			return -ENOMEM;
		}
	}

	mutex_lock(&regulator_list_mutex);
1513
	list_for_each_entry(node, &regulator_map_list, list) {
1514 1515 1516 1517
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1518
			continue;
1519 1520
		}

1521 1522 1523
		if (strcmp(node->supply, supply) != 0)
			continue;

1524 1525 1526 1527 1528 1529
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1530
		goto fail;
1531 1532
	}

1533 1534
	list_add(&new_node->list, &regulator_map_list);
	mutex_unlock(&regulator_list_mutex);
1535

1536
	return 0;
1537 1538 1539 1540 1541 1542

fail:
	mutex_unlock(&regulator_list_mutex);
	kfree(new_node->dev_name);
	kfree(new_node);
	return -EBUSY;
1543 1544
}

1545 1546 1547 1548 1549 1550 1551
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1552
			kfree(node->dev_name);
1553 1554 1555 1556 1557
			kfree(node);
		}
	}
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1607
#define REG_STR_SIZE	64
1608 1609 1610 1611 1612 1613

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	int err;

	if (dev) {
		char buf[REG_STR_SIZE];
		int size;

		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			return NULL;

		supply_name = kstrdup(buf, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	} else {
		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	}
1633 1634

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1635 1636
	if (regulator == NULL) {
		kfree(supply_name);
1637
		return NULL;
1638
	}
1639 1640

	regulator->rdev = rdev;
1641 1642 1643
	regulator->supply_name = supply_name;

	regulator_lock(rdev);
1644
	list_add(&regulator->list, &rdev->consumer_list);
1645
	regulator_unlock(rdev);
1646 1647

	if (dev) {
1648 1649
		regulator->dev = dev;

1650
		/* Add a link to the device sysfs entry */
1651
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1652
					       supply_name);
1653
		if (err) {
1654
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1655
				  dev->kobj.name, err);
1656
			/* non-fatal */
1657
		}
1658 1659
	}

1660
	regulator->debugfs = debugfs_create_dir(supply_name,
1661
						rdev->debugfs);
1662
	if (!regulator->debugfs) {
1663
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1664 1665 1666 1667
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1668
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1669
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1670
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1671 1672 1673
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1674
	}
1675

1676 1677 1678 1679 1680
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1681
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1682 1683 1684
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1685 1686 1687
	return regulator;
}

1688 1689
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1690 1691
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1692 1693 1694
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1695 1696
}

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1745 1746 1747 1748 1749
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1750
 */
1751
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1752
						  const char *supply)
1753
{
1754
	struct regulator_dev *r = NULL;
1755
	struct device_node *node;
1756 1757
	struct regulator_map *map;
	const char *devname = NULL;
1758

1759 1760
	regulator_supply_alias(&dev, &supply);

1761 1762 1763
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1764
		if (node) {
1765 1766 1767
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1768

1769
			/*
1770 1771
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1772
			 */
1773
			return ERR_PTR(-EPROBE_DEFER);
1774
		}
1775 1776 1777
	}

	/* if not found, try doing it non-dt way */
1778 1779 1780
	if (dev)
		devname = dev_name(dev);

1781
	mutex_lock(&regulator_list_mutex);
1782 1783 1784 1785 1786 1787
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1788 1789
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1790 1791
			r = map->regulator;
			break;
1792
		}
1793
	}
1794
	mutex_unlock(&regulator_list_mutex);
1795

1796 1797 1798 1799
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1800 1801 1802 1803
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1804 1805
}

1806 1807 1808 1809 1810 1811
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

1812
	/* No supply to resolve? */
1813 1814 1815 1816 1817 1818 1819
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1820 1821 1822 1823
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1824 1825 1826 1827
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1828 1829
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1830
			get_device(&r->dev);
1831 1832 1833 1834 1835
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1836 1837
	}

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1851 1852
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1853 1854
	if (ret < 0) {
		put_device(&r->dev);
1855
		return ret;
1856
	}
1857 1858

	ret = set_supply(rdev, r);
1859 1860
	if (ret < 0) {
		put_device(&r->dev);
1861
		return ret;
1862
	}
1863

1864 1865 1866 1867 1868 1869
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1870
		ret = regulator_enable(rdev->supply);
1871
		if (ret < 0) {
1872
			_regulator_put(rdev->supply);
1873
			rdev->supply = NULL;
1874
			return ret;
1875
		}
1876 1877 1878 1879 1880
	}

	return 0;
}

1881
/* Internal regulator request function */
1882 1883
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1884 1885
{
	struct regulator_dev *rdev;
1886
	struct regulator *regulator;
1887
	struct device_link *link;
1888
	int ret;
1889

1890 1891 1892 1893 1894
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1895
	if (id == NULL) {
1896
		pr_err("get() with no identifier\n");
1897
		return ERR_PTR(-EINVAL);
1898 1899
	}

1900
	rdev = regulator_dev_lookup(dev, id);
1901 1902
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1903

1904 1905 1906 1907 1908 1909
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1910

1911 1912 1913 1914 1915
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1916

1917 1918 1919 1920 1921 1922 1923
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
1924
			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1925 1926 1927
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1928

1929 1930 1931
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
1932
			fallthrough;
1933

1934 1935 1936
		default:
			return ERR_PTR(-ENODEV);
		}
1937 1938
	}

1939 1940
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1941 1942
		put_device(&rdev->dev);
		return regulator;
1943 1944
	}

1945
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1946
		regulator = ERR_PTR(-EBUSY);
1947 1948
		put_device(&rdev->dev);
		return regulator;
1949 1950
	}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1961 1962 1963
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1964 1965
		put_device(&rdev->dev);
		return regulator;
1966 1967
	}

1968
	if (!try_module_get(rdev->owner)) {
1969
		regulator = ERR_PTR(-EPROBE_DEFER);
1970 1971 1972
		put_device(&rdev->dev);
		return regulator;
	}
1973

1974 1975 1976 1977
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
W
Wen Yang 已提交
1978
		put_device(&rdev->dev);
1979
		return regulator;
1980 1981
	}

1982
	rdev->open_count++;
1983
	if (get_type == EXCLUSIVE_GET) {
1984 1985 1986 1987 1988 1989 1990 1991 1992
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1993 1994 1995
	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
	if (!IS_ERR_OR_NULL(link))
		regulator->device_link = true;
1996

1997 1998
	return regulator;
}
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
2015
	return _regulator_get(dev, id, NORMAL_GET);
2016
}
2017 2018
EXPORT_SYMBOL_GPL(regulator_get);

2019 2020 2021 2022 2023 2024 2025
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
2026 2027 2028
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2042
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2043 2044 2045
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2046 2047 2048 2049 2050 2051
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2052
 * or IS_ERR() condition containing errno.
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2068
	return _regulator_get(dev, id, OPTIONAL_GET);
2069 2070 2071
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2072
static void destroy_regulator(struct regulator *regulator)
2073
{
2074
	struct regulator_dev *rdev = regulator->rdev;
2075

2076 2077
	debugfs_remove_recursive(regulator->debugfs);

2078
	if (regulator->dev) {
2079 2080
		if (regulator->device_link)
			device_link_remove(regulator->dev, &rdev->dev);
2081 2082

		/* remove any sysfs entries */
2083
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2084 2085
	}

2086
	regulator_lock(rdev);
2087 2088
	list_del(&regulator->list);

2089 2090
	rdev->open_count--;
	rdev->exclusive = 0;
2091
	regulator_unlock(rdev);
2092

2093
	kfree_const(regulator->supply_name);
2094
	kfree(regulator);
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
}

/* regulator_list_mutex lock held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (IS_ERR_OR_NULL(regulator))
		return;

	lockdep_assert_held_once(&regulator_list_mutex);

	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

	rdev = regulator->rdev;

	destroy_regulator(regulator);
2113

2114
	module_put(rdev->owner);
W
Wen Yang 已提交
2115
	put_device(&rdev->dev);
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2130 2131 2132 2133
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2211 2212
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2213
					 struct device *alias_dev,
2214
					 const char *const *alias_id,
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2252
					    const char *const *id,
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2263 2264 2265 2266
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
2267
	struct regulator_enable_gpio *pin, *new_pin;
2268
	struct gpio_desc *gpiod;
2269

2270
	gpiod = config->ena_gpiod;
2271 2272 2273
	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);

	mutex_lock(&regulator_list_mutex);
2274

2275
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2276
		if (pin->gpiod == gpiod) {
2277
			rdev_dbg(rdev, "GPIO is already used\n");
2278 2279 2280 2281
			goto update_ena_gpio_to_rdev;
		}
	}

2282 2283
	if (new_pin == NULL) {
		mutex_unlock(&regulator_list_mutex);
2284
		return -ENOMEM;
2285 2286 2287 2288
	}

	pin = new_pin;
	new_pin = NULL;
2289

2290
	pin->gpiod = gpiod;
2291 2292 2293 2294 2295
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
2296 2297 2298 2299

	mutex_unlock(&regulator_list_mutex);
	kfree(new_pin);

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
		if (pin != rdev->ena_pin)
			continue;

		if (--pin->request_count)
			break;

		gpiod_put(pin->gpiod);
		list_del(&pin->list);
		kfree(pin);
		break;
2322
	}
2323 2324

	rdev->ena_pin = NULL;
2325 2326
}

2327
/**
2328 2329 2330 2331
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2345
			gpiod_set_value_cansleep(pin->gpiod, 1);
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2356
			gpiod_set_value_cansleep(pin->gpiod, 0);
2357 2358 2359 2360 2361 2362 2363
			pin->enable_count = 0;
		}
	}

	return 0;
}

2364 2365 2366 2367 2368 2369
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2370
 *     Documentation/timers/timers-howto.rst
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
/**
 * _regulator_check_status_enabled
 *
 * A helper function to check if the regulator status can be interpreted
 * as 'regulator is enabled'.
 * @rdev: the regulator device to check
 *
 * Return:
 * * 1			- if status shows regulator is in enabled state
 * * 0			- if not enabled state
 * * Error Value	- as received from ops->get_status()
 */
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
{
	int ret = rdev->desc->ops->get_status(rdev);

	if (ret < 0) {
		rdev_info(rdev, "get_status returned error: %d\n", ret);
		return ret;
	}

	switch (ret) {
	case REGULATOR_STATUS_OFF:
	case REGULATOR_STATUS_ERROR:
	case REGULATOR_STATUS_UNDEFINED:
		return 0;
	default:
		return 1;
	}
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2464
			 * detected and we get a penalty of
2465 2466 2467 2468 2469 2470 2471 2472 2473
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2474
	if (rdev->ena_pin) {
2475 2476 2477 2478 2479 2480
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2481
	} else if (rdev->desc->ops->enable) {
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	/* If poll_enabled_time is set, poll upto the delay calculated
	 * above, delaying poll_enabled_time uS to check if the regulator
	 * actually got enabled.
	 * If the regulator isn't enabled after enable_delay has
	 * expired, return -ETIMEDOUT.
	 */
	if (rdev->desc->poll_enabled_time) {
		unsigned int time_remaining = delay;

		while (time_remaining > 0) {
			_regulator_enable_delay(rdev->desc->poll_enabled_time);

			if (rdev->desc->ops->get_status) {
				ret = _regulator_check_status_enabled(rdev);
				if (ret < 0)
					return ret;
				else if (ret)
					break;
			} else if (rdev->desc->ops->is_enabled(rdev))
				break;

			time_remaining -= rdev->desc->poll_enabled_time;
		}

		if (time_remaining <= 0) {
			rdev_err(rdev, "Enabled check timed out\n");
			return -ETIMEDOUT;
		}
	} else {
		_regulator_enable_delay(delay);
	}
2525 2526 2527 2528 2529 2530

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2590
/* locks held by regulator_enable() */
2591
static int _regulator_enable(struct regulator *regulator)
2592
{
2593
	struct regulator_dev *rdev = regulator->rdev;
2594
	int ret;
2595

2596 2597
	lockdep_assert_held_once(&rdev->mutex.base);

2598
	if (rdev->use_count == 0 && rdev->supply) {
2599
		ret = _regulator_enable(rdev->supply);
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2610

2611 2612 2613
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2614

2615 2616 2617 2618
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2619
			if (!regulator_ops_is_valid(rdev,
2620 2621
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2622
				goto err_consumer_disable;
2623
			}
2624

2625
			ret = _regulator_do_enable(rdev);
2626
			if (ret < 0)
2627
				goto err_consumer_disable;
2628

2629 2630
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2631
		} else if (ret < 0) {
2632
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2633
			goto err_consumer_disable;
2634
		}
2635
		/* Fallthrough on positive return values - already enabled */
2636 2637
	}

2638 2639 2640
	rdev->use_count++;

	return 0;
2641

2642 2643 2644
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2645
err_disable_supply:
2646
	if (rdev->use_count == 0 && rdev->supply)
2647
		_regulator_disable(rdev->supply);
2648 2649

	return ret;
2650 2651 2652 2653 2654 2655
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2656 2657 2658 2659
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2660
 * NOTE: the output value can be set by other drivers, boot loader or may be
2661
 * hardwired in the regulator.
2662 2663 2664
 */
int regulator_enable(struct regulator *regulator)
{
2665
	struct regulator_dev *rdev = regulator->rdev;
2666
	struct ww_acquire_ctx ww_ctx;
2667
	int ret;
2668

2669
	regulator_lock_dependent(rdev, &ww_ctx);
2670
	ret = _regulator_enable(regulator);
2671
	regulator_unlock_dependent(rdev, &ww_ctx);
2672

2673 2674 2675 2676
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2677 2678 2679 2680 2681 2682
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2683
	if (rdev->ena_pin) {
2684 2685 2686 2687 2688 2689
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2690 2691 2692 2693 2694 2695 2696

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2697 2698 2699 2700 2701 2702
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2703 2704 2705 2706 2707
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2708
/* locks held by regulator_disable() */
2709
static int _regulator_disable(struct regulator *regulator)
2710
{
2711
	struct regulator_dev *rdev = regulator->rdev;
2712 2713
	int ret = 0;

2714
	lockdep_assert_held_once(&rdev->mutex.base);
2715

D
David Brownell 已提交
2716
	if (WARN(rdev->use_count <= 0,
2717
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2718 2719
		return -EIO;

2720
	/* are we the last user and permitted to disable ? */
2721 2722
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2723 2724

		/* we are last user */
2725
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2726 2727 2728 2729 2730 2731
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2732
			ret = _regulator_do_disable(rdev);
2733
			if (ret < 0) {
2734
				rdev_err(rdev, "failed to disable\n");
2735 2736 2737
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2738 2739
				return ret;
			}
2740 2741
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2742 2743 2744 2745 2746 2747
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2748

2749 2750 2751
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2752 2753 2754
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2755
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2756
		ret = _regulator_disable(rdev->supply);
2757

2758 2759 2760 2761 2762 2763 2764
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2765 2766 2767
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2768
 *
2769
 * NOTE: this will only disable the regulator output if no other consumer
2770 2771
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2772 2773 2774
 */
int regulator_disable(struct regulator *regulator)
{
2775
	struct regulator_dev *rdev = regulator->rdev;
2776
	struct ww_acquire_ctx ww_ctx;
2777
	int ret;
2778

2779
	regulator_lock_dependent(rdev, &ww_ctx);
2780
	ret = _regulator_disable(regulator);
2781
	regulator_unlock_dependent(rdev, &ww_ctx);
2782

2783 2784 2785 2786 2787
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2788
static int _regulator_force_disable(struct regulator_dev *rdev)
2789 2790 2791
{
	int ret = 0;

2792
	lockdep_assert_held_once(&rdev->mutex.base);
2793

2794 2795 2796 2797 2798
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2799 2800 2801
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2802 2803
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2804
		return ret;
2805 2806
	}

2807 2808 2809 2810
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2824
	struct regulator_dev *rdev = regulator->rdev;
2825
	struct ww_acquire_ctx ww_ctx;
2826 2827
	int ret;

2828
	regulator_lock_dependent(rdev, &ww_ctx);
2829

2830
	ret = _regulator_force_disable(regulator->rdev);
2831

2832 2833
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2834 2835 2836 2837 2838 2839

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2840 2841
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2842

2843
	regulator_unlock_dependent(rdev, &ww_ctx);
2844

2845 2846 2847 2848
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2849 2850 2851 2852
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2853
	struct ww_acquire_ctx ww_ctx;
2854
	int count, i, ret;
2855 2856
	struct regulator *regulator;
	int total_count = 0;
2857

2858
	regulator_lock_dependent(rdev, &ww_ctx);
2859

2860 2861 2862 2863 2864 2865 2866 2867
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
		}
2882
	}
2883
	WARN_ON(!total_count);
2884

2885 2886 2887 2888
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2889 2890 2891 2892 2893
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2894
 * @ms: milliseconds until the regulator is disabled
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2907 2908 2909
	if (!ms)
		return regulator_disable(regulator);

2910
	regulator_lock(rdev);
2911
	regulator->deferred_disables++;
2912 2913
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2914
	regulator_unlock(rdev);
2915

2916
	return 0;
2917 2918 2919
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2920 2921
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2922
	/* A GPIO control always takes precedence */
2923
	if (rdev->ena_pin)
2924 2925
		return rdev->ena_gpio_state;

2926
	/* If we don't know then assume that the regulator is always on */
2927
	if (!rdev->desc->ops->is_enabled)
2928
		return 1;
2929

2930
	return rdev->desc->ops->is_enabled(rdev);
2931 2932
}

2933 2934
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2946
			regulator_lock(rdev);
2947 2948
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2949
			regulator_unlock(rdev);
2950
	} else if (rdev->is_switch && rdev->supply) {
2951 2952
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2967 2968 2969 2970
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2971 2972 2973 2974 2975 2976 2977
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2978 2979 2980
 */
int regulator_is_enabled(struct regulator *regulator)
{
2981 2982
	int ret;

2983 2984 2985
	if (regulator->always_on)
		return 1;

2986
	regulator_lock(regulator->rdev);
2987
	ret = _regulator_is_enabled(regulator->rdev);
2988
	regulator_unlock(regulator->rdev);
2989 2990

	return ret;
2991 2992 2993
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

3006 3007 3008
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

3009
	if (!rdev->is_switch || !rdev->supply)
3010 3011 3012
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
3023
 * zero if this selector code can't be used on this system, or a
3024 3025 3026 3027
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
3028
	return _regulator_list_voltage(regulator->rdev, selector, 1);
3029 3030 3031
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
3064 3065
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3066 3067 3068 3069

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

3070 3071
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
3072

3073
	return 0;
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3091 3092
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3118 3119 3120 3121 3122 3123 3124
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3125
 * Returns a boolean.
3126 3127 3128 3129
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3130
	struct regulator_dev *rdev = regulator->rdev;
3131 3132
	int i, voltages, ret;

3133
	/* If we can't change voltage check the current voltage */
3134
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3135 3136
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3137
			return min_uV <= ret && ret <= max_uV;
3138 3139 3140 3141
		else
			return ret;
	}

3142 3143 3144 3145 3146
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3147 3148
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3149
		return 0;
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3161
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3162

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3177 3178 3179 3180 3181
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3182 3183 3184
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3185 3186 3187 3188 3189 3190 3191
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3192
	data.old_uV = regulator_get_voltage_rdev(rdev);
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3216
	data.old_uV = regulator_get_voltage_rdev(rdev);
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3294 3295 3296 3297 3298 3299 3300 3301 3302
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3303 3304
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3305 3306 3307 3308 3309 3310
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3311 3312

	if (ramp_delay == 0) {
3313
		rdev_dbg(rdev, "ramp_delay not set\n");
3314 3315 3316 3317 3318 3319
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3320 3321 3322 3323
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3324
	int delay = 0;
3325
	int best_val = 0;
3326
	unsigned int selector;
3327
	int old_selector = -1;
3328
	const struct regulator_ops *ops = rdev->desc->ops;
3329
	int old_uV = regulator_get_voltage_rdev(rdev);
3330 3331 3332

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3333 3334 3335
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3336 3337 3338 3339
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3340
	if (_regulator_is_enabled(rdev) &&
3341 3342
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3343 3344 3345 3346
		if (old_selector < 0)
			return old_selector;
	}

3347
	if (ops->set_voltage) {
3348 3349
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3350 3351

		if (ret >= 0) {
3352 3353 3354
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3355
			else
3356
				best_val = regulator_get_voltage_rdev(rdev);
3357 3358
		}

3359
	} else if (ops->set_voltage_sel) {
3360
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3361
		if (ret >= 0) {
3362
			best_val = ops->list_voltage(rdev, ret);
3363 3364
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3365 3366
				if (old_selector == selector)
					ret = 0;
3367 3368 3369
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3370
				else
3371 3372
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3373 3374 3375
			} else {
				ret = -EINVAL;
			}
3376
		}
3377 3378 3379
	} else {
		ret = -EINVAL;
	}
3380

3381 3382
	if (ret)
		goto out;
3383

3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3401
		}
3402
	}
3403

3404 3405 3406
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3407 3408
	}

3409 3410 3411 3412 3413 3414
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3415 3416
	}

3417
	if (best_val >= 0) {
3418 3419
		unsigned long data = best_val;

3420
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3421 3422
				     (void *)data);
	}
3423

3424
out:
3425
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3426 3427 3428 3429

	return ret;
}

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3456
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3457 3458
					  int min_uV, int max_uV,
					  suspend_state_t state)
3459 3460
{
	struct regulator_dev *rdev = regulator->rdev;
3461
	struct regulator_voltage *voltage = &regulator->voltage[state];
3462
	int ret = 0;
3463
	int old_min_uV, old_max_uV;
3464
	int current_uV;
3465

3466 3467 3468 3469
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3470
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3471 3472
		goto out;

3473
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3474
	 * return successfully even though the regulator does not support
3475 3476
	 * changing the voltage.
	 */
3477
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3478
		current_uV = regulator_get_voltage_rdev(rdev);
3479
		if (min_uV <= current_uV && current_uV <= max_uV) {
3480 3481
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3482 3483 3484 3485
			goto out;
		}
	}

3486
	/* sanity check */
3487 3488
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3489 3490 3491 3492 3493 3494 3495 3496
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3497

3498
	/* restore original values in case of error */
3499 3500 3501 3502
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3503

3504 3505
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3506 3507 3508 3509
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3510

3511 3512 3513 3514
out:
	return ret;
}

3515 3516
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3517 3518 3519 3520 3521
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3522 3523 3524
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3525 3526
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3527 3528 3529 3530 3531 3532
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3533
			goto out;
3534 3535
		}

M
Mark Brown 已提交
3536
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3537 3538
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3539
			goto out;
3540 3541 3542 3543
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3544
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3545 3546
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3547
			goto out;
3548 3549 3550 3551 3552 3553 3554
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3555
				best_supply_uV, INT_MAX, state);
3556 3557 3558
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3559
			goto out;
3560 3561 3562
		}
	}

3563 3564 3565 3566 3567
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3568
	if (ret < 0)
3569
		goto out;
3570

3571 3572
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3573
				best_supply_uV, INT_MAX, state);
3574 3575 3576 3577 3578 3579 3580
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3581
out:
3582
	return ret;
3583
}
3584
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3585

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3596
		*current_uV = regulator_get_voltage_rdev(rdev);
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3628
	int i, ret, max_spread;
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3662
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3673

3674 3675 3676 3677 3678 3679 3680 3681
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3682 3683
	max_spread = constraints->max_spread[0];

3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3701
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3739 3740 3741 3742
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3743
			ret = regulator_get_voltage_rdev(rdev);
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

3759 3760
int regulator_do_balance_voltage(struct regulator_dev *rdev,
				 suspend_state_t state, bool skip_coupled)
3761 3762 3763 3764 3765 3766
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3767 3768
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3769 3770

	c_rdevs = c_desc->coupled_rdevs;
3771
	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3798
			if (test_bit(i, &c_rdev_done))
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3826

3827 3828
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3829

3830 3831 3832
		if (ret < 0)
			goto out;

3833 3834
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3835 3836 3837 3838

	} while (n_coupled > 1);

out:
3839 3840 3841
	return ret;
}

3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_coupler *coupler = c_desc->coupler;
	bool skip_coupled = false;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		skip_coupled = true;

	if (c_desc->n_resolved < c_desc->n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);

	return regulator_do_balance_voltage(rdev, state, skip_coupled);
}

3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3888 3889
	struct ww_acquire_ctx ww_ctx;
	int ret;
3890

3891
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3892

3893 3894
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3895

3896
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3897

3898 3899 3900 3901
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3914
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3968 3969
	struct ww_acquire_ctx ww_ctx;
	int ret;
3970 3971 3972 3973 3974

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3975
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3976 3977 3978 3979

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3980
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3981 3982 3983 3984 3985

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3999 4000
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
4001 4002 4003 4004 4005
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

4006 4007 4008 4009 4010
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

4011
	/* Currently requires operations to do this */
4012
	if (!ops->list_voltage || !rdev->desc->n_voltages)
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

4035
/**
4036 4037
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
4038 4039 4040 4041 4042 4043
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
4044
 * Drivers providing ramp_delay in regulation_constraints can use this as their
4045
 * set_voltage_time_sel() operation.
4046 4047 4048 4049 4050
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
4051
	int old_volt, new_volt;
4052

4053 4054 4055
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
4056

4057 4058 4059
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

4060 4061 4062 4063 4064
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4065
}
4066
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4067

4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
4079
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4080 4081
	int ret, min_uV, max_uV;

4082
	regulator_lock(rdev);
4083 4084 4085 4086 4087 4088 4089 4090

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
4091
	if (!voltage->min_uV && !voltage->max_uV) {
4092 4093 4094 4095
		ret = -EINVAL;
		goto out;
	}

4096 4097
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
4098 4099 4100 4101 4102 4103

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

4104
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4105 4106 4107 4108 4109 4110
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
4111
	regulator_unlock(rdev);
4112 4113 4114 4115
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

4116
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4117
{
4118
	int sel, ret;
4119 4120 4121 4122 4123 4124 4125 4126
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
4127 4128 4129 4130 4131
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4132

4133
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4134 4135
		}
	}
4136 4137 4138 4139 4140

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4141
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4142
	} else if (rdev->desc->ops->get_voltage) {
4143
		ret = rdev->desc->ops->get_voltage(rdev);
4144 4145
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4146 4147
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4148
	} else if (rdev->supply) {
4149
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4150
	} else {
4151
		return -EINVAL;
4152
	}
4153

4154 4155
	if (ret < 0)
		return ret;
4156
	return ret - rdev->constraints->uV_offset;
4157
}
4158
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4171
	struct ww_acquire_ctx ww_ctx;
4172 4173
	int ret;

4174
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4175
	ret = regulator_get_voltage_rdev(regulator->rdev);
4176
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4177 4178 4179 4180 4181 4182 4183 4184

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4185
 * @min_uA: Minimum supported current in uA
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4204
	regulator_lock(rdev);
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4219
	regulator_unlock(rdev);
4220 4221 4222 4223
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4224 4225 4226 4227 4228 4229 4230 4231 4232
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4233 4234 4235 4236
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4237
	regulator_lock(rdev);
4238
	ret = _regulator_get_current_limit_unlocked(rdev);
4239
	regulator_unlock(rdev);
4240

4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4274
	int regulator_curr_mode;
4275

4276
	regulator_lock(rdev);
4277 4278 4279 4280 4281 4282 4283

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4284 4285 4286 4287 4288 4289 4290 4291 4292
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4293
	/* constraints check */
4294
	ret = regulator_mode_constrain(rdev, &mode);
4295 4296 4297 4298 4299
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4300
	regulator_unlock(rdev);
4301 4302 4303 4304
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4305 4306 4307 4308 4309 4310 4311 4312 4313
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4314 4315 4316 4317
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4318
	regulator_lock(rdev);
4319
	ret = _regulator_get_mode_unlocked(rdev);
4320
	regulator_unlock(rdev);
4321

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4337 4338 4339 4340 4341
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4342
	regulator_lock(rdev);
4343 4344 4345 4346 4347 4348 4349 4350 4351

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4352
	regulator_unlock(rdev);
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4370
/**
4371
 * regulator_set_load - set regulator load
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4394 4395 4396 4397 4398 4399 4400 4401
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4402
 * On error a negative errno is returned.
4403
 */
4404
int regulator_set_load(struct regulator *regulator, int uA_load)
4405 4406
{
	struct regulator_dev *rdev = regulator->rdev;
4407 4408
	int old_uA_load;
	int ret = 0;
4409

4410
	regulator_lock(rdev);
4411
	old_uA_load = regulator->uA_load;
4412
	regulator->uA_load = uA_load;
4413 4414 4415 4416 4417
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4418
	regulator_unlock(rdev);
4419

4420 4421
	return ret;
}
4422
EXPORT_SYMBOL_GPL(regulator_set_load);
4423

4424 4425 4426 4427
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4428
 * @enable: enable or disable bypass mode
4429 4430 4431 4432 4433 4434 4435 4436 4437
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
4438
	const char *name = rdev_get_name(rdev);
4439 4440 4441 4442 4443
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4444
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4445 4446
		return 0;

4447
	regulator_lock(rdev);
4448 4449 4450 4451 4452

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
4453 4454
			trace_regulator_bypass_enable(name);

4455 4456 4457
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
4458 4459
			else
				trace_regulator_bypass_enable_complete(name);
4460 4461 4462 4463 4464 4465
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
4466 4467
			trace_regulator_bypass_disable(name);

4468 4469 4470
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
4471 4472
			else
				trace_regulator_bypass_disable_complete(name);
4473 4474 4475 4476 4477 4478
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4479
	regulator_unlock(rdev);
4480 4481 4482 4483 4484

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4485 4486 4487
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4488
 * @nb: notifier block
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4503
 * @nb: notifier block
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4515 4516 4517
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4518
static int _notifier_call_chain(struct regulator_dev *rdev,
4519 4520 4521
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4522
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4549 4550
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4561 4562 4563 4564 4565 4566 4567
	if (ret != -EPROBE_DEFER)
		dev_err(dev, "Failed to get supply '%s': %d\n",
			consumers[i].supply, ret);
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4568
	while (--i >= 0)
4569 4570 4571 4572 4573 4574
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4575 4576 4577 4578 4579 4580 4581
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4597
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4598
	int i;
4599
	int ret = 0;
4600

4601
	for (i = 0; i < num_consumers; i++) {
4602 4603
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4604
	}
4605 4606 4607 4608

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4609
	for (i = 0; i < num_consumers; i++) {
4610 4611
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4612
			goto err;
4613
		}
4614 4615 4616 4617 4618
	}

	return 0;

err:
4619 4620 4621 4622 4623 4624 4625
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4639 4640
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4641 4642 4643 4644 4645 4646
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4647
	int ret, r;
4648

4649
	for (i = num_consumers - 1; i >= 0; --i) {
4650 4651 4652 4653 4654 4655 4656 4657
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4658
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4659 4660 4661
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4662
			pr_err("Failed to re-enable %s: %d\n",
4663 4664
			       consumers[i].supply, r);
	}
4665 4666 4667 4668 4669

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4688
	int ret = 0;
4689

4690
	for (i = 0; i < num_consumers; i++) {
4691 4692 4693
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4694 4695
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4696 4697 4698 4699 4700 4701 4702
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4726
 * @rdev: regulator source
4727
 * @event: notifier block
4728
 * @data: callback-specific data.
4729 4730
 *
 * Called by regulator drivers to notify clients a regulator event has
4731
 * occurred.
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4758
	case REGULATOR_MODE_STANDBY:
4759 4760
		return REGULATOR_STATUS_STANDBY;
	default:
4761
		return REGULATOR_STATUS_UNDEFINED;
4762 4763 4764 4765
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4793 4794 4795 4796
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4797 4798
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4799
{
4800
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4801
	struct regulator_dev *rdev = dev_to_rdev(dev);
4802
	const struct regulator_ops *ops = rdev->desc->ops;
4803 4804 4805 4806 4807 4808 4809
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4810 4811

	/* some attributes need specific methods to be displayed */
4812 4813 4814 4815 4816 4817 4818
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4819
	}
4820

4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4836
	/* constraints need specific supporting methods */
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4872

4873 4874 4875
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4876 4877 4878

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4879
	kfree(rdev);
4880 4881
}

4882 4883
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4896
	if (!rdev->debugfs) {
4897 4898 4899 4900 4901 4902 4903 4904
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4905 4906
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4907 4908
}

4909 4910
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4911 4912 4913 4914 4915 4916
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4917 4918
}

4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

4970
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4971
{
4972
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4985 4986
		if (!c_rdev)
			continue;
4987

4988 4989 4990 4991 4992 4993
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

4994
		regulator_lock(c_rdev);
4995

4996 4997
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4998

4999
		regulator_unlock(c_rdev);
5000

5001 5002
		regulator_resolve_coupling(c_rdev);
	}
5003 5004
}

5005
static void regulator_remove_coupling(struct regulator_dev *rdev)
5006
{
5007
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5008 5009 5010 5011
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
5012
	int err;
5013

5014
	n_coupled = c_desc->n_coupled;
5015

5016 5017
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
5018

5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
			rdev_err(rdev, "failed to detach from coupler: %d\n",
				 err);
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
5052 5053
}

5054
static int regulator_init_coupling(struct regulator_dev *rdev)
5055
{
5056
	struct regulator_dev **coupled;
5057
	int err, n_phandles;
5058 5059 5060 5061 5062 5063

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

5064 5065
	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
	if (!coupled)
5066
		return -ENOMEM;
5067

5068 5069
	rdev->coupling_desc.coupled_rdevs = coupled;

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

5082
	if (!of_check_coupling_data(rdev))
5083 5084
		return -EPERM;

5085
	mutex_lock(&regulator_list_mutex);
5086
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5087 5088
	mutex_unlock(&regulator_list_mutex);

5089 5090 5091 5092
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
		rdev_err(rdev, "failed to get coupler: %d\n", err);
		return err;
5093 5094
	}

5095 5096 5097 5098 5099 5100 5101 5102 5103
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5104
		return -EPERM;
5105
	}
5106

5107 5108 5109 5110 5111 5112
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

5113 5114 5115
	return 0;
}

5116 5117 5118 5119
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

5120 5121
/**
 * regulator_register - register regulator
5122
 * @regulator_desc: regulator to register
5123
 * @cfg: runtime configuration for regulator
5124 5125
 *
 * Called by regulator drivers to register a regulator.
5126 5127
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
5128
 */
5129 5130
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
5131
		   const struct regulator_config *cfg)
5132
{
5133
	const struct regulation_constraints *constraints = NULL;
5134
	const struct regulator_init_data *init_data;
5135
	struct regulator_config *config = NULL;
5136
	static atomic_t regulator_no = ATOMIC_INIT(-1);
5137
	struct regulator_dev *rdev;
5138 5139
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5140
	struct device *dev;
5141
	int ret, i;
5142

5143
	if (cfg == NULL)
5144
		return ERR_PTR(-EINVAL);
5145 5146 5147 5148 5149 5150
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5151

5152
	dev = cfg->dev;
5153
	WARN_ON(!dev);
5154

5155 5156 5157 5158
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5159

5160
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5161 5162 5163 5164
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5165

5166 5167 5168
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5169 5170
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5171 5172 5173 5174

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5175 5176
		ret = -EINVAL;
		goto rinse;
5177
	}
5178 5179
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5180 5181
		ret = -EINVAL;
		goto rinse;
5182
	}
5183

5184
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5185 5186 5187 5188
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5189
	device_initialize(&rdev->dev);
5190

5191 5192 5193 5194 5195 5196
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
5197
		ret = -ENOMEM;
5198
		goto clean;
5199 5200
	}

5201
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5202
					       &rdev->dev.of_node);
5203 5204 5205 5206 5207 5208 5209 5210

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		ret = -EPROBE_DEFER;
5211
		goto clean;
5212 5213
	}

5214 5215 5216 5217 5218
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5219
	 * a descriptor, we definitely got one from parsing the device
5220 5221 5222 5223
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5224 5225 5226 5227 5228
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5229
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5230
	rdev->reg_data = config->driver_data;
5231 5232
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5233 5234
	if (config->regmap)
		rdev->regmap = config->regmap;
5235
	else if (dev_get_regmap(dev, NULL))
5236
		rdev->regmap = dev_get_regmap(dev, NULL);
5237 5238
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5239 5240 5241
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5242
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5243

5244
	/* preform any regulator specific init */
5245
	if (init_data && init_data->regulator_init) {
5246
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5247 5248
		if (ret < 0)
			goto clean;
5249 5250
	}

5251
	if (config->ena_gpiod) {
5252 5253
		ret = regulator_ena_gpio_request(rdev, config);
		if (ret != 0) {
5254 5255
			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
				 ret);
5256
			goto clean;
5257
		}
5258 5259 5260
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5261 5262
	}

5263
	/* register with sysfs */
5264
	rdev->dev.class = &regulator_class;
5265
	rdev->dev.parent = dev;
5266
	dev_set_name(&rdev->dev, "regulator.%lu",
5267
		    (unsigned long) atomic_inc_return(&regulator_no));
5268
	dev_set_drvdata(&rdev->dev, rdev);
5269

5270
	/* set regulator constraints */
5271 5272 5273 5274
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
5275
		rdev->supply_name = init_data->supply_regulator;
5276
	else if (regulator_desc->supply_name)
5277
		rdev->supply_name = regulator_desc->supply_name;
5278

5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

5291 5292
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5293 5294
		goto wash;

5295
	/* add consumers devices */
5296 5297 5298 5299
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5300
				init_data->consumer_supplies[i].supply);
5301 5302 5303 5304 5305
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5306
		}
5307
	}
5308

5309 5310 5311 5312 5313
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5314 5315
	ret = device_add(&rdev->dev);
	if (ret != 0)
5316 5317
		goto unset_supplies;

5318
	rdev_init_debugfs(rdev);
5319

5320 5321 5322 5323 5324
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5325 5326 5327
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5328
	kfree(config);
5329
	return rdev;
D
David Brownell 已提交
5330

5331
unset_supplies:
5332
	mutex_lock(&regulator_list_mutex);
5333
	unset_regulator_supplies(rdev);
5334
	regulator_remove_coupling(rdev);
5335
	mutex_unlock(&regulator_list_mutex);
5336
wash:
5337
	kfree(rdev->coupling_desc.coupled_rdevs);
5338
	mutex_lock(&regulator_list_mutex);
5339
	regulator_ena_gpio_free(rdev);
5340
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5341
clean:
5342 5343
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
5344
	kfree(config);
5345
	put_device(&rdev->dev);
5346 5347 5348
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5349
	return ERR_PTR(ret);
5350 5351 5352 5353 5354
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5355
 * @rdev: regulator to unregister
5356 5357 5358 5359 5360 5361 5362 5363
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5364 5365 5366
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5367
		regulator_put(rdev->supply);
5368
	}
5369

5370 5371
	flush_work(&rdev->disable_work.work);

5372
	mutex_lock(&regulator_list_mutex);
5373

5374
	debugfs_remove_recursive(rdev->debugfs);
5375
	WARN_ON(rdev->open_count);
5376
	regulator_remove_coupling(rdev);
5377
	unset_regulator_supplies(rdev);
5378
	list_del(&rdev->list);
5379
	regulator_ena_gpio_free(rdev);
5380
	device_unregister(&rdev->dev);
5381 5382

	mutex_unlock(&regulator_list_mutex);
5383 5384 5385
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5386
#ifdef CONFIG_SUSPEND
5387
/**
5388
 * regulator_suspend - prepare regulators for system wide suspend
5389
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5390 5391 5392
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5393
static int regulator_suspend(struct device *dev)
5394
{
5395
	struct regulator_dev *rdev = dev_to_rdev(dev);
5396
	suspend_state_t state = pm_suspend_target_state;
5397
	int ret;
5398 5399 5400 5401 5402
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev, state);
	if (!rstate)
		return 0;
5403 5404

	regulator_lock(rdev);
5405
	ret = __suspend_set_state(rdev, rstate);
5406
	regulator_unlock(rdev);
5407

5408
	return ret;
5409
}
5410

5411
static int regulator_resume(struct device *dev)
5412
{
5413
	suspend_state_t state = pm_suspend_target_state;
5414
	struct regulator_dev *rdev = dev_to_rdev(dev);
5415
	struct regulator_state *rstate;
5416
	int ret = 0;
5417

5418
	rstate = regulator_get_suspend_state(rdev, state);
5419
	if (rstate == NULL)
5420
		return 0;
5421

5422 5423 5424 5425
	/* Avoid grabbing the lock if we don't need to */
	if (!rdev->desc->ops->resume)
		return 0;

5426
	regulator_lock(rdev);
5427

5428 5429
	if (rstate->enabled == ENABLE_IN_SUSPEND ||
	    rstate->enabled == DISABLE_IN_SUSPEND)
5430
		ret = rdev->desc->ops->resume(rdev);
5431

5432
	regulator_unlock(rdev);
5433

5434
	return ret;
5435
}
5436 5437
#else /* !CONFIG_SUSPEND */

5438 5439
#define regulator_suspend	NULL
#define regulator_resume	NULL
5440 5441 5442 5443 5444

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5445 5446
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5447 5448 5449
};
#endif

M
Mark Brown 已提交
5450
struct class regulator_class = {
5451 5452 5453 5454 5455 5456 5457
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5475 5476
/**
 * rdev_get_drvdata - get rdev regulator driver data
5477
 * @rdev: regulator
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5514
 * @rdev: regulator
5515 5516 5517 5518 5519 5520 5521
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5522 5523 5524 5525 5526 5527
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5528 5529 5530 5531 5532 5533
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5534 5535 5536 5537 5538 5539
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5540
#ifdef CONFIG_DEBUG_FS
5541
static int supply_map_show(struct seq_file *sf, void *data)
5542 5543 5544 5545
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5546 5547 5548
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5549 5550
	}

5551 5552
	return 0;
}
5553
DEFINE_SHOW_ATTRIBUTE(supply_map);
5554

5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5577 5578 5579 5580 5581 5582
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5583
	struct summary_data summary_data;
5584
	unsigned int opmode;
5585 5586 5587 5588

	if (!rdev)
		return;

5589
	opmode = _regulator_get_mode_unlocked(rdev);
5590
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5591 5592
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5593
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5594
		   regulator_opmode_to_str(opmode));
5595

5596
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5597 5598
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5617
		if (consumer->dev && consumer->dev->class == &regulator_class)
5618 5619 5620 5621
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5622
			   30 - (level + 1) * 3,
5623
			   consumer->supply_name ? consumer->supply_name :
5624
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5625 5626 5627

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5628 5629
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5630
				   consumer->uA_load / 1000,
5631 5632
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5633 5634
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5635 5636 5637 5638 5639 5640 5641 5642
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5643 5644 5645
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5646

5647 5648
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5686 5687

	regulator_unlock(rdev);
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5718 5719
	mutex_lock(&regulator_list_mutex);

5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5746 5747

	mutex_unlock(&regulator_list_mutex);
5748 5749
}

5750
static int regulator_summary_show_roots(struct device *dev, void *data)
5751
{
5752 5753
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5754

5755 5756
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5757

5758 5759
	return 0;
}
5760

5761 5762
static int regulator_summary_show(struct seq_file *s, void *data)
{
5763 5764
	struct ww_acquire_ctx ww_ctx;

5765 5766
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5767

5768 5769
	regulator_summary_lock(&ww_ctx);

5770 5771
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5772

5773 5774
	regulator_summary_unlock(&ww_ctx);

5775 5776
	return 0;
}
5777 5778
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5779

5780 5781
static int __init regulator_init(void)
{
5782 5783 5784 5785
	int ret;

	ret = class_register(&regulator_class);

5786
	debugfs_root = debugfs_create_dir("regulator", NULL);
5787
	if (!debugfs_root)
5788
		pr_warn("regulator: Failed to create debugfs directory\n");
5789

5790
#ifdef CONFIG_DEBUG_FS
5791 5792
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5793

5794
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5795
			    NULL, &regulator_summary_fops);
5796
#endif
5797 5798
	regulator_dummy_init();

5799 5800
	regulator_coupler_register(&generic_regulator_coupler);

5801
	return ret;
5802 5803 5804 5805
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5806

5807
static int regulator_late_cleanup(struct device *dev, void *data)
5808
{
5809 5810 5811
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5812 5813
	int enabled, ret;

5814 5815 5816
	if (c && c->always_on)
		return 0;

5817
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5818 5819
		return 0;

5820
	regulator_lock(rdev);
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5851
	regulator_unlock(rdev);
5852 5853 5854 5855

	return 0;
}

5856
static void regulator_init_complete_work_function(struct work_struct *work)
5857
{
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5868
	/* If we have a full configuration then disable any regulators
5869 5870 5871
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5872
	 */
5873 5874
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
5892 5893 5894 5895 5896 5897 5898 5899 5900
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
5901
	 */
5902 5903
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
5904 5905 5906

	return 0;
}
5907
late_initcall_sync(regulator_init_complete);