core.c 121.2 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
55
static LIST_HEAD(regulator_ena_gpio_list);
56
static LIST_HEAD(regulator_supply_alias_list);
57
static bool has_full_constraints;
58

59 60
static struct dentry *debugfs_root;

61
/*
62 63 64 65 66 67
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
68
	const char *dev_name;   /* The dev_name() for the consumer */
69
	const char *supply;
70
	struct regulator_dev *regulator;
71 72
};

73 74 75 76 77 78 79
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
80
	struct gpio_desc *gpiod;
81 82 83 84 85
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

99
static int _regulator_is_enabled(struct regulator_dev *rdev);
100
static int _regulator_disable(struct regulator_dev *rdev);
101 102 103
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104
static int _notifier_call_chain(struct regulator_dev *rdev,
105
				  unsigned long event, void *data);
106 107
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
108 109 110
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
111
static void _regulator_put(struct regulator *regulator);
112

113 114 115 116 117 118 119 120 121 122
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

123 124
static bool have_full_constraints(void)
{
125
	return has_full_constraints || of_have_populated_dt();
126 127
}

128 129 130 131 132 133 134 135 136 137 138 139 140
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

141 142 143 144 145 146 147 148
static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
{
	if (rdev && rdev->supply)
		return rdev->supply->rdev;

	return NULL;
}

149 150 151 152 153 154
/**
 * regulator_lock_supply - lock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_lock_supply(struct regulator_dev *rdev)
{
155
	int i;
156

157
	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
158
		mutex_lock_nested(&rdev->mutex, i);
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
}

/**
 * regulator_unlock_supply - unlock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_unlock_supply(struct regulator_dev *rdev)
{
	struct regulator *supply;

	while (1) {
		mutex_unlock(&rdev->mutex);
		supply = rdev->supply;

		if (!rdev->supply)
			return;

		rdev = supply->rdev;
	}
}

180 181 182 183 184 185
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
186
 * returns the device node corresponding to the regulator if found, else
187 188 189 190 191 192 193 194 195 196 197 198 199
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
200 201
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
202 203 204 205 206
		return NULL;
	}
	return regnode;
}

207 208 209 210 211 212
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

213
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
214
		rdev_err(rdev, "voltage operation not allowed\n");
215 216 217 218 219 220 221 222
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

223 224
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
225
			 *min_uV, *max_uV);
226
		return -EINVAL;
227
	}
228 229 230 231

	return 0;
}

232 233 234 235 236 237
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

238 239 240 241
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
242 243
				     int *min_uV, int *max_uV,
				     suspend_state_t state)
244 245
{
	struct regulator *regulator;
246
	struct regulator_voltage *voltage;
247 248

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
249
		voltage = &regulator->voltage[state];
250 251 252 253
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
254
		if (!voltage->min_uV && !voltage->max_uV)
255 256
			continue;

257 258 259 260
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
261 262
	}

263
	if (*min_uV > *max_uV) {
264 265
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
266
		return -EINVAL;
267
	}
268 269 270 271

	return 0;
}

272 273 274 275 276 277
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

278
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
279
		rdev_err(rdev, "current operation not allowed\n");
280 281 282 283 284 285 286 287
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

288 289
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
290
			 *min_uA, *max_uA);
291
		return -EINVAL;
292
	}
293 294 295 296 297

	return 0;
}

/* operating mode constraint check */
298 299
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
300
{
301
	switch (*mode) {
302 303 304 305 306 307
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
308
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
309 310 311
		return -EINVAL;
	}

312
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
313
		rdev_err(rdev, "mode operation not allowed\n");
314 315
		return -EPERM;
	}
316 317 318 319 320 321 322 323

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
324
	}
325 326

	return -EINVAL;
327 328
}

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

347 348 349
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
350
	struct regulator_dev *rdev = dev_get_drvdata(dev);
351 352 353 354 355 356 357 358
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
359
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
360 361 362 363

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
364
	struct regulator_dev *rdev = dev_get_drvdata(dev);
365 366 367

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
368
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
369

370 371
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
372 373 374
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

375
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
376
}
377
static DEVICE_ATTR_RO(name);
378

D
David Brownell 已提交
379
static ssize_t regulator_print_opmode(char *buf, int mode)
380 381 382 383 384 385 386 387 388 389 390 391 392 393
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
394 395
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
396
{
397
	struct regulator_dev *rdev = dev_get_drvdata(dev);
398

D
David Brownell 已提交
399 400
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
401
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
402 403 404

static ssize_t regulator_print_state(char *buf, int state)
{
405 406 407 408 409 410 411 412
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
413 414 415 416
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
417 418 419 420 421
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
422

423
	return ret;
D
David Brownell 已提交
424
}
425
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
426

D
David Brownell 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
460 461 462
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
463 464 465
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
466 467 468 469 470 471 472 473
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

474 475 476
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
477
	struct regulator_dev *rdev = dev_get_drvdata(dev);
478 479 480 481 482 483

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
484
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
485 486 487 488

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
489
	struct regulator_dev *rdev = dev_get_drvdata(dev);
490 491 492 493 494 495

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
496
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
497 498 499 500

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
501
	struct regulator_dev *rdev = dev_get_drvdata(dev);
502 503 504 505 506 507

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
508
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
509 510 511 512

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
513
	struct regulator_dev *rdev = dev_get_drvdata(dev);
514 515 516 517 518 519

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
520
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
521 522 523 524

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
525
	struct regulator_dev *rdev = dev_get_drvdata(dev);
526 527 528 529 530
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
531
		uA += regulator->uA_load;
532 533 534
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
535
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
536

537 538
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
539
{
540
	struct regulator_dev *rdev = dev_get_drvdata(dev);
541 542
	return sprintf(buf, "%d\n", rdev->use_count);
}
543
static DEVICE_ATTR_RO(num_users);
544

545 546
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
547
{
548
	struct regulator_dev *rdev = dev_get_drvdata(dev);
549 550 551 552 553 554 555 556 557

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
558
static DEVICE_ATTR_RO(type);
559 560 561 562

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
563
	struct regulator_dev *rdev = dev_get_drvdata(dev);
564 565 566

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
567 568
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
569 570 571 572

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
573
	struct regulator_dev *rdev = dev_get_drvdata(dev);
574 575 576

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
577 578
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
579 580 581 582

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
583
	struct regulator_dev *rdev = dev_get_drvdata(dev);
584 585 586

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
587 588
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
589 590 591 592

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
593
	struct regulator_dev *rdev = dev_get_drvdata(dev);
594

D
David Brownell 已提交
595 596
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
597
}
598 599
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
600 601 602 603

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
604
	struct regulator_dev *rdev = dev_get_drvdata(dev);
605

D
David Brownell 已提交
606 607
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
608
}
609 610
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
611 612 613 614

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
615
	struct regulator_dev *rdev = dev_get_drvdata(dev);
616

D
David Brownell 已提交
617 618
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
619
}
620 621
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
622 623 624 625

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
626
	struct regulator_dev *rdev = dev_get_drvdata(dev);
627

D
David Brownell 已提交
628 629
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
630
}
631 632
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
633 634 635 636

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
637
	struct regulator_dev *rdev = dev_get_drvdata(dev);
638

D
David Brownell 已提交
639 640
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
641
}
642 643
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
644 645 646 647

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
648
	struct regulator_dev *rdev = dev_get_drvdata(dev);
649

D
David Brownell 已提交
650 651
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
652
}
653 654 655
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
677

678 679
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
680
static int drms_uA_update(struct regulator_dev *rdev)
681 682 683 684 685
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

686 687
	lockdep_assert_held_once(&rdev->mutex);

688 689 690 691
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
692
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
693 694
		return 0;

695 696
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
697 698
		return 0;

699 700
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
701
		return -EINVAL;
702 703 704

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
705
		current_uA += sibling->uA_load;
706

707 708
	current_uA += rdev->constraints->system_load;

709 710 711 712 713 714
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
		/* get output voltage */
		output_uV = _regulator_get_voltage(rdev);
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

733 734 735 736 737 738 739 740 741 742 743
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
744

745 746 747
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
748 749 750
	}

	return err;
751 752 753
}

static int suspend_set_state(struct regulator_dev *rdev,
754
				    suspend_state_t state)
755 756
{
	int ret = 0;
757 758 759 760
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
761
		return 0;
762 763

	/* If we have no suspend mode configration don't set anything;
764 765
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
766
	 */
767 768
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
769 770
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
771
			rdev_warn(rdev, "No configuration\n");
772 773 774
		return 0;
	}

775 776
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
777
		ret = rdev->desc->ops->set_suspend_enable(rdev);
778 779
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
780
		ret = rdev->desc->ops->set_suspend_disable(rdev);
781 782 783
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

784
	if (ret < 0) {
785
		rdev_err(rdev, "failed to enabled/disable\n");
786 787 788 789 790 791
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
792
			rdev_err(rdev, "failed to set voltage\n");
793 794 795 796 797 798 799
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
800
			rdev_err(rdev, "failed to set mode\n");
801 802 803 804
			return ret;
		}
	}

805
	return ret;
806 807 808 809 810
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
811
	char buf[160] = "";
812
	size_t len = sizeof(buf) - 1;
813 814
	int count = 0;
	int ret;
815

816
	if (constraints->min_uV && constraints->max_uV) {
817
		if (constraints->min_uV == constraints->max_uV)
818 819
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
820
		else
821 822 823 824
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
825 826 827 828 829 830
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
831 832
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
833 834
	}

835
	if (constraints->uV_offset)
836 837
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
838

839
	if (constraints->min_uA && constraints->max_uA) {
840
		if (constraints->min_uA == constraints->max_uA)
841 842
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
843
		else
844 845 846 847
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
848 849 850 851 852 853
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
854 855
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
856
	}
857

858
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
859
		count += scnprintf(buf + count, len - count, "fast ");
860
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
861
		count += scnprintf(buf + count, len - count, "normal ");
862
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
863
		count += scnprintf(buf + count, len - count, "idle ");
864
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
865
		count += scnprintf(buf + count, len - count, "standby");
866

867
	if (!count)
868
		scnprintf(buf, len, "no parameters");
869

870
	rdev_dbg(rdev, "%s\n", buf);
871 872

	if ((constraints->min_uV != constraints->max_uV) &&
873
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
874 875
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
876 877
}

878
static int machine_constraints_voltage(struct regulator_dev *rdev,
879
	struct regulation_constraints *constraints)
880
{
881
	const struct regulator_ops *ops = rdev->desc->ops;
882 883 884 885
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
886 887
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
888
		int current_uV = _regulator_get_voltage(rdev);
889 890 891 892 893 894 895 896 897 898 899 900

		if (current_uV == -ENOTRECOVERABLE) {
			/* This regulator can't be read and must be initted */
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
			current_uV = _regulator_get_voltage(rdev);
		}

901
		if (current_uV < 0) {
902 903 904
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
905 906
			return current_uV;
		}
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
927 928
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
929
			ret = _regulator_do_set_voltage(
930
				rdev, target_min, target_max);
931 932
			if (ret < 0) {
				rdev_err(rdev,
933 934
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
935 936
				return ret;
			}
937
		}
938
	}
939

940 941 942 943 944 945 946 947 948 949 950
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

951 952
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
953
		if (count == 1 && !cmin) {
954
			cmin = 1;
955
			cmax = INT_MAX;
956 957
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
958 959
		}

960 961
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
962
			return 0;
963

964
		/* else require explicit machine-level constraints */
965
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
966
			rdev_err(rdev, "invalid voltage constraints\n");
967
			return -EINVAL;
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
987 988 989
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
990
			return -EINVAL;
991 992 993 994
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
995 996
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
997 998 999
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1000 1001
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1002 1003 1004 1005
			constraints->max_uV = max_uV;
		}
	}

1006 1007 1008
	return 0;
}

1009 1010 1011
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1012
	const struct regulator_ops *ops = rdev->desc->ops;
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1039 1040
static int _regulator_do_enable(struct regulator_dev *rdev);

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1053
	const struct regulation_constraints *constraints)
1054 1055
{
	int ret = 0;
1056
	const struct regulator_ops *ops = rdev->desc->ops;
1057

1058 1059 1060 1061 1062 1063
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1064 1065
	if (!rdev->constraints)
		return -ENOMEM;
1066

1067
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1068
	if (ret != 0)
1069
		return ret;
1070

1071
	ret = machine_constraints_current(rdev, rdev->constraints);
1072
	if (ret != 0)
1073
		return ret;
1074

1075 1076 1077 1078 1079
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1080
			return ret;
1081 1082 1083
		}
	}

1084
	/* do we need to setup our suspend state */
1085
	if (rdev->constraints->initial_state) {
1086
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1087
		if (ret < 0) {
1088
			rdev_err(rdev, "failed to set suspend state\n");
1089
			return ret;
1090 1091
		}
	}
1092

1093
	if (rdev->constraints->initial_mode) {
1094
		if (!ops->set_mode) {
1095
			rdev_err(rdev, "no set_mode operation\n");
1096
			return -EINVAL;
1097 1098
		}

1099
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1100
		if (ret < 0) {
1101
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1102
			return ret;
1103 1104 1105
		}
	}

1106 1107 1108
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1109 1110 1111
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1112
			rdev_err(rdev, "failed to enable\n");
1113
			return ret;
1114 1115 1116
		}
	}

1117 1118
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1119 1120 1121
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1122
			return ret;
1123 1124 1125
		}
	}

S
Stephen Boyd 已提交
1126 1127 1128 1129
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1130
			return ret;
S
Stephen Boyd 已提交
1131 1132 1133
		}
	}

S
Stephen Boyd 已提交
1134 1135 1136 1137
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1138
			return ret;
S
Stephen Boyd 已提交
1139 1140 1141
		}
	}

1142 1143 1144 1145 1146
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1147
			return ret;
1148 1149 1150
		}
	}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1162
	print_constraints(rdev);
1163
	return 0;
1164 1165 1166 1167
}

/**
 * set_supply - set regulator supply regulator
1168 1169
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1170 1171 1172 1173 1174 1175
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1176
		      struct regulator_dev *supply_rdev)
1177 1178 1179
{
	int err;

1180 1181
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1182 1183 1184
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1185
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1186 1187
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1188
		return err;
1189
	}
1190
	supply_rdev->open_count++;
1191 1192

	return 0;
1193 1194 1195
}

/**
1196
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1197
 * @rdev:         regulator source
1198
 * @consumer_dev_name: dev_name() string for device supply applies to
1199
 * @supply:       symbolic name for supply
1200 1201 1202 1203 1204 1205 1206
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1207 1208
				      const char *consumer_dev_name,
				      const char *supply)
1209 1210
{
	struct regulator_map *node;
1211
	int has_dev;
1212 1213 1214 1215

	if (supply == NULL)
		return -EINVAL;

1216 1217 1218 1219 1220
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1221
	list_for_each_entry(node, &regulator_map_list, list) {
1222 1223 1224 1225
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1226
			continue;
1227 1228
		}

1229 1230 1231
		if (strcmp(node->supply, supply) != 0)
			continue;

1232 1233 1234 1235 1236 1237
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1238 1239 1240
		return -EBUSY;
	}

1241
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1242 1243 1244 1245 1246 1247
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1248 1249 1250 1251 1252 1253
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1254 1255
	}

1256 1257 1258 1259
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1260 1261 1262 1263 1264 1265 1266
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1267
			kfree(node->dev_name);
1268 1269 1270 1271 1272
			kfree(node);
		}
	}
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1322
#define REG_STR_SIZE	64
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1341 1342
		regulator->dev = dev;

1343
		/* Add a link to the device sysfs entry */
1344 1345
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1346
		if (size >= REG_STR_SIZE)
1347
			goto overflow_err;
1348 1349 1350

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1351
			goto overflow_err;
1352

1353
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1354 1355
					buf);
		if (err) {
1356
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1357
				  dev->kobj.name, err);
1358
			/* non-fatal */
1359
		}
1360
	} else {
1361
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1362
		if (regulator->supply_name == NULL)
1363
			goto overflow_err;
1364 1365 1366 1367
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1368
	if (!regulator->debugfs) {
1369
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1370 1371 1372 1373
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1374
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1375
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1376
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1377 1378 1379
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1380
	}
1381

1382 1383 1384 1385 1386
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1387
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1388 1389 1390
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1391 1392 1393 1394 1395 1396 1397 1398 1399
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1400 1401
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1402 1403
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1404
	if (!rdev->desc->ops->enable_time)
1405
		return rdev->desc->enable_time;
1406 1407 1408
	return rdev->desc->ops->enable_time(rdev);
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1457 1458 1459 1460 1461
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1462
 */
1463
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1464
						  const char *supply)
1465
{
1466
	struct regulator_dev *r = NULL;
1467
	struct device_node *node;
1468 1469
	struct regulator_map *map;
	const char *devname = NULL;
1470

1471 1472
	regulator_supply_alias(&dev, &supply);

1473 1474 1475
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1476
		if (node) {
1477 1478 1479
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1480

1481
			/*
1482 1483
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1484
			 */
1485
			return ERR_PTR(-EPROBE_DEFER);
1486
		}
1487 1488 1489
	}

	/* if not found, try doing it non-dt way */
1490 1491 1492
	if (dev)
		devname = dev_name(dev);

1493
	mutex_lock(&regulator_list_mutex);
1494 1495 1496 1497 1498 1499
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1500 1501
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1502 1503
			r = map->regulator;
			break;
1504
		}
1505
	}
1506
	mutex_unlock(&regulator_list_mutex);
1507

1508 1509 1510 1511
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1512 1513 1514 1515
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1516 1517
}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1532 1533 1534 1535
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1536 1537 1538 1539
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1540 1541
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1542
			get_device(&r->dev);
1543 1544 1545 1546 1547
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1548 1549
	}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1563 1564
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1565 1566
	if (ret < 0) {
		put_device(&r->dev);
1567
		return ret;
1568
	}
1569 1570

	ret = set_supply(rdev, r);
1571 1572
	if (ret < 0) {
		put_device(&r->dev);
1573
		return ret;
1574
	}
1575 1576

	/* Cascade always-on state to supply */
1577
	if (_regulator_is_enabled(rdev)) {
1578
		ret = regulator_enable(rdev->supply);
1579
		if (ret < 0) {
1580
			_regulator_put(rdev->supply);
1581
			rdev->supply = NULL;
1582
			return ret;
1583
		}
1584 1585 1586 1587 1588
	}

	return 0;
}

1589
/* Internal regulator request function */
1590 1591
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1592 1593
{
	struct regulator_dev *rdev;
1594
	struct regulator *regulator;
1595
	const char *devname = dev ? dev_name(dev) : "deviceless";
1596
	int ret;
1597

1598 1599 1600 1601 1602
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1603
	if (id == NULL) {
1604
		pr_err("get() with no identifier\n");
1605
		return ERR_PTR(-EINVAL);
1606 1607
	}

1608
	rdev = regulator_dev_lookup(dev, id);
1609 1610
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1611

1612 1613 1614 1615 1616 1617
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1618

1619 1620 1621 1622 1623
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1624

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1638

1639 1640 1641 1642
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1643

1644 1645 1646
		default:
			return ERR_PTR(-ENODEV);
		}
1647 1648
	}

1649 1650
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1651 1652
		put_device(&rdev->dev);
		return regulator;
1653 1654
	}

1655
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1656
		regulator = ERR_PTR(-EBUSY);
1657 1658
		put_device(&rdev->dev);
		return regulator;
1659 1660
	}

1661 1662 1663
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1664 1665
		put_device(&rdev->dev);
		return regulator;
1666 1667
	}

1668
	if (!try_module_get(rdev->owner)) {
1669
		regulator = ERR_PTR(-EPROBE_DEFER);
1670 1671 1672
		put_device(&rdev->dev);
		return regulator;
	}
1673

1674 1675 1676
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1677
		put_device(&rdev->dev);
1678
		module_put(rdev->owner);
1679
		return regulator;
1680 1681
	}

1682
	rdev->open_count++;
1683
	if (get_type == EXCLUSIVE_GET) {
1684 1685 1686 1687 1688 1689 1690 1691 1692
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1693 1694
	return regulator;
}
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1711
	return _regulator_get(dev, id, NORMAL_GET);
1712
}
1713 1714
EXPORT_SYMBOL_GPL(regulator_get);

1715 1716 1717 1718 1719 1720 1721
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1722 1723 1724
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1738
	return _regulator_get(dev, id, EXCLUSIVE_GET);
1739 1740 1741
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1742 1743 1744 1745 1746 1747
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1748
 * or IS_ERR() condition containing errno.
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1764
	return _regulator_get(dev, id, OPTIONAL_GET);
1765 1766 1767
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1768
/* regulator_list_mutex lock held by regulator_put() */
1769
static void _regulator_put(struct regulator *regulator)
1770 1771 1772
{
	struct regulator_dev *rdev;

1773
	if (IS_ERR_OR_NULL(regulator))
1774 1775
		return;

1776 1777
	lockdep_assert_held_once(&regulator_list_mutex);

1778 1779
	rdev = regulator->rdev;

1780 1781
	debugfs_remove_recursive(regulator->debugfs);

1782
	/* remove any sysfs entries */
1783
	if (regulator->dev)
1784
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1785
	mutex_lock(&rdev->mutex);
1786 1787
	list_del(&regulator->list);

1788 1789
	rdev->open_count--;
	rdev->exclusive = 0;
1790
	put_device(&rdev->dev);
1791
	mutex_unlock(&rdev->mutex);
1792

1793
	kfree_const(regulator->supply_name);
1794 1795
	kfree(regulator);

1796
	module_put(rdev->owner);
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1811 1812 1813 1814
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1892 1893
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1894
					 struct device *alias_dev,
1895
					 const char *const *alias_id,
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1933
					    const char *const *id,
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1944 1945 1946 1947 1948
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
1949
	struct gpio_desc *gpiod;
1950 1951
	int ret;

1952 1953 1954 1955
	if (config->ena_gpiod)
		gpiod = config->ena_gpiod;
	else
		gpiod = gpio_to_desc(config->ena_gpio);
1956

1957
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1958
		if (pin->gpiod == gpiod) {
1959 1960 1961 1962 1963 1964
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

1965 1966 1967 1968 1969 1970 1971
	if (!config->ena_gpiod) {
		ret = gpio_request_one(config->ena_gpio,
				       GPIOF_DIR_OUT | config->ena_gpio_flags,
				       rdev_get_name(rdev));
		if (ret)
			return ret;
	}
1972 1973 1974

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
1975 1976
		if (!config->ena_gpiod)
			gpio_free(config->ena_gpio);
1977 1978 1979
		return -ENOMEM;
	}

1980
	pin->gpiod = gpiod;
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1999
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2000 2001
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2002
				gpiod_put(pin->gpiod);
2003 2004
				list_del(&pin->list);
				kfree(pin);
2005 2006
				rdev->ena_pin = NULL;
				return;
2007 2008 2009 2010 2011 2012 2013
			} else {
				pin->request_count--;
			}
		}
	}
}

2014
/**
2015 2016 2017 2018
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2032 2033
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2044 2045
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
2046 2047 2048 2049 2050 2051 2052
			pin->enable_count = 0;
		}
	}

	return 0;
}

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2132
	if (rdev->ena_pin) {
2133 2134 2135 2136 2137 2138
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2139
	} else if (rdev->desc->ops->enable) {
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2152
	_regulator_enable_delay(delay);
2153 2154 2155 2156 2157 2158

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2159 2160 2161
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
2162
	int ret;
2163

2164 2165
	lockdep_assert_held_once(&rdev->mutex);

2166
	/* check voltage and requested load before enabling */
2167
	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2168
		drms_uA_update(rdev);
2169

2170 2171 2172 2173
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2174 2175
			if (!regulator_ops_is_valid(rdev,
					REGULATOR_CHANGE_STATUS))
2176 2177
				return -EPERM;

2178
			ret = _regulator_do_enable(rdev);
2179 2180 2181
			if (ret < 0)
				return ret;

2182 2183
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2184
		} else if (ret < 0) {
2185
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2186 2187
			return ret;
		}
2188
		/* Fallthrough on positive return values - already enabled */
2189 2190
	}

2191 2192 2193
	rdev->use_count++;

	return 0;
2194 2195 2196 2197 2198 2199
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2200 2201 2202 2203
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2204
 * NOTE: the output value can be set by other drivers, boot loader or may be
2205
 * hardwired in the regulator.
2206 2207 2208
 */
int regulator_enable(struct regulator *regulator)
{
2209 2210
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2211

2212 2213 2214
	if (regulator->always_on)
		return 0;

2215 2216 2217 2218 2219 2220
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

2221
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
2222
	ret = _regulator_enable(rdev);
2223
	mutex_unlock(&rdev->mutex);
2224

2225
	if (ret != 0 && rdev->supply)
2226 2227
		regulator_disable(rdev->supply);

2228 2229 2230 2231
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2232 2233 2234 2235 2236 2237
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2238
	if (rdev->ena_pin) {
2239 2240 2241 2242 2243 2244
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2245 2246 2247 2248 2249 2250 2251

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2252 2253 2254 2255 2256 2257
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2258 2259 2260 2261 2262
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2263
/* locks held by regulator_disable() */
2264
static int _regulator_disable(struct regulator_dev *rdev)
2265 2266 2267
{
	int ret = 0;

2268 2269
	lockdep_assert_held_once(&rdev->mutex);

D
David Brownell 已提交
2270
	if (WARN(rdev->use_count <= 0,
2271
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2272 2273
		return -EIO;

2274
	/* are we the last user and permitted to disable ? */
2275 2276
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2277 2278

		/* we are last user */
2279
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2280 2281 2282 2283 2284 2285
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2286
			ret = _regulator_do_disable(rdev);
2287
			if (ret < 0) {
2288
				rdev_err(rdev, "failed to disable\n");
2289 2290 2291
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2292 2293
				return ret;
			}
2294 2295
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2296 2297 2298 2299
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
2300
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2301 2302 2303 2304
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2305

2306 2307 2308 2309 2310 2311 2312
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2313 2314 2315
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2316
 *
2317
 * NOTE: this will only disable the regulator output if no other consumer
2318 2319
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2320 2321 2322
 */
int regulator_disable(struct regulator *regulator)
{
2323 2324
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2325

2326 2327 2328
	if (regulator->always_on)
		return 0;

2329
	mutex_lock(&rdev->mutex);
2330
	ret = _regulator_disable(rdev);
2331
	mutex_unlock(&rdev->mutex);
2332

2333 2334
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2335

2336 2337 2338 2339 2340
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2341
static int _regulator_force_disable(struct regulator_dev *rdev)
2342 2343 2344
{
	int ret = 0;

2345 2346
	lockdep_assert_held_once(&rdev->mutex);

2347 2348 2349 2350 2351
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2352 2353 2354
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2355 2356
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2357
		return ret;
2358 2359
	}

2360 2361 2362 2363
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2377
	struct regulator_dev *rdev = regulator->rdev;
2378 2379
	int ret;

2380
	mutex_lock(&rdev->mutex);
2381
	regulator->uA_load = 0;
2382
	ret = _regulator_force_disable(regulator->rdev);
2383
	mutex_unlock(&rdev->mutex);
2384

2385 2386 2387
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2388

2389 2390 2391 2392
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

2406 2407 2408 2409 2410 2411 2412 2413
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2449 2450 2451
	if (regulator->always_on)
		return 0;

2452 2453 2454
	if (!ms)
		return regulator_disable(regulator);

2455 2456
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
2457 2458
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2459 2460
	mutex_unlock(&rdev->mutex);

2461
	return 0;
2462 2463 2464
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2465 2466
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2467
	/* A GPIO control always takes precedence */
2468
	if (rdev->ena_pin)
2469 2470
		return rdev->ena_gpio_state;

2471
	/* If we don't know then assume that the regulator is always on */
2472
	if (!rdev->desc->ops->is_enabled)
2473
		return 1;
2474

2475
	return rdev->desc->ops->is_enabled(rdev);
2476 2477
}

2478 2479
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
			mutex_lock(&rdev->mutex);
		ret = ops->list_voltage(rdev, selector);
		if (lock)
			mutex_unlock(&rdev->mutex);
2495
	} else if (rdev->is_switch && rdev->supply) {
2496 2497
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2512 2513 2514 2515
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2516 2517 2518 2519 2520 2521 2522
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2523 2524 2525
 */
int regulator_is_enabled(struct regulator *regulator)
{
2526 2527
	int ret;

2528 2529 2530
	if (regulator->always_on)
		return 1;

2531 2532 2533 2534 2535
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2536 2537 2538
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2551 2552 2553
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2554
	if (!rdev->is_switch || !rdev->supply)
2555 2556 2557
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2568
 * zero if this selector code can't be used on this system, or a
2569 2570 2571 2572
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2573
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2574 2575 2576
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2609 2610
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2611 2612 2613 2614

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2615 2616
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2636 2637
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2675
	struct regulator_dev *rdev = regulator->rdev;
2676 2677
	int i, voltages, ret;

2678
	/* If we can't change voltage check the current voltage */
2679
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2680 2681
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2682
			return min_uV <= ret && ret <= max_uV;
2683 2684 2685 2686
		else
			return ret;
	}

2687 2688 2689 2690 2691
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2706
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2707

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2774 2775 2776 2777 2778 2779 2780 2781 2782
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
2783 2784
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
2785 2786 2787 2788 2789 2790
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
2791 2792

	if (ramp_delay == 0) {
2793
		rdev_dbg(rdev, "ramp_delay not set\n");
2794 2795 2796 2797 2798 2799
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

2800 2801 2802 2803
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2804
	int delay = 0;
2805
	int best_val = 0;
2806
	unsigned int selector;
2807
	int old_selector = -1;
2808
	const struct regulator_ops *ops = rdev->desc->ops;
2809
	int old_uV = _regulator_get_voltage(rdev);
2810 2811 2812

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2813 2814 2815
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2816 2817 2818 2819
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2820
	if (_regulator_is_enabled(rdev) &&
2821 2822
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
2823 2824 2825 2826
		if (old_selector < 0)
			return old_selector;
	}

2827
	if (ops->set_voltage) {
2828 2829
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2830 2831

		if (ret >= 0) {
2832 2833 2834
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
2835 2836 2837 2838
			else
				best_val = _regulator_get_voltage(rdev);
		}

2839
	} else if (ops->set_voltage_sel) {
2840
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2841
		if (ret >= 0) {
2842
			best_val = ops->list_voltage(rdev, ret);
2843 2844
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2845 2846 2847
				if (old_selector == selector)
					ret = 0;
				else
2848 2849
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2850 2851 2852
			} else {
				ret = -EINVAL;
			}
2853
		}
2854 2855 2856
	} else {
		ret = -EINVAL;
	}
2857

2858 2859
	if (ret)
		goto out;
2860

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
2878
		}
2879
	}
2880

2881 2882 2883
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
2884 2885
	}

2886 2887 2888 2889 2890 2891
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
2892 2893
	}

2894
	if (best_val >= 0) {
2895 2896
		unsigned long data = best_val;

2897
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2898 2899
				     (void *)data);
	}
2900

2901
out:
2902
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2903 2904 2905 2906

	return ret;
}

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

2933
static int regulator_set_voltage_unlocked(struct regulator *regulator,
2934 2935
					  int min_uV, int max_uV,
					  suspend_state_t state)
2936 2937
{
	struct regulator_dev *rdev = regulator->rdev;
2938
	struct regulator_voltage *voltage = &regulator->voltage[state];
2939
	int ret = 0;
2940
	int old_min_uV, old_max_uV;
2941
	int current_uV;
2942 2943
	int best_supply_uV = 0;
	int supply_change_uV = 0;
2944

2945 2946 2947 2948
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
2949
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
2950 2951
		goto out;

2952
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
2953
	 * return successfully even though the regulator does not support
2954 2955
	 * changing the voltage.
	 */
2956
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2957 2958
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
2959 2960
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
2961 2962 2963 2964
			goto out;
		}
	}

2965
	/* sanity check */
2966 2967
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2968 2969 2970 2971 2972 2973 2974 2975
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2976

2977
	/* restore original values in case of error */
2978 2979 2980 2981
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
2982

2983
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
2984
	if (ret < 0)
2985
		goto out2;
2986

2987 2988 2989
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
2990 2991
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
2992 2993 2994 2995 2996 2997 2998 2999 3000
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
			goto out2;
		}

M
Mark Brown 已提交
3001
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
			goto out2;
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
			goto out2;
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3020
				best_supply_uV, INT_MAX, state);
3021 3022 3023 3024 3025 3026 3027
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
			goto out2;
		}
	}

3028 3029 3030 3031 3032
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3033 3034
	if (ret < 0)
		goto out2;
3035

3036 3037
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3038
				best_supply_uV, INT_MAX, state);
3039 3040 3041 3042 3043 3044 3045
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3046 3047
out:
	return ret;
3048
out2:
3049 3050
	voltage->min_uV = old_min_uV;
	voltage->max_uV = old_max_uV;
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076

	return ret;
}

/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	int ret = 0;

3077
	regulator_lock_supply(regulator->rdev);
3078

3079 3080
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3081

3082
	regulator_unlock_supply(regulator->rdev);
3083

3084 3085 3086 3087
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

	rstate->enabled = en;

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
	int ret = 0;

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

	regulator_lock_supply(regulator->rdev);

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

	regulator_unlock_supply(regulator->rdev);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3184 3185
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3186 3187 3188 3189 3190
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3191 3192 3193 3194 3195
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3196
	/* Currently requires operations to do this */
3197
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3220
/**
3221 3222
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3223 3224 3225 3226 3227 3228
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3229
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3230
 * set_voltage_time_sel() operation.
3231 3232 3233 3234 3235
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3236
	int old_volt, new_volt;
3237

3238 3239 3240
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3241

3242 3243 3244
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3245 3246 3247 3248 3249
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3250
}
3251
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3252

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3264
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3276
	if (!voltage->min_uV && !voltage->max_uV) {
3277 3278 3279 3280
		ret = -EINVAL;
		goto out;
	}

3281 3282
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3283 3284 3285 3286 3287 3288

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3289
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3301 3302
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3303
	int sel, ret;
3304 3305 3306 3307 3308 3309 3310 3311
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3312 3313 3314 3315 3316
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3317 3318 3319 3320

			return _regulator_get_voltage(rdev->supply->rdev);
		}
	}
3321 3322 3323 3324 3325

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3326
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3327
	} else if (rdev->desc->ops->get_voltage) {
3328
		ret = rdev->desc->ops->get_voltage(rdev);
3329 3330
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3331 3332
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3333
	} else if (rdev->supply) {
3334
		ret = _regulator_get_voltage(rdev->supply->rdev);
3335
	} else {
3336
		return -EINVAL;
3337
	}
3338

3339 3340
	if (ret < 0)
		return ret;
3341
	return ret - rdev->constraints->uV_offset;
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

3357
	regulator_lock_supply(regulator->rdev);
3358 3359 3360

	ret = _regulator_get_voltage(regulator->rdev);

3361
	regulator_unlock_supply(regulator->rdev);
3362 3363 3364 3365 3366 3367 3368 3369

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
3370
 * @min_uA: Minimum supported current in uA
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3457
	int regulator_curr_mode;
3458 3459 3460 3461 3462 3463 3464 3465 3466

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

3467 3468 3469 3470 3471 3472 3473 3474 3475
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

3476
	/* constraints check */
3477
	ret = regulator_mode_constrain(rdev, &mode);
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

3551
/**
3552
 * regulator_set_load - set regulator load
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
3575
 * On error a negative errno is returned.
3576
 */
3577
int regulator_set_load(struct regulator *regulator, int uA_load)
3578 3579
{
	struct regulator_dev *rdev = regulator->rdev;
3580
	int ret;
3581

3582 3583
	mutex_lock(&rdev->mutex);
	regulator->uA_load = uA_load;
3584
	ret = drms_uA_update(rdev);
3585
	mutex_unlock(&rdev->mutex);
3586

3587 3588
	return ret;
}
3589
EXPORT_SYMBOL_GPL(regulator_set_load);
3590

3591 3592 3593 3594
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3595
 * @enable: enable or disable bypass mode
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

3610
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3643 3644 3645
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3646
 * @nb: notifier block
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3661
 * @nb: notifier block
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3673 3674 3675
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3676
static int _notifier_call_chain(struct regulator_dev *rdev,
3677 3678 3679
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3680
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
3707 3708
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
3709 3710
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3711 3712
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3713 3714 3715 3716 3717 3718 3719 3720
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3721
	while (--i >= 0)
3722 3723 3724 3725 3726 3727
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3728 3729 3730 3731 3732 3733 3734
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3750
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3751
	int i;
3752
	int ret = 0;
3753

3754 3755 3756 3757 3758 3759 3760
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3761 3762 3763 3764

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3765
	for (i = 0; i < num_consumers; i++) {
3766 3767
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3768
			goto err;
3769
		}
3770 3771 3772 3773 3774
	}

	return 0;

err:
3775 3776 3777 3778 3779 3780 3781
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3795 3796
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3797 3798 3799 3800 3801 3802
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3803
	int ret, r;
3804

3805
	for (i = num_consumers - 1; i >= 0; --i) {
3806 3807 3808 3809 3810 3811 3812 3813
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3814
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3815 3816 3817
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
3818
			pr_err("Failed to re-enable %s: %d\n",
3819 3820
			       consumers[i].supply, r);
	}
3821 3822 3823 3824 3825

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3844
	int ret = 0;
3845

3846
	for (i = 0; i < num_consumers; i++) {
3847 3848 3849
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

3850 3851
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
3852 3853 3854 3855 3856 3857 3858
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3882
 * @rdev: regulator source
3883
 * @event: notifier block
3884
 * @data: callback-specific data.
3885 3886 3887
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3888
 * Note lock must be held by caller.
3889 3890 3891 3892
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
3893 3894
	lockdep_assert_held_once(&rdev->mutex);

3895 3896 3897 3898 3899 3900
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3917
	case REGULATOR_MODE_STANDBY:
3918 3919
		return REGULATOR_STATUS_STANDBY;
	default:
3920
		return REGULATOR_STATUS_UNDEFINED;
3921 3922 3923 3924
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

3952 3953 3954 3955
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
3956 3957
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
3958
{
3959
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
3960
	struct regulator_dev *rdev = dev_to_rdev(dev);
3961
	const struct regulator_ops *ops = rdev->desc->ops;
3962 3963 3964 3965 3966 3967 3968
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
3969 3970

	/* some attributes need specific methods to be displayed */
3971 3972 3973 3974 3975 3976 3977
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
3978
	}
3979

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

3995
	/* some attributes are type-specific */
3996 3997
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3998 3999

	/* constraints need specific supporting methods */
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4035

4036 4037 4038
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4039 4040 4041

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4042
	kfree(rdev);
4043 4044
}

4045 4046
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4059
	if (!rdev->debugfs) {
4060 4061 4062 4063 4064 4065 4066 4067
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4068 4069
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4070 4071
}

4072 4073
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4074 4075 4076 4077 4078 4079
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4080 4081
}

4082 4083
/**
 * regulator_register - register regulator
4084
 * @regulator_desc: regulator to register
4085
 * @cfg: runtime configuration for regulator
4086 4087
 *
 * Called by regulator drivers to register a regulator.
4088 4089
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4090
 */
4091 4092
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4093
		   const struct regulator_config *cfg)
4094
{
4095
	const struct regulation_constraints *constraints = NULL;
4096
	const struct regulator_init_data *init_data;
4097
	struct regulator_config *config = NULL;
4098
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4099
	struct regulator_dev *rdev;
4100
	struct device *dev;
4101
	int ret, i;
4102

4103
	if (regulator_desc == NULL || cfg == NULL)
4104 4105
		return ERR_PTR(-EINVAL);

4106
	dev = cfg->dev;
4107
	WARN_ON(!dev);
4108

4109 4110 4111
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

4112 4113
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
4114 4115
		return ERR_PTR(-EINVAL);

4116 4117 4118
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
4119 4120
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
4121 4122 4123 4124 4125 4126

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
4127 4128 4129 4130
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
4131

4132 4133 4134 4135
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

4146
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4147 4148 4149 4150 4151 4152
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

4153
	mutex_init(&rdev->mutex);
4154
	rdev->reg_data = config->driver_data;
4155 4156
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
4157 4158
	if (config->regmap)
		rdev->regmap = config->regmap;
4159
	else if (dev_get_regmap(dev, NULL))
4160
		rdev->regmap = dev_get_regmap(dev, NULL);
4161 4162
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4163 4164 4165
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4166
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4167

4168
	/* preform any regulator specific init */
4169
	if (init_data && init_data->regulator_init) {
4170
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
4171 4172
		if (ret < 0)
			goto clean;
4173 4174
	}

4175 4176 4177
	if (config->ena_gpiod ||
	    ((config->ena_gpio || config->ena_gpio_initialized) &&
	     gpio_is_valid(config->ena_gpio))) {
4178
		mutex_lock(&regulator_list_mutex);
4179
		ret = regulator_ena_gpio_request(rdev, config);
4180
		mutex_unlock(&regulator_list_mutex);
4181 4182 4183
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
4184
			goto clean;
4185 4186 4187
		}
	}

4188
	/* register with sysfs */
4189
	rdev->dev.class = &regulator_class;
4190
	rdev->dev.parent = dev;
4191
	dev_set_name(&rdev->dev, "regulator.%lu",
4192
		    (unsigned long) atomic_inc_return(&regulator_no));
4193

4194
	/* set regulator constraints */
4195 4196 4197 4198
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
4199
		rdev->supply_name = init_data->supply_regulator;
4200
	else if (regulator_desc->supply_name)
4201
		rdev->supply_name = regulator_desc->supply_name;
4202

4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

4215
	/* add consumers devices */
4216
	if (init_data) {
4217
		mutex_lock(&regulator_list_mutex);
4218 4219 4220
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
4221
				init_data->consumer_supplies[i].supply);
4222
			if (ret < 0) {
4223
				mutex_unlock(&regulator_list_mutex);
4224 4225 4226 4227
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
4228
		}
4229
		mutex_unlock(&regulator_list_mutex);
4230
	}
4231

4232 4233 4234 4235 4236
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

4237 4238 4239 4240 4241 4242 4243
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

	dev_set_drvdata(&rdev->dev, rdev);
4244
	rdev_init_debugfs(rdev);
4245 4246 4247 4248

	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
4249
	kfree(config);
4250
	return rdev;
D
David Brownell 已提交
4251

4252
unset_supplies:
4253
	mutex_lock(&regulator_list_mutex);
4254
	unset_regulator_supplies(rdev);
4255
	mutex_unlock(&regulator_list_mutex);
4256
wash:
4257
	kfree(rdev->constraints);
4258
	mutex_lock(&regulator_list_mutex);
4259
	regulator_ena_gpio_free(rdev);
4260
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
4261 4262
clean:
	kfree(rdev);
4263 4264
	kfree(config);
	return ERR_PTR(ret);
4265 4266 4267 4268 4269
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
4270
 * @rdev: regulator to unregister
4271 4272 4273 4274 4275 4276 4277 4278
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

4279 4280 4281
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
4282
		regulator_put(rdev->supply);
4283
	}
4284
	mutex_lock(&regulator_list_mutex);
4285
	debugfs_remove_recursive(rdev->debugfs);
4286
	flush_work(&rdev->disable_work.work);
4287
	WARN_ON(rdev->open_count);
4288
	unset_regulator_supplies(rdev);
4289
	list_del(&rdev->list);
4290
	regulator_ena_gpio_free(rdev);
4291
	mutex_unlock(&regulator_list_mutex);
4292
	device_unregister(&rdev->dev);
4293 4294 4295
}
EXPORT_SYMBOL_GPL(regulator_unregister);

4296 4297
#ifdef CONFIG_SUSPEND
static int _regulator_suspend_late(struct device *dev, void *data)
4298 4299
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
4300
	suspend_state_t *state = data;
4301 4302 4303
	int ret;

	mutex_lock(&rdev->mutex);
4304
	ret = suspend_set_state(rdev, *state);
4305 4306 4307 4308 4309
	mutex_unlock(&rdev->mutex);

	return ret;
}

4310
/**
4311
 * regulator_suspend_late - prepare regulators for system wide suspend
4312 4313 4314 4315
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
4316
static int regulator_suspend_late(struct device *dev)
4317
{
4318
	suspend_state_t state = pm_suspend_target_state;
4319

4320
	return class_for_each_device(&regulator_class, NULL, &state,
4321
				     _regulator_suspend_late);
4322
}
4323

4324
static int _regulator_resume_early(struct device *dev, void *data)
4325
{
4326
	int ret = 0;
4327
	struct regulator_dev *rdev = dev_to_rdev(dev);
4328 4329 4330 4331 4332
	suspend_state_t *state = data;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, *state);
	if (rstate == NULL)
4333
		return 0;
4334

4335 4336
	mutex_lock(&rdev->mutex);

4337 4338 4339 4340 4341
	if (rdev->desc->ops->resume_early &&
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
		ret = rdev->desc->ops->resume_early(rdev);

4342 4343
	mutex_unlock(&rdev->mutex);

4344
	return ret;
4345 4346
}

4347
static int regulator_resume_early(struct device *dev)
4348
{
4349 4350 4351 4352
	suspend_state_t state = pm_suspend_target_state;

	return class_for_each_device(&regulator_class, NULL, &state,
				     _regulator_resume_early);
4353 4354
}

4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
#else /* !CONFIG_SUSPEND */

#define regulator_suspend_late	NULL
#define regulator_resume_early	NULL

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
	.suspend_late	= regulator_suspend_late,
	.resume_early	= regulator_resume_early,
};
#endif

M
Mark Brown 已提交
4369
struct class regulator_class = {
4370 4371 4372 4373 4374 4375 4376
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

4394 4395
/**
 * rdev_get_drvdata - get rdev regulator driver data
4396
 * @rdev: regulator
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
4433
 * @rdev: regulator
4434 4435 4436 4437 4438 4439 4440
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

4453
#ifdef CONFIG_DEBUG_FS
4454
static int supply_map_show(struct seq_file *sf, void *data)
4455 4456 4457 4458
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
4459 4460 4461
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
4462 4463
	}

4464 4465
	return 0;
}
4466

4467 4468 4469
static int supply_map_open(struct inode *inode, struct file *file)
{
	return single_open(file, supply_map_show, inode->i_private);
4470
}
4471
#endif
4472 4473

static const struct file_operations supply_map_fops = {
4474
#ifdef CONFIG_DEBUG_FS
4475 4476 4477 4478
	.open = supply_map_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
4479
#endif
4480
};
4481

4482
#ifdef CONFIG_DEBUG_FS
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

4505 4506 4507 4508 4509 4510
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
4511
	struct summary_data summary_data;
4512 4513 4514 4515 4516 4517 4518 4519 4520

	if (!rdev)
		return;

	seq_printf(s, "%*s%-*s %3d %4d %6d ",
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
		   rdev->use_count, rdev->open_count, rdev->bypass_count);

4521 4522
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4541
		if (consumer->dev && consumer->dev->class == &regulator_class)
4542 4543 4544 4545
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
4546 4547
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4548 4549 4550

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
4551
			seq_printf(s, "%37dmV %5dmV",
4552 4553
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4554 4555 4556 4557 4558 4559 4560 4561
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

4562 4563 4564
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
4565

4566 4567
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
4568 4569
}

4570
static int regulator_summary_show_roots(struct device *dev, void *data)
4571
{
4572 4573
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
4574

4575 4576
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
4577

4578 4579
	return 0;
}
4580

4581 4582 4583 4584
static int regulator_summary_show(struct seq_file *s, void *data)
{
	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
	seq_puts(s, "-------------------------------------------------------------------------------\n");
4585

4586 4587
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606

	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

4607 4608
static int __init regulator_init(void)
{
4609 4610 4611 4612
	int ret;

	ret = class_register(&regulator_class);

4613
	debugfs_root = debugfs_create_dir("regulator", NULL);
4614
	if (!debugfs_root)
4615
		pr_warn("regulator: Failed to create debugfs directory\n");
4616

4617 4618
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
4619

4620
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4621
			    NULL, &regulator_summary_fops);
4622

4623 4624 4625
	regulator_dummy_init();

	return ret;
4626 4627 4628 4629
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
4630

4631
static int __init regulator_late_cleanup(struct device *dev, void *data)
4632
{
4633 4634 4635
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
4636 4637
	int enabled, ret;

4638 4639 4640
	if (c && c->always_on)
		return 0;

4641
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
		return 0;

	mutex_lock(&rdev->mutex);

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
	mutex_unlock(&rdev->mutex);

	return 0;
}

static int __init regulator_init_complete(void)
{
4682 4683 4684 4685 4686 4687 4688 4689 4690
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

4701
	/* If we have a full configuration then disable any regulators
4702 4703 4704
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
4705
	 */
4706 4707
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
4708 4709 4710

	return 0;
}
4711
late_initcall_sync(regulator_init_complete);