core.c 128.8 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
55
static LIST_HEAD(regulator_ena_gpio_list);
56
static LIST_HEAD(regulator_supply_alias_list);
57
static bool has_full_constraints;
58

59 60
static struct dentry *debugfs_root;

61
/*
62 63 64 65 66 67
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
68
	const char *dev_name;   /* The dev_name() for the consumer */
69
	const char *supply;
70
	struct regulator_dev *regulator;
71 72
};

73 74 75 76 77 78 79
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
80
	struct gpio_desc *gpiod;
81 82 83 84 85
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

99
static int _regulator_is_enabled(struct regulator_dev *rdev);
100
static int _regulator_disable(struct regulator_dev *rdev);
101 102 103
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104
static int _notifier_call_chain(struct regulator_dev *rdev,
105
				  unsigned long event, void *data);
106 107
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
108 109
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
110 111 112
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
113
static void _regulator_put(struct regulator *regulator);
114

115 116 117 118 119 120 121 122 123 124
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

125 126
static bool have_full_constraints(void)
{
127
	return has_full_constraints || of_have_populated_dt();
128 129
}

130 131 132 133 134 135 136 137 138 139 140 141 142
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

143 144 145 146 147 148 149 150
static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
{
	if (rdev && rdev->supply)
		return rdev->supply->rdev;

	return NULL;
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
 * @subclass:		mutex subclass used for lockdep
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
static void regulator_lock_nested(struct regulator_dev *rdev,
				  unsigned int subclass)
{
	if (!mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current) {
			rdev->ref_cnt++;
			return;
		}
		mutex_lock_nested(&rdev->mutex, subclass);
	}

	rdev->ref_cnt = 1;
	rdev->mutex_owner = current;
}

static inline void regulator_lock(struct regulator_dev *rdev)
{
	regulator_lock_nested(rdev, 0);
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
static void regulator_unlock(struct regulator_dev *rdev)
{
	if (rdev->ref_cnt != 0) {
		rdev->ref_cnt--;

		if (!rdev->ref_cnt) {
			rdev->mutex_owner = NULL;
			mutex_unlock(&rdev->mutex);
		}
	}
}

201 202 203 204 205 206
/**
 * regulator_lock_supply - lock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_lock_supply(struct regulator_dev *rdev)
{
207
	int i;
208

209
	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
210
		regulator_lock_nested(rdev, i);
211 212 213 214 215 216 217 218 219 220 221
}

/**
 * regulator_unlock_supply - unlock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_unlock_supply(struct regulator_dev *rdev)
{
	struct regulator *supply;

	while (1) {
222
		regulator_unlock(rdev);
223 224 225 226 227 228 229 230 231
		supply = rdev->supply;

		if (!rdev->supply)
			return;

		rdev = supply->rdev;
	}
}

232 233 234 235 236 237
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
238
 * returns the device node corresponding to the regulator if found, else
239 240 241 242 243 244 245 246 247 248 249 250 251
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
252 253
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
254 255 256 257 258
		return NULL;
	}
	return regnode;
}

259 260 261 262 263 264
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

265
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
266
		rdev_err(rdev, "voltage operation not allowed\n");
267 268 269 270 271 272 273 274
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

275 276
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
277
			 *min_uV, *max_uV);
278
		return -EINVAL;
279
	}
280 281 282 283

	return 0;
}

284 285 286 287 288 289
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

290 291 292 293
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
294 295
				     int *min_uV, int *max_uV,
				     suspend_state_t state)
296 297
{
	struct regulator *regulator;
298
	struct regulator_voltage *voltage;
299 300

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
301
		voltage = &regulator->voltage[state];
302 303 304 305
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
306
		if (!voltage->min_uV && !voltage->max_uV)
307 308
			continue;

309 310 311 312
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
313 314
	}

315
	if (*min_uV > *max_uV) {
316 317
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
318
		return -EINVAL;
319
	}
320 321 322 323

	return 0;
}

324 325 326 327 328 329
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

330
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
331
		rdev_err(rdev, "current operation not allowed\n");
332 333 334 335 336 337 338 339
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

340 341
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
342
			 *min_uA, *max_uA);
343
		return -EINVAL;
344
	}
345 346 347 348 349

	return 0;
}

/* operating mode constraint check */
350 351
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
352
{
353
	switch (*mode) {
354 355 356 357 358 359
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
360
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
361 362 363
		return -EINVAL;
	}

364
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
365
		rdev_err(rdev, "mode operation not allowed\n");
366 367
		return -EPERM;
	}
368 369 370 371 372 373 374 375

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
376
	}
377 378

	return -EINVAL;
379 380
}

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

399 400 401
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
402
	struct regulator_dev *rdev = dev_get_drvdata(dev);
403 404
	ssize_t ret;

405
	regulator_lock(rdev);
406
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
407
	regulator_unlock(rdev);
408 409 410

	return ret;
}
411
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
412 413 414 415

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
416
	struct regulator_dev *rdev = dev_get_drvdata(dev);
417 418 419

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
420
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
421

422 423
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
424 425 426
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

427
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
428
}
429
static DEVICE_ATTR_RO(name);
430

D
David Brownell 已提交
431
static ssize_t regulator_print_opmode(char *buf, int mode)
432 433 434 435 436 437 438 439 440 441 442 443 444 445
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
446 447
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
448
{
449
	struct regulator_dev *rdev = dev_get_drvdata(dev);
450

D
David Brownell 已提交
451 452
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
453
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
454 455 456

static ssize_t regulator_print_state(char *buf, int state)
{
457 458 459 460 461 462 463 464
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
465 466 467 468
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
469 470
	ssize_t ret;

471
	regulator_lock(rdev);
472
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
473
	regulator_unlock(rdev);
D
David Brownell 已提交
474

475
	return ret;
D
David Brownell 已提交
476
}
477
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
478

D
David Brownell 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
512 513 514
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
515 516 517
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
518 519 520 521 522 523 524 525
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

526 527 528
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
529
	struct regulator_dev *rdev = dev_get_drvdata(dev);
530 531 532 533 534 535

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
536
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
537 538 539 540

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
541
	struct regulator_dev *rdev = dev_get_drvdata(dev);
542 543 544 545 546 547

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
548
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
549 550 551 552

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
553
	struct regulator_dev *rdev = dev_get_drvdata(dev);
554 555 556 557 558 559

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
560
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
561 562 563 564

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
565
	struct regulator_dev *rdev = dev_get_drvdata(dev);
566 567 568 569 570 571

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
572
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
573 574 575 576

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
577
	struct regulator_dev *rdev = dev_get_drvdata(dev);
578 579 580
	struct regulator *regulator;
	int uA = 0;

581
	regulator_lock(rdev);
582
	list_for_each_entry(regulator, &rdev->consumer_list, list)
583
		uA += regulator->uA_load;
584
	regulator_unlock(rdev);
585 586
	return sprintf(buf, "%d\n", uA);
}
587
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
588

589 590
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
591
{
592
	struct regulator_dev *rdev = dev_get_drvdata(dev);
593 594
	return sprintf(buf, "%d\n", rdev->use_count);
}
595
static DEVICE_ATTR_RO(num_users);
596

597 598
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
599
{
600
	struct regulator_dev *rdev = dev_get_drvdata(dev);
601 602 603 604 605 606 607 608 609

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
610
static DEVICE_ATTR_RO(type);
611 612 613 614

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
615
	struct regulator_dev *rdev = dev_get_drvdata(dev);
616 617 618

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
619 620
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
621 622 623 624

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
625
	struct regulator_dev *rdev = dev_get_drvdata(dev);
626 627 628

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
629 630
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
631 632 633 634

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
635
	struct regulator_dev *rdev = dev_get_drvdata(dev);
636 637 638

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
639 640
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
641 642 643 644

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
645
	struct regulator_dev *rdev = dev_get_drvdata(dev);
646

D
David Brownell 已提交
647 648
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
649
}
650 651
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
652 653 654 655

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
656
	struct regulator_dev *rdev = dev_get_drvdata(dev);
657

D
David Brownell 已提交
658 659
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
660
}
661 662
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
663 664 665 666

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
667
	struct regulator_dev *rdev = dev_get_drvdata(dev);
668

D
David Brownell 已提交
669 670
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
671
}
672 673
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
674 675 676 677

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
678
	struct regulator_dev *rdev = dev_get_drvdata(dev);
679

D
David Brownell 已提交
680 681
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
682
}
683 684
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
685 686 687 688

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
689
	struct regulator_dev *rdev = dev_get_drvdata(dev);
690

D
David Brownell 已提交
691 692
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
693
}
694 695
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
696 697 698 699

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
700
	struct regulator_dev *rdev = dev_get_drvdata(dev);
701

D
David Brownell 已提交
702 703
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
704
}
705 706 707
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
729

730 731
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
732
static int drms_uA_update(struct regulator_dev *rdev)
733 734 735 736 737
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

738 739
	lockdep_assert_held_once(&rdev->mutex);

740 741 742 743
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
744
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
745 746
		return 0;

747 748
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
749 750
		return 0;

751 752
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
753
		return -EINVAL;
754 755 756

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
757
		current_uA += sibling->uA_load;
758

759 760
	current_uA += rdev->constraints->system_load;

761 762 763 764 765 766
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
		/* get output voltage */
		output_uV = _regulator_get_voltage(rdev);
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

785 786 787 788 789 790 791 792 793 794 795
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
796

797 798 799
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
800 801 802
	}

	return err;
803 804 805
}

static int suspend_set_state(struct regulator_dev *rdev,
806
				    suspend_state_t state)
807 808
{
	int ret = 0;
809 810 811 812
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
813
		return 0;
814 815

	/* If we have no suspend mode configration don't set anything;
816 817
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
818
	 */
819 820
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
821 822
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
823
			rdev_warn(rdev, "No configuration\n");
824 825 826
		return 0;
	}

827 828
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
829
		ret = rdev->desc->ops->set_suspend_enable(rdev);
830 831
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
832
		ret = rdev->desc->ops->set_suspend_disable(rdev);
833 834 835
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

836
	if (ret < 0) {
837
		rdev_err(rdev, "failed to enabled/disable\n");
838 839 840 841 842 843
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
844
			rdev_err(rdev, "failed to set voltage\n");
845 846 847 848 849 850 851
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
852
			rdev_err(rdev, "failed to set mode\n");
853 854 855 856
			return ret;
		}
	}

857
	return ret;
858 859 860 861 862
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
863
	char buf[160] = "";
864
	size_t len = sizeof(buf) - 1;
865 866
	int count = 0;
	int ret;
867

868
	if (constraints->min_uV && constraints->max_uV) {
869
		if (constraints->min_uV == constraints->max_uV)
870 871
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
872
		else
873 874 875 876
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
877 878 879 880 881 882
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
883 884
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
885 886
	}

887
	if (constraints->uV_offset)
888 889
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
890

891
	if (constraints->min_uA && constraints->max_uA) {
892
		if (constraints->min_uA == constraints->max_uA)
893 894
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
895
		else
896 897 898 899
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
900 901 902 903 904 905
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
906 907
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
908
	}
909

910
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
911
		count += scnprintf(buf + count, len - count, "fast ");
912
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
913
		count += scnprintf(buf + count, len - count, "normal ");
914
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
915
		count += scnprintf(buf + count, len - count, "idle ");
916
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
917
		count += scnprintf(buf + count, len - count, "standby");
918

919
	if (!count)
920
		scnprintf(buf, len, "no parameters");
921

922
	rdev_dbg(rdev, "%s\n", buf);
923 924

	if ((constraints->min_uV != constraints->max_uV) &&
925
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
926 927
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
928 929
}

930
static int machine_constraints_voltage(struct regulator_dev *rdev,
931
	struct regulation_constraints *constraints)
932
{
933
	const struct regulator_ops *ops = rdev->desc->ops;
934 935 936 937
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
938 939
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
940
		int current_uV = _regulator_get_voltage(rdev);
941 942 943 944 945 946 947 948 949 950 951 952

		if (current_uV == -ENOTRECOVERABLE) {
			/* This regulator can't be read and must be initted */
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
			current_uV = _regulator_get_voltage(rdev);
		}

953
		if (current_uV < 0) {
954 955 956
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
957 958
			return current_uV;
		}
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
979 980
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
981
			ret = _regulator_do_set_voltage(
982
				rdev, target_min, target_max);
983 984
			if (ret < 0) {
				rdev_err(rdev,
985 986
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
987 988
				return ret;
			}
989
		}
990
	}
991

992 993 994 995 996 997 998 999 1000 1001 1002
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1003 1004
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1005
		if (count == 1 && !cmin) {
1006
			cmin = 1;
1007
			cmax = INT_MAX;
1008 1009
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1010 1011
		}

1012 1013
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1014
			return 0;
1015

1016
		/* else require explicit machine-level constraints */
1017
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1018
			rdev_err(rdev, "invalid voltage constraints\n");
1019
			return -EINVAL;
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1039 1040 1041
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1042
			return -EINVAL;
1043 1044 1045 1046
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1047 1048
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1049 1050 1051
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1052 1053
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1054 1055 1056 1057
			constraints->max_uV = max_uV;
		}
	}

1058 1059 1060
	return 0;
}

1061 1062 1063
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1064
	const struct regulator_ops *ops = rdev->desc->ops;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1091 1092
static int _regulator_do_enable(struct regulator_dev *rdev);

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1105
	const struct regulation_constraints *constraints)
1106 1107
{
	int ret = 0;
1108
	const struct regulator_ops *ops = rdev->desc->ops;
1109

1110 1111 1112 1113 1114 1115
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1116 1117
	if (!rdev->constraints)
		return -ENOMEM;
1118

1119
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1120
	if (ret != 0)
1121
		return ret;
1122

1123
	ret = machine_constraints_current(rdev, rdev->constraints);
1124
	if (ret != 0)
1125
		return ret;
1126

1127 1128 1129 1130 1131
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1132
			return ret;
1133 1134 1135
		}
	}

1136
	/* do we need to setup our suspend state */
1137
	if (rdev->constraints->initial_state) {
1138
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1139
		if (ret < 0) {
1140
			rdev_err(rdev, "failed to set suspend state\n");
1141
			return ret;
1142 1143
		}
	}
1144

1145
	if (rdev->constraints->initial_mode) {
1146
		if (!ops->set_mode) {
1147
			rdev_err(rdev, "no set_mode operation\n");
1148
			return -EINVAL;
1149 1150
		}

1151
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1152
		if (ret < 0) {
1153
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1154
			return ret;
1155 1156 1157
		}
	}

1158 1159 1160
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1161 1162 1163
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1164
			rdev_err(rdev, "failed to enable\n");
1165
			return ret;
1166 1167 1168
		}
	}

1169 1170
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1171 1172 1173
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1174
			return ret;
1175 1176 1177
		}
	}

S
Stephen Boyd 已提交
1178 1179 1180 1181
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1182
			return ret;
S
Stephen Boyd 已提交
1183 1184 1185
		}
	}

S
Stephen Boyd 已提交
1186 1187 1188 1189
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1190
			return ret;
S
Stephen Boyd 已提交
1191 1192 1193
		}
	}

1194 1195 1196 1197 1198
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1199
			return ret;
1200 1201 1202
		}
	}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1214
	print_constraints(rdev);
1215
	return 0;
1216 1217 1218 1219
}

/**
 * set_supply - set regulator supply regulator
1220 1221
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1222 1223 1224 1225 1226 1227
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1228
		      struct regulator_dev *supply_rdev)
1229 1230 1231
{
	int err;

1232 1233
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1234 1235 1236
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1237
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1238 1239
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1240
		return err;
1241
	}
1242
	supply_rdev->open_count++;
1243 1244

	return 0;
1245 1246 1247
}

/**
1248
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1249
 * @rdev:         regulator source
1250
 * @consumer_dev_name: dev_name() string for device supply applies to
1251
 * @supply:       symbolic name for supply
1252 1253 1254 1255 1256 1257 1258
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1259 1260
				      const char *consumer_dev_name,
				      const char *supply)
1261 1262
{
	struct regulator_map *node;
1263
	int has_dev;
1264 1265 1266 1267

	if (supply == NULL)
		return -EINVAL;

1268 1269 1270 1271 1272
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1273
	list_for_each_entry(node, &regulator_map_list, list) {
1274 1275 1276 1277
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1278
			continue;
1279 1280
		}

1281 1282 1283
		if (strcmp(node->supply, supply) != 0)
			continue;

1284 1285 1286 1287 1288 1289
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1290 1291 1292
		return -EBUSY;
	}

1293
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1294 1295 1296 1297 1298 1299
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1300 1301 1302 1303 1304 1305
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1306 1307
	}

1308 1309 1310 1311
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1312 1313 1314 1315 1316 1317 1318
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1319
			kfree(node->dev_name);
1320 1321 1322 1323 1324
			kfree(node);
		}
	}
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1374
#define REG_STR_SIZE	64
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1388
	regulator_lock(rdev);
1389 1390 1391 1392
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1393 1394
		regulator->dev = dev;

1395
		/* Add a link to the device sysfs entry */
1396 1397
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1398
		if (size >= REG_STR_SIZE)
1399
			goto overflow_err;
1400 1401 1402

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1403
			goto overflow_err;
1404

1405
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1406 1407
					buf);
		if (err) {
1408
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1409
				  dev->kobj.name, err);
1410
			/* non-fatal */
1411
		}
1412
	} else {
1413
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1414
		if (regulator->supply_name == NULL)
1415
			goto overflow_err;
1416 1417 1418 1419
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1420
	if (!regulator->debugfs) {
1421
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1422 1423 1424 1425
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1426
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1427
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1428
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1429 1430 1431
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1432
	}
1433

1434 1435 1436 1437 1438
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1439
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1440 1441 1442
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1443
	regulator_unlock(rdev);
1444 1445 1446 1447
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1448
	regulator_unlock(rdev);
1449 1450 1451
	return NULL;
}

1452 1453
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1454 1455
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1456
	if (!rdev->desc->ops->enable_time)
1457
		return rdev->desc->enable_time;
1458 1459 1460
	return rdev->desc->ops->enable_time(rdev);
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1509 1510 1511 1512 1513
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1514
 */
1515
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1516
						  const char *supply)
1517
{
1518
	struct regulator_dev *r = NULL;
1519
	struct device_node *node;
1520 1521
	struct regulator_map *map;
	const char *devname = NULL;
1522

1523 1524
	regulator_supply_alias(&dev, &supply);

1525 1526 1527
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1528
		if (node) {
1529 1530 1531
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1532

1533
			/*
1534 1535
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1536
			 */
1537
			return ERR_PTR(-EPROBE_DEFER);
1538
		}
1539 1540 1541
	}

	/* if not found, try doing it non-dt way */
1542 1543 1544
	if (dev)
		devname = dev_name(dev);

1545
	mutex_lock(&regulator_list_mutex);
1546 1547 1548 1549 1550 1551
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1552 1553
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1554 1555
			r = map->regulator;
			break;
1556
		}
1557
	}
1558
	mutex_unlock(&regulator_list_mutex);
1559

1560 1561 1562 1563
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1564 1565 1566 1567
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1568 1569
}

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1584 1585 1586 1587
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1588 1589 1590 1591
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1592 1593
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1594
			get_device(&r->dev);
1595 1596 1597 1598 1599
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1600 1601
	}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1615 1616
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1617 1618
	if (ret < 0) {
		put_device(&r->dev);
1619
		return ret;
1620
	}
1621 1622

	ret = set_supply(rdev, r);
1623 1624
	if (ret < 0) {
		put_device(&r->dev);
1625
		return ret;
1626
	}
1627 1628

	/* Cascade always-on state to supply */
1629
	if (_regulator_is_enabled(rdev)) {
1630
		ret = regulator_enable(rdev->supply);
1631
		if (ret < 0) {
1632
			_regulator_put(rdev->supply);
1633
			rdev->supply = NULL;
1634
			return ret;
1635
		}
1636 1637 1638 1639 1640
	}

	return 0;
}

1641
/* Internal regulator request function */
1642 1643
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1644 1645
{
	struct regulator_dev *rdev;
1646
	struct regulator *regulator;
1647
	const char *devname = dev ? dev_name(dev) : "deviceless";
1648
	int ret;
1649

1650 1651 1652 1653 1654
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1655
	if (id == NULL) {
1656
		pr_err("get() with no identifier\n");
1657
		return ERR_PTR(-EINVAL);
1658 1659
	}

1660
	rdev = regulator_dev_lookup(dev, id);
1661 1662
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1663

1664 1665 1666 1667 1668 1669
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1670

1671 1672 1673 1674 1675
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1690

1691 1692 1693 1694
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1695

1696 1697 1698
		default:
			return ERR_PTR(-ENODEV);
		}
1699 1700
	}

1701 1702
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1703 1704
		put_device(&rdev->dev);
		return regulator;
1705 1706
	}

1707
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1708
		regulator = ERR_PTR(-EBUSY);
1709 1710
		put_device(&rdev->dev);
		return regulator;
1711 1712
	}

1713 1714 1715
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1716 1717
		put_device(&rdev->dev);
		return regulator;
1718 1719
	}

1720
	if (!try_module_get(rdev->owner)) {
1721
		regulator = ERR_PTR(-EPROBE_DEFER);
1722 1723 1724
		put_device(&rdev->dev);
		return regulator;
	}
1725

1726 1727 1728
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1729
		put_device(&rdev->dev);
1730
		module_put(rdev->owner);
1731
		return regulator;
1732 1733
	}

1734
	rdev->open_count++;
1735
	if (get_type == EXCLUSIVE_GET) {
1736 1737 1738 1739 1740 1741 1742 1743 1744
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1745 1746
	return regulator;
}
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1763
	return _regulator_get(dev, id, NORMAL_GET);
1764
}
1765 1766
EXPORT_SYMBOL_GPL(regulator_get);

1767 1768 1769 1770 1771 1772 1773
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1774 1775 1776
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1790
	return _regulator_get(dev, id, EXCLUSIVE_GET);
1791 1792 1793
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1794 1795 1796 1797 1798 1799
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1800
 * or IS_ERR() condition containing errno.
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1816
	return _regulator_get(dev, id, OPTIONAL_GET);
1817 1818 1819
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1820
/* regulator_list_mutex lock held by regulator_put() */
1821
static void _regulator_put(struct regulator *regulator)
1822 1823 1824
{
	struct regulator_dev *rdev;

1825
	if (IS_ERR_OR_NULL(regulator))
1826 1827
		return;

1828 1829
	lockdep_assert_held_once(&regulator_list_mutex);

1830 1831
	rdev = regulator->rdev;

1832 1833
	debugfs_remove_recursive(regulator->debugfs);

1834
	/* remove any sysfs entries */
1835
	if (regulator->dev)
1836
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1837
	regulator_lock(rdev);
1838 1839
	list_del(&regulator->list);

1840 1841
	rdev->open_count--;
	rdev->exclusive = 0;
1842
	put_device(&rdev->dev);
1843
	regulator_unlock(rdev);
1844

1845
	kfree_const(regulator->supply_name);
1846 1847
	kfree(regulator);

1848
	module_put(rdev->owner);
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1863 1864 1865 1866
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1944 1945
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1946
					 struct device *alias_dev,
1947
					 const char *const *alias_id,
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1985
					    const char *const *id,
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1996 1997 1998 1999 2000
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2001
	struct gpio_desc *gpiod;
2002 2003
	int ret;

2004 2005 2006 2007
	if (config->ena_gpiod)
		gpiod = config->ena_gpiod;
	else
		gpiod = gpio_to_desc(config->ena_gpio);
2008

2009
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2010
		if (pin->gpiod == gpiod) {
2011 2012 2013 2014 2015 2016
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

2017 2018 2019 2020 2021 2022 2023
	if (!config->ena_gpiod) {
		ret = gpio_request_one(config->ena_gpio,
				       GPIOF_DIR_OUT | config->ena_gpio_flags,
				       rdev_get_name(rdev));
		if (ret)
			return ret;
	}
2024 2025 2026

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
2027 2028
		if (!config->ena_gpiod)
			gpio_free(config->ena_gpio);
2029 2030 2031
		return -ENOMEM;
	}

2032
	pin->gpiod = gpiod;
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2051
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2052 2053
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2054
				gpiod_put(pin->gpiod);
2055 2056
				list_del(&pin->list);
				kfree(pin);
2057 2058
				rdev->ena_pin = NULL;
				return;
2059 2060 2061 2062 2063 2064 2065
			} else {
				pin->request_count--;
			}
		}
	}
}

2066
/**
2067 2068 2069 2070
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2084 2085
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2096 2097
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
2098 2099 2100 2101 2102 2103 2104
			pin->enable_count = 0;
		}
	}

	return 0;
}

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2184
	if (rdev->ena_pin) {
2185 2186 2187 2188 2189 2190
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2191
	} else if (rdev->desc->ops->enable) {
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2204
	_regulator_enable_delay(delay);
2205 2206 2207 2208 2209 2210

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2211 2212 2213
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
2214
	int ret;
2215

2216 2217
	lockdep_assert_held_once(&rdev->mutex);

2218
	/* check voltage and requested load before enabling */
2219
	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2220
		drms_uA_update(rdev);
2221

2222 2223 2224 2225
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2226 2227
			if (!regulator_ops_is_valid(rdev,
					REGULATOR_CHANGE_STATUS))
2228 2229
				return -EPERM;

2230
			ret = _regulator_do_enable(rdev);
2231 2232 2233
			if (ret < 0)
				return ret;

2234 2235
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2236
		} else if (ret < 0) {
2237
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2238 2239
			return ret;
		}
2240
		/* Fallthrough on positive return values - already enabled */
2241 2242
	}

2243 2244 2245
	rdev->use_count++;

	return 0;
2246 2247 2248 2249 2250 2251
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2252 2253 2254 2255
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2256
 * NOTE: the output value can be set by other drivers, boot loader or may be
2257
 * hardwired in the regulator.
2258 2259 2260
 */
int regulator_enable(struct regulator *regulator)
{
2261 2262
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2263

2264 2265 2266
	if (regulator->always_on)
		return 0;

2267 2268 2269 2270 2271 2272
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

2273
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
2274
	ret = _regulator_enable(rdev);
2275
	mutex_unlock(&rdev->mutex);
2276

2277
	if (ret != 0 && rdev->supply)
2278 2279
		regulator_disable(rdev->supply);

2280 2281 2282 2283
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2284 2285 2286 2287 2288 2289
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2290
	if (rdev->ena_pin) {
2291 2292 2293 2294 2295 2296
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2297 2298 2299 2300 2301 2302 2303

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2304 2305 2306 2307 2308 2309
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2310 2311 2312 2313 2314
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2315
/* locks held by regulator_disable() */
2316
static int _regulator_disable(struct regulator_dev *rdev)
2317 2318 2319
{
	int ret = 0;

2320 2321
	lockdep_assert_held_once(&rdev->mutex);

D
David Brownell 已提交
2322
	if (WARN(rdev->use_count <= 0,
2323
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2324 2325
		return -EIO;

2326
	/* are we the last user and permitted to disable ? */
2327 2328
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2329 2330

		/* we are last user */
2331
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2332 2333 2334 2335 2336 2337
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2338
			ret = _regulator_do_disable(rdev);
2339
			if (ret < 0) {
2340
				rdev_err(rdev, "failed to disable\n");
2341 2342 2343
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2344 2345
				return ret;
			}
2346 2347
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2348 2349 2350 2351
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
2352
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2353 2354 2355 2356
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2357

2358 2359 2360 2361 2362 2363 2364
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2365 2366 2367
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2368
 *
2369
 * NOTE: this will only disable the regulator output if no other consumer
2370 2371
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2372 2373 2374
 */
int regulator_disable(struct regulator *regulator)
{
2375 2376
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2377

2378 2379 2380
	if (regulator->always_on)
		return 0;

2381
	mutex_lock(&rdev->mutex);
2382
	ret = _regulator_disable(rdev);
2383
	mutex_unlock(&rdev->mutex);
2384

2385 2386
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2387

2388 2389 2390 2391 2392
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2393
static int _regulator_force_disable(struct regulator_dev *rdev)
2394 2395 2396
{
	int ret = 0;

2397 2398
	lockdep_assert_held_once(&rdev->mutex);

2399 2400 2401 2402 2403
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2404 2405 2406
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2407 2408
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2409
		return ret;
2410 2411
	}

2412 2413 2414 2415
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2429
	struct regulator_dev *rdev = regulator->rdev;
2430 2431
	int ret;

2432
	mutex_lock(&rdev->mutex);
2433
	regulator->uA_load = 0;
2434
	ret = _regulator_force_disable(regulator->rdev);
2435
	mutex_unlock(&rdev->mutex);
2436

2437 2438 2439
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2440

2441 2442 2443 2444
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2445 2446 2447 2448 2449 2450
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

2451
	regulator_lock(rdev);
2452 2453 2454 2455 2456 2457

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

2458 2459 2460 2461 2462 2463 2464 2465
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2466 2467 2468 2469 2470 2471
	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

2472
	regulator_unlock(rdev);
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2501 2502 2503
	if (regulator->always_on)
		return 0;

2504 2505 2506
	if (!ms)
		return regulator_disable(regulator);

2507
	regulator_lock(rdev);
2508
	rdev->deferred_disables++;
2509 2510
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2511
	regulator_unlock(rdev);
2512

2513
	return 0;
2514 2515 2516
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2517 2518
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2519
	/* A GPIO control always takes precedence */
2520
	if (rdev->ena_pin)
2521 2522
		return rdev->ena_gpio_state;

2523
	/* If we don't know then assume that the regulator is always on */
2524
	if (!rdev->desc->ops->is_enabled)
2525
		return 1;
2526

2527
	return rdev->desc->ops->is_enabled(rdev);
2528 2529
}

2530 2531
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2543
			regulator_lock(rdev);
2544 2545
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2546
			regulator_unlock(rdev);
2547
	} else if (rdev->is_switch && rdev->supply) {
2548 2549
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2564 2565 2566 2567
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2568 2569 2570 2571 2572 2573 2574
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2575 2576 2577
 */
int regulator_is_enabled(struct regulator *regulator)
{
2578 2579
	int ret;

2580 2581 2582
	if (regulator->always_on)
		return 1;

2583 2584 2585 2586 2587
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2588 2589 2590
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2603 2604 2605
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2606
	if (!rdev->is_switch || !rdev->supply)
2607 2608 2609
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2620
 * zero if this selector code can't be used on this system, or a
2621 2622 2623 2624
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2625
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2626 2627 2628
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2661 2662
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2663 2664 2665 2666

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2667 2668
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2688 2689
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2727
	struct regulator_dev *rdev = regulator->rdev;
2728 2729
	int i, voltages, ret;

2730
	/* If we can't change voltage check the current voltage */
2731
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2732 2733
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2734
			return min_uV <= ret && ret <= max_uV;
2735 2736 2737 2738
		else
			return ret;
	}

2739 2740 2741 2742 2743
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2758
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2759

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2826 2827 2828 2829 2830 2831 2832 2833 2834
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
2835 2836
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
2837 2838 2839 2840 2841 2842
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
2843 2844

	if (ramp_delay == 0) {
2845
		rdev_dbg(rdev, "ramp_delay not set\n");
2846 2847 2848 2849 2850 2851
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

2852 2853 2854 2855
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2856
	int delay = 0;
2857
	int best_val = 0;
2858
	unsigned int selector;
2859
	int old_selector = -1;
2860
	const struct regulator_ops *ops = rdev->desc->ops;
2861
	int old_uV = _regulator_get_voltage(rdev);
2862 2863 2864

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2865 2866 2867
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2868 2869 2870 2871
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2872
	if (_regulator_is_enabled(rdev) &&
2873 2874
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
2875 2876 2877 2878
		if (old_selector < 0)
			return old_selector;
	}

2879
	if (ops->set_voltage) {
2880 2881
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2882 2883

		if (ret >= 0) {
2884 2885 2886
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
2887 2888 2889 2890
			else
				best_val = _regulator_get_voltage(rdev);
		}

2891
	} else if (ops->set_voltage_sel) {
2892
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2893
		if (ret >= 0) {
2894
			best_val = ops->list_voltage(rdev, ret);
2895 2896
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2897 2898 2899
				if (old_selector == selector)
					ret = 0;
				else
2900 2901
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2902 2903 2904
			} else {
				ret = -EINVAL;
			}
2905
		}
2906 2907 2908
	} else {
		ret = -EINVAL;
	}
2909

2910 2911
	if (ret)
		goto out;
2912

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
2930
		}
2931
	}
2932

2933 2934 2935
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
2936 2937
	}

2938 2939 2940 2941 2942 2943
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
2944 2945
	}

2946
	if (best_val >= 0) {
2947 2948
		unsigned long data = best_val;

2949
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2950 2951
				     (void *)data);
	}
2952

2953
out:
2954
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2955 2956 2957 2958

	return ret;
}

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

2985
static int regulator_set_voltage_unlocked(struct regulator *regulator,
2986 2987
					  int min_uV, int max_uV,
					  suspend_state_t state)
2988 2989
{
	struct regulator_dev *rdev = regulator->rdev;
2990
	struct regulator_voltage *voltage = &regulator->voltage[state];
2991
	int ret = 0;
2992
	int old_min_uV, old_max_uV;
2993
	int current_uV;
2994 2995
	int best_supply_uV = 0;
	int supply_change_uV = 0;
2996

2997 2998 2999 3000
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3001
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3002 3003
		goto out;

3004
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3005
	 * return successfully even though the regulator does not support
3006 3007
	 * changing the voltage.
	 */
3008
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3009 3010
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
3011 3012
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3013 3014 3015 3016
			goto out;
		}
	}

3017
	/* sanity check */
3018 3019
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3020 3021 3022 3023 3024 3025 3026 3027
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3028

3029
	/* restore original values in case of error */
3030 3031 3032 3033
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3034

3035
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
3036
	if (ret < 0)
3037
		goto out2;
3038

3039 3040 3041
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3042 3043
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3044 3045 3046 3047 3048 3049 3050 3051 3052
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
			goto out2;
		}

M
Mark Brown 已提交
3053
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
			goto out2;
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
			goto out2;
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3072
				best_supply_uV, INT_MAX, state);
3073 3074 3075 3076 3077 3078 3079
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
			goto out2;
		}
	}

3080 3081 3082 3083 3084
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3085 3086
	if (ret < 0)
		goto out2;
3087

3088 3089
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3090
				best_supply_uV, INT_MAX, state);
3091 3092 3093 3094 3095 3096 3097
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3098 3099
out:
	return ret;
3100
out2:
3101 3102
	voltage->min_uV = old_min_uV;
	voltage->max_uV = old_max_uV;
3103 3104 3105 3106

	return ret;
}

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
static int regulator_get_optimal_voltage(struct regulator_dev *rdev)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	int max_spread = rdev->constraints->max_spread;
	int n_coupled = c_desc->n_coupled;
	int desired_min_uV, desired_max_uV, min_current_uV = INT_MAX;
	int max_current_uV = 0, highest_min_uV = 0, target_uV, possible_uV;
	int i, ret;

	/* If consumers don't provide any demands, set voltage to min_uV */
	desired_min_uV = rdev->constraints->min_uV;
	desired_max_uV = rdev->constraints->max_uV;
	ret = regulator_check_consumers(rdev,
					&desired_min_uV,
					&desired_max_uV, PM_SUSPEND_ON);
	if (ret < 0)
		goto out;

	/*
	 * If there are no coupled regulators, simply set the voltage demanded
	 * by consumers.
	 */
	if (n_coupled == 1) {
		ret = desired_min_uV;
		goto out;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, PM_SUSPEND_ON);
		if (ret < 0)
			goto out;

		if (tmp_min > highest_min_uV)
			highest_min_uV = tmp_min;
	}

	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV,  highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't
	 * violating max_spread
	 */
	for (i = 0; i < n_coupled; i++) {
		int tmp_act;

		/*
		 * Don't check the regulator, which is about
		 * to change voltage
		 */
		if (c_rdevs[i] == rdev)
			continue;
		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

		tmp_act = _regulator_get_voltage(c_rdevs[i]);
		if (tmp_act < 0) {
			ret = tmp_act;
			goto out;
		}

		if (tmp_act < min_current_uV)
			min_current_uV = tmp_act;

		if (tmp_act > max_current_uV)
			max_current_uV = tmp_act;
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV) {
		ret = -EINVAL;
		goto out;
	}
	ret = possible_uV;

out:
	return ret;
}

static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled;
	int i, best_delta, best_uV, ret = 1;

	c_rdevs = c_desc->coupled_rdevs;
	n_coupled = c_desc->n_coupled;

	/*
	 * if system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators
	 */
	if (state != PM_SUSPEND_ON)
		n_coupled = 1;

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	while (1) {
		best_delta = 0;
		best_uV = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV, current_uV;

			optimal_uV = regulator_get_optimal_voltage(c_rdevs[i]);
			if (optimal_uV < 0) {
				ret = optimal_uV;
				goto out;
			}

			current_uV = _regulator_get_voltage(c_rdevs[i]);
			if (current_uV < 0) {
				ret = optimal_uV;
				goto out;
			}

			if (abs(best_delta) < abs(optimal_uV - current_uV)) {
				best_delta = optimal_uV - current_uV;
				best_rdev = c_rdevs[i];
				best_uV = optimal_uV;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}

		/*
		 * Lock just the supply regulators, as the regulator itself
		 * is already locked by regulator_lock_coupled().
		 */
		if (best_rdev->supply)
			regulator_lock_supply(best_rdev->supply->rdev);

		ret = regulator_set_voltage_rdev(best_rdev, best_uV,
						 best_uV, state);
		if (best_rdev->supply)
			regulator_unlock_supply(best_rdev->supply->rdev);

		if (ret < 0)
			goto out;
	}

out:
	return ret;
}

3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	int ret = 0;

3319
	regulator_lock_supply(regulator->rdev);
3320

3321 3322
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3323

3324
	regulator_unlock_supply(regulator->rdev);
3325

3326 3327 3328 3329
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

	rstate->enabled = en;

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
	int ret = 0;

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

	regulator_lock_supply(regulator->rdev);

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

	regulator_unlock_supply(regulator->rdev);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3426 3427
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3428 3429 3430 3431 3432
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3433 3434 3435 3436 3437
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3438
	/* Currently requires operations to do this */
3439
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3462
/**
3463 3464
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3465 3466 3467 3468 3469 3470
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3471
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3472
 * set_voltage_time_sel() operation.
3473 3474 3475 3476 3477
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3478
	int old_volt, new_volt;
3479

3480 3481 3482
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3483

3484 3485 3486
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3487 3488 3489 3490 3491
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3492
}
3493
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3494

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3506
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3507 3508
	int ret, min_uV, max_uV;

3509
	regulator_lock(rdev);
3510 3511 3512 3513 3514 3515 3516 3517

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3518
	if (!voltage->min_uV && !voltage->max_uV) {
3519 3520 3521 3522
		ret = -EINVAL;
		goto out;
	}

3523 3524
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3525 3526 3527 3528 3529 3530

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3531
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3532 3533 3534 3535 3536 3537
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3538
	regulator_unlock(rdev);
3539 3540 3541 3542
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3543 3544
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3545
	int sel, ret;
3546 3547 3548 3549 3550 3551 3552 3553
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3554 3555 3556 3557 3558
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3559 3560 3561 3562

			return _regulator_get_voltage(rdev->supply->rdev);
		}
	}
3563 3564 3565 3566 3567

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3568
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3569
	} else if (rdev->desc->ops->get_voltage) {
3570
		ret = rdev->desc->ops->get_voltage(rdev);
3571 3572
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3573 3574
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3575
	} else if (rdev->supply) {
3576
		ret = _regulator_get_voltage(rdev->supply->rdev);
3577
	} else {
3578
		return -EINVAL;
3579
	}
3580

3581 3582
	if (ret < 0)
		return ret;
3583
	return ret - rdev->constraints->uV_offset;
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

3599
	regulator_lock_supply(regulator->rdev);
3600 3601 3602

	ret = _regulator_get_voltage(regulator->rdev);

3603
	regulator_unlock_supply(regulator->rdev);
3604 3605 3606 3607 3608 3609 3610 3611

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
3612
 * @min_uA: Minimum supported current in uA
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

3631
	regulator_lock(rdev);
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
3646
	regulator_unlock(rdev);
3647 3648 3649 3650 3651 3652 3653 3654
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

3655
	regulator_lock(rdev);
3656 3657 3658 3659 3660 3661 3662 3663 3664

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
3665
	regulator_unlock(rdev);
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3699
	int regulator_curr_mode;
3700

3701
	regulator_lock(rdev);
3702 3703 3704 3705 3706 3707 3708

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

3709 3710 3711 3712 3713 3714 3715 3716 3717
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

3718
	/* constraints check */
3719
	ret = regulator_mode_constrain(rdev, &mode);
3720 3721 3722 3723 3724
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
3725
	regulator_unlock(rdev);
3726 3727 3728 3729 3730 3731 3732 3733
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

3734
	regulator_lock(rdev);
3735 3736 3737 3738 3739 3740 3741 3742 3743

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
3744
	regulator_unlock(rdev);
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

3760 3761 3762 3763 3764
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

3765
	regulator_lock(rdev);
3766 3767 3768 3769 3770 3771 3772 3773 3774

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
3775
	regulator_unlock(rdev);
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

3793
/**
3794
 * regulator_set_load - set regulator load
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
3817
 * On error a negative errno is returned.
3818
 */
3819
int regulator_set_load(struct regulator *regulator, int uA_load)
3820 3821
{
	struct regulator_dev *rdev = regulator->rdev;
3822
	int ret;
3823

3824
	regulator_lock(rdev);
3825
	regulator->uA_load = uA_load;
3826
	ret = drms_uA_update(rdev);
3827
	regulator_unlock(rdev);
3828

3829 3830
	return ret;
}
3831
EXPORT_SYMBOL_GPL(regulator_set_load);
3832

3833 3834 3835 3836
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3837
 * @enable: enable or disable bypass mode
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

3852
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3853 3854
		return 0;

3855
	regulator_lock(rdev);
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

3879
	regulator_unlock(rdev);
3880 3881 3882 3883 3884

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3885 3886 3887
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3888
 * @nb: notifier block
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3903
 * @nb: notifier block
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3915 3916 3917
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3918
static int _notifier_call_chain(struct regulator_dev *rdev,
3919 3920 3921
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3922
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
3949 3950
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
3951 3952
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3953 3954
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3955 3956 3957 3958 3959 3960 3961 3962
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3963
	while (--i >= 0)
3964 3965 3966 3967 3968 3969
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3970 3971 3972 3973 3974 3975 3976
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3992
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3993
	int i;
3994
	int ret = 0;
3995

3996 3997 3998 3999 4000 4001 4002
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
4003 4004 4005 4006

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4007
	for (i = 0; i < num_consumers; i++) {
4008 4009
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4010
			goto err;
4011
		}
4012 4013 4014 4015 4016
	}

	return 0;

err:
4017 4018 4019 4020 4021 4022 4023
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4037 4038
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4039 4040 4041 4042 4043 4044
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4045
	int ret, r;
4046

4047
	for (i = num_consumers - 1; i >= 0; --i) {
4048 4049 4050 4051 4052 4053 4054 4055
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4056
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4057 4058 4059
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4060
			pr_err("Failed to re-enable %s: %d\n",
4061 4062
			       consumers[i].supply, r);
	}
4063 4064 4065 4066 4067

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4086
	int ret = 0;
4087

4088
	for (i = 0; i < num_consumers; i++) {
4089 4090 4091
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4092 4093
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4094 4095 4096 4097 4098 4099 4100
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4124
 * @rdev: regulator source
4125
 * @event: notifier block
4126
 * @data: callback-specific data.
4127 4128 4129
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4130
 * Note lock must be held by caller.
4131 4132 4133 4134
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4135 4136
	lockdep_assert_held_once(&rdev->mutex);

4137 4138 4139 4140 4141 4142
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4159
	case REGULATOR_MODE_STANDBY:
4160 4161
		return REGULATOR_STATUS_STANDBY;
	default:
4162
		return REGULATOR_STATUS_UNDEFINED;
4163 4164 4165 4166
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4194 4195 4196 4197
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4198 4199
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4200
{
4201
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4202
	struct regulator_dev *rdev = dev_to_rdev(dev);
4203
	const struct regulator_ops *ops = rdev->desc->ops;
4204 4205 4206 4207 4208 4209 4210
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4211 4212

	/* some attributes need specific methods to be displayed */
4213 4214 4215 4216 4217 4218 4219
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4220
	}
4221

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4237
	/* some attributes are type-specific */
4238 4239
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
4240 4241

	/* constraints need specific supporting methods */
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4277

4278 4279 4280
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4281 4282 4283

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4284
	kfree(rdev);
4285 4286
}

4287 4288
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4301
	if (!rdev->debugfs) {
4302 4303 4304 4305 4306 4307 4308 4309
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4310 4311
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4312 4313
}

4314 4315
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4316 4317 4318 4319 4320 4321
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4322 4323
}

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
static int regulator_fill_coupling_array(struct regulator_dev *rdev)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

		if (c_rdev) {
			c_desc->coupled_rdevs[i] = c_rdev;
			c_desc->n_resolved++;
		}
	}

	if (rdev->coupling_desc.n_resolved < n_coupled)
		return -1;
	else
		return 0;
}

static int regulator_register_fill_coupling_array(struct device *dev,
						  void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (!IS_ENABLED(CONFIG_OF))
		return 0;

	if (regulator_fill_coupling_array(rdev))
		rdev_dbg(rdev, "unable to resolve coupling\n");

	return 0;
}

static int regulator_resolve_coupling(struct regulator_dev *rdev)
{
	int n_phandles;

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

	if (n_phandles + 1 > MAX_COUPLED) {
		rdev_err(rdev, "too many regulators coupled\n");
		return -EPERM;
	}

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

	/* regulator, which can't change its voltage, can't be coupled */
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
		rdev_err(rdev, "voltage operation not allowed\n");
		return -EPERM;
	}

	if (rdev->constraints->max_spread <= 0) {
		rdev_err(rdev, "wrong max_spread value\n");
		return -EPERM;
	}

	if (!of_check_coupling_data(rdev))
		return -EPERM;

	/*
	 * After everything has been checked, try to fill rdevs array
	 * with pointers to regulators parsed from device tree. If some
	 * regulators are not registered yet, retry in late init call
	 */
	regulator_fill_coupling_array(rdev);

	return 0;
}

4414 4415
/**
 * regulator_register - register regulator
4416
 * @regulator_desc: regulator to register
4417
 * @cfg: runtime configuration for regulator
4418 4419
 *
 * Called by regulator drivers to register a regulator.
4420 4421
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4422
 */
4423 4424
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4425
		   const struct regulator_config *cfg)
4426
{
4427
	const struct regulation_constraints *constraints = NULL;
4428
	const struct regulator_init_data *init_data;
4429
	struct regulator_config *config = NULL;
4430
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4431
	struct regulator_dev *rdev;
4432
	struct device *dev;
4433
	int ret, i;
4434

4435
	if (regulator_desc == NULL || cfg == NULL)
4436 4437
		return ERR_PTR(-EINVAL);

4438
	dev = cfg->dev;
4439
	WARN_ON(!dev);
4440

4441 4442 4443
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

4444 4445
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
4446 4447
		return ERR_PTR(-EINVAL);

4448 4449 4450
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
4451 4452
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
4453 4454 4455 4456 4457 4458

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
4459 4460 4461 4462
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
4463

4464 4465 4466 4467
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

4478
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4479 4480 4481 4482 4483 4484
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

4485
	mutex_init(&rdev->mutex);
4486
	rdev->reg_data = config->driver_data;
4487 4488
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
4489 4490
	if (config->regmap)
		rdev->regmap = config->regmap;
4491
	else if (dev_get_regmap(dev, NULL))
4492
		rdev->regmap = dev_get_regmap(dev, NULL);
4493 4494
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4495 4496 4497
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4498
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4499

4500
	/* preform any regulator specific init */
4501
	if (init_data && init_data->regulator_init) {
4502
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
4503 4504
		if (ret < 0)
			goto clean;
4505 4506
	}

4507 4508 4509
	if (config->ena_gpiod ||
	    ((config->ena_gpio || config->ena_gpio_initialized) &&
	     gpio_is_valid(config->ena_gpio))) {
4510
		mutex_lock(&regulator_list_mutex);
4511
		ret = regulator_ena_gpio_request(rdev, config);
4512
		mutex_unlock(&regulator_list_mutex);
4513 4514 4515
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
4516
			goto clean;
4517 4518 4519
		}
	}

4520
	/* register with sysfs */
4521
	rdev->dev.class = &regulator_class;
4522
	rdev->dev.parent = dev;
4523
	dev_set_name(&rdev->dev, "regulator.%lu",
4524
		    (unsigned long) atomic_inc_return(&regulator_no));
4525

4526
	/* set regulator constraints */
4527 4528 4529 4530
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
4531
		rdev->supply_name = init_data->supply_regulator;
4532
	else if (regulator_desc->supply_name)
4533
		rdev->supply_name = regulator_desc->supply_name;
4534

4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

4547 4548 4549 4550 4551 4552 4553
	mutex_lock(&regulator_list_mutex);
	ret = regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0)
		goto wash;

4554
	/* add consumers devices */
4555
	if (init_data) {
4556
		mutex_lock(&regulator_list_mutex);
4557 4558 4559
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
4560
				init_data->consumer_supplies[i].supply);
4561
			if (ret < 0) {
4562
				mutex_unlock(&regulator_list_mutex);
4563 4564 4565 4566
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
4567
		}
4568
		mutex_unlock(&regulator_list_mutex);
4569
	}
4570

4571 4572 4573 4574 4575
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

4576 4577 4578 4579 4580 4581 4582
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

	dev_set_drvdata(&rdev->dev, rdev);
4583
	rdev_init_debugfs(rdev);
4584 4585 4586 4587

	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
4588
	kfree(config);
4589
	return rdev;
D
David Brownell 已提交
4590

4591
unset_supplies:
4592
	mutex_lock(&regulator_list_mutex);
4593
	unset_regulator_supplies(rdev);
4594
	mutex_unlock(&regulator_list_mutex);
4595
wash:
4596
	kfree(rdev->constraints);
4597
	mutex_lock(&regulator_list_mutex);
4598
	regulator_ena_gpio_free(rdev);
4599
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
4600 4601
clean:
	kfree(rdev);
4602 4603
	kfree(config);
	return ERR_PTR(ret);
4604 4605 4606 4607 4608
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
4609
 * @rdev: regulator to unregister
4610 4611 4612 4613 4614 4615 4616 4617
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

4618 4619 4620
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
4621
		regulator_put(rdev->supply);
4622
	}
4623
	mutex_lock(&regulator_list_mutex);
4624
	debugfs_remove_recursive(rdev->debugfs);
4625
	flush_work(&rdev->disable_work.work);
4626
	WARN_ON(rdev->open_count);
4627
	unset_regulator_supplies(rdev);
4628
	list_del(&rdev->list);
4629
	regulator_ena_gpio_free(rdev);
4630
	mutex_unlock(&regulator_list_mutex);
4631
	device_unregister(&rdev->dev);
4632 4633 4634
}
EXPORT_SYMBOL_GPL(regulator_unregister);

4635 4636
#ifdef CONFIG_SUSPEND
static int _regulator_suspend_late(struct device *dev, void *data)
4637 4638
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
4639
	suspend_state_t *state = data;
4640 4641
	int ret;

4642
	regulator_lock(rdev);
4643
	ret = suspend_set_state(rdev, *state);
4644
	regulator_unlock(rdev);
4645 4646 4647 4648

	return ret;
}

4649
/**
4650
 * regulator_suspend_late - prepare regulators for system wide suspend
4651 4652 4653 4654
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
4655
static int regulator_suspend_late(struct device *dev)
4656
{
4657
	suspend_state_t state = pm_suspend_target_state;
4658

4659
	return class_for_each_device(&regulator_class, NULL, &state,
4660
				     _regulator_suspend_late);
4661
}
4662

4663
static int _regulator_resume_early(struct device *dev, void *data)
4664
{
4665
	int ret = 0;
4666
	struct regulator_dev *rdev = dev_to_rdev(dev);
4667 4668 4669 4670 4671
	suspend_state_t *state = data;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, *state);
	if (rstate == NULL)
4672
		return 0;
4673

4674
	regulator_lock(rdev);
4675

4676 4677 4678 4679 4680
	if (rdev->desc->ops->resume_early &&
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
		ret = rdev->desc->ops->resume_early(rdev);

4681
	regulator_unlock(rdev);
4682

4683
	return ret;
4684 4685
}

4686
static int regulator_resume_early(struct device *dev)
4687
{
4688 4689 4690 4691
	suspend_state_t state = pm_suspend_target_state;

	return class_for_each_device(&regulator_class, NULL, &state,
				     _regulator_resume_early);
4692 4693
}

4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
#else /* !CONFIG_SUSPEND */

#define regulator_suspend_late	NULL
#define regulator_resume_early	NULL

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
	.suspend_late	= regulator_suspend_late,
	.resume_early	= regulator_resume_early,
};
#endif

M
Mark Brown 已提交
4708
struct class regulator_class = {
4709 4710 4711 4712 4713 4714 4715
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

4733 4734
/**
 * rdev_get_drvdata - get rdev regulator driver data
4735
 * @rdev: regulator
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
4772
 * @rdev: regulator
4773 4774 4775 4776 4777 4778 4779
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

4792
#ifdef CONFIG_DEBUG_FS
4793
static int supply_map_show(struct seq_file *sf, void *data)
4794 4795 4796 4797
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
4798 4799 4800
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
4801 4802
	}

4803 4804
	return 0;
}
4805

4806 4807 4808
static int supply_map_open(struct inode *inode, struct file *file)
{
	return single_open(file, supply_map_show, inode->i_private);
4809
}
4810
#endif
4811 4812

static const struct file_operations supply_map_fops = {
4813
#ifdef CONFIG_DEBUG_FS
4814 4815 4816 4817
	.open = supply_map_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
4818
#endif
4819
};
4820

4821
#ifdef CONFIG_DEBUG_FS
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

4844 4845 4846 4847 4848 4849
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
4850
	struct summary_data summary_data;
4851 4852 4853 4854 4855 4856 4857 4858 4859

	if (!rdev)
		return;

	seq_printf(s, "%*s%-*s %3d %4d %6d ",
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
		   rdev->use_count, rdev->open_count, rdev->bypass_count);

4860 4861
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4880
		if (consumer->dev && consumer->dev->class == &regulator_class)
4881 4882 4883 4884
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
4885 4886
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4887 4888 4889

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
4890
			seq_printf(s, "%37dmV %5dmV",
4891 4892
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4893 4894 4895 4896 4897 4898 4899 4900
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

4901 4902 4903
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
4904

4905 4906
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
4907 4908
}

4909
static int regulator_summary_show_roots(struct device *dev, void *data)
4910
{
4911 4912
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
4913

4914 4915
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
4916

4917 4918
	return 0;
}
4919

4920 4921 4922 4923
static int regulator_summary_show(struct seq_file *s, void *data)
{
	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
	seq_puts(s, "-------------------------------------------------------------------------------\n");
4924

4925 4926
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945

	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

4946 4947
static int __init regulator_init(void)
{
4948 4949 4950 4951
	int ret;

	ret = class_register(&regulator_class);

4952
	debugfs_root = debugfs_create_dir("regulator", NULL);
4953
	if (!debugfs_root)
4954
		pr_warn("regulator: Failed to create debugfs directory\n");
4955

4956 4957
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
4958

4959
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4960
			    NULL, &regulator_summary_fops);
4961

4962 4963 4964
	regulator_dummy_init();

	return ret;
4965 4966 4967 4968
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
4969

4970
static int __init regulator_late_cleanup(struct device *dev, void *data)
4971
{
4972 4973 4974
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
4975 4976
	int enabled, ret;

4977 4978 4979
	if (c && c->always_on)
		return 0;

4980
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4981 4982
		return 0;

4983
	regulator_lock(rdev);
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5014
	regulator_unlock(rdev);
5015 5016 5017 5018 5019 5020

	return 0;
}

static int __init regulator_init_complete(void)
{
5021 5022 5023 5024 5025 5026 5027 5028 5029
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5040
	/* If we have a full configuration then disable any regulators
5041 5042 5043
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5044
	 */
5045 5046
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5047

5048 5049 5050
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_fill_coupling_array);

5051 5052
	return 0;
}
5053
late_initcall_sync(regulator_init_complete);