core.c 131.6 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
55
static LIST_HEAD(regulator_ena_gpio_list);
56
static LIST_HEAD(regulator_supply_alias_list);
57
static bool has_full_constraints;
58

59 60
static struct dentry *debugfs_root;

61
/*
62 63 64 65 66 67
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
68
	const char *dev_name;   /* The dev_name() for the consumer */
69
	const char *supply;
70
	struct regulator_dev *regulator;
71 72
};

73 74 75 76 77 78 79
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
80
	struct gpio_desc *gpiod;
81 82 83 84 85
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

99
static int _regulator_is_enabled(struct regulator_dev *rdev);
100
static int _regulator_disable(struct regulator_dev *rdev);
101 102 103
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104
static int _notifier_call_chain(struct regulator_dev *rdev,
105
				  unsigned long event, void *data);
106 107
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
108 109
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
110 111 112
static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
				      int min_uV, int max_uV,
				      suspend_state_t state);
113 114 115
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
116
static void _regulator_put(struct regulator *regulator);
117

118 119 120 121 122 123 124 125 126 127
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

128 129
static bool have_full_constraints(void)
{
130
	return has_full_constraints || of_have_populated_dt();
131 132
}

133 134 135 136 137 138 139 140 141 142 143 144 145
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

146 147 148 149 150 151 152 153
static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
{
	if (rdev && rdev->supply)
		return rdev->supply->rdev;

	return NULL;
}

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
 * @subclass:		mutex subclass used for lockdep
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
static void regulator_lock_nested(struct regulator_dev *rdev,
				  unsigned int subclass)
{
	if (!mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current) {
			rdev->ref_cnt++;
			return;
		}
		mutex_lock_nested(&rdev->mutex, subclass);
	}

	rdev->ref_cnt = 1;
	rdev->mutex_owner = current;
}

static inline void regulator_lock(struct regulator_dev *rdev)
{
	regulator_lock_nested(rdev, 0);
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
static void regulator_unlock(struct regulator_dev *rdev)
{
	if (rdev->ref_cnt != 0) {
		rdev->ref_cnt--;

		if (!rdev->ref_cnt) {
			rdev->mutex_owner = NULL;
			mutex_unlock(&rdev->mutex);
		}
	}
}

204 205
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    unsigned int subclass)
206
{
207
	struct regulator_dev *c_rdev;
208
	int i;
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];

		if (!c_rdev)
			continue;

		regulator_lock_nested(c_rdev, subclass++);

		if (c_rdev->supply)
			subclass =
				regulator_lock_recursive(c_rdev->supply->rdev,
							 subclass);
	}

	return subclass;
225 226 227
}

/**
228 229 230 231 232
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 *
 * Unlock all regulators related with rdev by coupling or suppling.
233
 */
234
static void regulator_unlock_dependent(struct regulator_dev *rdev)
235
{
236 237
	struct regulator_dev *c_rdev;
	int i;
238

239 240
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
241

242 243
		if (!c_rdev)
			continue;
244

245 246 247 248
		regulator_unlock(c_rdev);

		if (c_rdev->supply)
			regulator_unlock_dependent(c_rdev->supply->rdev);
249 250 251
	}
}

252 253 254 255 256 257 258 259 260 261 262 263
/**
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
 * all regulators related with rdev by coupling or suppling.
 */
static inline void regulator_lock_dependent(struct regulator_dev *rdev)
{
	regulator_lock_recursive(rdev, 0);
}

264 265 266 267 268 269
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
270
 * returns the device node corresponding to the regulator if found, else
271 272 273 274 275 276 277 278 279 280 281 282 283
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
284 285
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
286 287 288 289 290
		return NULL;
	}
	return regnode;
}

291 292 293 294 295 296
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

297
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
298
		rdev_err(rdev, "voltage operation not allowed\n");
299 300 301 302 303 304 305 306
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

307 308
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
309
			 *min_uV, *max_uV);
310
		return -EINVAL;
311
	}
312 313 314 315

	return 0;
}

316 317 318 319 320 321
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

322 323 324 325
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
326 327
				     int *min_uV, int *max_uV,
				     suspend_state_t state)
328 329
{
	struct regulator *regulator;
330
	struct regulator_voltage *voltage;
331 332

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
333
		voltage = &regulator->voltage[state];
334 335 336 337
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
338
		if (!voltage->min_uV && !voltage->max_uV)
339 340
			continue;

341 342 343 344
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
345 346
	}

347
	if (*min_uV > *max_uV) {
348 349
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
350
		return -EINVAL;
351
	}
352 353 354 355

	return 0;
}

356 357 358 359 360 361
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

362
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
363
		rdev_err(rdev, "current operation not allowed\n");
364 365 366 367 368 369 370 371
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

372 373
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
374
			 *min_uA, *max_uA);
375
		return -EINVAL;
376
	}
377 378 379 380 381

	return 0;
}

/* operating mode constraint check */
382 383
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
384
{
385
	switch (*mode) {
386 387 388 389 390 391
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
392
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
393 394 395
		return -EINVAL;
	}

396
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
397
		rdev_err(rdev, "mode operation not allowed\n");
398 399
		return -EPERM;
	}
400 401 402 403 404 405 406 407

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
408
	}
409 410

	return -EINVAL;
411 412
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

431 432 433
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
434
	struct regulator_dev *rdev = dev_get_drvdata(dev);
435 436
	ssize_t ret;

437
	regulator_lock(rdev);
438
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
439
	regulator_unlock(rdev);
440 441 442

	return ret;
}
443
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
444 445 446 447

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
448
	struct regulator_dev *rdev = dev_get_drvdata(dev);
449 450 451

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
452
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
453

454 455
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
456 457 458
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

459
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
460
}
461
static DEVICE_ATTR_RO(name);
462

463
static const char *regulator_opmode_to_str(int mode)
464 465 466
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
467
		return "fast";
468
	case REGULATOR_MODE_NORMAL:
469
		return "normal";
470
	case REGULATOR_MODE_IDLE:
471
		return "idle";
472
	case REGULATOR_MODE_STANDBY:
473
		return "standby";
474
	}
475 476 477 478 479 480
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
481 482
}

D
David Brownell 已提交
483 484
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
485
{
486
	struct regulator_dev *rdev = dev_get_drvdata(dev);
487

D
David Brownell 已提交
488 489
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
490
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
491 492 493

static ssize_t regulator_print_state(char *buf, int state)
{
494 495 496 497 498 499 500 501
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
502 503 504 505
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 507
	ssize_t ret;

508
	regulator_lock(rdev);
509
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
510
	regulator_unlock(rdev);
D
David Brownell 已提交
511

512
	return ret;
D
David Brownell 已提交
513
}
514
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
515

D
David Brownell 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
549 550 551
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
552 553 554
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
555 556 557 558 559 560 561 562
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

563 564 565
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
566
	struct regulator_dev *rdev = dev_get_drvdata(dev);
567 568 569 570 571 572

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
573
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
574 575 576 577

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
578
	struct regulator_dev *rdev = dev_get_drvdata(dev);
579 580 581 582 583 584

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
585
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
586 587 588 589

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
590
	struct regulator_dev *rdev = dev_get_drvdata(dev);
591 592 593 594 595 596

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
597
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
598 599 600 601

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
602
	struct regulator_dev *rdev = dev_get_drvdata(dev);
603 604 605 606 607 608

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
609
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
610 611 612 613

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
614
	struct regulator_dev *rdev = dev_get_drvdata(dev);
615 616 617
	struct regulator *regulator;
	int uA = 0;

618
	regulator_lock(rdev);
619
	list_for_each_entry(regulator, &rdev->consumer_list, list)
620
		uA += regulator->uA_load;
621
	regulator_unlock(rdev);
622 623
	return sprintf(buf, "%d\n", uA);
}
624
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
625

626 627
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
628
{
629
	struct regulator_dev *rdev = dev_get_drvdata(dev);
630 631
	return sprintf(buf, "%d\n", rdev->use_count);
}
632
static DEVICE_ATTR_RO(num_users);
633

634 635
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
636
{
637
	struct regulator_dev *rdev = dev_get_drvdata(dev);
638 639 640 641 642 643 644 645 646

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
647
static DEVICE_ATTR_RO(type);
648 649 650 651

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
652
	struct regulator_dev *rdev = dev_get_drvdata(dev);
653 654 655

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
656 657
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
658 659 660 661

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
662
	struct regulator_dev *rdev = dev_get_drvdata(dev);
663 664 665

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
666 667
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
668 669 670 671

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
672
	struct regulator_dev *rdev = dev_get_drvdata(dev);
673 674 675

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
676 677
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
678 679 680 681

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
682
	struct regulator_dev *rdev = dev_get_drvdata(dev);
683

D
David Brownell 已提交
684 685
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
686
}
687 688
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
689 690 691 692

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
693
	struct regulator_dev *rdev = dev_get_drvdata(dev);
694

D
David Brownell 已提交
695 696
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
697
}
698 699
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
700 701 702 703

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
704
	struct regulator_dev *rdev = dev_get_drvdata(dev);
705

D
David Brownell 已提交
706 707
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
708
}
709 710
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
711 712 713 714

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
715
	struct regulator_dev *rdev = dev_get_drvdata(dev);
716

D
David Brownell 已提交
717 718
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
719
}
720 721
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
722 723 724 725

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
726
	struct regulator_dev *rdev = dev_get_drvdata(dev);
727

D
David Brownell 已提交
728 729
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
730
}
731 732
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
733 734 735 736

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
737
	struct regulator_dev *rdev = dev_get_drvdata(dev);
738

D
David Brownell 已提交
739 740
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
741
}
742 743 744
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
766

767 768
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
769
static int drms_uA_update(struct regulator_dev *rdev)
770 771 772 773 774
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

775 776
	lockdep_assert_held_once(&rdev->mutex);

777 778 779 780
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
781
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
782 783
		return 0;

784 785
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
786 787
		return 0;

788 789
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
790
		return -EINVAL;
791 792 793

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
794
		current_uA += sibling->uA_load;
795

796 797
	current_uA += rdev->constraints->system_load;

798 799 800 801 802 803
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
		/* get output voltage */
		output_uV = _regulator_get_voltage(rdev);
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

822 823 824 825 826 827 828 829 830 831 832
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
833

834 835 836
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
837 838 839
	}

	return err;
840 841 842
}

static int suspend_set_state(struct regulator_dev *rdev,
843
				    suspend_state_t state)
844 845
{
	int ret = 0;
846 847 848 849
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
850
		return 0;
851 852

	/* If we have no suspend mode configration don't set anything;
853 854
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
855
	 */
856 857
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
858 859
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
860
			rdev_warn(rdev, "No configuration\n");
861 862 863
		return 0;
	}

864 865
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
866
		ret = rdev->desc->ops->set_suspend_enable(rdev);
867 868
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
869
		ret = rdev->desc->ops->set_suspend_disable(rdev);
870 871 872
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

873
	if (ret < 0) {
874
		rdev_err(rdev, "failed to enabled/disable\n");
875 876 877 878 879 880
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
881
			rdev_err(rdev, "failed to set voltage\n");
882 883 884 885 886 887 888
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
889
			rdev_err(rdev, "failed to set mode\n");
890 891 892 893
			return ret;
		}
	}

894
	return ret;
895 896 897 898 899
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
900
	char buf[160] = "";
901
	size_t len = sizeof(buf) - 1;
902 903
	int count = 0;
	int ret;
904

905
	if (constraints->min_uV && constraints->max_uV) {
906
		if (constraints->min_uV == constraints->max_uV)
907 908
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
909
		else
910 911 912 913
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
914 915 916 917 918 919
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
920 921
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
922 923
	}

924
	if (constraints->uV_offset)
925 926
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
927

928
	if (constraints->min_uA && constraints->max_uA) {
929
		if (constraints->min_uA == constraints->max_uA)
930 931
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
932
		else
933 934 935 936
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
937 938 939 940 941 942
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
943 944
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
945
	}
946

947
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
948
		count += scnprintf(buf + count, len - count, "fast ");
949
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
950
		count += scnprintf(buf + count, len - count, "normal ");
951
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
952
		count += scnprintf(buf + count, len - count, "idle ");
953
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
954
		count += scnprintf(buf + count, len - count, "standby");
955

956
	if (!count)
957
		scnprintf(buf, len, "no parameters");
958

959
	rdev_dbg(rdev, "%s\n", buf);
960 961

	if ((constraints->min_uV != constraints->max_uV) &&
962
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
963 964
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
965 966
}

967
static int machine_constraints_voltage(struct regulator_dev *rdev,
968
	struct regulation_constraints *constraints)
969
{
970
	const struct regulator_ops *ops = rdev->desc->ops;
971 972 973 974
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
975 976
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
977
		int current_uV = _regulator_get_voltage(rdev);
978 979 980 981 982 983 984 985 986 987 988 989

		if (current_uV == -ENOTRECOVERABLE) {
			/* This regulator can't be read and must be initted */
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
			current_uV = _regulator_get_voltage(rdev);
		}

990
		if (current_uV < 0) {
991 992 993
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
994 995
			return current_uV;
		}
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1016 1017
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1018
			ret = _regulator_do_set_voltage(
1019
				rdev, target_min, target_max);
1020 1021
			if (ret < 0) {
				rdev_err(rdev,
1022 1023
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1024 1025
				return ret;
			}
1026
		}
1027
	}
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1040 1041
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1042
		if (count == 1 && !cmin) {
1043
			cmin = 1;
1044
			cmax = INT_MAX;
1045 1046
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1047 1048
		}

1049 1050
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1051
			return 0;
1052

1053
		/* else require explicit machine-level constraints */
1054
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1055
			rdev_err(rdev, "invalid voltage constraints\n");
1056
			return -EINVAL;
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1076 1077 1078
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1079
			return -EINVAL;
1080 1081 1082 1083
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1084 1085
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1086 1087 1088
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1089 1090
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1091 1092 1093 1094
			constraints->max_uV = max_uV;
		}
	}

1095 1096 1097
	return 0;
}

1098 1099 1100
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1101
	const struct regulator_ops *ops = rdev->desc->ops;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1128 1129
static int _regulator_do_enable(struct regulator_dev *rdev);

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1142
	const struct regulation_constraints *constraints)
1143 1144
{
	int ret = 0;
1145
	const struct regulator_ops *ops = rdev->desc->ops;
1146

1147 1148 1149 1150 1151 1152
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1153 1154
	if (!rdev->constraints)
		return -ENOMEM;
1155

1156
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1157
	if (ret != 0)
1158
		return ret;
1159

1160
	ret = machine_constraints_current(rdev, rdev->constraints);
1161
	if (ret != 0)
1162
		return ret;
1163

1164 1165 1166 1167 1168
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1169
			return ret;
1170 1171 1172
		}
	}

1173
	/* do we need to setup our suspend state */
1174
	if (rdev->constraints->initial_state) {
1175
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1176
		if (ret < 0) {
1177
			rdev_err(rdev, "failed to set suspend state\n");
1178
			return ret;
1179 1180
		}
	}
1181

1182
	if (rdev->constraints->initial_mode) {
1183
		if (!ops->set_mode) {
1184
			rdev_err(rdev, "no set_mode operation\n");
1185
			return -EINVAL;
1186 1187
		}

1188
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1189
		if (ret < 0) {
1190
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1191
			return ret;
1192 1193 1194
		}
	}

1195 1196 1197
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1198 1199 1200
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1201
			rdev_err(rdev, "failed to enable\n");
1202
			return ret;
1203 1204 1205
		}
	}

1206 1207
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1208 1209 1210
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1211
			return ret;
1212 1213 1214
		}
	}

S
Stephen Boyd 已提交
1215 1216 1217 1218
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1219
			return ret;
S
Stephen Boyd 已提交
1220 1221 1222
		}
	}

S
Stephen Boyd 已提交
1223 1224 1225 1226
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1227
			return ret;
S
Stephen Boyd 已提交
1228 1229 1230
		}
	}

1231 1232 1233 1234 1235
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1236
			return ret;
1237 1238 1239
		}
	}

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1251
	print_constraints(rdev);
1252
	return 0;
1253 1254 1255 1256
}

/**
 * set_supply - set regulator supply regulator
1257 1258
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1259 1260 1261 1262 1263 1264
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1265
		      struct regulator_dev *supply_rdev)
1266 1267 1268
{
	int err;

1269 1270
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1271 1272 1273
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1274
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1275 1276
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1277
		return err;
1278
	}
1279
	supply_rdev->open_count++;
1280 1281

	return 0;
1282 1283 1284
}

/**
1285
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1286
 * @rdev:         regulator source
1287
 * @consumer_dev_name: dev_name() string for device supply applies to
1288
 * @supply:       symbolic name for supply
1289 1290 1291 1292 1293 1294 1295
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1296 1297
				      const char *consumer_dev_name,
				      const char *supply)
1298 1299
{
	struct regulator_map *node;
1300
	int has_dev;
1301 1302 1303 1304

	if (supply == NULL)
		return -EINVAL;

1305 1306 1307 1308 1309
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1310
	list_for_each_entry(node, &regulator_map_list, list) {
1311 1312 1313 1314
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1315
			continue;
1316 1317
		}

1318 1319 1320
		if (strcmp(node->supply, supply) != 0)
			continue;

1321 1322 1323 1324 1325 1326
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1327 1328 1329
		return -EBUSY;
	}

1330
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1331 1332 1333 1334 1335 1336
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1337 1338 1339 1340 1341 1342
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1343 1344
	}

1345 1346 1347 1348
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1349 1350 1351 1352 1353 1354 1355
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1356
			kfree(node->dev_name);
1357 1358 1359 1360 1361
			kfree(node);
		}
	}
}

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1411
#define REG_STR_SIZE	64
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1425
	regulator_lock(rdev);
1426 1427 1428 1429
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1430 1431
		regulator->dev = dev;

1432
		/* Add a link to the device sysfs entry */
1433 1434
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1435
		if (size >= REG_STR_SIZE)
1436
			goto overflow_err;
1437 1438 1439

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1440
			goto overflow_err;
1441

1442
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1443 1444
					buf);
		if (err) {
1445
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1446
				  dev->kobj.name, err);
1447
			/* non-fatal */
1448
		}
1449
	} else {
1450
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1451
		if (regulator->supply_name == NULL)
1452
			goto overflow_err;
1453 1454 1455 1456
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1457
	if (!regulator->debugfs) {
1458
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1459 1460 1461 1462
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1463
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1464
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1465
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1466 1467 1468
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1469
	}
1470

1471 1472 1473 1474 1475
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1476
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1477 1478 1479
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1480
	regulator_unlock(rdev);
1481 1482 1483 1484
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1485
	regulator_unlock(rdev);
1486 1487 1488
	return NULL;
}

1489 1490
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1491 1492
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1493
	if (!rdev->desc->ops->enable_time)
1494
		return rdev->desc->enable_time;
1495 1496 1497
	return rdev->desc->ops->enable_time(rdev);
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1546 1547 1548 1549 1550
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1551
 */
1552
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1553
						  const char *supply)
1554
{
1555
	struct regulator_dev *r = NULL;
1556
	struct device_node *node;
1557 1558
	struct regulator_map *map;
	const char *devname = NULL;
1559

1560 1561
	regulator_supply_alias(&dev, &supply);

1562 1563 1564
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1565
		if (node) {
1566 1567 1568
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1569

1570
			/*
1571 1572
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1573
			 */
1574
			return ERR_PTR(-EPROBE_DEFER);
1575
		}
1576 1577 1578
	}

	/* if not found, try doing it non-dt way */
1579 1580 1581
	if (dev)
		devname = dev_name(dev);

1582
	mutex_lock(&regulator_list_mutex);
1583 1584 1585 1586 1587 1588
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1589 1590
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1591 1592
			r = map->regulator;
			break;
1593
		}
1594
	}
1595
	mutex_unlock(&regulator_list_mutex);
1596

1597 1598 1599 1600
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1601 1602 1603 1604
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1605 1606
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1621 1622 1623 1624
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1625 1626 1627 1628
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1629 1630
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1631
			get_device(&r->dev);
1632 1633 1634 1635 1636
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1637 1638
	}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1652 1653
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1654 1655
	if (ret < 0) {
		put_device(&r->dev);
1656
		return ret;
1657
	}
1658 1659

	ret = set_supply(rdev, r);
1660 1661
	if (ret < 0) {
		put_device(&r->dev);
1662
		return ret;
1663
	}
1664 1665

	/* Cascade always-on state to supply */
1666
	if (_regulator_is_enabled(rdev)) {
1667
		ret = regulator_enable(rdev->supply);
1668
		if (ret < 0) {
1669
			_regulator_put(rdev->supply);
1670
			rdev->supply = NULL;
1671
			return ret;
1672
		}
1673 1674 1675 1676 1677
	}

	return 0;
}

1678
/* Internal regulator request function */
1679 1680
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1681 1682
{
	struct regulator_dev *rdev;
1683
	struct regulator *regulator;
1684
	const char *devname = dev ? dev_name(dev) : "deviceless";
1685
	int ret;
1686

1687 1688 1689 1690 1691
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1692
	if (id == NULL) {
1693
		pr_err("get() with no identifier\n");
1694
		return ERR_PTR(-EINVAL);
1695 1696
	}

1697
	rdev = regulator_dev_lookup(dev, id);
1698 1699
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1700

1701 1702 1703 1704 1705 1706
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1707

1708 1709 1710 1711 1712
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1713

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1727

1728 1729 1730 1731
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1732

1733 1734 1735
		default:
			return ERR_PTR(-ENODEV);
		}
1736 1737
	}

1738 1739
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1740 1741
		put_device(&rdev->dev);
		return regulator;
1742 1743
	}

1744
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1745
		regulator = ERR_PTR(-EBUSY);
1746 1747
		put_device(&rdev->dev);
		return regulator;
1748 1749
	}

1750 1751 1752
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1753 1754
		put_device(&rdev->dev);
		return regulator;
1755 1756
	}

1757
	if (!try_module_get(rdev->owner)) {
1758
		regulator = ERR_PTR(-EPROBE_DEFER);
1759 1760 1761
		put_device(&rdev->dev);
		return regulator;
	}
1762

1763 1764 1765
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1766
		put_device(&rdev->dev);
1767
		module_put(rdev->owner);
1768
		return regulator;
1769 1770
	}

1771
	rdev->open_count++;
1772
	if (get_type == EXCLUSIVE_GET) {
1773 1774 1775 1776 1777 1778 1779 1780 1781
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1782 1783
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);

1784 1785
	return regulator;
}
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1802
	return _regulator_get(dev, id, NORMAL_GET);
1803
}
1804 1805
EXPORT_SYMBOL_GPL(regulator_get);

1806 1807 1808 1809 1810 1811 1812
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1813 1814 1815
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1829
	return _regulator_get(dev, id, EXCLUSIVE_GET);
1830 1831 1832
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1833 1834 1835 1836 1837 1838
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1839
 * or IS_ERR() condition containing errno.
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1855
	return _regulator_get(dev, id, OPTIONAL_GET);
1856 1857 1858
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1859
/* regulator_list_mutex lock held by regulator_put() */
1860
static void _regulator_put(struct regulator *regulator)
1861 1862 1863
{
	struct regulator_dev *rdev;

1864
	if (IS_ERR_OR_NULL(regulator))
1865 1866
		return;

1867 1868
	lockdep_assert_held_once(&regulator_list_mutex);

1869 1870
	rdev = regulator->rdev;

1871 1872
	debugfs_remove_recursive(regulator->debugfs);

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	if (regulator->dev) {
		int count = 0;
		struct regulator *r;

		list_for_each_entry(r, &rdev->consumer_list, list)
			if (r->dev == regulator->dev)
				count++;

		if (count == 1)
			device_link_remove(regulator->dev, &rdev->dev);

		/* remove any sysfs entries */
1885
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1886 1887
	}

1888
	regulator_lock(rdev);
1889 1890
	list_del(&regulator->list);

1891 1892
	rdev->open_count--;
	rdev->exclusive = 0;
1893
	put_device(&rdev->dev);
1894
	regulator_unlock(rdev);
1895

1896
	kfree_const(regulator->supply_name);
1897 1898
	kfree(regulator);

1899
	module_put(rdev->owner);
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1914 1915 1916 1917
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1995 1996
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1997
					 struct device *alias_dev,
1998
					 const char *const *alias_id,
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2036
					    const char *const *id,
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2047 2048 2049 2050 2051
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2052
	struct gpio_desc *gpiod;
2053 2054
	int ret;

2055 2056 2057 2058
	if (config->ena_gpiod)
		gpiod = config->ena_gpiod;
	else
		gpiod = gpio_to_desc(config->ena_gpio);
2059

2060
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2061
		if (pin->gpiod == gpiod) {
2062 2063 2064 2065 2066 2067
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

2068 2069 2070 2071 2072 2073 2074
	if (!config->ena_gpiod) {
		ret = gpio_request_one(config->ena_gpio,
				       GPIOF_DIR_OUT | config->ena_gpio_flags,
				       rdev_get_name(rdev));
		if (ret)
			return ret;
	}
2075 2076 2077

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
2078 2079
		if (!config->ena_gpiod)
			gpio_free(config->ena_gpio);
2080 2081 2082
		return -ENOMEM;
	}

2083
	pin->gpiod = gpiod;
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2102
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2103 2104
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2105
				gpiod_put(pin->gpiod);
2106 2107
				list_del(&pin->list);
				kfree(pin);
2108 2109
				rdev->ena_pin = NULL;
				return;
2110 2111 2112 2113 2114 2115 2116
			} else {
				pin->request_count--;
			}
		}
	}
}

2117
/**
2118 2119 2120 2121
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2135 2136
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2147 2148
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
2149 2150 2151 2152 2153 2154 2155
			pin->enable_count = 0;
		}
	}

	return 0;
}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2235
	if (rdev->ena_pin) {
2236 2237 2238 2239 2240 2241
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2242
	} else if (rdev->desc->ops->enable) {
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2255
	_regulator_enable_delay(delay);
2256 2257 2258 2259 2260 2261

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2262 2263 2264
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
2265
	int ret;
2266

2267 2268
	lockdep_assert_held_once(&rdev->mutex);

2269
	/* check voltage and requested load before enabling */
2270
	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2271
		drms_uA_update(rdev);
2272

2273 2274 2275 2276
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2277 2278
			if (!regulator_ops_is_valid(rdev,
					REGULATOR_CHANGE_STATUS))
2279 2280
				return -EPERM;

2281
			ret = _regulator_do_enable(rdev);
2282 2283 2284
			if (ret < 0)
				return ret;

2285 2286
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2287
		} else if (ret < 0) {
2288
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2289 2290
			return ret;
		}
2291
		/* Fallthrough on positive return values - already enabled */
2292 2293
	}

2294 2295 2296
	rdev->use_count++;

	return 0;
2297 2298 2299 2300 2301 2302
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2303 2304 2305 2306
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2307
 * NOTE: the output value can be set by other drivers, boot loader or may be
2308
 * hardwired in the regulator.
2309 2310 2311
 */
int regulator_enable(struct regulator *regulator)
{
2312 2313
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2314

2315 2316 2317
	if (regulator->always_on)
		return 0;

2318 2319 2320 2321 2322 2323
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

2324 2325 2326 2327 2328 2329 2330
	regulator_lock_dependent(rdev);
	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret != 0)
			goto unlock;
	}
D
David Brownell 已提交
2331
	ret = _regulator_enable(rdev);
2332 2333
unlock:
	regulator_unlock_dependent(rdev);
2334

2335
	if (ret != 0 && rdev->supply)
2336 2337
		regulator_disable(rdev->supply);

2338 2339 2340 2341
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2342 2343 2344 2345 2346 2347
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2348
	if (rdev->ena_pin) {
2349 2350 2351 2352 2353 2354
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2355 2356 2357 2358 2359 2360 2361

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2362 2363 2364 2365 2366 2367
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2368 2369 2370 2371 2372
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2373
/* locks held by regulator_disable() */
2374
static int _regulator_disable(struct regulator_dev *rdev)
2375 2376 2377
{
	int ret = 0;

2378 2379
	lockdep_assert_held_once(&rdev->mutex);

D
David Brownell 已提交
2380
	if (WARN(rdev->use_count <= 0,
2381
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2382 2383
		return -EIO;

2384
	/* are we the last user and permitted to disable ? */
2385 2386
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2387 2388

		/* we are last user */
2389
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2390 2391 2392 2393 2394 2395
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2396
			ret = _regulator_do_disable(rdev);
2397
			if (ret < 0) {
2398
				rdev_err(rdev, "failed to disable\n");
2399 2400 2401
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2402 2403
				return ret;
			}
2404 2405
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2406 2407 2408 2409
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
2410
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2411 2412 2413 2414
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2415

2416 2417 2418 2419 2420 2421 2422
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2423 2424 2425
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2426
 *
2427
 * NOTE: this will only disable the regulator output if no other consumer
2428 2429
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2430 2431 2432
 */
int regulator_disable(struct regulator *regulator)
{
2433 2434
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2435

2436 2437 2438
	if (regulator->always_on)
		return 0;

2439
	regulator_lock_dependent(rdev);
2440
	ret = _regulator_disable(rdev);
2441 2442 2443
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
	regulator_unlock_dependent(rdev);
2444

2445 2446
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2447

2448 2449 2450 2451 2452
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2453
static int _regulator_force_disable(struct regulator_dev *rdev)
2454 2455 2456
{
	int ret = 0;

2457 2458
	lockdep_assert_held_once(&rdev->mutex);

2459 2460 2461 2462 2463
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2464 2465 2466
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2467 2468
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2469
		return ret;
2470 2471
	}

2472 2473 2474 2475
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2489
	struct regulator_dev *rdev = regulator->rdev;
2490 2491
	int ret;

2492
	regulator_lock_dependent(rdev);
2493
	regulator->uA_load = 0;
2494
	ret = _regulator_force_disable(regulator->rdev);
2495 2496 2497
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
	regulator_unlock_dependent(rdev);
2498

2499 2500 2501
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2502

2503 2504 2505 2506
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2507 2508 2509 2510 2511 2512
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

2513
	regulator_lock(rdev);
2514 2515 2516 2517 2518 2519

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

2520 2521 2522 2523 2524 2525 2526 2527
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2528 2529 2530 2531 2532 2533
	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

2534
	regulator_unlock(rdev);
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2563 2564 2565
	if (regulator->always_on)
		return 0;

2566 2567 2568
	if (!ms)
		return regulator_disable(regulator);

2569
	regulator_lock(rdev);
2570
	rdev->deferred_disables++;
2571 2572
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2573
	regulator_unlock(rdev);
2574

2575
	return 0;
2576 2577 2578
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2579 2580
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2581
	/* A GPIO control always takes precedence */
2582
	if (rdev->ena_pin)
2583 2584
		return rdev->ena_gpio_state;

2585
	/* If we don't know then assume that the regulator is always on */
2586
	if (!rdev->desc->ops->is_enabled)
2587
		return 1;
2588

2589
	return rdev->desc->ops->is_enabled(rdev);
2590 2591
}

2592 2593
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2605
			regulator_lock(rdev);
2606 2607
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2608
			regulator_unlock(rdev);
2609
	} else if (rdev->is_switch && rdev->supply) {
2610 2611
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2626 2627 2628 2629
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2630 2631 2632 2633 2634 2635 2636
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2637 2638 2639
 */
int regulator_is_enabled(struct regulator *regulator)
{
2640 2641
	int ret;

2642 2643 2644
	if (regulator->always_on)
		return 1;

2645
	regulator_lock_dependent(regulator->rdev);
2646
	ret = _regulator_is_enabled(regulator->rdev);
2647
	regulator_unlock_dependent(regulator->rdev);
2648 2649

	return ret;
2650 2651 2652
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2665 2666 2667
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2668
	if (!rdev->is_switch || !rdev->supply)
2669 2670 2671
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2682
 * zero if this selector code can't be used on this system, or a
2683 2684 2685 2686
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2687
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2688 2689 2690
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2723 2724
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2725 2726 2727 2728

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2729 2730
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2750 2751
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2789
	struct regulator_dev *rdev = regulator->rdev;
2790 2791
	int i, voltages, ret;

2792
	/* If we can't change voltage check the current voltage */
2793
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2794 2795
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2796
			return min_uV <= ret && ret <= max_uV;
2797 2798 2799 2800
		else
			return ret;
	}

2801 2802 2803 2804 2805
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2820
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2821

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

2836 2837 2838 2839 2840
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

2841 2842 2843
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2893 2894 2895 2896 2897 2898 2899 2900 2901
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
2902 2903
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
2904 2905 2906 2907 2908 2909
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
2910 2911

	if (ramp_delay == 0) {
2912
		rdev_dbg(rdev, "ramp_delay not set\n");
2913 2914 2915 2916 2917 2918
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

2919 2920 2921 2922
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2923
	int delay = 0;
2924
	int best_val = 0;
2925
	unsigned int selector;
2926
	int old_selector = -1;
2927
	const struct regulator_ops *ops = rdev->desc->ops;
2928
	int old_uV = _regulator_get_voltage(rdev);
2929 2930 2931

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2932 2933 2934
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2935 2936 2937 2938
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2939
	if (_regulator_is_enabled(rdev) &&
2940 2941
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
2942 2943 2944 2945
		if (old_selector < 0)
			return old_selector;
	}

2946
	if (ops->set_voltage) {
2947 2948
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2949 2950

		if (ret >= 0) {
2951 2952 2953
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
2954 2955 2956 2957
			else
				best_val = _regulator_get_voltage(rdev);
		}

2958
	} else if (ops->set_voltage_sel) {
2959
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2960
		if (ret >= 0) {
2961
			best_val = ops->list_voltage(rdev, ret);
2962 2963
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2964 2965 2966
				if (old_selector == selector)
					ret = 0;
				else
2967 2968
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2969 2970 2971
			} else {
				ret = -EINVAL;
			}
2972
		}
2973 2974 2975
	} else {
		ret = -EINVAL;
	}
2976

2977 2978
	if (ret)
		goto out;
2979

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
2997
		}
2998
	}
2999

3000 3001 3002
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3003 3004
	}

3005 3006 3007 3008 3009 3010
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3011 3012
	}

3013
	if (best_val >= 0) {
3014 3015
		unsigned long data = best_val;

3016
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3017 3018
				     (void *)data);
	}
3019

3020
out:
3021
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3022 3023 3024 3025

	return ret;
}

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3052
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3053 3054
					  int min_uV, int max_uV,
					  suspend_state_t state)
3055 3056
{
	struct regulator_dev *rdev = regulator->rdev;
3057
	struct regulator_voltage *voltage = &regulator->voltage[state];
3058
	int ret = 0;
3059
	int old_min_uV, old_max_uV;
3060
	int current_uV;
3061

3062 3063 3064 3065
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3066
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3067 3068
		goto out;

3069
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3070
	 * return successfully even though the regulator does not support
3071 3072
	 * changing the voltage.
	 */
3073
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3074 3075
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
3076 3077
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3078 3079 3080 3081
			goto out;
		}
	}

3082
	/* sanity check */
3083 3084
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3085 3086 3087 3088 3089 3090 3091 3092
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3093

3094
	/* restore original values in case of error */
3095 3096 3097 3098
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3099

3100 3101
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3102
	if (ret < 0)
3103
		goto out2;
3104

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
out:
	return 0;
out2:
	voltage->min_uV = old_min_uV;
	voltage->max_uV = old_max_uV;

	return ret;
}

static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
				      int max_uV, suspend_state_t state)
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3121 3122 3123
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3124 3125
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3126 3127 3128 3129 3130 3131
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3132
			goto out;
3133 3134
		}

M
Mark Brown 已提交
3135
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3136 3137
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3138
			goto out;
3139 3140 3141 3142 3143 3144 3145
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3146
			goto out;
3147 3148 3149 3150 3151 3152 3153
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3154
				best_supply_uV, INT_MAX, state);
3155 3156 3157
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3158
			goto out;
3159 3160 3161
		}
	}

3162 3163 3164 3165 3166
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3167
	if (ret < 0)
3168
		goto out;
3169

3170 3171
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3172
				best_supply_uV, INT_MAX, state);
3173 3174 3175 3176 3177 3178 3179
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3180
out:
3181 3182 3183
	return ret;
}

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int max_spread = constraints->max_spread;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
	int i, ret;
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

		lockdep_assert_held_once(&c_rdevs[i]->mutex);

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;

		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

		tmp_act = _regulator_get_voltage(c_rdevs[i]);
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
			ret = _regulator_get_voltage(rdev);
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	bool best_c_rdev_done, c_rdev_done[MAX_COUPLED];
	unsigned int delta, best_delta;

	c_rdevs = c_desc->coupled_rdevs;
	n_coupled = c_desc->n_coupled;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		n_coupled = 1;

	if (c_desc->n_resolved < n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	for (i = 0; i < n_coupled; i++)
		c_rdev_done[i] = false;

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

			if (c_rdev_done[i])
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3396

3397 3398
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3399

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
		if (ret < 0)
			goto out;

		c_rdev_done[best_c_rdev] = best_c_rdev_done;

	} while (n_coupled > 1);

out:
	return ret;
}

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	int ret = 0;

3433
	regulator_lock_dependent(regulator->rdev);
3434

3435 3436
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3437

3438
	regulator_unlock_dependent(regulator->rdev);
3439

3440 3441 3442 3443
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3456
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
	int ret = 0;

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3516
	regulator_lock_dependent(regulator->rdev);
3517 3518 3519 3520

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3521
	regulator_unlock_dependent(regulator->rdev);
3522 3523 3524 3525 3526

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3540 3541
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3542 3543 3544 3545 3546
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3547 3548 3549 3550 3551
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3552
	/* Currently requires operations to do this */
3553
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3576
/**
3577 3578
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3579 3580 3581 3582 3583 3584
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3585
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3586
 * set_voltage_time_sel() operation.
3587 3588 3589 3590 3591
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3592
	int old_volt, new_volt;
3593

3594 3595 3596
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3597

3598 3599 3600
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3601 3602 3603 3604 3605
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3606
}
3607
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3608

3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3620
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3621 3622
	int ret, min_uV, max_uV;

3623
	regulator_lock(rdev);
3624 3625 3626 3627 3628 3629 3630 3631

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3632
	if (!voltage->min_uV && !voltage->max_uV) {
3633 3634 3635 3636
		ret = -EINVAL;
		goto out;
	}

3637 3638
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3639 3640 3641 3642 3643 3644

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3645
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3646 3647 3648 3649 3650 3651
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3652
	regulator_unlock(rdev);
3653 3654 3655 3656
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3657 3658
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3659
	int sel, ret;
3660 3661 3662 3663 3664 3665 3666 3667
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3668 3669 3670 3671 3672
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3673 3674 3675 3676

			return _regulator_get_voltage(rdev->supply->rdev);
		}
	}
3677 3678 3679 3680 3681

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3682
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3683
	} else if (rdev->desc->ops->get_voltage) {
3684
		ret = rdev->desc->ops->get_voltage(rdev);
3685 3686
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3687 3688
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3689
	} else if (rdev->supply) {
3690
		ret = _regulator_get_voltage(rdev->supply->rdev);
3691
	} else {
3692
		return -EINVAL;
3693
	}
3694

3695 3696
	if (ret < 0)
		return ret;
3697
	return ret - rdev->constraints->uV_offset;
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

3713
	regulator_lock_dependent(regulator->rdev);
3714 3715 3716

	ret = _regulator_get_voltage(regulator->rdev);

3717
	regulator_unlock_dependent(regulator->rdev);
3718 3719 3720 3721 3722 3723 3724 3725

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
3726
 * @min_uA: Minimum supported current in uA
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

3745
	regulator_lock(rdev);
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
3760
	regulator_unlock(rdev);
3761 3762 3763 3764
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

3765 3766 3767 3768 3769 3770 3771 3772 3773
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

3774 3775 3776 3777
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

3778
	regulator_lock(rdev);
3779
	ret = _regulator_get_current_limit_unlocked(rdev);
3780
	regulator_unlock(rdev);
3781

3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3815
	int regulator_curr_mode;
3816

3817
	regulator_lock(rdev);
3818 3819 3820 3821 3822 3823 3824

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

3825 3826 3827 3828 3829 3830 3831 3832 3833
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

3834
	/* constraints check */
3835
	ret = regulator_mode_constrain(rdev, &mode);
3836 3837 3838 3839 3840
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
3841
	regulator_unlock(rdev);
3842 3843 3844 3845
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

3846 3847 3848 3849 3850 3851 3852 3853 3854
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

3855 3856 3857 3858
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

3859
	regulator_lock(rdev);
3860
	ret = _regulator_get_mode_unlocked(rdev);
3861
	regulator_unlock(rdev);
3862

3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

3878 3879 3880 3881 3882
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

3883
	regulator_lock(rdev);
3884 3885 3886 3887 3888 3889 3890 3891 3892

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
3893
	regulator_unlock(rdev);
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

3911
/**
3912
 * regulator_set_load - set regulator load
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
3935
 * On error a negative errno is returned.
3936
 */
3937
int regulator_set_load(struct regulator *regulator, int uA_load)
3938 3939
{
	struct regulator_dev *rdev = regulator->rdev;
3940
	int ret;
3941

3942
	regulator_lock(rdev);
3943
	regulator->uA_load = uA_load;
3944
	ret = drms_uA_update(rdev);
3945
	regulator_unlock(rdev);
3946

3947 3948
	return ret;
}
3949
EXPORT_SYMBOL_GPL(regulator_set_load);
3950

3951 3952 3953 3954
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3955
 * @enable: enable or disable bypass mode
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

3970
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3971 3972
		return 0;

3973
	regulator_lock(rdev);
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

3997
	regulator_unlock(rdev);
3998 3999 4000 4001 4002

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4003 4004 4005
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4006
 * @nb: notifier block
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4021
 * @nb: notifier block
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4033 4034 4035
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4036
static int _notifier_call_chain(struct regulator_dev *rdev,
4037 4038 4039
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4040
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4067 4068
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4069 4070
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
4071 4072
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
4073 4074 4075 4076 4077 4078 4079 4080
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4081
	while (--i >= 0)
4082 4083 4084 4085 4086 4087
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4088 4089 4090 4091 4092 4093 4094
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4110
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4111
	int i;
4112
	int ret = 0;
4113

4114 4115 4116 4117 4118 4119 4120
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
4121 4122 4123 4124

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4125
	for (i = 0; i < num_consumers; i++) {
4126 4127
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4128
			goto err;
4129
		}
4130 4131 4132 4133 4134
	}

	return 0;

err:
4135 4136 4137 4138 4139 4140 4141
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4155 4156
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4157 4158 4159 4160 4161 4162
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4163
	int ret, r;
4164

4165
	for (i = num_consumers - 1; i >= 0; --i) {
4166 4167 4168 4169 4170 4171 4172 4173
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4174
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4175 4176 4177
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4178
			pr_err("Failed to re-enable %s: %d\n",
4179 4180
			       consumers[i].supply, r);
	}
4181 4182 4183 4184 4185

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4204
	int ret = 0;
4205

4206
	for (i = 0; i < num_consumers; i++) {
4207 4208 4209
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4210 4211
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4212 4213 4214 4215 4216 4217 4218
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4242
 * @rdev: regulator source
4243
 * @event: notifier block
4244
 * @data: callback-specific data.
4245 4246 4247
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4248
 * Note lock must be held by caller.
4249 4250 4251 4252
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4253 4254
	lockdep_assert_held_once(&rdev->mutex);

4255 4256 4257 4258 4259 4260
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4277
	case REGULATOR_MODE_STANDBY:
4278 4279
		return REGULATOR_STATUS_STANDBY;
	default:
4280
		return REGULATOR_STATUS_UNDEFINED;
4281 4282 4283 4284
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4312 4313 4314 4315
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4316 4317
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4318
{
4319
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4320
	struct regulator_dev *rdev = dev_to_rdev(dev);
4321
	const struct regulator_ops *ops = rdev->desc->ops;
4322 4323 4324 4325 4326 4327 4328
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4329 4330

	/* some attributes need specific methods to be displayed */
4331 4332 4333 4334 4335 4336 4337
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4338
	}
4339

4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4355
	/* some attributes are type-specific */
4356 4357
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
4358 4359

	/* constraints need specific supporting methods */
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4395

4396 4397 4398
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4399 4400 4401

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4402
	kfree(rdev);
4403 4404
}

4405 4406
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4419
	if (!rdev->debugfs) {
4420 4421 4422 4423 4424 4425 4426 4427
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4428 4429
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4430 4431
}

4432 4433
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4434 4435 4436 4437 4438 4439
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4440 4441
}

4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
static int regulator_fill_coupling_array(struct regulator_dev *rdev)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

		if (c_rdev) {
			c_desc->coupled_rdevs[i] = c_rdev;
			c_desc->n_resolved++;
		}
	}

	if (rdev->coupling_desc.n_resolved < n_coupled)
		return -1;
	else
		return 0;
}

static int regulator_register_fill_coupling_array(struct device *dev,
						  void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (!IS_ENABLED(CONFIG_OF))
		return 0;

	if (regulator_fill_coupling_array(rdev))
		rdev_dbg(rdev, "unable to resolve coupling\n");

	return 0;
}

static int regulator_resolve_coupling(struct regulator_dev *rdev)
{
	int n_phandles;

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

	if (n_phandles + 1 > MAX_COUPLED) {
		rdev_err(rdev, "too many regulators coupled\n");
		return -EPERM;
	}

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

	/* regulator, which can't change its voltage, can't be coupled */
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
		rdev_err(rdev, "voltage operation not allowed\n");
		return -EPERM;
	}

	if (rdev->constraints->max_spread <= 0) {
		rdev_err(rdev, "wrong max_spread value\n");
		return -EPERM;
	}

	if (!of_check_coupling_data(rdev))
		return -EPERM;

	/*
	 * After everything has been checked, try to fill rdevs array
	 * with pointers to regulators parsed from device tree. If some
	 * regulators are not registered yet, retry in late init call
	 */
	regulator_fill_coupling_array(rdev);

	return 0;
}

4532 4533
/**
 * regulator_register - register regulator
4534
 * @regulator_desc: regulator to register
4535
 * @cfg: runtime configuration for regulator
4536 4537
 *
 * Called by regulator drivers to register a regulator.
4538 4539
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4540
 */
4541 4542
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4543
		   const struct regulator_config *cfg)
4544
{
4545
	const struct regulation_constraints *constraints = NULL;
4546
	const struct regulator_init_data *init_data;
4547
	struct regulator_config *config = NULL;
4548
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4549
	struct regulator_dev *rdev;
4550
	struct device *dev;
4551
	int ret, i;
4552

4553
	if (regulator_desc == NULL || cfg == NULL)
4554 4555
		return ERR_PTR(-EINVAL);

4556
	dev = cfg->dev;
4557
	WARN_ON(!dev);
4558

4559 4560 4561
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

4562 4563
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
4564 4565
		return ERR_PTR(-EINVAL);

4566 4567 4568
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
4569 4570
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
4571 4572 4573 4574 4575 4576

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
4577 4578 4579 4580
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
4581

4582 4583 4584 4585
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

4596
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4597 4598 4599 4600 4601 4602
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

4603
	mutex_init(&rdev->mutex);
4604
	rdev->reg_data = config->driver_data;
4605 4606
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
4607 4608
	if (config->regmap)
		rdev->regmap = config->regmap;
4609
	else if (dev_get_regmap(dev, NULL))
4610
		rdev->regmap = dev_get_regmap(dev, NULL);
4611 4612
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4613 4614 4615
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4616
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4617

4618
	/* preform any regulator specific init */
4619
	if (init_data && init_data->regulator_init) {
4620
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
4621 4622
		if (ret < 0)
			goto clean;
4623 4624
	}

4625 4626 4627
	if (config->ena_gpiod ||
	    ((config->ena_gpio || config->ena_gpio_initialized) &&
	     gpio_is_valid(config->ena_gpio))) {
4628
		mutex_lock(&regulator_list_mutex);
4629
		ret = regulator_ena_gpio_request(rdev, config);
4630
		mutex_unlock(&regulator_list_mutex);
4631 4632 4633
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
4634
			goto clean;
4635 4636 4637
		}
	}

4638
	/* register with sysfs */
4639
	rdev->dev.class = &regulator_class;
4640
	rdev->dev.parent = dev;
4641
	dev_set_name(&rdev->dev, "regulator.%lu",
4642
		    (unsigned long) atomic_inc_return(&regulator_no));
4643

4644
	/* set regulator constraints */
4645 4646 4647 4648
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
4649
		rdev->supply_name = init_data->supply_regulator;
4650
	else if (regulator_desc->supply_name)
4651
		rdev->supply_name = regulator_desc->supply_name;
4652

4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

4665 4666 4667 4668 4669 4670 4671
	mutex_lock(&regulator_list_mutex);
	ret = regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0)
		goto wash;

4672
	/* add consumers devices */
4673
	if (init_data) {
4674
		mutex_lock(&regulator_list_mutex);
4675 4676 4677
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
4678
				init_data->consumer_supplies[i].supply);
4679
			if (ret < 0) {
4680
				mutex_unlock(&regulator_list_mutex);
4681 4682 4683 4684
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
4685
		}
4686
		mutex_unlock(&regulator_list_mutex);
4687
	}
4688

4689 4690 4691 4692 4693
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

4694
	dev_set_drvdata(&rdev->dev, rdev);
4695 4696 4697 4698 4699 4700
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

4701
	rdev_init_debugfs(rdev);
4702 4703 4704 4705

	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
4706
	kfree(config);
4707
	return rdev;
D
David Brownell 已提交
4708

4709
unset_supplies:
4710
	mutex_lock(&regulator_list_mutex);
4711
	unset_regulator_supplies(rdev);
4712
	mutex_unlock(&regulator_list_mutex);
4713
wash:
4714
	kfree(rdev->constraints);
4715
	mutex_lock(&regulator_list_mutex);
4716
	regulator_ena_gpio_free(rdev);
4717
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
4718 4719
clean:
	kfree(rdev);
4720 4721
	kfree(config);
	return ERR_PTR(ret);
4722 4723 4724 4725 4726
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
4727
 * @rdev: regulator to unregister
4728 4729 4730 4731 4732 4733 4734 4735
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

4736 4737 4738
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
4739
		regulator_put(rdev->supply);
4740
	}
4741
	mutex_lock(&regulator_list_mutex);
4742
	debugfs_remove_recursive(rdev->debugfs);
4743
	flush_work(&rdev->disable_work.work);
4744
	WARN_ON(rdev->open_count);
4745
	unset_regulator_supplies(rdev);
4746
	list_del(&rdev->list);
4747
	regulator_ena_gpio_free(rdev);
4748
	mutex_unlock(&regulator_list_mutex);
4749
	device_unregister(&rdev->dev);
4750 4751 4752
}
EXPORT_SYMBOL_GPL(regulator_unregister);

4753
#ifdef CONFIG_SUSPEND
4754
/**
4755
 * regulator_suspend - prepare regulators for system wide suspend
4756
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
4757 4758 4759
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
4760
static int regulator_suspend(struct device *dev)
4761
{
4762
	struct regulator_dev *rdev = dev_to_rdev(dev);
4763
	suspend_state_t state = pm_suspend_target_state;
4764 4765 4766 4767 4768
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
4769

4770
	return ret;
4771
}
4772

4773
static int regulator_resume(struct device *dev)
4774
{
4775
	suspend_state_t state = pm_suspend_target_state;
4776
	struct regulator_dev *rdev = dev_to_rdev(dev);
4777
	struct regulator_state *rstate;
4778
	int ret = 0;
4779

4780
	rstate = regulator_get_suspend_state(rdev, state);
4781
	if (rstate == NULL)
4782
		return 0;
4783

4784
	regulator_lock(rdev);
4785

4786
	if (rdev->desc->ops->resume &&
4787 4788
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
4789
		ret = rdev->desc->ops->resume(rdev);
4790

4791
	regulator_unlock(rdev);
4792

4793
	return ret;
4794
}
4795 4796
#else /* !CONFIG_SUSPEND */

4797 4798
#define regulator_suspend	NULL
#define regulator_resume	NULL
4799 4800 4801 4802 4803

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4804 4805
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
4806 4807 4808
};
#endif

M
Mark Brown 已提交
4809
struct class regulator_class = {
4810 4811 4812 4813 4814 4815 4816
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

4834 4835
/**
 * rdev_get_drvdata - get rdev regulator driver data
4836
 * @rdev: regulator
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
4873
 * @rdev: regulator
4874 4875 4876 4877 4878 4879 4880
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

4893
#ifdef CONFIG_DEBUG_FS
4894
static int supply_map_show(struct seq_file *sf, void *data)
4895 4896 4897 4898
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
4899 4900 4901
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
4902 4903
	}

4904 4905
	return 0;
}
4906

4907 4908 4909
static int supply_map_open(struct inode *inode, struct file *file)
{
	return single_open(file, supply_map_show, inode->i_private);
4910
}
4911
#endif
4912 4913

static const struct file_operations supply_map_fops = {
4914
#ifdef CONFIG_DEBUG_FS
4915 4916 4917 4918
	.open = supply_map_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
4919
#endif
4920
};
4921

4922
#ifdef CONFIG_DEBUG_FS
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

4945 4946 4947 4948 4949 4950
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
4951
	struct summary_data summary_data;
4952
	unsigned int opmode;
4953 4954 4955 4956

	if (!rdev)
		return;

4957 4958 4959
	regulator_lock_nested(rdev, level);

	opmode = _regulator_get_mode_unlocked(rdev);
4960
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
4961 4962
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
4963
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
4964
		   regulator_opmode_to_str(opmode));
4965

4966
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4967 4968
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4987
		if (consumer->dev && consumer->dev->class == &regulator_class)
4988 4989 4990 4991
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
4992 4993
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4994 4995 4996

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
4997 4998
			seq_printf(s, "%37dmA %5dmV %5dmV",
				   consumer->uA_load / 1000,
4999 5000
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5001 5002 5003 5004 5005 5006 5007 5008
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5009 5010 5011
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5012

5013 5014
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5015 5016

	regulator_unlock(rdev);
5017 5018
}

5019
static int regulator_summary_show_roots(struct device *dev, void *data)
5020
{
5021 5022
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5023

5024 5025
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5026

5027 5028
	return 0;
}
5029

5030 5031
static int regulator_summary_show(struct seq_file *s, void *data)
{
5032 5033
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5034

5035 5036
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055

	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

5056 5057
static int __init regulator_init(void)
{
5058 5059 5060 5061
	int ret;

	ret = class_register(&regulator_class);

5062
	debugfs_root = debugfs_create_dir("regulator", NULL);
5063
	if (!debugfs_root)
5064
		pr_warn("regulator: Failed to create debugfs directory\n");
5065

5066 5067
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5068

5069
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5070
			    NULL, &regulator_summary_fops);
5071

5072 5073 5074
	regulator_dummy_init();

	return ret;
5075 5076 5077 5078
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5079

5080
static int __init regulator_late_cleanup(struct device *dev, void *data)
5081
{
5082 5083 5084
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5085 5086
	int enabled, ret;

5087 5088 5089
	if (c && c->always_on)
		return 0;

5090
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5091 5092
		return 0;

5093
	regulator_lock(rdev);
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5124
	regulator_unlock(rdev);
5125 5126 5127 5128 5129 5130

	return 0;
}

static int __init regulator_init_complete(void)
{
5131 5132 5133 5134 5135 5136 5137 5138 5139
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5150
	/* If we have a full configuration then disable any regulators
5151 5152 5153
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5154
	 */
5155 5156
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5157

5158 5159 5160
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_fill_coupling_array);

5161 5162
	return 0;
}
5163
late_initcall_sync(regulator_init_complete);