core.c 92.5 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/of.h>
28
#include <linux/regmap.h>
29
#include <linux/regulator/of_regulator.h>
30 31 32
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
33
#include <linux/module.h>
34

35 36 37
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

38
#include "dummy.h"
39
#include "internal.h"
40

M
Mark Brown 已提交
41 42
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 44 45 46 47 48 49 50 51
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

52 53 54
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
55
static LIST_HEAD(regulator_ena_gpio_list);
56
static bool has_full_constraints;
57
static bool board_wants_dummy_regulator;
58

59 60
static struct dentry *debugfs_root;

61
/*
62 63 64 65 66 67
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
68
	const char *dev_name;   /* The dev_name() for the consumer */
69
	const char *supply;
70
	struct regulator_dev *regulator;
71 72
};

73 74 75 76 77 78 79 80 81 82 83 84 85
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
	int gpio;
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

86
static int _regulator_is_enabled(struct regulator_dev *rdev);
87
static int _regulator_disable(struct regulator_dev *rdev);
88 89 90 91 92
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
93 94
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
95 96 97
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
98

99 100 101 102 103 104 105 106 107 108
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

109 110 111 112 113 114
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
115
 * returns the device node corresponding to the regulator if found, else
116 117 118 119 120 121 122 123 124 125 126 127 128
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
129
		dev_dbg(dev, "Looking up %s property in node %s failed",
130 131 132 133 134 135
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

136 137 138 139 140 141 142 143 144 145 146
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

147 148 149 150 151 152 153
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
154
		rdev_err(rdev, "no constraints\n");
155 156 157
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
158
		rdev_err(rdev, "operation not allowed\n");
159 160 161 162 163 164 165 166
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

167 168
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
169
			 *min_uV, *max_uV);
170
		return -EINVAL;
171
	}
172 173 174 175

	return 0;
}

176 177 178 179 180 181 182 183 184
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
185 186 187 188 189 190 191
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

192 193 194 195 196 197
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

198
	if (*min_uV > *max_uV) {
199 200
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
201
		return -EINVAL;
202
	}
203 204 205 206

	return 0;
}

207 208 209 210 211 212 213
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
214
		rdev_err(rdev, "no constraints\n");
215 216 217
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
218
		rdev_err(rdev, "operation not allowed\n");
219 220 221 222 223 224 225 226
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

227 228
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
229
			 *min_uA, *max_uA);
230
		return -EINVAL;
231
	}
232 233 234 235 236

	return 0;
}

/* operating mode constraint check */
237
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
238
{
239
	switch (*mode) {
240 241 242 243 244 245
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
246
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
247 248 249
		return -EINVAL;
	}

250
	if (!rdev->constraints) {
251
		rdev_err(rdev, "no constraints\n");
252 253 254
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
255
		rdev_err(rdev, "operation not allowed\n");
256 257
		return -EPERM;
	}
258 259 260 261 262 263 264 265

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
266
	}
267 268

	return -EINVAL;
269 270 271 272 273 274
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
275
		rdev_err(rdev, "no constraints\n");
276 277 278
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
279
		rdev_err(rdev, "operation not allowed\n");
280 281 282 283 284 285 286 287
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
288
	struct regulator_dev *rdev = dev_get_drvdata(dev);
289 290 291 292 293 294 295 296
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
297
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
298 299 300 301

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
302
	struct regulator_dev *rdev = dev_get_drvdata(dev);
303 304 305

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
306
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
307

308 309
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
310 311 312
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

313
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
314
}
315
static DEVICE_ATTR_RO(name);
316

D
David Brownell 已提交
317
static ssize_t regulator_print_opmode(char *buf, int mode)
318 319 320 321 322 323 324 325 326 327 328 329 330 331
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
332 333
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
334
{
335
	struct regulator_dev *rdev = dev_get_drvdata(dev);
336

D
David Brownell 已提交
337 338
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
339
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
340 341 342

static ssize_t regulator_print_state(char *buf, int state)
{
343 344 345 346 347 348 349 350
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
351 352 353 354
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
355 356 357 358 359
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
360

361
	return ret;
D
David Brownell 已提交
362
}
363
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
364

D
David Brownell 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
398 399 400
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
401 402 403
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
404 405 406 407 408 409 410 411
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

412 413 414
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
415
	struct regulator_dev *rdev = dev_get_drvdata(dev);
416 417 418 419 420 421

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
422
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
423 424 425 426

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
427
	struct regulator_dev *rdev = dev_get_drvdata(dev);
428 429 430 431 432 433

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
434
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
435 436 437 438

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
439
	struct regulator_dev *rdev = dev_get_drvdata(dev);
440 441 442 443 444 445

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
446
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
447 448 449 450

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
451
	struct regulator_dev *rdev = dev_get_drvdata(dev);
452 453 454 455 456 457

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
458
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
459 460 461 462

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
463
	struct regulator_dev *rdev = dev_get_drvdata(dev);
464 465 466 467 468
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
469
		uA += regulator->uA_load;
470 471 472
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
473
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
474

475 476
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
477
{
478
	struct regulator_dev *rdev = dev_get_drvdata(dev);
479 480
	return sprintf(buf, "%d\n", rdev->use_count);
}
481
static DEVICE_ATTR_RO(num_users);
482

483 484
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
485
{
486
	struct regulator_dev *rdev = dev_get_drvdata(dev);
487 488 489 490 491 492 493 494 495

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
496
static DEVICE_ATTR_RO(type);
497 498 499 500

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
501
	struct regulator_dev *rdev = dev_get_drvdata(dev);
502 503 504

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
505 506
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
507 508 509 510

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
511
	struct regulator_dev *rdev = dev_get_drvdata(dev);
512 513 514

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
515 516
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
517 518 519 520

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
521
	struct regulator_dev *rdev = dev_get_drvdata(dev);
522 523 524

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
525 526
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
527 528 529 530

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
531
	struct regulator_dev *rdev = dev_get_drvdata(dev);
532

D
David Brownell 已提交
533 534
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
535
}
536 537
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
538 539 540 541

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
542
	struct regulator_dev *rdev = dev_get_drvdata(dev);
543

D
David Brownell 已提交
544 545
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
546
}
547 548
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
549 550 551 552

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
553
	struct regulator_dev *rdev = dev_get_drvdata(dev);
554

D
David Brownell 已提交
555 556
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
557
}
558 559
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
560 561 562 563

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
564
	struct regulator_dev *rdev = dev_get_drvdata(dev);
565

D
David Brownell 已提交
566 567
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
568
}
569 570
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
571 572 573 574

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
575
	struct regulator_dev *rdev = dev_get_drvdata(dev);
576

D
David Brownell 已提交
577 578
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
579
}
580 581
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
582 583 584 585

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
586
	struct regulator_dev *rdev = dev_get_drvdata(dev);
587

D
David Brownell 已提交
588 589
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
590
}
591 592 593
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
615

616 617 618 619
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
620 621 622 623 624
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	NULL,
625
};
626
ATTRIBUTE_GROUPS(regulator_dev);
627 628 629

static void regulator_dev_release(struct device *dev)
{
630
	struct regulator_dev *rdev = dev_get_drvdata(dev);
631 632 633 634 635 636
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
637
	.dev_groups = regulator_dev_groups,
638 639 640 641 642 643 644 645 646 647 648 649
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
650 651 652
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
653
		return;
654 655

	/* get output voltage */
656
	output_uV = _regulator_get_voltage(rdev);
657 658 659 660
	if (output_uV <= 0)
		return;

	/* get input voltage */
661 662
	input_uV = 0;
	if (rdev->supply)
663
		input_uV = regulator_get_voltage(rdev->supply);
664
	if (input_uV <= 0)
665 666 667 668 669 670
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
671
		current_uA += sibling->uA_load;
672 673 674 675 676 677

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
678
	err = regulator_mode_constrain(rdev, &mode);
679 680 681 682 683 684 685 686
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
687 688

	/* If we have no suspend mode configration don't set anything;
689 690
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
691 692
	 */
	if (!rstate->enabled && !rstate->disabled) {
693 694
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
695
			rdev_warn(rdev, "No configuration\n");
696 697 698 699
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
700
		rdev_err(rdev, "invalid configuration\n");
701 702
		return -EINVAL;
	}
703

704
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
705
		ret = rdev->desc->ops->set_suspend_enable(rdev);
706
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
707
		ret = rdev->desc->ops->set_suspend_disable(rdev);
708 709 710
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

711
	if (ret < 0) {
712
		rdev_err(rdev, "failed to enabled/disable\n");
713 714 715 716 717 718
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
719
			rdev_err(rdev, "failed to set voltage\n");
720 721 722 723 724 725 726
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
727
			rdev_err(rdev, "failed to set mode\n");
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
758
	char buf[80] = "";
759 760
	int count = 0;
	int ret;
761

762
	if (constraints->min_uV && constraints->max_uV) {
763
		if (constraints->min_uV == constraints->max_uV)
764 765
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
766
		else
767 768 769 770 771 772 773 774 775 776 777 778
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

779 780 781 782
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

783
	if (constraints->min_uA && constraints->max_uA) {
784
		if (constraints->min_uA == constraints->max_uA)
785 786
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
787
		else
788 789 790 791 792 793 794 795 796
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
797
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
798
	}
799

800 801 802 803 804 805 806 807 808
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

809 810 811
	if (!count)
		sprintf(buf, "no parameters");

M
Mark Brown 已提交
812
	rdev_info(rdev, "%s\n", buf);
813 814 815 816 817

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
818 819
}

820
static int machine_constraints_voltage(struct regulator_dev *rdev,
821
	struct regulation_constraints *constraints)
822
{
823
	struct regulator_ops *ops = rdev->desc->ops;
824 825 826 827
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
828 829 830 831 832 833 834 835 836
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			return ret;
		}
837
	}
838

839 840 841 842 843 844 845 846 847 848 849
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

850 851
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
852
		if (count == 1 && !cmin) {
853
			cmin = 1;
854
			cmax = INT_MAX;
855 856
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
857 858
		}

859 860
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
861
			return 0;
862

863
		/* else require explicit machine-level constraints */
864
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
865
			rdev_err(rdev, "invalid voltage constraints\n");
866
			return -EINVAL;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
886 887 888
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
889
			return -EINVAL;
890 891 892 893
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
894 895
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
896 897 898
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
899 900
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
901 902 903 904
			constraints->max_uV = max_uV;
		}
	}

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
920
	const struct regulation_constraints *constraints)
921 922 923 924
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

925 926 927 928 929 930
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
931 932
	if (!rdev->constraints)
		return -ENOMEM;
933

934
	ret = machine_constraints_voltage(rdev, rdev->constraints);
935 936 937
	if (ret != 0)
		goto out;

938
	/* do we need to setup our suspend state */
939
	if (rdev->constraints->initial_state) {
940
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
941
		if (ret < 0) {
942
			rdev_err(rdev, "failed to set suspend state\n");
943 944 945
			goto out;
		}
	}
946

947
	if (rdev->constraints->initial_mode) {
948
		if (!ops->set_mode) {
949
			rdev_err(rdev, "no set_mode operation\n");
950 951 952 953
			ret = -EINVAL;
			goto out;
		}

954
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
955
		if (ret < 0) {
956
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
957 958 959 960
			goto out;
		}
	}

961 962 963
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
964 965
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
966 967
		ret = ops->enable(rdev);
		if (ret < 0) {
968
			rdev_err(rdev, "failed to enable\n");
969 970 971 972
			goto out;
		}
	}

973 974
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
975 976 977 978 979 980 981
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

982
	print_constraints(rdev);
983
	return 0;
984
out:
985 986
	kfree(rdev->constraints);
	rdev->constraints = NULL;
987 988 989 990 991
	return ret;
}

/**
 * set_supply - set regulator supply regulator
992 993
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
994 995 996 997 998 999
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1000
		      struct regulator_dev *supply_rdev)
1001 1002 1003
{
	int err;

1004 1005 1006
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1007 1008
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1009
		return err;
1010
	}
1011
	supply_rdev->open_count++;
1012 1013

	return 0;
1014 1015 1016
}

/**
1017
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1018
 * @rdev:         regulator source
1019
 * @consumer_dev_name: dev_name() string for device supply applies to
1020
 * @supply:       symbolic name for supply
1021 1022 1023 1024 1025 1026 1027
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1028 1029
				      const char *consumer_dev_name,
				      const char *supply)
1030 1031
{
	struct regulator_map *node;
1032
	int has_dev;
1033 1034 1035 1036

	if (supply == NULL)
		return -EINVAL;

1037 1038 1039 1040 1041
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1042
	list_for_each_entry(node, &regulator_map_list, list) {
1043 1044 1045 1046
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1047
			continue;
1048 1049
		}

1050 1051 1052
		if (strcmp(node->supply, supply) != 0)
			continue;

1053 1054 1055 1056 1057 1058
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1059 1060 1061
		return -EBUSY;
	}

1062
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1063 1064 1065 1066 1067 1068
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1069 1070 1071 1072 1073 1074
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1075 1076
	}

1077 1078 1079 1080
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1081 1082 1083 1084 1085 1086 1087
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1088
			kfree(node->dev_name);
1089 1090 1091 1092 1093
			kfree(node);
		}
	}
}

1094
#define REG_STR_SIZE	64
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1113 1114
		regulator->dev = dev;

1115
		/* Add a link to the device sysfs entry */
1116 1117 1118
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1119
			goto overflow_err;
1120 1121 1122

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1123
			goto overflow_err;
1124 1125 1126 1127

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1128 1129
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1130
			/* non-fatal */
1131
		}
1132 1133 1134
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1135
			goto overflow_err;
1136 1137 1138 1139
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1140
	if (!regulator->debugfs) {
1141 1142 1143 1144 1145 1146 1147 1148
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1149
	}
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1160 1161 1162 1163 1164 1165 1166 1167 1168
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1169 1170 1171
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
1172
		return rdev->desc->enable_time;
1173 1174 1175
	return rdev->desc->ops->enable_time(rdev);
}

1176
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1177 1178
						  const char *supply,
						  int *ret)
1179 1180 1181
{
	struct regulator_dev *r;
	struct device_node *node;
1182 1183
	struct regulator_map *map;
	const char *devname = NULL;
1184 1185 1186 1187

	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1188
		if (node) {
1189 1190 1191 1192
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1193 1194 1195 1196 1197 1198 1199 1200 1201
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1202 1203 1204
	}

	/* if not found, try doing it non-dt way */
1205 1206 1207
	if (dev)
		devname = dev_name(dev);

1208 1209 1210 1211
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1223 1224 1225
	return NULL;
}

1226 1227
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
1228
					bool exclusive)
1229 1230
{
	struct regulator_dev *rdev;
1231
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1232
	const char *devname = NULL;
1233
	int ret = 0;
1234 1235

	if (id == NULL) {
1236
		pr_err("get() with no identifier\n");
1237 1238 1239
		return regulator;
	}

1240 1241 1242
	if (dev)
		devname = dev_name(dev);

1243 1244
	mutex_lock(&regulator_list_mutex);

1245
	rdev = regulator_dev_lookup(dev, id, &ret);
1246 1247 1248
	if (rdev)
		goto found;

1249 1250 1251 1252 1253 1254 1255 1256 1257
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
	if (ret) {
		regulator = ERR_PTR(ret);
		goto out;
	}

1258 1259 1260 1261 1262
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1263 1264 1265 1266 1267 1268 1269 1270
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1271 1272
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1273 1274 1275 1276 1277
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1278 1279 1280 1281
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1292 1293 1294
	if (!try_module_get(rdev->owner))
		goto out;

1295 1296 1297 1298
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1299
		goto out;
1300 1301
	}

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1313
out:
1314
	mutex_unlock(&regulator_list_mutex);
1315

1316 1317
	return regulator;
}
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1334
	return _regulator_get(dev, id, false);
1335
}
1336 1337
EXPORT_SYMBOL_GPL(regulator_get);

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1361
	return _regulator_get(dev, id, true);
1362 1363 1364
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1394 1395
/* Locks held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
1396 1397 1398 1399 1400 1401 1402 1403
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	rdev = regulator->rdev;

1404 1405
	debugfs_remove_recursive(regulator->debugfs);

1406
	/* remove any sysfs entries */
1407
	if (regulator->dev)
1408
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1409
	kfree(regulator->supply_name);
1410 1411 1412
	list_del(&regulator->list);
	kfree(regulator);

1413 1414 1415
	rdev->open_count--;
	rdev->exclusive = 0;

1416
	module_put(rdev->owner);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1431 1432 1433 1434
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
	int ret;

	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
		if (pin->gpio == config->ena_gpio) {
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

	pin->gpio = config->ena_gpio;
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
		if (pin->gpio == rdev->ena_pin->gpio) {
			if (pin->request_count <= 1) {
				pin->request_count = 0;
				gpio_free(pin->gpio);
				list_del(&pin->list);
				kfree(pin);
			} else {
				pin->request_count--;
			}
		}
	}
}

1494
/**
1495 1496 1497 1498
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
			gpio_set_value_cansleep(pin->gpio,
						!pin->ena_gpio_invert);

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
			gpio_set_value_cansleep(pin->gpio,
						pin->ena_gpio_invert);
			pin->enable_count = 0;
		}
	}

	return 0;
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

1548 1549 1550 1551
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, true);
		if (ret < 0)
			return ret;
1552 1553
		rdev->ena_gpio_state = 1;
	} else if (rdev->desc->ops->enable) {
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

1578 1579 1580
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1581
	int ret;
1582 1583

	/* check voltage and requested load before enabling */
1584 1585 1586
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1587

1588 1589 1590 1591 1592 1593 1594
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1595
			ret = _regulator_do_enable(rdev);
1596 1597 1598
			if (ret < 0)
				return ret;

1599
		} else if (ret < 0) {
1600
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1601 1602
			return ret;
		}
1603
		/* Fallthrough on positive return values - already enabled */
1604 1605
	}

1606 1607 1608
	rdev->use_count++;

	return 0;
1609 1610 1611 1612 1613 1614
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1615 1616 1617 1618
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1619
 * NOTE: the output value can be set by other drivers, boot loader or may be
1620
 * hardwired in the regulator.
1621 1622 1623
 */
int regulator_enable(struct regulator *regulator)
{
1624 1625
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1626

1627 1628 1629
	if (regulator->always_on)
		return 0;

1630 1631 1632 1633 1634 1635
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1636
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1637
	ret = _regulator_enable(rdev);
1638
	mutex_unlock(&rdev->mutex);
1639

1640
	if (ret != 0 && rdev->supply)
1641 1642
		regulator_disable(rdev->supply);

1643 1644 1645 1646
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

1647 1648 1649 1650 1651 1652
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

1653 1654 1655 1656
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, false);
		if (ret < 0)
			return ret;
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
		rdev->ena_gpio_state = 0;

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

	trace_regulator_disable_complete(rdev_get_name(rdev));

	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
			     NULL);
	return 0;
}

1672
/* locks held by regulator_disable() */
1673
static int _regulator_disable(struct regulator_dev *rdev)
1674 1675 1676
{
	int ret = 0;

D
David Brownell 已提交
1677
	if (WARN(rdev->use_count <= 0,
1678
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1679 1680
		return -EIO;

1681
	/* are we the last user and permitted to disable ? */
1682 1683
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1684 1685

		/* we are last user */
1686 1687
		if (_regulator_can_change_status(rdev)) {
			ret = _regulator_do_disable(rdev);
1688
			if (ret < 0) {
1689
				rdev_err(rdev, "failed to disable\n");
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
				return ret;
			}
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1704

1705 1706 1707 1708 1709 1710 1711
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1712 1713 1714
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1715
 *
1716
 * NOTE: this will only disable the regulator output if no other consumer
1717 1718
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1719 1720 1721
 */
int regulator_disable(struct regulator *regulator)
{
1722 1723
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1724

1725 1726 1727
	if (regulator->always_on)
		return 0;

1728
	mutex_lock(&rdev->mutex);
1729
	ret = _regulator_disable(rdev);
1730
	mutex_unlock(&rdev->mutex);
1731

1732 1733
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1734

1735 1736 1737 1738 1739
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1740
static int _regulator_force_disable(struct regulator_dev *rdev)
1741 1742 1743 1744 1745 1746 1747 1748
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1749
			rdev_err(rdev, "failed to force disable\n");
1750 1751 1752
			return ret;
		}
		/* notify other consumers that power has been forced off */
1753 1754
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1771
	struct regulator_dev *rdev = regulator->rdev;
1772 1773
	int ret;

1774
	mutex_lock(&rdev->mutex);
1775
	regulator->uA_load = 0;
1776
	ret = _regulator_force_disable(regulator->rdev);
1777
	mutex_unlock(&rdev->mutex);
1778

1779 1780 1781
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1782

1783 1784 1785 1786
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
1834
	int ret;
1835

1836 1837 1838
	if (regulator->always_on)
		return 0;

1839 1840 1841
	if (!ms)
		return regulator_disable(regulator);

1842 1843 1844 1845
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

1846 1847 1848
	ret = queue_delayed_work(system_power_efficient_wq,
				 &rdev->disable_work,
				 msecs_to_jiffies(ms));
1849 1850 1851 1852
	if (ret < 0)
		return ret;
	else
		return 0;
1853 1854 1855
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

1856 1857
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1858
	/* A GPIO control always takes precedence */
1859
	if (rdev->ena_pin)
1860 1861
		return rdev->ena_gpio_state;

1862
	/* If we don't know then assume that the regulator is always on */
1863
	if (!rdev->desc->ops->is_enabled)
1864
		return 1;
1865

1866
	return rdev->desc->ops->is_enabled(rdev);
1867 1868 1869 1870 1871 1872
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1873 1874 1875 1876 1877 1878 1879
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1880 1881 1882
 */
int regulator_is_enabled(struct regulator *regulator)
{
1883 1884
	int ret;

1885 1886 1887
	if (regulator->always_on)
		return 1;

1888 1889 1890 1891 1892
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1893 1894 1895
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
 * can change its voltage, false otherwise. Usefull for detecting fixed
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	if (rdev->constraints &&
1910 1911 1912 1913 1914 1915 1916 1917 1918
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
1919 1920 1921 1922 1923

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1947
 * zero if this selector code can't be used on this system, or a
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2001
	struct regulator_dev *rdev = regulator->rdev;
2002 2003
	int i, voltages, ret;

2004 2005 2006 2007
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2008
			return (min_uV <= ret && ret <= max_uV);
2009 2010 2011 2012
		else
			return ret;
	}

2013 2014 2015 2016 2017
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2032
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2033

2034 2035 2036 2037
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2038
	int delay = 0;
2039
	int best_val = 0;
2040
	unsigned int selector;
2041
	int old_selector = -1;
2042 2043 2044

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2045 2046 2047
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2048 2049 2050 2051
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2052 2053
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2054 2055 2056 2057 2058 2059
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2060 2061 2062
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);
2063 2064 2065 2066 2067 2068 2069 2070 2071

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2072
	} else if (rdev->desc->ops->set_voltage_sel) {
2073
		if (rdev->desc->ops->map_voltage) {
2074 2075
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2076 2077 2078 2079 2080 2081 2082 2083 2084
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2085

2086
		if (ret >= 0) {
2087 2088 2089
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2090 2091 2092 2093 2094
				if (old_selector == selector)
					ret = 0;
				else
					ret = rdev->desc->ops->set_voltage_sel(
								rdev, ret);
2095 2096 2097
			} else {
				ret = -EINVAL;
			}
2098
		}
2099 2100 2101
	} else {
		ret = -EINVAL;
	}
2102

2103
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2104 2105
	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
		&& old_selector != selector) {
2106

2107 2108 2109 2110 2111 2112
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2113
		}
2114

2115 2116 2117 2118 2119 2120 2121
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2122 2123
	}

2124 2125 2126
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2127
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2128 2129
				     (void *)data);
	}
2130

2131
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2132 2133 2134 2135

	return ret;
}

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2151
 * Regulator system constraints must be set for this regulator before
2152 2153 2154 2155 2156
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2157
	int ret = 0;
2158
	int old_min_uV, old_max_uV;
2159 2160 2161

	mutex_lock(&rdev->mutex);

2162 2163 2164 2165 2166 2167 2168
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2169
	/* sanity check */
2170 2171
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2172 2173 2174 2175 2176 2177 2178 2179
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2180 2181 2182 2183
	
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2184 2185
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2186

2187 2188
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2189
		goto out2;
2190

2191
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2192 2193 2194
	if (ret < 0)
		goto out2;
	
2195 2196 2197
out:
	mutex_unlock(&rdev->mutex);
	return ret;
2198 2199 2200 2201
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
	mutex_unlock(&rdev->mutex);
2202 2203 2204 2205
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2251
/**
2252 2253
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
2254 2255 2256 2257 2258 2259
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
2260
 * Drivers providing ramp_delay in regulation_constraints can use this as their
2261
 * set_voltage_time_sel() operation.
2262 2263 2264 2265 2266
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
2267
	unsigned int ramp_delay = 0;
2268
	int old_volt, new_volt;
2269 2270 2271 2272 2273 2274 2275

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2276
		rdev_warn(rdev, "ramp_delay not set\n");
2277
		return 0;
2278
	}
2279

2280 2281 2282
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
2283

2284 2285 2286 2287
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2288
}
2289
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2290

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2338 2339
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2340
	int sel, ret;
2341 2342 2343 2344 2345

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2346
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2347
	} else if (rdev->desc->ops->get_voltage) {
2348
		ret = rdev->desc->ops->get_voltage(rdev);
2349 2350
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
2351
	} else {
2352
		return -EINVAL;
2353
	}
2354

2355 2356
	if (ret < 0)
		return ret;
2357
	return ret - rdev->constraints->uV_offset;
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
2386
 * @min_uA: Minimum supported current in uA
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2473
	int regulator_curr_mode;
2474 2475 2476 2477 2478 2479 2480 2481 2482

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2483 2484 2485 2486 2487 2488 2489 2490 2491
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2492
	/* constraints check */
2493
	ret = regulator_mode_constrain(rdev, &mode);
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
2564
	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2565 2566
	unsigned int mode;

2567 2568 2569
	if (rdev->supply)
		input_uV = regulator_get_voltage(rdev->supply);

2570 2571
	mutex_lock(&rdev->mutex);

2572 2573 2574 2575
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2576 2577
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2578 2579
	if (ret < 0) {
		ret = 0;
2580
		goto out;
2581
	}
2582 2583 2584 2585

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2586 2587 2588 2589 2590 2591
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2592 2593 2594
	if (!rdev->desc->ops->set_mode)
		goto out;

2595
	/* get output voltage */
2596
	output_uV = _regulator_get_voltage(rdev);
2597
	if (output_uV <= 0) {
2598
		rdev_err(rdev, "invalid output voltage found\n");
2599 2600 2601
		goto out;
	}

2602
	/* No supply? Use constraint voltage */
2603
	if (input_uV <= 0)
2604 2605
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2606
		rdev_err(rdev, "invalid input voltage found\n");
2607 2608 2609 2610 2611
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2612
		total_uA_load += consumer->uA_load;
2613 2614 2615 2616

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2617
	ret = regulator_mode_constrain(rdev, &mode);
2618
	if (ret < 0) {
2619 2620
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2621 2622 2623 2624
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2625
	if (ret < 0) {
2626
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2627 2628 2629 2630 2631 2632 2633 2634 2635
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

2636 2637 2638 2639
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
2640
 * @enable: enable or disable bypass mode
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

2689 2690 2691
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2692
 * @nb: notifier block
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2707
 * @nb: notifier block
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2719 2720 2721
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2722 2723 2724 2725
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
2726
	blocking_notifier_call_chain(&rdev->notifier, event, data);
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2757 2758
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2759 2760 2761 2762 2763 2764 2765 2766
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
2767
	while (--i >= 0)
2768 2769 2770 2771 2772 2773
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

2774 2775 2776 2777 2778 2779 2780
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
2796
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2797
	int i;
2798
	int ret = 0;
2799

2800 2801 2802 2803 2804 2805 2806
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
2807 2808 2809 2810

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
2811
	for (i = 0; i < num_consumers; i++) {
2812 2813
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
2814
			goto err;
2815
		}
2816 2817 2818 2819 2820
	}

	return 0;

err:
2821 2822 2823 2824 2825 2826 2827
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
2841 2842
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
2843 2844 2845 2846 2847 2848
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
2849
	int ret, r;
2850

2851
	for (i = num_consumers - 1; i >= 0; --i) {
2852 2853 2854 2855 2856 2857 2858 2859
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2860
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2861 2862 2863 2864 2865 2866
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
2867 2868 2869 2870 2871

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2932
 * @rdev: regulator source
2933
 * @event: notifier block
2934
 * @data: callback-specific data.
2935 2936 2937
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2938
 * Note lock must be held by caller.
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
2965
	case REGULATOR_MODE_STANDBY:
2966 2967
		return REGULATOR_STATUS_STANDBY;
	default:
2968
		return REGULATOR_STATUS_UNDEFINED;
2969 2970 2971 2972
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
2984
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2985 2986
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
3001
	if (rdev->ena_pin || ops->is_enabled) {
3002 3003 3004 3005
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
3006 3007 3008 3009 3010
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
3011 3012 3013 3014 3015
	if (ops->get_bypass) {
		status = device_create_file(dev, &dev_attr_bypass);
		if (status < 0)
			return status;
	}
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
3032
	if (ops->set_voltage || ops->set_voltage_sel) {
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

3092 3093 3094
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3095
	if (!rdev->debugfs) {
3096 3097 3098 3099 3100 3101 3102 3103
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3104 3105
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3106 3107
}

3108 3109
/**
 * regulator_register - register regulator
3110
 * @regulator_desc: regulator to register
3111
 * @config: runtime configuration for regulator
3112 3113
 *
 * Called by regulator drivers to register a regulator.
3114 3115
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3116
 */
3117 3118
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3119
		   const struct regulator_config *config)
3120
{
3121
	const struct regulation_constraints *constraints = NULL;
3122
	const struct regulator_init_data *init_data;
3123 3124
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
3125
	struct device *dev;
3126
	int ret, i;
3127
	const char *supply = NULL;
3128

3129
	if (regulator_desc == NULL || config == NULL)
3130 3131
		return ERR_PTR(-EINVAL);

3132
	dev = config->dev;
3133
	WARN_ON(!dev);
3134

3135 3136 3137
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3138 3139
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3140 3141
		return ERR_PTR(-EINVAL);

3142 3143 3144
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3145 3146
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3147 3148 3149 3150 3151 3152

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3153 3154 3155 3156
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3157

3158 3159
	init_data = config->init_data;

3160 3161 3162 3163 3164 3165 3166
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3167
	rdev->reg_data = config->driver_data;
3168 3169
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3170 3171
	if (config->regmap)
		rdev->regmap = config->regmap;
3172
	else if (dev_get_regmap(dev, NULL))
3173
		rdev->regmap = dev_get_regmap(dev, NULL);
3174 3175
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3176 3177 3178
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3179
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3180

3181
	/* preform any regulator specific init */
3182
	if (init_data && init_data->regulator_init) {
3183
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3184 3185
		if (ret < 0)
			goto clean;
3186 3187 3188
	}

	/* register with sysfs */
3189
	rdev->dev.class = &regulator_class;
3190
	rdev->dev.of_node = config->of_node;
3191
	rdev->dev.parent = dev;
3192 3193
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
3194
	ret = device_register(&rdev->dev);
3195 3196
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3197
		goto clean;
3198
	}
3199 3200 3201

	dev_set_drvdata(&rdev->dev, rdev);

3202
	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3203
		ret = regulator_ena_gpio_request(rdev, config);
3204 3205 3206
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3207
			goto wash;
3208 3209 3210 3211 3212
		}

		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
			rdev->ena_gpio_state = 1;

3213
		if (config->ena_gpio_invert)
3214 3215 3216
			rdev->ena_gpio_state = !rdev->ena_gpio_state;
	}

3217
	/* set regulator constraints */
3218 3219 3220 3221
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3222 3223 3224
	if (ret < 0)
		goto scrub;

3225 3226 3227 3228 3229
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

3230
	if (init_data && init_data->supply_regulator)
3231 3232 3233 3234 3235
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
3236 3237
		struct regulator_dev *r;

3238
		r = regulator_dev_lookup(dev, supply, &ret);
3239

3240 3241 3242 3243 3244 3245 3246 3247
		if (ret == -ENODEV) {
			/*
			 * No supply was specified for this regulator and
			 * there will never be one.
			 */
			ret = 0;
			goto add_dev;
		} else if (!r) {
3248
			dev_err(dev, "Failed to find supply %s\n", supply);
3249
			ret = -EPROBE_DEFER;
3250 3251 3252 3253 3254 3255
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
3256 3257

		/* Enable supply if rail is enabled */
3258
		if (_regulator_is_enabled(rdev)) {
3259 3260 3261 3262
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
3263 3264
	}

3265
add_dev:
3266
	/* add consumers devices */
3267 3268 3269 3270
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3271
				init_data->consumer_supplies[i].supply);
3272 3273 3274 3275 3276
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3277
		}
3278
	}
3279 3280

	list_add(&rdev->list, &regulator_list);
3281 3282

	rdev_init_debugfs(rdev);
3283
out:
3284 3285
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
3286

3287 3288 3289
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3290
scrub:
3291
	if (rdev->supply)
3292
		_regulator_put(rdev->supply);
3293
	regulator_ena_gpio_free(rdev);
3294
	kfree(rdev->constraints);
3295
wash:
D
David Brownell 已提交
3296
	device_unregister(&rdev->dev);
3297 3298 3299 3300
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3301 3302 3303 3304
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3305 3306 3307 3308 3309
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3310
 * @rdev: regulator to unregister
3311 3312 3313 3314 3315 3316 3317 3318
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3319 3320 3321
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
3322
		regulator_put(rdev->supply);
3323
	}
3324
	mutex_lock(&regulator_list_mutex);
3325
	debugfs_remove_recursive(rdev->debugfs);
3326
	flush_work(&rdev->disable_work.work);
3327
	WARN_ON(rdev->open_count);
3328
	unset_regulator_supplies(rdev);
3329
	list_del(&rdev->list);
3330
	kfree(rdev->constraints);
3331
	regulator_ena_gpio_free(rdev);
3332
	device_unregister(&rdev->dev);
3333 3334 3335 3336 3337
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3338
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3361
			rdev_err(rdev, "failed to prepare\n");
3362 3363 3364 3365 3366 3367 3368 3369 3370
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
3397
			if (!_regulator_is_enabled(rdev))
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

3445 3446
/**
 * rdev_get_drvdata - get rdev regulator driver data
3447
 * @rdev: regulator
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3484
 * @rdev: regulator
3485 3486 3487 3488 3489 3490 3491
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3534
#endif
3535 3536

static const struct file_operations supply_map_fops = {
3537
#ifdef CONFIG_DEBUG_FS
3538 3539 3540
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3541
};
3542

3543 3544
static int __init regulator_init(void)
{
3545 3546 3547 3548
	int ret;

	ret = class_register(&regulator_class);

3549
	debugfs_root = debugfs_create_dir("regulator", NULL);
3550
	if (!debugfs_root)
3551
		pr_warn("regulator: Failed to create debugfs directory\n");
3552

3553 3554
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3555

3556 3557 3558
	regulator_dummy_init();

	return ret;
3559 3560 3561 3562
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3563 3564 3565 3566 3567 3568 3569 3570

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

3571 3572 3573 3574 3575 3576 3577 3578 3579
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

3590
		if (!ops->disable || (c && c->always_on))
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
3610
			rdev_info(rdev, "disabling\n");
3611 3612
			ret = ops->disable(rdev);
			if (ret != 0) {
3613
				rdev_err(rdev, "couldn't disable: %d\n", ret);
3614 3615 3616 3617 3618 3619 3620
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
3621
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);