core.c 68.7 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

16
#define pr_fmt(fmt) "%s: " fmt, __func__
17

18 19 20
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/device.h>
21
#include <linux/slab.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26 27 28 29
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33 34
#include "dummy.h"

35 36 37 38 39 40 41 42 43
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

44 45 46
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
47
static int has_full_constraints;
48
static bool board_wants_dummy_regulator;
49

50
/*
51 52 53 54 55 56
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
57
	const char *dev_name;   /* The dev_name() for the consumer */
58
	const char *supply;
59
	struct regulator_dev *regulator;
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
79 80
static int _regulator_disable(struct regulator_dev *rdev,
		struct regulator_dev **supply_rdev_ptr);
81 82 83 84 85 86
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);

87 88 89 90 91 92 93 94 95 96
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
/* gets the regulator for a given consumer device */
static struct regulator *get_device_regulator(struct device *dev)
{
	struct regulator *regulator = NULL;
	struct regulator_dev *rdev;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
		list_for_each_entry(regulator, &rdev->consumer_list, list) {
			if (regulator->dev == dev) {
				mutex_unlock(&rdev->mutex);
				mutex_unlock(&regulator_list_mutex);
				return regulator;
			}
		}
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return NULL;
}

/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
126
		rdev_err(rdev, "no constraints\n");
127 128 129
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130
		rdev_err(rdev, "operation not allowed\n");
131 132 133 134 135 136 137 138 139 140 141 142 143 144
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

166 167 168 169 170 171 172
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
173
		rdev_err(rdev, "no constraints\n");
174 175 176
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
177
		rdev_err(rdev, "operation not allowed\n");
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

	if (*min_uA > *max_uA)
		return -EINVAL;

	return 0;
}

/* operating mode constraint check */
static int regulator_check_mode(struct regulator_dev *rdev, int mode)
{
195 196 197 198 199 200 201 202 203 204
	switch (mode) {
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
		return -EINVAL;
	}

205
	if (!rdev->constraints) {
206
		rdev_err(rdev, "no constraints\n");
207 208 209
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
210
		rdev_err(rdev, "operation not allowed\n");
211 212 213
		return -EPERM;
	}
	if (!(rdev->constraints->valid_modes_mask & mode)) {
214
		rdev_err(rdev, "invalid mode %x\n", mode);
215 216 217 218 219 220 221 222 223
		return -EINVAL;
	}
	return 0;
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
224
		rdev_err(rdev, "no constraints\n");
225 226 227
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
228
		rdev_err(rdev, "operation not allowed\n");
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
		return -EPERM;
	}
	return 0;
}

static ssize_t device_requested_uA_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator *regulator;

	regulator = get_device_regulator(dev);
	if (regulator == NULL)
		return 0;

	return sprintf(buf, "%d\n", regulator->uA_load);
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
249
	struct regulator_dev *rdev = dev_get_drvdata(dev);
250 251 252 253 254 255 256 257
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
258
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
259 260 261 262

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
263
	struct regulator_dev *rdev = dev_get_drvdata(dev);
264 265 266

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
267
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
268

269 270 271 272 273
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

274
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
275 276
}

D
David Brownell 已提交
277
static ssize_t regulator_print_opmode(char *buf, int mode)
278 279 280 281 282 283 284 285 286 287 288 289 290 291
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
292 293
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
294
{
295
	struct regulator_dev *rdev = dev_get_drvdata(dev);
296

D
David Brownell 已提交
297 298
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
299
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
300 301 302

static ssize_t regulator_print_state(char *buf, int state)
{
303 304 305 306 307 308 309 310
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
311 312 313 314
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
315 316 317 318 319
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
320

321
	return ret;
D
David Brownell 已提交
322
}
323
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
324

D
David Brownell 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

366 367 368
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
369
	struct regulator_dev *rdev = dev_get_drvdata(dev);
370 371 372 373 374 375

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
376
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
377 378 379 380

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
381
	struct regulator_dev *rdev = dev_get_drvdata(dev);
382 383 384 385 386 387

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
388
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
389 390 391 392

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
393
	struct regulator_dev *rdev = dev_get_drvdata(dev);
394 395 396 397 398 399

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
400
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
401 402 403 404

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
405
	struct regulator_dev *rdev = dev_get_drvdata(dev);
406 407 408 409 410 411

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
412
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
413 414 415 416

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
417
	struct regulator_dev *rdev = dev_get_drvdata(dev);
418 419 420 421 422
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
423
		uA += regulator->uA_load;
424 425 426
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
427
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
428 429 430 431

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
432
	struct regulator_dev *rdev = dev_get_drvdata(dev);
433 434 435 436 437 438
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
439
	struct regulator_dev *rdev = dev_get_drvdata(dev);
440 441 442 443 444 445 446 447 448 449 450 451 452

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
453
	struct regulator_dev *rdev = dev_get_drvdata(dev);
454 455 456

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
457 458
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
459 460 461 462

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
463
	struct regulator_dev *rdev = dev_get_drvdata(dev);
464 465 466

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
467 468
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
469 470 471 472

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
473
	struct regulator_dev *rdev = dev_get_drvdata(dev);
474 475 476

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
477 478
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
479 480 481 482

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
483
	struct regulator_dev *rdev = dev_get_drvdata(dev);
484

D
David Brownell 已提交
485 486
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
487
}
488 489
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
490 491 492 493

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
494
	struct regulator_dev *rdev = dev_get_drvdata(dev);
495

D
David Brownell 已提交
496 497
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
498
}
499 500
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
501 502 503 504

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
505
	struct regulator_dev *rdev = dev_get_drvdata(dev);
506

D
David Brownell 已提交
507 508
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
509
}
510 511
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
512 513 514 515

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
516
	struct regulator_dev *rdev = dev_get_drvdata(dev);
517

D
David Brownell 已提交
518 519
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
520
}
521 522
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
523 524 525 526

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
527
	struct regulator_dev *rdev = dev_get_drvdata(dev);
528

D
David Brownell 已提交
529 530
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
531
}
532 533
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
534 535 536 537

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
538
	struct regulator_dev *rdev = dev_get_drvdata(dev);
539

D
David Brownell 已提交
540 541
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
542
}
543 544 545
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

546

547 548 549 550
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
551
static struct device_attribute regulator_dev_attrs[] = {
552
	__ATTR(name, 0444, regulator_name_show, NULL),
553 554 555 556 557 558 559
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
560
	struct regulator_dev *rdev = dev_get_drvdata(dev);
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
580 581 582
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
583
		return;
584 585

	/* get output voltage */
586
	output_uV = _regulator_get_voltage(rdev);
587 588 589 590
	if (output_uV <= 0)
		return;

	/* get input voltage */
591 592 593 594
	input_uV = 0;
	if (rdev->supply)
		input_uV = _regulator_get_voltage(rdev);
	if (input_uV <= 0)
595 596 597 598 599 600
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
601
		current_uA += sibling->uA_load;
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
	err = regulator_check_mode(rdev, mode);
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
617 618 619 620 621 622 623 624 625 626 627
	bool can_set_state;

	can_set_state = rdev->desc->ops->set_suspend_enable &&
		rdev->desc->ops->set_suspend_disable;

	/* If we have no suspend mode configration don't set anything;
	 * only warn if the driver actually makes the suspend mode
	 * configurable.
	 */
	if (!rstate->enabled && !rstate->disabled) {
		if (can_set_state)
628
			rdev_warn(rdev, "No configuration\n");
629 630 631 632
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
633
		rdev_err(rdev, "invalid configuration\n");
634 635
		return -EINVAL;
	}
636

637
	if (!can_set_state) {
638
		rdev_err(rdev, "no way to set suspend state\n");
639
		return -EINVAL;
640
	}
641 642 643 644 645 646

	if (rstate->enabled)
		ret = rdev->desc->ops->set_suspend_enable(rdev);
	else
		ret = rdev->desc->ops->set_suspend_disable(rdev);
	if (ret < 0) {
647
		rdev_err(rdev, "failed to enabled/disable\n");
648 649 650 651 652 653
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
654
			rdev_err(rdev, "failed to set voltage\n");
655 656 657 658 659 660 661
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
662
			rdev_err(rdev, "failed to set mode\n");
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
693
	char buf[80] = "";
694 695
	int count = 0;
	int ret;
696

697
	if (constraints->min_uV && constraints->max_uV) {
698
		if (constraints->min_uV == constraints->max_uV)
699 700
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
701
		else
702 703 704 705 706 707 708 709 710 711 712 713 714
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

	if (constraints->min_uA && constraints->max_uA) {
715
		if (constraints->min_uA == constraints->max_uA)
716 717
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
718
		else
719 720 721 722 723 724 725 726 727
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
728
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
729
	}
730

731 732 733 734 735 736 737 738 739
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

740
	rdev_info(rdev, "regulator: %s\n", buf);
741 742
}

743
static int machine_constraints_voltage(struct regulator_dev *rdev,
744
	struct regulation_constraints *constraints)
745
{
746
	struct regulator_ops *ops = rdev->desc->ops;
747
	int ret;
748
	unsigned selector;
749 750 751 752 753 754

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
		rdev->constraints->min_uV == rdev->constraints->max_uV &&
		ops->set_voltage) {
		ret = ops->set_voltage(rdev,
755 756 757
				       rdev->constraints->min_uV,
				       rdev->constraints->max_uV,
				       &selector);
758
			if (ret < 0) {
759 760
				rdev_err(rdev, "failed to apply %duV constraint\n",
					 rdev->constraints->min_uV);
761 762 763 764
				rdev->constraints = NULL;
				return ret;
			}
	}
765

766 767 768 769 770 771 772 773 774 775 776
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

777 778
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
779
		if (count == 1 && !cmin) {
780
			cmin = 1;
781
			cmax = INT_MAX;
782 783
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
784 785
		}

786 787
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
788
			return 0;
789

790
		/* else require explicit machine-level constraints */
791
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
792
			rdev_err(rdev, "invalid voltage constraints\n");
793
			return -EINVAL;
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
813
			rdev_err(rdev, "unsupportable voltage constraints\n");
814
			return -EINVAL;
815 816 817 818
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
819 820
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
821 822 823
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
824 825
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
826 827 828 829
			constraints->max_uV = max_uV;
		}
	}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
845
	const struct regulation_constraints *constraints)
846 847 848 849
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

850 851 852 853
	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
				    GFP_KERNEL);
	if (!rdev->constraints)
		return -ENOMEM;
854

855
	ret = machine_constraints_voltage(rdev, rdev->constraints);
856 857 858
	if (ret != 0)
		goto out;

859
	/* do we need to setup our suspend state */
860
	if (constraints->initial_state) {
861
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
862
		if (ret < 0) {
863
			rdev_err(rdev, "failed to set suspend state\n");
864 865 866 867
			rdev->constraints = NULL;
			goto out;
		}
	}
868

869 870
	if (constraints->initial_mode) {
		if (!ops->set_mode) {
871
			rdev_err(rdev, "no set_mode operation\n");
872 873 874 875
			ret = -EINVAL;
			goto out;
		}

876
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
877
		if (ret < 0) {
878
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
879 880 881 882
			goto out;
		}
	}

883 884 885
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
886 887
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
888 889
		ret = ops->enable(rdev);
		if (ret < 0) {
890
			rdev_err(rdev, "failed to enable\n");
891 892 893 894 895
			rdev->constraints = NULL;
			goto out;
		}
	}

896 897 898 899 900 901 902
	print_constraints(rdev);
out:
	return ret;
}

/**
 * set_supply - set regulator supply regulator
903 904
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
905 906 907 908 909 910 911 912 913 914 915 916 917
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
	struct regulator_dev *supply_rdev)
{
	int err;

	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
				"supply");
	if (err) {
918 919
		rdev_err(rdev, "could not add device link %s err %d\n",
			 supply_rdev->dev.kobj.name, err);
920 921 922 923 924 925 926 927 928
		       goto out;
	}
	rdev->supply = supply_rdev;
	list_add(&rdev->slist, &supply_rdev->supply_list);
out:
	return err;
}

/**
929
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
930 931
 * @rdev:         regulator source
 * @consumer_dev: device the supply applies to
932
 * @consumer_dev_name: dev_name() string for device supply applies to
933
 * @supply:       symbolic name for supply
934 935 936 937 938
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
939 940
 *
 * Only one of consumer_dev and consumer_dev_name may be specified.
941 942
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
943 944
	struct device *consumer_dev, const char *consumer_dev_name,
	const char *supply)
945 946
{
	struct regulator_map *node;
947
	int has_dev;
948

949 950 951 952 953 954
	if (consumer_dev && consumer_dev_name)
		return -EINVAL;

	if (!consumer_dev_name && consumer_dev)
		consumer_dev_name = dev_name(consumer_dev);

955 956 957
	if (supply == NULL)
		return -EINVAL;

958 959 960 961 962
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

963
	list_for_each_entry(node, &regulator_map_list, list) {
964 965 966 967
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
968
			continue;
969 970
		}

971 972 973 974
		if (strcmp(node->supply, supply) != 0)
			continue;

		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
975 976 977 978
			dev_name(&node->regulator->dev),
			node->regulator->desc->name,
			supply,
			dev_name(&rdev->dev), rdev_get_name(rdev));
979 980 981
		return -EBUSY;
	}

982
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
983 984 985 986 987 988
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

989 990 991 992 993 994
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
995 996
	}

997 998 999 1000
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1001 1002 1003 1004 1005 1006 1007
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1008
			kfree(node->dev_name);
1009 1010 1011 1012 1013
			kfree(node);
		}
	}
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
#define REG_STR_SIZE	32

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
		/* create a 'requested_microamps_name' sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
			supply_name);
		if (size >= REG_STR_SIZE)
			goto overflow_err;

		regulator->dev = dev;
1040
		sysfs_attr_init(&regulator->dev_attr.attr);
1041 1042 1043 1044 1045 1046 1047 1048
		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
		if (regulator->dev_attr.attr.name == NULL)
			goto attr_name_err;

		regulator->dev_attr.attr.mode = 0444;
		regulator->dev_attr.show = device_requested_uA_show;
		err = device_create_file(dev, &regulator->dev_attr);
		if (err < 0) {
1049
			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
			goto attr_name_err;
		}

		/* also add a link to the device sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			goto attr_err;

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1066 1067
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
			goto link_name_err;
		}
	}
	mutex_unlock(&rdev->mutex);
	return regulator;
link_name_err:
	kfree(regulator->supply_name);
attr_err:
	device_remove_file(regulator->dev, &regulator->dev_attr);
attr_name_err:
	kfree(regulator->dev_attr.attr.name);
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1086 1087 1088 1089 1090 1091 1092
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
		return 0;
	return rdev->desc->ops->enable_time(rdev);
}

1093 1094 1095
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1096 1097 1098 1099
{
	struct regulator_dev *rdev;
	struct regulator_map *map;
	struct regulator *regulator = ERR_PTR(-ENODEV);
1100
	const char *devname = NULL;
1101
	int ret;
1102 1103

	if (id == NULL) {
1104
		pr_err("get() with no identifier\n");
1105 1106 1107
		return regulator;
	}

1108 1109 1110
	if (dev)
		devname = dev_name(dev);

1111 1112 1113
	mutex_lock(&regulator_list_mutex);

	list_for_each_entry(map, &regulator_map_list, list) {
1114 1115 1116 1117 1118 1119
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, id) == 0) {
1120
			rdev = map->regulator;
1121
			goto found;
1122
		}
1123
	}
1124

1125 1126 1127 1128 1129
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1130 1131 1132 1133 1134 1135 1136 1137
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1138 1139
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1140 1141 1142 1143 1144
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1145 1146 1147 1148
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1159 1160 1161
	if (!try_module_get(rdev->owner))
		goto out;

1162 1163 1164 1165 1166 1167
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
	}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1179
out:
1180
	mutex_unlock(&regulator_list_mutex);
1181

1182 1183
	return regulator;
}
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1202 1203
EXPORT_SYMBOL_GPL(regulator_get);

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	mutex_lock(&regulator_list_mutex);
	rdev = regulator->rdev;

	/* remove any sysfs entries */
	if (regulator->dev) {
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
		kfree(regulator->supply_name);
		device_remove_file(regulator->dev, &regulator->dev_attr);
		kfree(regulator->dev_attr.attr.name);
	}
	list_del(&regulator->list);
	kfree(regulator);

1259 1260 1261
	rdev->open_count--;
	rdev->exclusive = 0;

1262 1263 1264 1265 1266
	module_put(rdev->owner);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

1278 1279 1280
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1281
	int ret, delay;
1282

1283 1284 1285 1286 1287 1288 1289
	if (rdev->use_count == 0) {
		/* do we need to enable the supply regulator first */
		if (rdev->supply) {
			mutex_lock(&rdev->supply->mutex);
			ret = _regulator_enable(rdev->supply);
			mutex_unlock(&rdev->supply->mutex);
			if (ret < 0) {
1290
				rdev_err(rdev, "failed to enable: %d\n", ret);
1291 1292
				return ret;
			}
1293 1294 1295 1296
		}
	}

	/* check voltage and requested load before enabling */
1297 1298 1299
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1300

1301 1302 1303 1304 1305 1306 1307
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1308
			if (!rdev->desc->ops->enable)
1309
				return -EINVAL;
1310 1311 1312 1313 1314 1315 1316

			/* Query before enabling in case configuration
			 * dependant.  */
			ret = _regulator_get_enable_time(rdev);
			if (ret >= 0) {
				delay = ret;
			} else {
1317
				rdev_warn(rdev, "enable_time() failed: %d\n",
1318
					   ret);
1319
				delay = 0;
1320
			}
1321

1322 1323
			trace_regulator_enable(rdev_get_name(rdev));

1324 1325 1326 1327 1328 1329 1330
			/* Allow the regulator to ramp; it would be useful
			 * to extend this for bulk operations so that the
			 * regulators can ramp together.  */
			ret = rdev->desc->ops->enable(rdev);
			if (ret < 0)
				return ret;

1331 1332
			trace_regulator_enable_delay(rdev_get_name(rdev));

1333
			if (delay >= 1000) {
1334
				mdelay(delay / 1000);
1335 1336
				udelay(delay % 1000);
			} else if (delay) {
1337
				udelay(delay);
1338
			}
1339

1340 1341
			trace_regulator_enable_complete(rdev_get_name(rdev));

1342
		} else if (ret < 0) {
1343
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1344 1345
			return ret;
		}
1346
		/* Fallthrough on positive return values - already enabled */
1347 1348
	}

1349 1350 1351
	rdev->use_count++;

	return 0;
1352 1353 1354 1355 1356 1357
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1358 1359 1360 1361
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1362
 * NOTE: the output value can be set by other drivers, boot loader or may be
1363
 * hardwired in the regulator.
1364 1365 1366
 */
int regulator_enable(struct regulator *regulator)
{
1367 1368
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1369

1370
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1371
	ret = _regulator_enable(rdev);
1372
	mutex_unlock(&rdev->mutex);
1373 1374 1375 1376 1377
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

/* locks held by regulator_disable() */
1378 1379
static int _regulator_disable(struct regulator_dev *rdev,
		struct regulator_dev **supply_rdev_ptr)
1380 1381
{
	int ret = 0;
1382
	*supply_rdev_ptr = NULL;
1383

D
David Brownell 已提交
1384
	if (WARN(rdev->use_count <= 0,
1385
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1386 1387
		return -EIO;

1388
	/* are we the last user and permitted to disable ? */
1389 1390
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1391 1392

		/* we are last user */
1393 1394
		if (_regulator_can_change_status(rdev) &&
		    rdev->desc->ops->disable) {
1395 1396
			trace_regulator_disable(rdev_get_name(rdev));

1397 1398
			ret = rdev->desc->ops->disable(rdev);
			if (ret < 0) {
1399
				rdev_err(rdev, "failed to disable\n");
1400 1401
				return ret;
			}
1402

1403 1404
			trace_regulator_disable_complete(rdev_get_name(rdev));

1405 1406
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					     NULL);
1407 1408 1409
		}

		/* decrease our supplies ref count and disable if required */
1410
		*supply_rdev_ptr = rdev->supply;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1429 1430 1431
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1432
 *
1433
 * NOTE: this will only disable the regulator output if no other consumer
1434 1435
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1436 1437 1438
 */
int regulator_disable(struct regulator *regulator)
{
1439
	struct regulator_dev *rdev = regulator->rdev;
1440
	struct regulator_dev *supply_rdev = NULL;
1441
	int ret = 0;
1442

1443
	mutex_lock(&rdev->mutex);
1444
	ret = _regulator_disable(rdev, &supply_rdev);
1445
	mutex_unlock(&rdev->mutex);
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

	/* decrease our supplies ref count and disable if required */
	while (supply_rdev != NULL) {
		rdev = supply_rdev;

		mutex_lock(&rdev->mutex);
		_regulator_disable(rdev, &supply_rdev);
		mutex_unlock(&rdev->mutex);
	}

1456 1457 1458 1459 1460
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1461 1462
static int _regulator_force_disable(struct regulator_dev *rdev,
		struct regulator_dev **supply_rdev_ptr)
1463 1464 1465 1466 1467 1468 1469 1470
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1471
			rdev_err(rdev, "failed to force disable\n");
1472 1473 1474
			return ret;
		}
		/* notify other consumers that power has been forced off */
1475 1476
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1477 1478 1479
	}

	/* decrease our supplies ref count and disable if required */
1480
	*supply_rdev_ptr = rdev->supply;
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

	rdev->use_count = 0;
	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1497
	struct regulator_dev *supply_rdev = NULL;
1498 1499 1500 1501
	int ret;

	mutex_lock(&regulator->rdev->mutex);
	regulator->uA_load = 0;
1502
	ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1503
	mutex_unlock(&regulator->rdev->mutex);
1504 1505 1506 1507

	if (supply_rdev)
		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));

1508 1509 1510 1511 1512 1513
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1514
	/* If we don't know then assume that the regulator is always on */
1515
	if (!rdev->desc->ops->is_enabled)
1516
		return 1;
1517

1518
	return rdev->desc->ops->is_enabled(rdev);
1519 1520 1521 1522 1523 1524
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1525 1526 1527 1528 1529 1530 1531
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1532 1533 1534
 */
int regulator_is_enabled(struct regulator *regulator)
{
1535 1536 1537 1538 1539 1540 1541
	int ret;

	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1542 1543 1544
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1568
 * zero if this selector code can't be used on this system, or a
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
	int i, voltages, ret;

	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
1639
 * Regulator system constraints must be set for this regulator before
1640 1641 1642 1643 1644 1645
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
1646
	unsigned selector;
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_voltage) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
1662

1663 1664 1665 1666
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

1667 1668
	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

1669 1670 1671 1672 1673 1674
	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, &selector);

	if (rdev->desc->ops->list_voltage)
		selector = rdev->desc->ops->list_voltage(rdev, selector);
	else
		selector = -1;
1675

1676 1677
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);

1678
out:
1679
	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1680 1681 1682 1683 1684 1685 1686
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

static int _regulator_get_voltage(struct regulator_dev *rdev)
{
1687 1688 1689 1690 1691 1692 1693 1694
	int sel;

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
		return rdev->desc->ops->list_voltage(rdev, sel);
	}
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	if (rdev->desc->ops->get_voltage)
		return rdev->desc->ops->get_voltage(rdev);
	else
		return -EINVAL;
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
1814
	int regulator_curr_mode;
1815 1816 1817 1818 1819 1820 1821 1822 1823

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

1824 1825 1826 1827 1828 1829 1830 1831 1832
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	/* constraints check */
	ret = regulator_check_mode(rdev, mode);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
	int ret, output_uV, input_uV, total_uA_load = 0;
	unsigned int mode;

	mutex_lock(&rdev->mutex);

	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
	if (ret < 0)
		goto out;
	ret = -EINVAL;

	/* sanity check */
	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

	/* get output voltage */
1921
	output_uV = _regulator_get_voltage(rdev);
1922
	if (output_uV <= 0) {
1923
		rdev_err(rdev, "invalid output voltage found\n");
1924 1925 1926 1927
		goto out;
	}

	/* get input voltage */
1928 1929 1930 1931
	input_uV = 0;
	if (rdev->supply)
		input_uV = _regulator_get_voltage(rdev->supply);
	if (input_uV <= 0)
1932 1933
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
1934
		rdev_err(rdev, "invalid input voltage found\n");
1935 1936 1937 1938 1939
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
1940
		total_uA_load += consumer->uA_load;
1941 1942 1943 1944

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
1945 1946
	ret = regulator_check_mode(rdev, mode);
	if (ret < 0) {
1947 1948
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
1949 1950 1951 1952
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
1953
	if (ret < 0) {
1954
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
1967
 * @nb: notifier block
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
1982
 * @nb: notifier block
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

1994 1995 1996
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
1997 1998 1999 2000 2001 2002 2003 2004 2005
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	struct regulator_dev *_rdev;

	/* call rdev chain first */
	blocking_notifier_call_chain(&rdev->notifier, event, NULL);

	/* now notify regulator we supply */
2006
	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2007 2008 2009
		mutex_lock(&_rdev->mutex);
		_notifier_call_chain(_rdev, event, data);
		mutex_unlock(&_rdev->mutex);
2010
	}
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2041 2042
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++) {
		ret = regulator_enable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2085
	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2086
	for (--i; i >= 0; --i)
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
		regulator_disable(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were disabled will be disabled again prior to
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++) {
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2120
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2121
	for (--i; i >= 0; --i)
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
		regulator_enable(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2151
 * @rdev: regulator source
2152
 * @event: notifier block
2153
 * @data: callback-specific data.
2154 2155 2156
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2157
 * Note lock must be held by caller.
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
	case REGULATOR_STATUS_STANDBY:
		return REGULATOR_STATUS_STANDBY;
	default:
		return 0;
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
2203
	if (ops->get_voltage || ops->get_voltage_sel) {
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
2223 2224 2225 2226 2227
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
	if (ops->set_voltage) {
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	/* suspend mode constraints need multiple supporting methods */
	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
		return status;

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

2308 2309
/**
 * regulator_register - register regulator
2310 2311
 * @regulator_desc: regulator to register
 * @dev: struct device for the regulator
2312
 * @init_data: platform provided init data, passed through by driver
2313
 * @driver_data: private regulator data
2314 2315 2316 2317 2318
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2319
	struct device *dev, const struct regulator_init_data *init_data,
2320
	void *driver_data)
2321 2322 2323
{
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
2324
	int ret, i;
2325 2326 2327 2328 2329 2330 2331

	if (regulator_desc == NULL)
		return ERR_PTR(-EINVAL);

	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

2332 2333
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
2334 2335
		return ERR_PTR(-EINVAL);

2336 2337 2338
	if (!init_data)
		return ERR_PTR(-EINVAL);

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}

2349 2350 2351 2352 2353 2354 2355
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
2356
	rdev->reg_data = driver_data;
2357 2358 2359 2360 2361 2362 2363 2364
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->supply_list);
	INIT_LIST_HEAD(&rdev->list);
	INIT_LIST_HEAD(&rdev->slist);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);

2365 2366 2367
	/* preform any regulator specific init */
	if (init_data->regulator_init) {
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
2368 2369
		if (ret < 0)
			goto clean;
2370 2371 2372
	}

	/* register with sysfs */
2373
	rdev->dev.class = &regulator_class;
2374
	rdev->dev.parent = dev;
2375 2376
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
2377
	ret = device_register(&rdev->dev);
2378 2379
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
2380
		goto clean;
2381
	}
2382 2383 2384

	dev_set_drvdata(&rdev->dev, rdev);

2385 2386 2387 2388 2389
	/* set regulator constraints */
	ret = set_machine_constraints(rdev, &init_data->constraints);
	if (ret < 0)
		goto scrub;

2390 2391 2392 2393 2394
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

2395
	/* set supply regulator if it exists */
2396 2397 2398
	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
		dev_err(dev,
			"Supply regulator specified by both name and dev\n");
2399
		ret = -EINVAL;
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
		goto scrub;
	}

	if (init_data->supply_regulator) {
		struct regulator_dev *r;
		int found = 0;

		list_for_each_entry(r, &regulator_list, list) {
			if (strcmp(rdev_get_name(r),
				   init_data->supply_regulator) == 0) {
				found = 1;
				break;
			}
		}

		if (!found) {
			dev_err(dev, "Failed to find supply %s\n",
				init_data->supply_regulator);
2418
			ret = -ENODEV;
2419 2420 2421 2422 2423 2424 2425 2426
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
	}

2427
	if (init_data->supply_regulator_dev) {
2428
		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2429 2430
		ret = set_supply(rdev,
			dev_get_drvdata(init_data->supply_regulator_dev));
D
David Brownell 已提交
2431 2432
		if (ret < 0)
			goto scrub;
2433 2434 2435 2436 2437 2438
	}

	/* add consumers devices */
	for (i = 0; i < init_data->num_consumer_supplies; i++) {
		ret = set_consumer_device_supply(rdev,
			init_data->consumer_supplies[i].dev,
2439
			init_data->consumer_supplies[i].dev_name,
2440
			init_data->consumer_supplies[i].supply);
2441 2442
		if (ret < 0)
			goto unset_supplies;
2443
	}
2444 2445 2446

	list_add(&rdev->list, &regulator_list);
out:
2447 2448
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
2449

2450 2451 2452
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
2453 2454
scrub:
	device_unregister(&rdev->dev);
2455 2456 2457 2458
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
2459 2460 2461 2462
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
2463 2464 2465 2466 2467
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
2468
 * @rdev: regulator to unregister
2469 2470 2471 2472 2473 2474 2475 2476 2477
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

	mutex_lock(&regulator_list_mutex);
2478
	WARN_ON(rdev->open_count);
2479
	unset_regulator_supplies(rdev);
2480 2481 2482 2483
	list_del(&rdev->list);
	if (rdev->supply)
		sysfs_remove_link(&rdev->dev.kobj, "supply");
	device_unregister(&rdev->dev);
2484
	kfree(rdev->constraints);
2485 2486 2487 2488 2489
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
2490
 * regulator_suspend_prepare - prepare regulators for system wide suspend
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
2513
			rdev_err(rdev, "failed to prepare\n");
2514 2515 2516 2517 2518 2519 2520 2521 2522
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

2556 2557
/**
 * rdev_get_drvdata - get rdev regulator driver data
2558
 * @rdev: regulator
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
2595
 * @rdev: regulator
2596 2597 2598 2599 2600 2601 2602
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

2615 2616
static int __init regulator_init(void)
{
2617 2618 2619 2620 2621 2622 2623
	int ret;

	ret = class_register(&regulator_class);

	regulator_dummy_init();

	return ret;
2624 2625 2626 2627
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

2646
		if (!ops->disable || (c && c->always_on))
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
2666
			rdev_info(rdev, "disabling\n");
2667 2668
			ret = ops->disable(rdev);
			if (ret != 0) {
2669
				rdev_err(rdev, "couldn't disable: %d\n", ret);
2670 2671 2672 2673 2674 2675 2676
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
2677
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);