core.c 143.3 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
55 56
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
57
static LIST_HEAD(regulator_ena_gpio_list);
58
static LIST_HEAD(regulator_supply_alias_list);
59
static bool has_full_constraints;
60

61 62
static struct dentry *debugfs_root;

63
/*
64 65 66 67 68 69
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
70
	const char *dev_name;   /* The dev_name() for the consumer */
71
	const char *supply;
72
	struct regulator_dev *regulator;
73 74
};

75 76 77 78 79 80 81
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
82
	struct gpio_desc *gpiod;
83 84 85 86 87
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

101
static int _regulator_is_enabled(struct regulator_dev *rdev);
102
static int _regulator_disable(struct regulator *regulator);
103 104 105
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106
static int _notifier_call_chain(struct regulator_dev *rdev,
107
				  unsigned long event, void *data);
108 109
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
110 111
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
112 113 114
static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
				      int min_uV, int max_uV,
				      suspend_state_t state);
115 116 117
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
118
static void _regulator_put(struct regulator *regulator);
119

120 121 122 123 124 125 126 127 128 129
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

130 131
static bool have_full_constraints(void)
{
132
	return has_full_constraints || of_have_populated_dt();
133 134
}

135 136 137 138 139 140 141 142 143 144 145 146 147
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

148 149 150 151 152 153 154 155
static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
{
	if (rdev && rdev->supply)
		return rdev->supply->rdev;

	return NULL;
}

156 157 158
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
159
 * @ww_ctx:		w/w mutex acquire context
160 161 162 163 164 165 166
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
167 168
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
169
{
170 171 172 173 174 175 176
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
177
			rdev->ref_cnt++;
178 179 180 181 182 183 184
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
185
		}
186 187
	} else {
		lock = true;
188 189
	}

190 191 192 193 194 195 196 197
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
198 199
}

200 201 202 203 204 205 206 207 208 209 210
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
void regulator_lock(struct regulator_dev *rdev)
211
{
212
	regulator_lock_nested(rdev, NULL);
213 214 215 216 217 218 219 220 221
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
222
void regulator_unlock(struct regulator_dev *rdev)
223
{
224
	mutex_lock(&regulator_nesting_mutex);
225

226 227 228
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
229
	}
230 231 232 233

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
234 235
}

236
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
237
{
238 239 240 241 242
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
243

244 245 246 247 248 249 250
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

251 252
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
253
{
254
	struct regulator_dev *c_rdev;
255
	int i;
256

257 258
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
259 260 261 262

		if (!c_rdev)
			continue;

263
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
264 265 266
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
267

268 269
		regulator_unlock(c_rdev);
	}
270 271
}

272 273 274 275
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
276
{
277
	struct regulator_dev *c_rdev;
278
	int i, err;
279

280 281
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
282

283 284
		if (!c_rdev)
			continue;
285

286 287 288 289 290 291 292
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
293

294 295 296 297 298 299 300
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

301
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
302 303 304 305 306 307 308 309
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
310 311
		}
	}
312 313 314 315 316 317 318

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
319 320
}

321
/**
322 323 324 325 326 327
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
 * Unlock all regulators related with rdev by coupling or suppling.
328
 */
329 330
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
331
{
332 333
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
334 335 336
}

/**
337 338
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
339
 * @ww_ctx:			w/w mutex acquire context
340 341 342
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
 * all regulators related with rdev by coupling or suppling.
343
 */
344 345
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
346
{
347 348 349
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
350

351
	mutex_lock(&regulator_list_mutex);
352

353
	ww_acquire_init(ww_ctx, &regulator_ww_class);
354

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
375 376
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
			if (regnode)
				return regnode;
		} else {
			return regnode;
		}
	}
	return NULL;
}

408 409 410 411 412 413
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
414
 * returns the device node corresponding to the regulator if found, else
415 416 417 418 419 420 421 422 423 424 425 426 427
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
428 429 430 431
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

432 433
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
434 435 436 437 438
		return NULL;
	}
	return regnode;
}

439 440 441 442 443 444
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

445
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
446
		rdev_err(rdev, "voltage operation not allowed\n");
447 448 449 450 451 452 453 454
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

455 456
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
457
			 *min_uV, *max_uV);
458
		return -EINVAL;
459
	}
460 461 462 463

	return 0;
}

464 465 466 467 468 469
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

470 471 472 473
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
474 475
				     int *min_uV, int *max_uV,
				     suspend_state_t state)
476 477
{
	struct regulator *regulator;
478
	struct regulator_voltage *voltage;
479 480

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
481
		voltage = &regulator->voltage[state];
482 483 484 485
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
486
		if (!voltage->min_uV && !voltage->max_uV)
487 488
			continue;

489 490 491 492
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
493 494
	}

495
	if (*min_uV > *max_uV) {
496 497
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
498
		return -EINVAL;
499
	}
500 501 502 503

	return 0;
}

504 505 506 507 508 509
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

510
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
511
		rdev_err(rdev, "current operation not allowed\n");
512 513 514 515 516 517 518 519
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

520 521
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
522
			 *min_uA, *max_uA);
523
		return -EINVAL;
524
	}
525 526 527 528 529

	return 0;
}

/* operating mode constraint check */
530 531
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
532
{
533
	switch (*mode) {
534 535 536 537 538 539
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
540
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
541 542 543
		return -EINVAL;
	}

544
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
545
		rdev_err(rdev, "mode operation not allowed\n");
546 547
		return -EPERM;
	}
548 549 550 551 552 553 554 555

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
556
	}
557 558

	return -EINVAL;
559 560
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

579 580 581
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
582
	struct regulator_dev *rdev = dev_get_drvdata(dev);
583 584
	ssize_t ret;

585
	regulator_lock(rdev);
586
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
587
	regulator_unlock(rdev);
588 589 590

	return ret;
}
591
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
592 593 594 595

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
596
	struct regulator_dev *rdev = dev_get_drvdata(dev);
597 598 599

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
600
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
601

602 603
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
604 605 606
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

607
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
608
}
609
static DEVICE_ATTR_RO(name);
610

611
static const char *regulator_opmode_to_str(int mode)
612 613 614
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
615
		return "fast";
616
	case REGULATOR_MODE_NORMAL:
617
		return "normal";
618
	case REGULATOR_MODE_IDLE:
619
		return "idle";
620
	case REGULATOR_MODE_STANDBY:
621
		return "standby";
622
	}
623 624 625 626 627 628
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
629 630
}

D
David Brownell 已提交
631 632
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
633
{
634
	struct regulator_dev *rdev = dev_get_drvdata(dev);
635

D
David Brownell 已提交
636 637
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
638
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
639 640 641

static ssize_t regulator_print_state(char *buf, int state)
{
642 643 644 645 646 647 648 649
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
650 651 652 653
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
654 655
	ssize_t ret;

656
	regulator_lock(rdev);
657
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
658
	regulator_unlock(rdev);
D
David Brownell 已提交
659

660
	return ret;
D
David Brownell 已提交
661
}
662
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
663

D
David Brownell 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
697 698 699
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
700 701 702
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
703 704 705 706 707 708 709 710
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

711 712 713
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
714
	struct regulator_dev *rdev = dev_get_drvdata(dev);
715 716 717 718 719 720

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
721
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
722 723 724 725

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
726
	struct regulator_dev *rdev = dev_get_drvdata(dev);
727 728 729 730 731 732

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
733
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
734 735 736 737

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
738
	struct regulator_dev *rdev = dev_get_drvdata(dev);
739 740 741 742 743 744

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
745
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
746 747 748 749

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
750
	struct regulator_dev *rdev = dev_get_drvdata(dev);
751 752 753 754 755 756

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
757
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
758 759 760 761

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
762
	struct regulator_dev *rdev = dev_get_drvdata(dev);
763 764 765
	struct regulator *regulator;
	int uA = 0;

766
	regulator_lock(rdev);
767 768 769 770
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
771
	regulator_unlock(rdev);
772 773
	return sprintf(buf, "%d\n", uA);
}
774
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
775

776 777
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
778
{
779
	struct regulator_dev *rdev = dev_get_drvdata(dev);
780 781
	return sprintf(buf, "%d\n", rdev->use_count);
}
782
static DEVICE_ATTR_RO(num_users);
783

784 785
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
786
{
787
	struct regulator_dev *rdev = dev_get_drvdata(dev);
788 789 790 791 792 793 794 795 796

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
797
static DEVICE_ATTR_RO(type);
798 799 800 801

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
802
	struct regulator_dev *rdev = dev_get_drvdata(dev);
803 804 805

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
806 807
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
808 809 810 811

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
812
	struct regulator_dev *rdev = dev_get_drvdata(dev);
813 814 815

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
816 817
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
818 819 820 821

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
822
	struct regulator_dev *rdev = dev_get_drvdata(dev);
823 824 825

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
826 827
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
828 829 830 831

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
832
	struct regulator_dev *rdev = dev_get_drvdata(dev);
833

D
David Brownell 已提交
834 835
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
836
}
837 838
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
839 840 841 842

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
843
	struct regulator_dev *rdev = dev_get_drvdata(dev);
844

D
David Brownell 已提交
845 846
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
847
}
848 849
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
850 851 852 853

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
854
	struct regulator_dev *rdev = dev_get_drvdata(dev);
855

D
David Brownell 已提交
856 857
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
858
}
859 860
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
861 862 863 864

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
865
	struct regulator_dev *rdev = dev_get_drvdata(dev);
866

D
David Brownell 已提交
867 868
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
869
}
870 871
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
872 873 874 875

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
876
	struct regulator_dev *rdev = dev_get_drvdata(dev);
877

D
David Brownell 已提交
878 879
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
880
}
881 882
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
883 884 885 886

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
887
	struct regulator_dev *rdev = dev_get_drvdata(dev);
888

D
David Brownell 已提交
889 890
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
891
}
892 893 894
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
916

917 918
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
919
static int drms_uA_update(struct regulator_dev *rdev)
920 921 922 923 924
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

925
	lockdep_assert_held_once(&rdev->mutex.base);
926

927 928 929 930
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
931
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
932 933
		return 0;

934 935
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
936 937
		return 0;

938 939
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
940
		return -EINVAL;
941 942

	/* calc total requested load */
943 944 945 946
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
947

948 949
	current_uA += rdev->constraints->system_load;

950 951 952 953 954 955
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
		/* get output voltage */
		output_uV = _regulator_get_voltage(rdev);
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

974 975 976 977 978 979 980 981 982 983 984
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
985

986 987 988
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
989 990 991
	}

	return err;
992 993 994
}

static int suspend_set_state(struct regulator_dev *rdev,
995
				    suspend_state_t state)
996 997
{
	int ret = 0;
998 999 1000 1001
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
1002
		return 0;
1003 1004

	/* If we have no suspend mode configration don't set anything;
1005 1006
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
1007
	 */
1008 1009
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
1010 1011
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
1012
			rdev_warn(rdev, "No configuration\n");
1013 1014 1015
		return 0;
	}

1016 1017
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1018
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1019 1020
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1021
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1022 1023 1024
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1025
	if (ret < 0) {
1026
		rdev_err(rdev, "failed to enabled/disable\n");
1027 1028 1029 1030 1031 1032
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1033
			rdev_err(rdev, "failed to set voltage\n");
1034 1035 1036 1037 1038 1039 1040
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1041
			rdev_err(rdev, "failed to set mode\n");
1042 1043 1044 1045
			return ret;
		}
	}

1046
	return ret;
1047 1048 1049 1050 1051
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1052
	char buf[160] = "";
1053
	size_t len = sizeof(buf) - 1;
1054 1055
	int count = 0;
	int ret;
1056

1057
	if (constraints->min_uV && constraints->max_uV) {
1058
		if (constraints->min_uV == constraints->max_uV)
1059 1060
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1061
		else
1062 1063 1064 1065
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1066 1067 1068 1069 1070 1071
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
1072 1073
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1074 1075
	}

1076
	if (constraints->uV_offset)
1077 1078
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1079

1080
	if (constraints->min_uA && constraints->max_uA) {
1081
		if (constraints->min_uA == constraints->max_uA)
1082 1083
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1084
		else
1085 1086 1087 1088
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1089 1090 1091 1092 1093 1094
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1095 1096
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1097
	}
1098

1099
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1100
		count += scnprintf(buf + count, len - count, "fast ");
1101
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1102
		count += scnprintf(buf + count, len - count, "normal ");
1103
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1104
		count += scnprintf(buf + count, len - count, "idle ");
1105
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1106
		count += scnprintf(buf + count, len - count, "standby");
1107

1108
	if (!count)
1109
		scnprintf(buf, len, "no parameters");
1110

1111
	rdev_dbg(rdev, "%s\n", buf);
1112 1113

	if ((constraints->min_uV != constraints->max_uV) &&
1114
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1115 1116
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1117 1118
}

1119
static int machine_constraints_voltage(struct regulator_dev *rdev,
1120
	struct regulation_constraints *constraints)
1121
{
1122
	const struct regulator_ops *ops = rdev->desc->ops;
1123 1124 1125 1126
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1127 1128
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1129
		int current_uV = _regulator_get_voltage(rdev);
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

		if (current_uV == -ENOTRECOVERABLE) {
			/* This regulator can't be read and must be initted */
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
			current_uV = _regulator_get_voltage(rdev);
		}

1142
		if (current_uV < 0) {
1143 1144 1145
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1146 1147
			return current_uV;
		}
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1168 1169
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1170
			ret = _regulator_do_set_voltage(
1171
				rdev, target_min, target_max);
1172 1173
			if (ret < 0) {
				rdev_err(rdev,
1174 1175
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1176 1177
				return ret;
			}
1178
		}
1179
	}
1180

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1192 1193
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1194
		if (count == 1 && !cmin) {
1195
			cmin = 1;
1196
			cmax = INT_MAX;
1197 1198
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1199 1200
		}

1201 1202
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1203
			return 0;
1204

1205
		/* else require explicit machine-level constraints */
1206
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1207
			rdev_err(rdev, "invalid voltage constraints\n");
1208
			return -EINVAL;
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1228 1229 1230
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1231
			return -EINVAL;
1232 1233 1234 1235
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1236 1237
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1238 1239 1240
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1241 1242
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1243 1244 1245 1246
			constraints->max_uV = max_uV;
		}
	}

1247 1248 1249
	return 0;
}

1250 1251 1252
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1253
	const struct regulator_ops *ops = rdev->desc->ops;
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1280 1281
static int _regulator_do_enable(struct regulator_dev *rdev);

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1294
	const struct regulation_constraints *constraints)
1295 1296
{
	int ret = 0;
1297
	const struct regulator_ops *ops = rdev->desc->ops;
1298

1299 1300 1301 1302 1303 1304
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1305 1306
	if (!rdev->constraints)
		return -ENOMEM;
1307

1308
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1309
	if (ret != 0)
1310
		return ret;
1311

1312
	ret = machine_constraints_current(rdev, rdev->constraints);
1313
	if (ret != 0)
1314
		return ret;
1315

1316 1317 1318 1319 1320
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1321
			return ret;
1322 1323 1324
		}
	}

1325
	/* do we need to setup our suspend state */
1326
	if (rdev->constraints->initial_state) {
1327
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1328
		if (ret < 0) {
1329
			rdev_err(rdev, "failed to set suspend state\n");
1330
			return ret;
1331 1332
		}
	}
1333

1334
	if (rdev->constraints->initial_mode) {
1335
		if (!ops->set_mode) {
1336
			rdev_err(rdev, "no set_mode operation\n");
1337
			return -EINVAL;
1338 1339
		}

1340
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1341
		if (ret < 0) {
1342
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1343
			return ret;
1344
		}
1345 1346 1347 1348 1349 1350
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1351 1352
	}

1353 1354
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1355 1356 1357
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1358
			return ret;
1359 1360 1361
		}
	}

S
Stephen Boyd 已提交
1362 1363 1364 1365
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1366
			return ret;
S
Stephen Boyd 已提交
1367 1368 1369
		}
	}

S
Stephen Boyd 已提交
1370 1371 1372 1373
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1374
			return ret;
S
Stephen Boyd 已提交
1375 1376 1377
		}
	}

1378 1379 1380 1381 1382
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1383
			return ret;
1384 1385 1386
		}
	}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
			rdev_err(rdev, "failed to enable\n");
			return ret;
		}
	}

1409
	print_constraints(rdev);
1410
	return 0;
1411 1412 1413 1414
}

/**
 * set_supply - set regulator supply regulator
1415 1416
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1417 1418 1419 1420 1421 1422
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1423
		      struct regulator_dev *supply_rdev)
1424 1425 1426
{
	int err;

1427 1428
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1429 1430 1431
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1432
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1433 1434
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1435
		return err;
1436
	}
1437
	supply_rdev->open_count++;
1438 1439

	return 0;
1440 1441 1442
}

/**
1443
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1444
 * @rdev:         regulator source
1445
 * @consumer_dev_name: dev_name() string for device supply applies to
1446
 * @supply:       symbolic name for supply
1447 1448 1449 1450 1451 1452 1453
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1454 1455
				      const char *consumer_dev_name,
				      const char *supply)
1456 1457
{
	struct regulator_map *node;
1458
	int has_dev;
1459 1460 1461 1462

	if (supply == NULL)
		return -EINVAL;

1463 1464 1465 1466 1467
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1468
	list_for_each_entry(node, &regulator_map_list, list) {
1469 1470 1471 1472
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1473
			continue;
1474 1475
		}

1476 1477 1478
		if (strcmp(node->supply, supply) != 0)
			continue;

1479 1480 1481 1482 1483 1484
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1485 1486 1487
		return -EBUSY;
	}

1488
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1489 1490 1491 1492 1493 1494
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1495 1496 1497 1498 1499 1500
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1501 1502
	}

1503 1504 1505 1506
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1507 1508 1509 1510 1511 1512 1513
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1514
			kfree(node->dev_name);
1515 1516 1517 1518 1519
			kfree(node);
		}
	}
}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1569
#define REG_STR_SIZE	64
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1583
	regulator_lock(rdev);
1584 1585 1586 1587
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1588 1589
		regulator->dev = dev;

1590
		/* Add a link to the device sysfs entry */
1591 1592
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1593
		if (size >= REG_STR_SIZE)
1594
			goto overflow_err;
1595 1596 1597

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1598
			goto overflow_err;
1599

1600
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1601 1602
					buf);
		if (err) {
1603
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1604
				  dev->kobj.name, err);
1605
			/* non-fatal */
1606
		}
1607
	} else {
1608
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1609
		if (regulator->supply_name == NULL)
1610
			goto overflow_err;
1611 1612 1613 1614
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1615
	if (!regulator->debugfs) {
1616
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1617 1618 1619 1620
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1621
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1622
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1623
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1624 1625 1626
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1627
	}
1628

1629 1630 1631 1632 1633
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1634
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1635 1636 1637
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1638
	regulator_unlock(rdev);
1639 1640 1641 1642
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1643
	regulator_unlock(rdev);
1644 1645 1646
	return NULL;
}

1647 1648
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1649 1650
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1651
	if (!rdev->desc->ops->enable_time)
1652
		return rdev->desc->enable_time;
1653 1654 1655
	return rdev->desc->ops->enable_time(rdev);
}

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1704 1705 1706 1707 1708
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1709
 */
1710
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1711
						  const char *supply)
1712
{
1713
	struct regulator_dev *r = NULL;
1714
	struct device_node *node;
1715 1716
	struct regulator_map *map;
	const char *devname = NULL;
1717

1718 1719
	regulator_supply_alias(&dev, &supply);

1720 1721 1722
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1723
		if (node) {
1724 1725 1726
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1727

1728
			/*
1729 1730
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1731
			 */
1732
			return ERR_PTR(-EPROBE_DEFER);
1733
		}
1734 1735 1736
	}

	/* if not found, try doing it non-dt way */
1737 1738 1739
	if (dev)
		devname = dev_name(dev);

1740
	mutex_lock(&regulator_list_mutex);
1741 1742 1743 1744 1745 1746
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1747 1748
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1749 1750
			r = map->regulator;
			break;
1751
		}
1752
	}
1753
	mutex_unlock(&regulator_list_mutex);
1754

1755 1756 1757 1758
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1759 1760 1761 1762
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1763 1764
}

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1779 1780 1781 1782
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1783 1784 1785 1786
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1787 1788
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1789
			get_device(&r->dev);
1790 1791 1792 1793 1794
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1795 1796
	}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1810 1811
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1812 1813
	if (ret < 0) {
		put_device(&r->dev);
1814
		return ret;
1815
	}
1816 1817

	ret = set_supply(rdev, r);
1818 1819
	if (ret < 0) {
		put_device(&r->dev);
1820
		return ret;
1821
	}
1822 1823

	/* Cascade always-on state to supply */
1824
	if (_regulator_is_enabled(rdev)) {
1825
		ret = regulator_enable(rdev->supply);
1826
		if (ret < 0) {
1827
			_regulator_put(rdev->supply);
1828
			rdev->supply = NULL;
1829
			return ret;
1830
		}
1831
		rdev->use_count = 1;
1832 1833 1834 1835 1836
	}

	return 0;
}

1837
/* Internal regulator request function */
1838 1839
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1840 1841
{
	struct regulator_dev *rdev;
1842
	struct regulator *regulator;
1843
	const char *devname = dev ? dev_name(dev) : "deviceless";
1844
	int ret;
1845

1846 1847 1848 1849 1850
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1851
	if (id == NULL) {
1852
		pr_err("get() with no identifier\n");
1853
		return ERR_PTR(-EINVAL);
1854 1855
	}

1856
	rdev = regulator_dev_lookup(dev, id);
1857 1858
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1859

1860 1861 1862 1863 1864 1865
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1866

1867 1868 1869 1870 1871
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1872

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1886

1887 1888 1889 1890
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1891

1892 1893 1894
		default:
			return ERR_PTR(-ENODEV);
		}
1895 1896
	}

1897 1898
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1899 1900
		put_device(&rdev->dev);
		return regulator;
1901 1902
	}

1903
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1904
		regulator = ERR_PTR(-EBUSY);
1905 1906
		put_device(&rdev->dev);
		return regulator;
1907 1908
	}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1919 1920 1921
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1922 1923
		put_device(&rdev->dev);
		return regulator;
1924 1925
	}

1926
	if (!try_module_get(rdev->owner)) {
1927
		regulator = ERR_PTR(-EPROBE_DEFER);
1928 1929 1930
		put_device(&rdev->dev);
		return regulator;
	}
1931

1932 1933 1934
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1935
		put_device(&rdev->dev);
1936
		module_put(rdev->owner);
1937
		return regulator;
1938 1939
	}

1940
	rdev->open_count++;
1941
	if (get_type == EXCLUSIVE_GET) {
1942 1943 1944 1945 1946 1947 1948 1949 1950
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1951 1952
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);

1953 1954
	return regulator;
}
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1971
	return _regulator_get(dev, id, NORMAL_GET);
1972
}
1973 1974
EXPORT_SYMBOL_GPL(regulator_get);

1975 1976 1977 1978 1979 1980 1981
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1982 1983 1984
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1998
	return _regulator_get(dev, id, EXCLUSIVE_GET);
1999 2000 2001
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2002 2003 2004 2005 2006 2007
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2008
 * or IS_ERR() condition containing errno.
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2024
	return _regulator_get(dev, id, OPTIONAL_GET);
2025 2026 2027
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2028
/* regulator_list_mutex lock held by regulator_put() */
2029
static void _regulator_put(struct regulator *regulator)
2030 2031 2032
{
	struct regulator_dev *rdev;

2033
	if (IS_ERR_OR_NULL(regulator))
2034 2035
		return;

2036 2037
	lockdep_assert_held_once(&regulator_list_mutex);

2038 2039 2040
	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

2041 2042
	rdev = regulator->rdev;

2043 2044
	debugfs_remove_recursive(regulator->debugfs);

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	if (regulator->dev) {
		int count = 0;
		struct regulator *r;

		list_for_each_entry(r, &rdev->consumer_list, list)
			if (r->dev == regulator->dev)
				count++;

		if (count == 1)
			device_link_remove(regulator->dev, &rdev->dev);

		/* remove any sysfs entries */
2057
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2058 2059
	}

2060
	regulator_lock(rdev);
2061 2062
	list_del(&regulator->list);

2063 2064
	rdev->open_count--;
	rdev->exclusive = 0;
2065
	put_device(&rdev->dev);
2066
	regulator_unlock(rdev);
2067

2068
	kfree_const(regulator->supply_name);
2069 2070
	kfree(regulator);

2071
	module_put(rdev->owner);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2086 2087 2088 2089
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2167 2168
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2169
					 struct device *alias_dev,
2170
					 const char *const *alias_id,
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2208
					    const char *const *id,
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2219 2220 2221 2222 2223
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2224
	struct gpio_desc *gpiod;
2225 2226
	int ret;

2227 2228 2229 2230
	if (config->ena_gpiod)
		gpiod = config->ena_gpiod;
	else
		gpiod = gpio_to_desc(config->ena_gpio);
2231

2232
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2233
		if (pin->gpiod == gpiod) {
2234 2235 2236 2237 2238 2239
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

2240 2241 2242 2243 2244 2245 2246
	if (!config->ena_gpiod) {
		ret = gpio_request_one(config->ena_gpio,
				       GPIOF_DIR_OUT | config->ena_gpio_flags,
				       rdev_get_name(rdev));
		if (ret)
			return ret;
	}
2247 2248 2249

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
2250 2251
		if (!config->ena_gpiod)
			gpio_free(config->ena_gpio);
2252 2253 2254
		return -ENOMEM;
	}

2255
	pin->gpiod = gpiod;
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2274
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2275 2276
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2277
				gpiod_put(pin->gpiod);
2278 2279
				list_del(&pin->list);
				kfree(pin);
2280 2281
				rdev->ena_pin = NULL;
				return;
2282 2283 2284 2285 2286 2287 2288
			} else {
				pin->request_count--;
			}
		}
	}
}

2289
/**
2290 2291 2292 2293
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2307 2308
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2319 2320
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
2321 2322 2323 2324 2325 2326 2327
			pin->enable_count = 0;
		}
	}

	return 0;
}

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2407
	if (rdev->ena_pin) {
2408 2409 2410 2411 2412 2413
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2414
	} else if (rdev->desc->ops->enable) {
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2427
	_regulator_enable_delay(delay);
2428 2429 2430 2431 2432 2433

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2493
/* locks held by regulator_enable() */
2494
static int _regulator_enable(struct regulator *regulator)
2495
{
2496
	struct regulator_dev *rdev = regulator->rdev;
2497
	int ret;
2498

2499 2500
	lockdep_assert_held_once(&rdev->mutex.base);

2501
	if (rdev->use_count == 0 && rdev->supply) {
2502
		ret = _regulator_enable(rdev->supply);
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2513

2514 2515 2516
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2517

2518 2519 2520 2521
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2522
			if (!regulator_ops_is_valid(rdev,
2523 2524
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2525
				goto err_consumer_disable;
2526
			}
2527

2528
			ret = _regulator_do_enable(rdev);
2529
			if (ret < 0)
2530
				goto err_consumer_disable;
2531

2532 2533
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2534
		} else if (ret < 0) {
2535
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2536
			goto err_consumer_disable;
2537
		}
2538
		/* Fallthrough on positive return values - already enabled */
2539 2540
	}

2541 2542 2543
	rdev->use_count++;

	return 0;
2544

2545 2546 2547
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2548
err_disable_supply:
2549
	if (rdev->use_count == 0 && rdev->supply)
2550
		_regulator_disable(rdev->supply);
2551 2552

	return ret;
2553 2554 2555 2556 2557 2558
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2559 2560 2561 2562
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2563
 * NOTE: the output value can be set by other drivers, boot loader or may be
2564
 * hardwired in the regulator.
2565 2566 2567
 */
int regulator_enable(struct regulator *regulator)
{
2568
	struct regulator_dev *rdev = regulator->rdev;
2569
	struct ww_acquire_ctx ww_ctx;
2570
	int ret;
2571

2572
	regulator_lock_dependent(rdev, &ww_ctx);
2573
	ret = _regulator_enable(regulator);
2574
	regulator_unlock_dependent(rdev, &ww_ctx);
2575

2576 2577 2578 2579
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2580 2581 2582 2583 2584 2585
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2586
	if (rdev->ena_pin) {
2587 2588 2589 2590 2591 2592
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2593 2594 2595 2596 2597 2598 2599

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2600 2601 2602 2603 2604 2605
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2606 2607 2608 2609 2610
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2611
/* locks held by regulator_disable() */
2612
static int _regulator_disable(struct regulator *regulator)
2613
{
2614
	struct regulator_dev *rdev = regulator->rdev;
2615 2616
	int ret = 0;

2617
	lockdep_assert_held_once(&rdev->mutex.base);
2618

D
David Brownell 已提交
2619
	if (WARN(rdev->use_count <= 0,
2620
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2621 2622
		return -EIO;

2623
	/* are we the last user and permitted to disable ? */
2624 2625
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2626 2627

		/* we are last user */
2628
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2629 2630 2631 2632 2633 2634
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2635
			ret = _regulator_do_disable(rdev);
2636
			if (ret < 0) {
2637
				rdev_err(rdev, "failed to disable\n");
2638 2639 2640
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2641 2642
				return ret;
			}
2643 2644
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2645 2646 2647 2648 2649 2650
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2651

2652 2653 2654
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2655 2656 2657
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2658
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2659
		ret = _regulator_disable(rdev->supply);
2660

2661 2662 2663 2664 2665 2666 2667
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2668 2669 2670
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2671
 *
2672
 * NOTE: this will only disable the regulator output if no other consumer
2673 2674
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2675 2676 2677
 */
int regulator_disable(struct regulator *regulator)
{
2678
	struct regulator_dev *rdev = regulator->rdev;
2679
	struct ww_acquire_ctx ww_ctx;
2680
	int ret;
2681

2682
	regulator_lock_dependent(rdev, &ww_ctx);
2683
	ret = _regulator_disable(regulator);
2684
	regulator_unlock_dependent(rdev, &ww_ctx);
2685

2686 2687 2688 2689 2690
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2691
static int _regulator_force_disable(struct regulator_dev *rdev)
2692 2693 2694
{
	int ret = 0;

2695
	lockdep_assert_held_once(&rdev->mutex.base);
2696

2697 2698 2699 2700 2701
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2702 2703 2704
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2705 2706
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2707
		return ret;
2708 2709
	}

2710 2711 2712 2713
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2727
	struct regulator_dev *rdev = regulator->rdev;
2728
	struct ww_acquire_ctx ww_ctx;
2729 2730
	int ret;

2731
	regulator_lock_dependent(rdev, &ww_ctx);
2732

2733
	ret = _regulator_force_disable(regulator->rdev);
2734

2735 2736
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2737 2738 2739 2740 2741 2742

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2743 2744
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2745

2746
	regulator_unlock_dependent(rdev, &ww_ctx);
2747

2748 2749 2750 2751
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2752 2753 2754 2755
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2756
	struct ww_acquire_ctx ww_ctx;
2757
	int count, i, ret;
2758 2759
	struct regulator *regulator;
	int total_count = 0;
2760

2761
	regulator_lock_dependent(rdev, &ww_ctx);
2762

2763 2764 2765 2766 2767 2768 2769 2770
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
		}
2785
	}
2786
	WARN_ON(!total_count);
2787

2788 2789 2790 2791
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2820 2821 2822
	if (!ms)
		return regulator_disable(regulator);

2823
	regulator_lock(rdev);
2824
	regulator->deferred_disables++;
2825 2826
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2827
	regulator_unlock(rdev);
2828

2829
	return 0;
2830 2831 2832
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2833 2834
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2835
	/* A GPIO control always takes precedence */
2836
	if (rdev->ena_pin)
2837 2838
		return rdev->ena_gpio_state;

2839
	/* If we don't know then assume that the regulator is always on */
2840
	if (!rdev->desc->ops->is_enabled)
2841
		return 1;
2842

2843
	return rdev->desc->ops->is_enabled(rdev);
2844 2845
}

2846 2847
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2859
			regulator_lock(rdev);
2860 2861
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2862
			regulator_unlock(rdev);
2863
	} else if (rdev->is_switch && rdev->supply) {
2864 2865
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2880 2881 2882 2883
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2884 2885 2886 2887 2888 2889 2890
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2891 2892 2893
 */
int regulator_is_enabled(struct regulator *regulator)
{
2894 2895
	int ret;

2896 2897 2898
	if (regulator->always_on)
		return 1;

2899
	regulator_lock(regulator->rdev);
2900
	ret = _regulator_is_enabled(regulator->rdev);
2901
	regulator_unlock(regulator->rdev);
2902 2903

	return ret;
2904 2905 2906
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2919 2920 2921
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2922
	if (!rdev->is_switch || !rdev->supply)
2923 2924 2925
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2936
 * zero if this selector code can't be used on this system, or a
2937 2938 2939 2940
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2941
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2942 2943 2944
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2977 2978
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2979 2980 2981 2982

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2983 2984
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3004 3005
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3043
	struct regulator_dev *rdev = regulator->rdev;
3044 3045
	int i, voltages, ret;

3046
	/* If we can't change voltage check the current voltage */
3047
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3048 3049
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3050
			return min_uV <= ret && ret <= max_uV;
3051 3052 3053 3054
		else
			return ret;
	}

3055 3056 3057 3058 3059
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3074
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3075

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3090 3091 3092 3093 3094
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3095 3096 3097
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3147 3148 3149 3150 3151 3152 3153 3154 3155
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3156 3157
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3158 3159 3160 3161 3162 3163
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3164 3165

	if (ramp_delay == 0) {
3166
		rdev_dbg(rdev, "ramp_delay not set\n");
3167 3168 3169 3170 3171 3172
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3173 3174 3175 3176
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3177
	int delay = 0;
3178
	int best_val = 0;
3179
	unsigned int selector;
3180
	int old_selector = -1;
3181
	const struct regulator_ops *ops = rdev->desc->ops;
3182
	int old_uV = _regulator_get_voltage(rdev);
3183 3184 3185

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3186 3187 3188
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3189 3190 3191 3192
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3193
	if (_regulator_is_enabled(rdev) &&
3194 3195
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3196 3197 3198 3199
		if (old_selector < 0)
			return old_selector;
	}

3200
	if (ops->set_voltage) {
3201 3202
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3203 3204

		if (ret >= 0) {
3205 3206 3207
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3208 3209 3210 3211
			else
				best_val = _regulator_get_voltage(rdev);
		}

3212
	} else if (ops->set_voltage_sel) {
3213
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3214
		if (ret >= 0) {
3215
			best_val = ops->list_voltage(rdev, ret);
3216 3217
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3218 3219 3220
				if (old_selector == selector)
					ret = 0;
				else
3221 3222
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3223 3224 3225
			} else {
				ret = -EINVAL;
			}
3226
		}
3227 3228 3229
	} else {
		ret = -EINVAL;
	}
3230

3231 3232
	if (ret)
		goto out;
3233

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3251
		}
3252
	}
3253

3254 3255 3256
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3257 3258
	}

3259 3260 3261 3262 3263 3264
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3265 3266
	}

3267
	if (best_val >= 0) {
3268 3269
		unsigned long data = best_val;

3270
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3271 3272
				     (void *)data);
	}
3273

3274
out:
3275
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3276 3277 3278 3279

	return ret;
}

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3306
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3307 3308
					  int min_uV, int max_uV,
					  suspend_state_t state)
3309 3310
{
	struct regulator_dev *rdev = regulator->rdev;
3311
	struct regulator_voltage *voltage = &regulator->voltage[state];
3312
	int ret = 0;
3313
	int old_min_uV, old_max_uV;
3314
	int current_uV;
3315

3316 3317 3318 3319
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3320
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3321 3322
		goto out;

3323
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3324
	 * return successfully even though the regulator does not support
3325 3326
	 * changing the voltage.
	 */
3327
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3328 3329
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
3330 3331
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3332 3333 3334 3335
			goto out;
		}
	}

3336
	/* sanity check */
3337 3338
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3339 3340 3341 3342 3343 3344 3345 3346
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3347

3348
	/* restore original values in case of error */
3349 3350 3351 3352
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3353

3354 3355
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3356
	if (ret < 0)
3357
		goto out2;
3358

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
out:
	return 0;
out2:
	voltage->min_uV = old_min_uV;
	voltage->max_uV = old_max_uV;

	return ret;
}

static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
				      int max_uV, suspend_state_t state)
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3375 3376 3377
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3378 3379
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3380 3381 3382 3383 3384 3385
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3386
			goto out;
3387 3388
		}

M
Mark Brown 已提交
3389
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3390 3391
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3392
			goto out;
3393 3394 3395 3396 3397 3398 3399
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3400
			goto out;
3401 3402 3403 3404 3405 3406 3407
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3408
				best_supply_uV, INT_MAX, state);
3409 3410 3411
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3412
			goto out;
3413 3414 3415
		}
	}

3416 3417 3418 3419 3420
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3421
	if (ret < 0)
3422
		goto out;
3423

3424 3425
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3426
				best_supply_uV, INT_MAX, state);
3427 3428 3429 3430 3431 3432 3433
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3434
out:
3435
	return ret;
3436 3437
}

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
		*current_uV = _regulator_get_voltage(rdev);

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int max_spread = constraints->max_spread;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
	int i, ret;
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3515
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3526

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

		tmp_act = _regulator_get_voltage(c_rdevs[i]);
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
			ret = _regulator_get_voltage(rdev);
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	bool best_c_rdev_done, c_rdev_done[MAX_COUPLED];
	unsigned int delta, best_delta;

	c_rdevs = c_desc->coupled_rdevs;
	n_coupled = c_desc->n_coupled;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		n_coupled = 1;

	if (c_desc->n_resolved < n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	for (i = 0; i < n_coupled; i++)
		c_rdev_done[i] = false;

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

			if (c_rdev_done[i])
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3691

3692 3693
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3694

3695 3696 3697 3698 3699 3700 3701 3702
		if (ret < 0)
			goto out;

		c_rdev_done[best_c_rdev] = best_c_rdev_done;

	} while (n_coupled > 1);

out:
3703 3704 3705
	return ret;
}

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3726 3727
	struct ww_acquire_ctx ww_ctx;
	int ret;
3728

3729
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3730

3731 3732
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3733

3734
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3735

3736 3737 3738 3739
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3752
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3806 3807
	struct ww_acquire_ctx ww_ctx;
	int ret;
3808 3809 3810 3811 3812

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3813
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3814 3815 3816 3817

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3818
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3819 3820 3821 3822 3823

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3837 3838
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3839 3840 3841 3842 3843
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3844 3845 3846 3847 3848
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3849
	/* Currently requires operations to do this */
3850
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3873
/**
3874 3875
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3876 3877 3878 3879 3880 3881
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3882
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3883
 * set_voltage_time_sel() operation.
3884 3885 3886 3887 3888
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3889
	int old_volt, new_volt;
3890

3891 3892 3893
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3894

3895 3896 3897
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3898 3899 3900 3901 3902
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3903
}
3904
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3905

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3917
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3918 3919
	int ret, min_uV, max_uV;

3920
	regulator_lock(rdev);
3921 3922 3923 3924 3925 3926 3927 3928

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3929
	if (!voltage->min_uV && !voltage->max_uV) {
3930 3931 3932 3933
		ret = -EINVAL;
		goto out;
	}

3934 3935
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3936 3937 3938 3939 3940 3941

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3942
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3943 3944 3945 3946 3947 3948
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3949
	regulator_unlock(rdev);
3950 3951 3952 3953
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3954 3955
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3956
	int sel, ret;
3957 3958 3959 3960 3961 3962 3963 3964
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3965 3966 3967 3968 3969
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3970 3971 3972 3973

			return _regulator_get_voltage(rdev->supply->rdev);
		}
	}
3974 3975 3976 3977 3978

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3979
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3980
	} else if (rdev->desc->ops->get_voltage) {
3981
		ret = rdev->desc->ops->get_voltage(rdev);
3982 3983
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3984 3985
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3986
	} else if (rdev->supply) {
3987
		ret = _regulator_get_voltage(rdev->supply->rdev);
3988
	} else {
3989
		return -EINVAL;
3990
	}
3991

3992 3993
	if (ret < 0)
		return ret;
3994
	return ret - rdev->constraints->uV_offset;
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4008
	struct ww_acquire_ctx ww_ctx;
4009 4010
	int ret;

4011
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4012
	ret = _regulator_get_voltage(regulator->rdev);
4013
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4014 4015 4016 4017 4018 4019 4020 4021

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4022
 * @min_uA: Minimum supported current in uA
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4041
	regulator_lock(rdev);
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4056
	regulator_unlock(rdev);
4057 4058 4059 4060
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4061 4062 4063 4064 4065 4066 4067 4068 4069
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4070 4071 4072 4073
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4074
	regulator_lock(rdev);
4075
	ret = _regulator_get_current_limit_unlocked(rdev);
4076
	regulator_unlock(rdev);
4077

4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4111
	int regulator_curr_mode;
4112

4113
	regulator_lock(rdev);
4114 4115 4116 4117 4118 4119 4120

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4121 4122 4123 4124 4125 4126 4127 4128 4129
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4130
	/* constraints check */
4131
	ret = regulator_mode_constrain(rdev, &mode);
4132 4133 4134 4135 4136
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4137
	regulator_unlock(rdev);
4138 4139 4140 4141
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4142 4143 4144 4145 4146 4147 4148 4149 4150
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4151 4152 4153 4154
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4155
	regulator_lock(rdev);
4156
	ret = _regulator_get_mode_unlocked(rdev);
4157
	regulator_unlock(rdev);
4158

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4174 4175 4176 4177 4178
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4179
	regulator_lock(rdev);
4180 4181 4182 4183 4184 4185 4186 4187 4188

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4189
	regulator_unlock(rdev);
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4207
/**
4208
 * regulator_set_load - set regulator load
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4231 4232 4233 4234 4235 4236 4237 4238
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4239
 * On error a negative errno is returned.
4240
 */
4241
int regulator_set_load(struct regulator *regulator, int uA_load)
4242 4243
{
	struct regulator_dev *rdev = regulator->rdev;
4244 4245
	int old_uA_load;
	int ret = 0;
4246

4247
	regulator_lock(rdev);
4248
	old_uA_load = regulator->uA_load;
4249
	regulator->uA_load = uA_load;
4250 4251 4252 4253 4254
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4255
	regulator_unlock(rdev);
4256

4257 4258
	return ret;
}
4259
EXPORT_SYMBOL_GPL(regulator_set_load);
4260

4261 4262 4263 4264
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4265
 * @enable: enable or disable bypass mode
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4280
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4281 4282
		return 0;

4283
	regulator_lock(rdev);
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4307
	regulator_unlock(rdev);
4308 4309 4310 4311 4312

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4313 4314 4315
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4316
 * @nb: notifier block
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4331
 * @nb: notifier block
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4343 4344 4345
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4346
static int _notifier_call_chain(struct regulator_dev *rdev,
4347 4348 4349
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4350
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4377 4378
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4379 4380
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
4381 4382
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
4383 4384 4385 4386 4387 4388 4389 4390
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4391
	while (--i >= 0)
4392 4393 4394 4395 4396 4397
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4398 4399 4400 4401 4402 4403 4404
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4420
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4421
	int i;
4422
	int ret = 0;
4423

4424
	for (i = 0; i < num_consumers; i++) {
4425 4426
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4427
	}
4428 4429 4430 4431

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4432
	for (i = 0; i < num_consumers; i++) {
4433 4434
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4435
			goto err;
4436
		}
4437 4438 4439 4440 4441
	}

	return 0;

err:
4442 4443 4444 4445 4446 4447 4448
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4462 4463
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4464 4465 4466 4467 4468 4469
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4470
	int ret, r;
4471

4472
	for (i = num_consumers - 1; i >= 0; --i) {
4473 4474 4475 4476 4477 4478 4479 4480
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4481
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4482 4483 4484
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4485
			pr_err("Failed to re-enable %s: %d\n",
4486 4487
			       consumers[i].supply, r);
	}
4488 4489 4490 4491 4492

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4511
	int ret = 0;
4512

4513
	for (i = 0; i < num_consumers; i++) {
4514 4515 4516
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4517 4518
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4519 4520 4521 4522 4523 4524 4525
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4549
 * @rdev: regulator source
4550
 * @event: notifier block
4551
 * @data: callback-specific data.
4552 4553 4554
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4555
 * Note lock must be held by caller.
4556 4557 4558 4559
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4560
	lockdep_assert_held_once(&rdev->mutex.base);
4561

4562 4563 4564 4565 4566 4567
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4584
	case REGULATOR_MODE_STANDBY:
4585 4586
		return REGULATOR_STATUS_STANDBY;
	default:
4587
		return REGULATOR_STATUS_UNDEFINED;
4588 4589 4590 4591
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4619 4620 4621 4622
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4623 4624
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4625
{
4626
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4627
	struct regulator_dev *rdev = dev_to_rdev(dev);
4628
	const struct regulator_ops *ops = rdev->desc->ops;
4629 4630 4631 4632 4633 4634 4635
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4636 4637

	/* some attributes need specific methods to be displayed */
4638 4639 4640 4641 4642 4643 4644
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4645
	}
4646

4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4662
	/* constraints need specific supporting methods */
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4698

4699 4700 4701
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4702 4703 4704

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4705
	kfree(rdev);
4706 4707
}

4708 4709
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4722
	if (!rdev->debugfs) {
4723 4724 4725 4726 4727 4728 4729 4730
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4731 4732
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4733 4734
}

4735 4736
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4737 4738 4739 4740 4741 4742
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4743 4744
}

4745
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4759 4760
		if (!c_rdev)
			continue;
4761

4762
		regulator_lock(c_rdev);
4763

4764 4765
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4766

4767
		regulator_unlock(c_rdev);
4768

4769 4770
		regulator_resolve_coupling(c_rdev);
	}
4771 4772
}

4773
static void regulator_remove_coupling(struct regulator_dev *rdev)
4774
{
4775 4776 4777 4778
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
4779

4780
	n_coupled = c_desc->n_coupled;
4781

4782 4783
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
4784

4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
4808 4809
}

4810
static int regulator_init_coupling(struct regulator_dev *rdev)
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
{
	int n_phandles;

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

	if (n_phandles + 1 > MAX_COUPLED) {
		rdev_err(rdev, "too many regulators coupled\n");
		return -EPERM;
	}

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

	/* regulator, which can't change its voltage, can't be coupled */
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
		rdev_err(rdev, "voltage operation not allowed\n");
		return -EPERM;
	}

	if (rdev->constraints->max_spread <= 0) {
		rdev_err(rdev, "wrong max_spread value\n");
		return -EPERM;
	}

	if (!of_check_coupling_data(rdev))
		return -EPERM;

	return 0;
}

4853 4854
/**
 * regulator_register - register regulator
4855
 * @regulator_desc: regulator to register
4856
 * @cfg: runtime configuration for regulator
4857 4858
 *
 * Called by regulator drivers to register a regulator.
4859 4860
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4861
 */
4862 4863
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4864
		   const struct regulator_config *cfg)
4865
{
4866
	const struct regulation_constraints *constraints = NULL;
4867
	const struct regulator_init_data *init_data;
4868
	struct regulator_config *config = NULL;
4869
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4870
	struct regulator_dev *rdev;
4871 4872
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
4873
	struct device *dev;
4874
	int ret, i;
4875

4876
	if (cfg == NULL)
4877
		return ERR_PTR(-EINVAL);
4878 4879 4880 4881 4882 4883
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
4884

4885
	dev = cfg->dev;
4886
	WARN_ON(!dev);
4887

4888 4889 4890 4891
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
4892

4893
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
4894 4895 4896 4897
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
4898

4899 4900 4901
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
4902 4903
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
4904 4905 4906 4907

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
4908 4909
		ret = -EINVAL;
		goto rinse;
4910
	}
4911 4912
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
4913 4914
		ret = -EINVAL;
		goto rinse;
4915
	}
4916

4917
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4918 4919 4920 4921
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
4922

4923 4924 4925 4926 4927 4928 4929
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
4930 4931
		ret = -ENOMEM;
		goto rinse;
4932 4933
	}

4934
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4935
					       &rdev->dev.of_node);
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
	 * a descriptor, we definately got one from parsing the device
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
4946 4947 4948 4949 4950
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

4951
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
4952
	rdev->reg_data = config->driver_data;
4953 4954
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
4955 4956
	if (config->regmap)
		rdev->regmap = config->regmap;
4957
	else if (dev_get_regmap(dev, NULL))
4958
		rdev->regmap = dev_get_regmap(dev, NULL);
4959 4960
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4961 4962 4963
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4964
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4965

4966
	/* preform any regulator specific init */
4967
	if (init_data && init_data->regulator_init) {
4968
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
4969 4970
		if (ret < 0)
			goto clean;
4971 4972
	}

4973 4974 4975
	if (config->ena_gpiod ||
	    ((config->ena_gpio || config->ena_gpio_initialized) &&
	     gpio_is_valid(config->ena_gpio))) {
4976
		mutex_lock(&regulator_list_mutex);
4977
		ret = regulator_ena_gpio_request(rdev, config);
4978
		mutex_unlock(&regulator_list_mutex);
4979 4980 4981
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
4982
			goto clean;
4983
		}
4984 4985 4986
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
4987 4988
	}

4989
	/* register with sysfs */
4990
	rdev->dev.class = &regulator_class;
4991
	rdev->dev.parent = dev;
4992
	dev_set_name(&rdev->dev, "regulator.%lu",
4993
		    (unsigned long) atomic_inc_return(&regulator_no));
4994

4995
	/* set regulator constraints */
4996 4997 4998 4999
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
5000
		rdev->supply_name = init_data->supply_regulator;
5001
	else if (regulator_desc->supply_name)
5002
		rdev->supply_name = regulator_desc->supply_name;
5003

5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

5016 5017
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5018 5019
		goto wash;

5020
	/* add consumers devices */
5021
	if (init_data) {
5022
		mutex_lock(&regulator_list_mutex);
5023 5024 5025
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5026
				init_data->consumer_supplies[i].supply);
5027
			if (ret < 0) {
5028
				mutex_unlock(&regulator_list_mutex);
5029 5030 5031 5032
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5033
		}
5034
		mutex_unlock(&regulator_list_mutex);
5035
	}
5036

5037 5038 5039 5040 5041
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5042
	dev_set_drvdata(&rdev->dev, rdev);
5043 5044 5045 5046 5047 5048
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

5049
	rdev_init_debugfs(rdev);
5050

5051 5052 5053 5054 5055
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5056 5057 5058
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5059
	kfree(config);
5060
	return rdev;
D
David Brownell 已提交
5061

5062
unset_supplies:
5063
	mutex_lock(&regulator_list_mutex);
5064
	unset_regulator_supplies(rdev);
5065
	mutex_unlock(&regulator_list_mutex);
5066
wash:
5067
	kfree(rdev->constraints);
5068
	mutex_lock(&regulator_list_mutex);
5069
	regulator_ena_gpio_free(rdev);
5070
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5071
clean:
5072 5073
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
D
David Brownell 已提交
5074
	kfree(rdev);
5075
	kfree(config);
5076 5077 5078
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5079
	return ERR_PTR(ret);
5080 5081 5082 5083 5084
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5085
 * @rdev: regulator to unregister
5086 5087 5088 5089 5090 5091 5092 5093
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5094 5095 5096
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5097
		regulator_put(rdev->supply);
5098
	}
5099

5100
	mutex_lock(&regulator_list_mutex);
5101

5102
	debugfs_remove_recursive(rdev->debugfs);
5103
	flush_work(&rdev->disable_work.work);
5104
	WARN_ON(rdev->open_count);
5105
	regulator_remove_coupling(rdev);
5106
	unset_regulator_supplies(rdev);
5107
	list_del(&rdev->list);
5108
	regulator_ena_gpio_free(rdev);
5109
	device_unregister(&rdev->dev);
5110 5111

	mutex_unlock(&regulator_list_mutex);
5112 5113 5114
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5115
#ifdef CONFIG_SUSPEND
5116
/**
5117
 * regulator_suspend - prepare regulators for system wide suspend
5118
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5119 5120 5121
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5122
static int regulator_suspend(struct device *dev)
5123
{
5124
	struct regulator_dev *rdev = dev_to_rdev(dev);
5125
	suspend_state_t state = pm_suspend_target_state;
5126 5127 5128 5129 5130
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
5131

5132
	return ret;
5133
}
5134

5135
static int regulator_resume(struct device *dev)
5136
{
5137
	suspend_state_t state = pm_suspend_target_state;
5138
	struct regulator_dev *rdev = dev_to_rdev(dev);
5139
	struct regulator_state *rstate;
5140
	int ret = 0;
5141

5142
	rstate = regulator_get_suspend_state(rdev, state);
5143
	if (rstate == NULL)
5144
		return 0;
5145

5146
	regulator_lock(rdev);
5147

5148
	if (rdev->desc->ops->resume &&
5149 5150
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
5151
		ret = rdev->desc->ops->resume(rdev);
5152

5153
	regulator_unlock(rdev);
5154

5155
	return ret;
5156
}
5157 5158
#else /* !CONFIG_SUSPEND */

5159 5160
#define regulator_suspend	NULL
#define regulator_resume	NULL
5161 5162 5163 5164 5165

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5166 5167
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5168 5169 5170
};
#endif

M
Mark Brown 已提交
5171
struct class regulator_class = {
5172 5173 5174 5175 5176 5177 5178
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5196 5197
/**
 * rdev_get_drvdata - get rdev regulator driver data
5198
 * @rdev: regulator
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5235
 * @rdev: regulator
5236 5237 5238 5239 5240 5241 5242
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5255
#ifdef CONFIG_DEBUG_FS
5256
static int supply_map_show(struct seq_file *sf, void *data)
5257 5258 5259 5260
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5261 5262 5263
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5264 5265
	}

5266 5267
	return 0;
}
5268

5269 5270 5271
static int supply_map_open(struct inode *inode, struct file *file)
{
	return single_open(file, supply_map_show, inode->i_private);
5272
}
5273
#endif
5274 5275

static const struct file_operations supply_map_fops = {
5276
#ifdef CONFIG_DEBUG_FS
5277 5278 5279 5280
	.open = supply_map_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
5281
#endif
5282
};
5283

5284
#ifdef CONFIG_DEBUG_FS
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5307 5308 5309 5310 5311 5312
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5313
	struct summary_data summary_data;
5314
	unsigned int opmode;
5315 5316 5317 5318

	if (!rdev)
		return;

5319
	opmode = _regulator_get_mode_unlocked(rdev);
5320
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5321 5322
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5323
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5324
		   regulator_opmode_to_str(opmode));
5325

5326
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
5327 5328
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5347
		if (consumer->dev && consumer->dev->class == &regulator_class)
5348 5349 5350 5351
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5352 5353
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5354 5355 5356

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5357 5358
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5359
				   consumer->uA_load / 1000,
5360 5361
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5362 5363
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5364 5365 5366 5367 5368 5369 5370 5371
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5372 5373 5374
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5375

5376 5377
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5415 5416

	regulator_unlock(rdev);
5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5447 5448
	mutex_lock(&regulator_list_mutex);

5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5475 5476

	mutex_unlock(&regulator_list_mutex);
5477 5478
}

5479
static int regulator_summary_show_roots(struct device *dev, void *data)
5480
{
5481 5482
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5483

5484 5485
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5486

5487 5488
	return 0;
}
5489

5490 5491
static int regulator_summary_show(struct seq_file *s, void *data)
{
5492 5493
	struct ww_acquire_ctx ww_ctx;

5494 5495
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5496

5497 5498
	regulator_summary_lock(&ww_ctx);

5499 5500
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5501

5502 5503
	regulator_summary_unlock(&ww_ctx);

5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

5522 5523
static int __init regulator_init(void)
{
5524 5525 5526 5527
	int ret;

	ret = class_register(&regulator_class);

5528
	debugfs_root = debugfs_create_dir("regulator", NULL);
5529
	if (!debugfs_root)
5530
		pr_warn("regulator: Failed to create debugfs directory\n");
5531

5532 5533
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5534

5535
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5536
			    NULL, &regulator_summary_fops);
5537

5538 5539 5540
	regulator_dummy_init();

	return ret;
5541 5542 5543 5544
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5545

5546
static int __init regulator_late_cleanup(struct device *dev, void *data)
5547
{
5548 5549 5550
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5551 5552
	int enabled, ret;

5553 5554 5555
	if (c && c->always_on)
		return 0;

5556
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5557 5558
		return 0;

5559
	regulator_lock(rdev);
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5590
	regulator_unlock(rdev);
5591 5592 5593 5594 5595 5596

	return 0;
}

static int __init regulator_init_complete(void)
{
5597 5598 5599 5600 5601 5602 5603 5604 5605
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5616
	/* If we have a full configuration then disable any regulators
5617 5618 5619
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5620
	 */
5621 5622
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5623 5624 5625

	return 0;
}
5626
late_initcall_sync(regulator_init_complete);