core.c 154.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

36 37
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
38 39
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
40
static LIST_HEAD(regulator_ena_gpio_list);
41
static LIST_HEAD(regulator_supply_alias_list);
42
static LIST_HEAD(regulator_coupler_list);
43
static bool has_full_constraints;
44

45 46
static struct dentry *debugfs_root;

47
/*
48 49 50 51 52 53
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
54
	const char *dev_name;   /* The dev_name() for the consumer */
55
	const char *supply;
56
	struct regulator_dev *regulator;
57 58
};

59 60 61 62 63 64 65
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
66
	struct gpio_desc *gpiod;
67 68 69 70
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

71 72 73 74 75 76 77 78 79 80 81 82 83
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

84
static int _regulator_is_enabled(struct regulator_dev *rdev);
85
static int _regulator_disable(struct regulator *regulator);
86 87
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
88
static int _notifier_call_chain(struct regulator_dev *rdev,
89
				  unsigned long event, void *data);
90 91
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
92 93
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
94 95 96
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
97
static void destroy_regulator(struct regulator *regulator);
98
static void _regulator_put(struct regulator *regulator);
99

100
const char *rdev_get_name(struct regulator_dev *rdev)
101 102 103 104 105 106 107 108
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}
109
EXPORT_SYMBOL_GPL(rdev_get_name);
110

111 112
static bool have_full_constraints(void)
{
113
	return has_full_constraints || of_have_populated_dt();
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

129 130 131
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
132
 * @ww_ctx:		w/w mutex acquire context
133 134 135 136 137 138 139
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
140 141
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
142
{
143 144 145 146 147 148 149
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
150
			rdev->ref_cnt++;
151 152 153 154 155 156 157
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
158
		}
159 160
	} else {
		lock = true;
161 162
	}

163 164 165 166 167 168 169 170
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
171 172
}

173 174 175 176 177 178 179 180 181 182
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
183
static void regulator_lock(struct regulator_dev *rdev)
184
{
185
	regulator_lock_nested(rdev, NULL);
186 187 188 189 190 191 192 193 194
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
195
static void regulator_unlock(struct regulator_dev *rdev)
196
{
197
	mutex_lock(&regulator_nesting_mutex);
198

199 200 201
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
202
	}
203 204 205 206

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
207 208
}

209
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
210
{
211 212 213 214 215
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
216

217 218 219 220 221 222 223
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

224 225
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
226
{
227 228
	struct regulator_dev *c_rdev, *supply_rdev;
	int i, supply_n_coupled;
229

230 231
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
232 233 234 235

		if (!c_rdev)
			continue;

236 237 238 239 240 241 242
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
			supply_rdev = c_rdev->supply->rdev;
			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;

			regulator_unlock_recursive(supply_rdev,
						   supply_n_coupled);
		}
243

244 245
		regulator_unlock(c_rdev);
	}
246 247
}

248 249 250 251
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
252
{
253
	struct regulator_dev *c_rdev;
254
	int i, err;
255

256 257
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
258

259 260
		if (!c_rdev)
			continue;
261

262 263 264 265 266 267 268
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
269

270 271 272 273 274 275 276
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

277
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
278 279 280 281 282 283 284 285
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
286 287
		}
	}
288 289 290 291 292 293 294

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
295 296
}

297
/**
298 299 300 301 302
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
303
 * Unlock all regulators related with rdev by coupling or supplying.
304
 */
305 306
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
307
{
308 309
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
310 311 312
}

/**
313 314
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
315
 * @ww_ctx:			w/w mutex acquire context
316 317
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
318
 * all regulators related with rdev by coupling or supplying.
319
 */
320 321
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
322
{
323 324 325
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
326

327
	mutex_lock(&regulator_list_mutex);
328

329
	ww_acquire_init(ww_ctx, &regulator_ww_class);
330

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
351 352
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
375 376
			if (regnode)
				goto err_node_put;
377
		} else {
378
			goto err_node_put;
379 380 381
		}
	}
	return NULL;
382 383 384 385

err_node_put:
	of_node_put(child);
	return regnode;
386 387
}

388 389 390 391 392 393
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
394
 * returns the device node corresponding to the regulator if found, else
395 396 397 398 399
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
400
	char prop_name[64]; /* 64 is max size of property name */
401 402 403

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

404
	snprintf(prop_name, 64, "%s-supply", supply);
405 406 407
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
408 409 410 411
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

412 413
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
414 415 416 417 418
		return NULL;
	}
	return regnode;
}

419
/* Platform voltage constraint check */
420 421
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
422 423 424
{
	BUG_ON(*min_uV > *max_uV);

425
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
426
		rdev_err(rdev, "voltage operation not allowed\n");
427 428 429 430 431 432 433 434
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

435 436
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
437
			 *min_uV, *max_uV);
438
		return -EINVAL;
439
	}
440 441 442 443

	return 0;
}

444 445 446 447 448 449
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

450 451 452
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
453 454 455
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
456 457
{
	struct regulator *regulator;
458
	struct regulator_voltage *voltage;
459 460

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
461
		voltage = &regulator->voltage[state];
462 463 464 465
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
466
		if (!voltage->min_uV && !voltage->max_uV)
467 468
			continue;

469 470 471 472
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
473 474
	}

475
	if (*min_uV > *max_uV) {
476 477
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
478
		return -EINVAL;
479
	}
480 481 482 483

	return 0;
}

484 485 486 487 488 489
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

490
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
491
		rdev_err(rdev, "current operation not allowed\n");
492 493 494 495 496 497 498 499
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

500 501
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
502
			 *min_uA, *max_uA);
503
		return -EINVAL;
504
	}
505 506 507 508 509

	return 0;
}

/* operating mode constraint check */
510 511
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
512
{
513
	switch (*mode) {
514 515 516 517 518 519
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
520
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
521 522 523
		return -EINVAL;
	}

524
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
525
		rdev_err(rdev, "mode operation not allowed\n");
526 527
		return -EPERM;
	}
528 529 530

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
531 532
	 * try higher modes.
	 */
533 534 535 536
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
537
	}
538 539

	return -EINVAL;
540 541
}

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return NULL;

	/* If we have no suspend mode configuration don't set anything;
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
	 */
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
			rdev_warn(rdev, "No configuration\n");
		return NULL;
	}

	return rstate;
}

584 585
static ssize_t microvolts_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
586
{
587
	struct regulator_dev *rdev = dev_get_drvdata(dev);
588
	int uV;
589

590
	regulator_lock(rdev);
591
	uV = regulator_get_voltage_rdev(rdev);
592
	regulator_unlock(rdev);
593

594 595 596
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
597
}
598
static DEVICE_ATTR_RO(microvolts);
599

600 601
static ssize_t microamps_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
602
{
603
	struct regulator_dev *rdev = dev_get_drvdata(dev);
604 605 606

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
607
static DEVICE_ATTR_RO(microamps);
608

609 610
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
611 612 613
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

614
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
615
}
616
static DEVICE_ATTR_RO(name);
617

618
static const char *regulator_opmode_to_str(int mode)
619 620 621
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
622
		return "fast";
623
	case REGULATOR_MODE_NORMAL:
624
		return "normal";
625
	case REGULATOR_MODE_IDLE:
626
		return "idle";
627
	case REGULATOR_MODE_STANDBY:
628
		return "standby";
629
	}
630 631 632 633 634 635
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
636 637
}

638 639
static ssize_t opmode_show(struct device *dev,
			   struct device_attribute *attr, char *buf)
640
{
641
	struct regulator_dev *rdev = dev_get_drvdata(dev);
642

D
David Brownell 已提交
643 644
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
645
static DEVICE_ATTR_RO(opmode);
D
David Brownell 已提交
646 647 648

static ssize_t regulator_print_state(char *buf, int state)
{
649 650 651 652 653 654 655 656
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

657 658
static ssize_t state_show(struct device *dev,
			  struct device_attribute *attr, char *buf)
D
David Brownell 已提交
659 660
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
661 662
	ssize_t ret;

663
	regulator_lock(rdev);
664
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
665
	regulator_unlock(rdev);
D
David Brownell 已提交
666

667
	return ret;
D
David Brownell 已提交
668
}
669
static DEVICE_ATTR_RO(state);
D
David Brownell 已提交
670

671 672
static ssize_t status_show(struct device *dev,
			   struct device_attribute *attr, char *buf)
D
David Brownell 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
704 705 706
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
707 708 709
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
710 711 712 713 714 715
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
716
static DEVICE_ATTR_RO(status);
D
David Brownell 已提交
717

718 719
static ssize_t min_microamps_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
720
{
721
	struct regulator_dev *rdev = dev_get_drvdata(dev);
722 723 724 725 726 727

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
728
static DEVICE_ATTR_RO(min_microamps);
729

730 731
static ssize_t max_microamps_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
732
{
733
	struct regulator_dev *rdev = dev_get_drvdata(dev);
734 735 736 737 738 739

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
740
static DEVICE_ATTR_RO(max_microamps);
741

742 743
static ssize_t min_microvolts_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
744
{
745
	struct regulator_dev *rdev = dev_get_drvdata(dev);
746 747 748 749 750 751

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
752
static DEVICE_ATTR_RO(min_microvolts);
753

754 755
static ssize_t max_microvolts_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
756
{
757
	struct regulator_dev *rdev = dev_get_drvdata(dev);
758 759 760 761 762 763

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
764
static DEVICE_ATTR_RO(max_microvolts);
765

766 767
static ssize_t requested_microamps_show(struct device *dev,
					struct device_attribute *attr, char *buf)
768
{
769
	struct regulator_dev *rdev = dev_get_drvdata(dev);
770 771 772
	struct regulator *regulator;
	int uA = 0;

773
	regulator_lock(rdev);
774 775 776 777
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
778
	regulator_unlock(rdev);
779 780
	return sprintf(buf, "%d\n", uA);
}
781
static DEVICE_ATTR_RO(requested_microamps);
782

783 784
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
785
{
786
	struct regulator_dev *rdev = dev_get_drvdata(dev);
787 788
	return sprintf(buf, "%d\n", rdev->use_count);
}
789
static DEVICE_ATTR_RO(num_users);
790

791 792
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
793
{
794
	struct regulator_dev *rdev = dev_get_drvdata(dev);
795 796 797 798 799 800 801 802 803

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
804
static DEVICE_ATTR_RO(type);
805

806 807
static ssize_t suspend_mem_microvolts_show(struct device *dev,
					   struct device_attribute *attr, char *buf)
808
{
809
	struct regulator_dev *rdev = dev_get_drvdata(dev);
810 811 812

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
813
static DEVICE_ATTR_RO(suspend_mem_microvolts);
814

815 816
static ssize_t suspend_disk_microvolts_show(struct device *dev,
					    struct device_attribute *attr, char *buf)
817
{
818
	struct regulator_dev *rdev = dev_get_drvdata(dev);
819 820 821

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
822
static DEVICE_ATTR_RO(suspend_disk_microvolts);
823

824 825
static ssize_t suspend_standby_microvolts_show(struct device *dev,
					       struct device_attribute *attr, char *buf)
826
{
827
	struct regulator_dev *rdev = dev_get_drvdata(dev);
828 829 830

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
831
static DEVICE_ATTR_RO(suspend_standby_microvolts);
832

833 834
static ssize_t suspend_mem_mode_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
835
{
836
	struct regulator_dev *rdev = dev_get_drvdata(dev);
837

D
David Brownell 已提交
838 839
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
840
}
841
static DEVICE_ATTR_RO(suspend_mem_mode);
842

843 844
static ssize_t suspend_disk_mode_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
845
{
846
	struct regulator_dev *rdev = dev_get_drvdata(dev);
847

D
David Brownell 已提交
848 849
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
850
}
851
static DEVICE_ATTR_RO(suspend_disk_mode);
852

853 854
static ssize_t suspend_standby_mode_show(struct device *dev,
					 struct device_attribute *attr, char *buf)
855
{
856
	struct regulator_dev *rdev = dev_get_drvdata(dev);
857

D
David Brownell 已提交
858 859
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
860
}
861
static DEVICE_ATTR_RO(suspend_standby_mode);
862

863 864
static ssize_t suspend_mem_state_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
865
{
866
	struct regulator_dev *rdev = dev_get_drvdata(dev);
867

D
David Brownell 已提交
868 869
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
870
}
871
static DEVICE_ATTR_RO(suspend_mem_state);
872

873 874
static ssize_t suspend_disk_state_show(struct device *dev,
				       struct device_attribute *attr, char *buf)
875
{
876
	struct regulator_dev *rdev = dev_get_drvdata(dev);
877

D
David Brownell 已提交
878 879
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
880
}
881
static DEVICE_ATTR_RO(suspend_disk_state);
882

883 884
static ssize_t suspend_standby_state_show(struct device *dev,
					  struct device_attribute *attr, char *buf)
885
{
886
	struct regulator_dev *rdev = dev_get_drvdata(dev);
887

D
David Brownell 已提交
888 889
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
890
}
891
static DEVICE_ATTR_RO(suspend_standby_state);
892

893 894
static ssize_t bypass_show(struct device *dev,
			   struct device_attribute *attr, char *buf)
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
912
static DEVICE_ATTR_RO(bypass);
913

914
/* Calculate the new optimum regulator operating mode based on the new total
915 916
 * consumer load. All locks held by caller
 */
917
static int drms_uA_update(struct regulator_dev *rdev)
918 919 920 921 922
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

923 924 925 926
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
927 928
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
929
		return 0;
930
	}
931

932 933
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
934 935
		return 0;

936 937
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
938
		return -EINVAL;
939 940

	/* calc total requested load */
941 942 943 944
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
945

946 947
	current_uA += rdev->constraints->system_load;

948 949 950 951
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
952 953
			rdev_err(rdev, "failed to set load %d: %pe\n",
				 current_uA, ERR_PTR(err));
954
	} else {
955
		/* get output voltage */
956
		output_uV = regulator_get_voltage_rdev(rdev);
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

973 974 975 976 977 978 979
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
980 981
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
				 current_uA, input_uV, output_uV, ERR_PTR(err));
982 983
			return err;
		}
984

985 986
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
987 988
			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
				 mode, ERR_PTR(err));
989 990 991
	}

	return err;
992 993
}

994 995
static int __suspend_set_state(struct regulator_dev *rdev,
			       const struct regulator_state *rstate)
996 997
{
	int ret = 0;
998

999 1000
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1001
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1002 1003
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1004
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1005 1006 1007
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1008
	if (ret < 0) {
1009
		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1010 1011 1012 1013 1014 1015
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1016
			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1017 1018 1019 1020 1021 1022 1023
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1024
			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1025 1026 1027 1028
			return ret;
		}
	}

1029
	return ret;
1030 1031
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
static int suspend_set_initial_state(struct regulator_dev *rdev)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev,
			rdev->constraints->initial_state);
	if (!rstate)
		return 0;

	return __suspend_set_state(rdev, rstate);
}

1044 1045
#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
static void print_constraints_debug(struct regulator_dev *rdev)
1046 1047
{
	struct regulation_constraints *constraints = rdev->constraints;
1048
	char buf[160] = "";
1049
	size_t len = sizeof(buf) - 1;
1050 1051
	int count = 0;
	int ret;
1052

1053
	if (constraints->min_uV && constraints->max_uV) {
1054
		if (constraints->min_uV == constraints->max_uV)
1055 1056
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1057
		else
1058 1059 1060 1061
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1062 1063 1064 1065
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1066
		ret = regulator_get_voltage_rdev(rdev);
1067
		if (ret > 0)
1068 1069
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1070 1071
	}

1072
	if (constraints->uV_offset)
1073 1074
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1075

1076
	if (constraints->min_uA && constraints->max_uA) {
1077
		if (constraints->min_uA == constraints->max_uA)
1078 1079
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1080
		else
1081 1082 1083 1084
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1085 1086 1087 1088 1089 1090
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1091 1092
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1093
	}
1094

1095
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1096
		count += scnprintf(buf + count, len - count, "fast ");
1097
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1098
		count += scnprintf(buf + count, len - count, "normal ");
1099
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1100
		count += scnprintf(buf + count, len - count, "idle ");
1101
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1102
		count += scnprintf(buf + count, len - count, "standby ");
1103

1104
	if (!count)
1105 1106 1107 1108 1109 1110
		count = scnprintf(buf, len, "no parameters");
	else
		--count;

	count += scnprintf(buf + count, len - count, ", %s",
		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1111

1112
	rdev_dbg(rdev, "%s\n", buf);
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
}
#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
static inline void print_constraints_debug(struct regulator_dev *rdev) {}
#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;

	print_constraints_debug(rdev);
1123 1124

	if ((constraints->min_uV != constraints->max_uV) &&
1125
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1126 1127
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1128 1129
}

1130
static int machine_constraints_voltage(struct regulator_dev *rdev,
1131
	struct regulation_constraints *constraints)
1132
{
1133
	const struct regulator_ops *ops = rdev->desc->ops;
1134 1135 1136 1137
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1138 1139
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1140
		int current_uV = regulator_get_voltage_rdev(rdev);
1141 1142

		if (current_uV == -ENOTRECOVERABLE) {
1143
			/* This regulator can't be read and must be initialized */
1144 1145 1146 1147 1148 1149
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1150
			current_uV = regulator_get_voltage_rdev(rdev);
1151 1152
		}

1153
		if (current_uV < 0) {
1154
			rdev_err(rdev,
1155 1156
				 "failed to get the current voltage: %pe\n",
				 ERR_PTR(current_uV));
1157 1158
			return current_uV;
		}
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1179 1180
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1181
			ret = _regulator_do_set_voltage(
1182
				rdev, target_min, target_max);
1183 1184
			if (ret < 0) {
				rdev_err(rdev,
1185 1186
					"failed to apply %d-%duV constraint: %pe\n",
					target_min, target_max, ERR_PTR(ret));
1187 1188
				return ret;
			}
1189
		}
1190
	}
1191

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1203
		/* it's safe to autoconfigure fixed-voltage supplies
1204 1205
		 * and the constraints are used by list_voltage.
		 */
1206
		if (count == 1 && !cmin) {
1207
			cmin = 1;
1208
			cmax = INT_MAX;
1209 1210
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1211 1212
		}

1213 1214
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1215
			return 0;
1216

1217
		/* else require explicit machine-level constraints */
1218
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1219
			rdev_err(rdev, "invalid voltage constraints\n");
1220
			return -EINVAL;
1221 1222
		}

1223 1224 1225 1226
		/* no need to loop voltages if range is continuous */
		if (rdev->desc->continuous_voltage_range)
			return 0;

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1244 1245 1246
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1247
			return -EINVAL;
1248 1249 1250 1251
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1252 1253
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1254 1255 1256
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1257 1258
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1259 1260 1261 1262
			constraints->max_uV = max_uV;
		}
	}

1263 1264 1265
	return 0;
}

1266 1267 1268
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1269
	const struct regulator_ops *ops = rdev->desc->ops;
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1296 1297
static int _regulator_do_enable(struct regulator_dev *rdev);

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
static int notif_set_limit(struct regulator_dev *rdev,
			   int (*set)(struct regulator_dev *, int, int, bool),
			   int limit, int severity)
{
	bool enable;

	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
		enable = false;
		limit = 0;
	} else {
		enable = true;
	}

	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
		limit = 0;

	return set(rdev, limit, severity, enable);
}

static int handle_notify_limits(struct regulator_dev *rdev,
			int (*set)(struct regulator_dev *, int, int, bool),
			struct notification_limit *limits)
{
	int ret = 0;

	if (!set)
		return -EOPNOTSUPP;

	if (limits->prot)
		ret = notif_set_limit(rdev, set, limits->prot,
				      REGULATOR_SEVERITY_PROT);
	if (ret)
		return ret;

	if (limits->err)
		ret = notif_set_limit(rdev, set, limits->err,
				      REGULATOR_SEVERITY_ERR);
	if (ret)
		return ret;

	if (limits->warn)
		ret = notif_set_limit(rdev, set, limits->warn,
				      REGULATOR_SEVERITY_WARN);

	return ret;
}
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
1354
static int set_machine_constraints(struct regulator_dev *rdev)
1355 1356
{
	int ret = 0;
1357
	const struct regulator_ops *ops = rdev->desc->ops;
1358

1359
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1360
	if (ret != 0)
1361
		return ret;
1362

1363
	ret = machine_constraints_current(rdev, rdev->constraints);
1364
	if (ret != 0)
1365
		return ret;
1366

1367 1368 1369 1370
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
1371
			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1372
			return ret;
1373 1374 1375
		}
	}

1376
	/* do we need to setup our suspend state */
1377
	if (rdev->constraints->initial_state) {
1378
		ret = suspend_set_initial_state(rdev);
1379
		if (ret < 0) {
1380
			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1381
			return ret;
1382 1383
		}
	}
1384

1385
	if (rdev->constraints->initial_mode) {
1386
		if (!ops->set_mode) {
1387
			rdev_err(rdev, "no set_mode operation\n");
1388
			return -EINVAL;
1389 1390
		}

1391
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1392
		if (ret < 0) {
1393
			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1394
			return ret;
1395
		}
1396 1397 1398 1399 1400 1401
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1402 1403
	}

1404 1405
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1406 1407
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
1408
			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1409
			return ret;
1410 1411 1412
		}
	}

S
Stephen Boyd 已提交
1413 1414 1415
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
1416
			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1417
			return ret;
S
Stephen Boyd 已提交
1418 1419 1420
		}
	}

S
Stephen Boyd 已提交
1421 1422 1423
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
1424
			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1425
			return ret;
S
Stephen Boyd 已提交
1426 1427 1428
		}
	}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	/*
	 * Existing logic does not warn if over_current_protection is given as
	 * a constraint but driver does not support that. I think we should
	 * warn about this type of issues as it is possible someone changes
	 * PMIC on board to another type - and the another PMIC's driver does
	 * not support setting protection. Board composer may happily believe
	 * the DT limits are respected - especially if the new PMIC HW also
	 * supports protection but the driver does not. I won't change the logic
	 * without hearing more experienced opinion on this though.
	 *
	 * If warning is seen as a good idea then we can merge handling the
	 * over-curret protection and detection and get rid of this special
	 * handling.
	 */
1443 1444
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
1445 1446 1447 1448 1449
		int lim = rdev->constraints->over_curr_limits.prot;

		ret = ops->set_over_current_protection(rdev, lim,
						       REGULATOR_SEVERITY_PROT,
						       true);
1450
		if (ret < 0) {
1451 1452
			rdev_err(rdev, "failed to set over current protection: %pe\n",
				 ERR_PTR(ret));
1453
			return ret;
1454 1455 1456
		}
	}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	if (rdev->constraints->over_current_detection)
		ret = handle_notify_limits(rdev,
					   ops->set_over_current_protection,
					   &rdev->constraints->over_curr_limits);
	if (ret) {
		if (ret != -EOPNOTSUPP) {
			rdev_err(rdev, "failed to set over current limits: %pe\n",
				 ERR_PTR(ret));
			return ret;
		}
		rdev_warn(rdev,
			  "IC does not support requested over-current limits\n");
	}

	if (rdev->constraints->over_voltage_detection)
		ret = handle_notify_limits(rdev,
					   ops->set_over_voltage_protection,
					   &rdev->constraints->over_voltage_limits);
	if (ret) {
		if (ret != -EOPNOTSUPP) {
			rdev_err(rdev, "failed to set over voltage limits %pe\n",
				 ERR_PTR(ret));
			return ret;
		}
		rdev_warn(rdev,
			  "IC does not support requested over voltage limits\n");
	}

	if (rdev->constraints->under_voltage_detection)
		ret = handle_notify_limits(rdev,
					   ops->set_under_voltage_protection,
					   &rdev->constraints->under_voltage_limits);
	if (ret) {
		if (ret != -EOPNOTSUPP) {
			rdev_err(rdev, "failed to set under voltage limits %pe\n",
				 ERR_PTR(ret));
			return ret;
		}
		rdev_warn(rdev,
			  "IC does not support requested under voltage limits\n");
	}

	if (rdev->constraints->over_temp_detection)
		ret = handle_notify_limits(rdev,
					   ops->set_thermal_protection,
					   &rdev->constraints->temp_limits);
	if (ret) {
		if (ret != -EOPNOTSUPP) {
			rdev_err(rdev, "failed to set temperature limits %pe\n",
				 ERR_PTR(ret));
			return ret;
		}
		rdev_warn(rdev,
			  "IC does not support requested temperature limits\n");
	}

1513 1514 1515 1516 1517 1518
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
1519
			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1520 1521 1522 1523
			return ret;
		}
	}

1524 1525 1526 1527
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1528 1529 1530 1531 1532 1533
		/* If we want to enable this regulator, make sure that we know
		 * the supplying regulator.
		 */
		if (rdev->supply_name && !rdev->supply)
			return -EPROBE_DEFER;

1534 1535 1536 1537 1538 1539 1540 1541 1542
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1543 1544
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1545
			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1546 1547
			return ret;
		}
1548 1549 1550

		if (rdev->constraints->always_on)
			rdev->use_count++;
1551
	} else if (rdev->desc->off_on_delay) {
1552
		rdev->last_off = ktime_get();
1553 1554
	}

1555
	print_constraints(rdev);
1556
	return 0;
1557 1558 1559 1560
}

/**
 * set_supply - set regulator supply regulator
1561 1562
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1563 1564 1565 1566 1567 1568
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1569
		      struct regulator_dev *supply_rdev)
1570 1571 1572
{
	int err;

1573 1574
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1575 1576 1577
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1578
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1579 1580
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1581
		return err;
1582
	}
1583
	supply_rdev->open_count++;
1584 1585

	return 0;
1586 1587 1588
}

/**
1589
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1590
 * @rdev:         regulator source
1591
 * @consumer_dev_name: dev_name() string for device supply applies to
1592
 * @supply:       symbolic name for supply
1593 1594 1595 1596 1597 1598 1599
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1600 1601
				      const char *consumer_dev_name,
				      const char *supply)
1602
{
1603
	struct regulator_map *node, *new_node;
1604
	int has_dev;
1605 1606 1607 1608

	if (supply == NULL)
		return -EINVAL;

1609 1610 1611 1612 1613
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
	if (new_node == NULL)
		return -ENOMEM;

	new_node->regulator = rdev;
	new_node->supply = supply;

	if (has_dev) {
		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (new_node->dev_name == NULL) {
			kfree(new_node);
			return -ENOMEM;
		}
	}

	mutex_lock(&regulator_list_mutex);
1630
	list_for_each_entry(node, &regulator_map_list, list) {
1631 1632 1633 1634
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1635
			continue;
1636 1637
		}

1638 1639 1640
		if (strcmp(node->supply, supply) != 0)
			continue;

1641 1642 1643 1644 1645 1646
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1647
		goto fail;
1648 1649
	}

1650 1651
	list_add(&new_node->list, &regulator_map_list);
	mutex_unlock(&regulator_list_mutex);
1652

1653
	return 0;
1654 1655 1656 1657 1658 1659

fail:
	mutex_unlock(&regulator_list_mutex);
	kfree(new_node->dev_name);
	kfree(new_node);
	return -EBUSY;
1660 1661
}

1662 1663 1664 1665 1666 1667 1668
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1669
			kfree(node->dev_name);
1670 1671 1672 1673 1674
			kfree(node);
		}
	}
}

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1724
#define REG_STR_SIZE	64
1725 1726 1727 1728 1729 1730

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
1731
	int err = 0;
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749

	if (dev) {
		char buf[REG_STR_SIZE];
		int size;

		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			return NULL;

		supply_name = kstrdup(buf, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	} else {
		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	}
1750 1751

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1752 1753
	if (regulator == NULL) {
		kfree(supply_name);
1754
		return NULL;
1755
	}
1756 1757

	regulator->rdev = rdev;
1758 1759 1760
	regulator->supply_name = supply_name;

	regulator_lock(rdev);
1761
	list_add(&regulator->list, &rdev->consumer_list);
1762
	regulator_unlock(rdev);
1763 1764

	if (dev) {
1765 1766
		regulator->dev = dev;

1767
		/* Add a link to the device sysfs entry */
1768
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1769
					       supply_name);
1770
		if (err) {
1771 1772
			rdev_dbg(rdev, "could not add device link %s: %pe\n",
				  dev->kobj.name, ERR_PTR(err));
1773
			/* non-fatal */
1774
		}
1775 1776
	}

1777 1778
	if (err != -EEXIST)
		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1779
	if (!regulator->debugfs) {
1780
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1781 1782 1783 1784
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1785
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1786
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1787
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1788 1789 1790
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1791
	}
1792

1793 1794 1795 1796 1797
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1798
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1799 1800 1801
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1802 1803 1804
	return regulator;
}

1805 1806
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1807 1808
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1809 1810 1811
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1812 1813
}

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1862 1863 1864 1865 1866
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1867
 */
1868
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1869
						  const char *supply)
1870
{
1871
	struct regulator_dev *r = NULL;
1872
	struct device_node *node;
1873 1874
	struct regulator_map *map;
	const char *devname = NULL;
1875

1876 1877
	regulator_supply_alias(&dev, &supply);

1878 1879 1880
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1881
		if (node) {
1882 1883 1884
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1885

1886
			/*
1887 1888
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1889
			 */
1890
			return ERR_PTR(-EPROBE_DEFER);
1891
		}
1892 1893 1894
	}

	/* if not found, try doing it non-dt way */
1895 1896 1897
	if (dev)
		devname = dev_name(dev);

1898
	mutex_lock(&regulator_list_mutex);
1899 1900 1901 1902 1903 1904
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1905 1906
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1907 1908
			r = map->regulator;
			break;
1909
		}
1910
	}
1911
	mutex_unlock(&regulator_list_mutex);
1912

1913 1914 1915 1916
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1917 1918 1919 1920
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1921 1922
}

1923 1924 1925 1926
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
1927
	int ret = 0;
1928

1929
	/* No supply to resolve? */
1930 1931 1932
	if (!rdev->supply_name)
		return 0;

1933
	/* Supply already resolved? (fast-path without locking contention) */
1934 1935 1936
	if (rdev->supply)
		return 0;

1937 1938 1939 1940
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1941 1942
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
1943
			goto out;
1944

1945 1946
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1947
			get_device(&r->dev);
1948 1949 1950
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
1951 1952
			ret = -EPROBE_DEFER;
			goto out;
1953
		}
1954 1955
	}

1956 1957 1958
	if (r == rdev) {
		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
			rdev->desc->name, rdev->supply_name);
1959 1960 1961 1962
		if (!have_full_constraints()) {
			ret = -EINVAL;
			goto out;
		}
1963 1964
		r = dummy_regulator_rdev;
		get_device(&r->dev);
1965 1966
	}

1967 1968 1969 1970 1971 1972 1973 1974 1975
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
1976 1977
			ret = -EPROBE_DEFER;
			goto out;
1978 1979 1980
		}
	}

1981 1982
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1983 1984
	if (ret < 0) {
		put_device(&r->dev);
1985
		goto out;
1986
	}
1987

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	/*
	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
	 * between rdev->supply null check and setting rdev->supply in
	 * set_supply() from concurrent tasks.
	 */
	regulator_lock(rdev);

	/* Supply just resolved by a concurrent task? */
	if (rdev->supply) {
		regulator_unlock(rdev);
		put_device(&r->dev);
		goto out;
	}

2002
	ret = set_supply(rdev, r);
2003
	if (ret < 0) {
2004
		regulator_unlock(rdev);
2005
		put_device(&r->dev);
2006
		goto out;
2007
	}
2008

2009 2010
	regulator_unlock(rdev);

2011 2012 2013 2014 2015 2016
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
2017
		ret = regulator_enable(rdev->supply);
2018
		if (ret < 0) {
2019
			_regulator_put(rdev->supply);
2020
			rdev->supply = NULL;
2021
			goto out;
2022
		}
2023 2024
	}

2025 2026
out:
	return ret;
2027 2028
}

2029
/* Internal regulator request function */
2030 2031
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
2032 2033
{
	struct regulator_dev *rdev;
2034
	struct regulator *regulator;
2035
	struct device_link *link;
2036
	int ret;
2037

2038 2039 2040 2041 2042
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

2043
	if (id == NULL) {
2044
		pr_err("get() with no identifier\n");
2045
		return ERR_PTR(-EINVAL);
2046 2047
	}

2048
	rdev = regulator_dev_lookup(dev, id);
2049 2050
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
2051

2052 2053 2054 2055 2056 2057
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
2058

2059 2060 2061 2062 2063
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
2064

2065 2066 2067 2068 2069 2070 2071
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
2072
			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2073 2074 2075
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
2076

2077 2078 2079
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
2080
			fallthrough;
2081

2082 2083 2084
		default:
			return ERR_PTR(-ENODEV);
		}
2085 2086
	}

2087 2088
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
2089 2090
		put_device(&rdev->dev);
		return regulator;
2091 2092
	}

2093
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2094
		regulator = ERR_PTR(-EBUSY);
2095 2096
		put_device(&rdev->dev);
		return regulator;
2097 2098
	}

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

2109 2110 2111
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
2112 2113
		put_device(&rdev->dev);
		return regulator;
2114 2115
	}

2116
	if (!try_module_get(rdev->owner)) {
2117
		regulator = ERR_PTR(-EPROBE_DEFER);
2118 2119 2120
		put_device(&rdev->dev);
		return regulator;
	}
2121

2122 2123 2124 2125
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
W
Wen Yang 已提交
2126
		put_device(&rdev->dev);
2127
		return regulator;
2128 2129
	}

2130
	rdev->open_count++;
2131
	if (get_type == EXCLUSIVE_GET) {
2132 2133 2134 2135 2136 2137 2138 2139 2140
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

2141 2142 2143
	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
	if (!IS_ERR_OR_NULL(link))
		regulator->device_link = true;
2144

2145 2146
	return regulator;
}
2147 2148 2149 2150 2151 2152 2153 2154 2155

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
2156
 * Use of supply names configured via set_consumer_device_supply() is
2157 2158 2159 2160 2161 2162
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
2163
	return _regulator_get(dev, id, NORMAL_GET);
2164
}
2165 2166
EXPORT_SYMBOL_GPL(regulator_get);

2167 2168 2169 2170 2171 2172 2173
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
2174 2175 2176
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
2177 2178 2179 2180 2181 2182
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
2183
 * Use of supply names configured via set_consumer_device_supply() is
2184 2185 2186 2187 2188 2189
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2190
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2191 2192 2193
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2194 2195 2196 2197 2198 2199
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2200
 * or IS_ERR() condition containing errno.
2201 2202 2203 2204 2205 2206 2207 2208
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
2209
 * Use of supply names configured via set_consumer_device_supply() is
2210 2211 2212 2213 2214 2215
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2216
	return _regulator_get(dev, id, OPTIONAL_GET);
2217 2218 2219
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2220
static void destroy_regulator(struct regulator *regulator)
2221
{
2222
	struct regulator_dev *rdev = regulator->rdev;
2223

2224 2225
	debugfs_remove_recursive(regulator->debugfs);

2226
	if (regulator->dev) {
2227 2228
		if (regulator->device_link)
			device_link_remove(regulator->dev, &rdev->dev);
2229 2230

		/* remove any sysfs entries */
2231
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2232 2233
	}

2234
	regulator_lock(rdev);
2235 2236
	list_del(&regulator->list);

2237 2238
	rdev->open_count--;
	rdev->exclusive = 0;
2239
	regulator_unlock(rdev);
2240

2241
	kfree_const(regulator->supply_name);
2242
	kfree(regulator);
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
}

/* regulator_list_mutex lock held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (IS_ERR_OR_NULL(regulator))
		return;

	lockdep_assert_held_once(&regulator_list_mutex);

	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

	rdev = regulator->rdev;

	destroy_regulator(regulator);
2261

2262
	module_put(rdev->owner);
W
Wen Yang 已提交
2263
	put_device(&rdev->dev);
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2278 2279 2280 2281
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2359 2360
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2361
					 struct device *alias_dev,
2362
					 const char *const *alias_id,
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2400
					    const char *const *id,
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2411 2412 2413 2414
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
2415
	struct regulator_enable_gpio *pin, *new_pin;
2416
	struct gpio_desc *gpiod;
2417

2418
	gpiod = config->ena_gpiod;
2419 2420 2421
	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);

	mutex_lock(&regulator_list_mutex);
2422

2423
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2424
		if (pin->gpiod == gpiod) {
2425
			rdev_dbg(rdev, "GPIO is already used\n");
2426 2427 2428 2429
			goto update_ena_gpio_to_rdev;
		}
	}

2430 2431
	if (new_pin == NULL) {
		mutex_unlock(&regulator_list_mutex);
2432
		return -ENOMEM;
2433 2434 2435 2436
	}

	pin = new_pin;
	new_pin = NULL;
2437

2438
	pin->gpiod = gpiod;
2439 2440 2441 2442 2443
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
2444 2445 2446 2447

	mutex_unlock(&regulator_list_mutex);
	kfree(new_pin);

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
		if (pin != rdev->ena_pin)
			continue;

		if (--pin->request_count)
			break;

		gpiod_put(pin->gpiod);
		list_del(&pin->list);
		kfree(pin);
		break;
2470
	}
2471 2472

	rdev->ena_pin = NULL;
2473 2474
}

2475
/**
2476 2477 2478 2479
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2493
			gpiod_set_value_cansleep(pin->gpiod, 1);
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2504
			gpiod_set_value_cansleep(pin->gpiod, 0);
2505 2506 2507 2508 2509 2510 2511
			pin->enable_count = 0;
		}
	}

	return 0;
}

2512 2513 2514 2515 2516 2517
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2518
 *     Documentation/timers/timers-howto.rst
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
/**
 * _regulator_check_status_enabled
 *
 * A helper function to check if the regulator status can be interpreted
 * as 'regulator is enabled'.
 * @rdev: the regulator device to check
 *
 * Return:
 * * 1			- if status shows regulator is in enabled state
 * * 0			- if not enabled state
 * * Error Value	- as received from ops->get_status()
 */
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
{
	int ret = rdev->desc->ops->get_status(rdev);

	if (ret < 0) {
		rdev_info(rdev, "get_status returned error: %d\n", ret);
		return ret;
	}

	switch (ret) {
	case REGULATOR_STATUS_OFF:
	case REGULATOR_STATUS_ERROR:
	case REGULATOR_STATUS_UNDEFINED:
		return 0;
	default:
		return 1;
	}
}

2582 2583 2584 2585 2586 2587 2588 2589 2590
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
2591
		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2592 2593 2594 2595 2596
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2597
	if (rdev->desc->off_on_delay && rdev->last_off) {
2598 2599 2600
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
2601 2602 2603 2604 2605
		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
		s64 remaining = ktime_us_delta(end, ktime_get());

		if (remaining > 0)
			_regulator_enable_delay(remaining);
2606 2607
	}

2608
	if (rdev->ena_pin) {
2609 2610 2611 2612 2613 2614
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2615
	} else if (rdev->desc->ops->enable) {
2616 2617 2618 2619 2620 2621 2622 2623 2624
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
2625 2626
	 * together.
	 */
2627 2628
	trace_regulator_enable_delay(rdev_get_name(rdev));

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	/* If poll_enabled_time is set, poll upto the delay calculated
	 * above, delaying poll_enabled_time uS to check if the regulator
	 * actually got enabled.
	 * If the regulator isn't enabled after enable_delay has
	 * expired, return -ETIMEDOUT.
	 */
	if (rdev->desc->poll_enabled_time) {
		unsigned int time_remaining = delay;

		while (time_remaining > 0) {
			_regulator_enable_delay(rdev->desc->poll_enabled_time);

			if (rdev->desc->ops->get_status) {
				ret = _regulator_check_status_enabled(rdev);
				if (ret < 0)
					return ret;
				else if (ret)
					break;
			} else if (rdev->desc->ops->is_enabled(rdev))
				break;

			time_remaining -= rdev->desc->poll_enabled_time;
		}

		if (time_remaining <= 0) {
			rdev_err(rdev, "Enabled check timed out\n");
			return -ETIMEDOUT;
		}
	} else {
		_regulator_enable_delay(delay);
	}
2660 2661 2662 2663 2664 2665

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2725
/* locks held by regulator_enable() */
2726
static int _regulator_enable(struct regulator *regulator)
2727
{
2728
	struct regulator_dev *rdev = regulator->rdev;
2729
	int ret;
2730

2731 2732
	lockdep_assert_held_once(&rdev->mutex.base);

2733
	if (rdev->use_count == 0 && rdev->supply) {
2734
		ret = _regulator_enable(rdev->supply);
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2745

2746 2747 2748
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2749

2750
	if (rdev->use_count == 0) {
2751 2752 2753 2754
		/*
		 * The regulator may already be enabled if it's not switchable
		 * or was left on
		 */
2755 2756
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2757
			if (!regulator_ops_is_valid(rdev,
2758 2759
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2760
				goto err_consumer_disable;
2761
			}
2762

2763
			ret = _regulator_do_enable(rdev);
2764
			if (ret < 0)
2765
				goto err_consumer_disable;
2766

2767 2768
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2769
		} else if (ret < 0) {
2770
			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2771
			goto err_consumer_disable;
2772
		}
2773
		/* Fallthrough on positive return values - already enabled */
2774 2775
	}

2776 2777 2778
	rdev->use_count++;

	return 0;
2779

2780 2781 2782
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2783
err_disable_supply:
2784
	if (rdev->use_count == 0 && rdev->supply)
2785
		_regulator_disable(rdev->supply);
2786 2787

	return ret;
2788 2789 2790 2791 2792 2793
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2794 2795 2796 2797
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2798
 * NOTE: the output value can be set by other drivers, boot loader or may be
2799
 * hardwired in the regulator.
2800 2801 2802
 */
int regulator_enable(struct regulator *regulator)
{
2803
	struct regulator_dev *rdev = regulator->rdev;
2804
	struct ww_acquire_ctx ww_ctx;
2805
	int ret;
2806

2807
	regulator_lock_dependent(rdev, &ww_ctx);
2808
	ret = _regulator_enable(regulator);
2809
	regulator_unlock_dependent(rdev, &ww_ctx);
2810

2811 2812 2813 2814
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2815 2816 2817 2818 2819 2820
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2821
	if (rdev->ena_pin) {
2822 2823 2824 2825 2826 2827
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2828 2829 2830 2831 2832 2833 2834

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2835
	if (rdev->desc->off_on_delay)
2836
		rdev->last_off = ktime_get();
2837

2838 2839 2840 2841 2842
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2843
/* locks held by regulator_disable() */
2844
static int _regulator_disable(struct regulator *regulator)
2845
{
2846
	struct regulator_dev *rdev = regulator->rdev;
2847 2848
	int ret = 0;

2849
	lockdep_assert_held_once(&rdev->mutex.base);
2850

D
David Brownell 已提交
2851
	if (WARN(rdev->use_count <= 0,
2852
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2853 2854
		return -EIO;

2855
	/* are we the last user and permitted to disable ? */
2856 2857
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2858 2859

		/* we are last user */
2860
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2861 2862 2863 2864 2865 2866
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2867
			ret = _regulator_do_disable(rdev);
2868
			if (ret < 0) {
2869
				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2870 2871 2872
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2873 2874
				return ret;
			}
2875 2876
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2877 2878 2879 2880 2881 2882
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2883

2884 2885 2886
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2887 2888 2889
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2890
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2891
		ret = _regulator_disable(rdev->supply);
2892

2893 2894 2895 2896 2897 2898 2899
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2900 2901 2902
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2903
 *
2904
 * NOTE: this will only disable the regulator output if no other consumer
2905 2906
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2907 2908 2909
 */
int regulator_disable(struct regulator *regulator)
{
2910
	struct regulator_dev *rdev = regulator->rdev;
2911
	struct ww_acquire_ctx ww_ctx;
2912
	int ret;
2913

2914
	regulator_lock_dependent(rdev, &ww_ctx);
2915
	ret = _regulator_disable(regulator);
2916
	regulator_unlock_dependent(rdev, &ww_ctx);
2917

2918 2919 2920 2921 2922
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2923
static int _regulator_force_disable(struct regulator_dev *rdev)
2924 2925 2926
{
	int ret = 0;

2927
	lockdep_assert_held_once(&rdev->mutex.base);
2928

2929 2930 2931 2932 2933
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2934 2935
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
2936
		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2937 2938
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2939
		return ret;
2940 2941
	}

2942 2943 2944 2945
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2959
	struct regulator_dev *rdev = regulator->rdev;
2960
	struct ww_acquire_ctx ww_ctx;
2961 2962
	int ret;

2963
	regulator_lock_dependent(rdev, &ww_ctx);
2964

2965
	ret = _regulator_force_disable(regulator->rdev);
2966

2967 2968
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2969 2970 2971 2972 2973 2974

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2975 2976
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2977

2978
	regulator_unlock_dependent(rdev, &ww_ctx);
2979

2980 2981 2982 2983
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2984 2985 2986 2987
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2988
	struct ww_acquire_ctx ww_ctx;
2989
	int count, i, ret;
2990 2991
	struct regulator *regulator;
	int total_count = 0;
2992

2993
	regulator_lock_dependent(rdev, &ww_ctx);
2994

2995 2996 2997 2998 2999 3000 3001 3002
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
3015 3016
				rdev_err(rdev, "Deferred disable failed: %pe\n",
					 ERR_PTR(ret));
3017
		}
3018
	}
3019
	WARN_ON(!total_count);
3020

3021 3022 3023 3024
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
3025 3026 3027 3028 3029
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
3030
 * @ms: milliseconds until the regulator is disabled
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

3043 3044 3045
	if (!ms)
		return regulator_disable(regulator);

3046
	regulator_lock(rdev);
3047
	regulator->deferred_disables++;
3048 3049
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
3050
	regulator_unlock(rdev);
3051

3052
	return 0;
3053 3054 3055
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

3056 3057
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
3058
	/* A GPIO control always takes precedence */
3059
	if (rdev->ena_pin)
3060 3061
		return rdev->ena_gpio_state;

3062
	/* If we don't know then assume that the regulator is always on */
3063
	if (!rdev->desc->ops->is_enabled)
3064
		return 1;
3065

3066
	return rdev->desc->ops->is_enabled(rdev);
3067 3068
}

3069 3070
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
3081 3082
		if (selector < rdev->desc->linear_min_sel)
			return 0;
3083
		if (lock)
3084
			regulator_lock(rdev);
3085 3086
		ret = ops->list_voltage(rdev, selector);
		if (lock)
3087
			regulator_unlock(rdev);
3088
	} else if (rdev->is_switch && rdev->supply) {
3089 3090
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

3105 3106 3107 3108
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
3109 3110 3111 3112 3113 3114 3115
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
3116 3117 3118
 */
int regulator_is_enabled(struct regulator *regulator)
{
3119 3120
	int ret;

3121 3122 3123
	if (regulator->always_on)
		return 1;

3124
	regulator_lock(regulator->rdev);
3125
	ret = _regulator_is_enabled(regulator->rdev);
3126
	regulator_unlock(regulator->rdev);
3127 3128

	return ret;
3129 3130 3131
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

3144 3145 3146
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

3147
	if (!rdev->is_switch || !rdev->supply)
3148 3149 3150
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
3161
 * zero if this selector code can't be used on this system, or a
3162 3163 3164 3165
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
3166
	return _regulator_list_voltage(regulator->rdev, selector, 1);
3167 3168 3169
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
3202 3203
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3204 3205 3206 3207

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

3208 3209
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
3210

3211
	return 0;
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3229 3230
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3231 3232 3233

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
3234 3235
	if (selector < rdev->desc->linear_min_sel)
		return 0;
3236 3237 3238 3239 3240 3241 3242
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3258 3259 3260 3261 3262 3263 3264
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3265
 * Returns a boolean.
3266 3267 3268 3269
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3270
	struct regulator_dev *rdev = regulator->rdev;
3271 3272
	int i, voltages, ret;

3273
	/* If we can't change voltage check the current voltage */
3274
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3275 3276
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3277
			return min_uV <= ret && ret <= max_uV;
3278 3279 3280 3281
		else
			return ret;
	}

3282 3283 3284 3285 3286
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3287 3288
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3289
		return 0;
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3301
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3302

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3317 3318 3319 3320 3321
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3322 3323 3324
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3325 3326 3327 3328 3329 3330 3331
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3332
	data.old_uV = regulator_get_voltage_rdev(rdev);
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3356
	data.old_uV = regulator_get_voltage_rdev(rdev);
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3434 3435 3436 3437 3438 3439 3440 3441 3442
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3443 3444
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3445 3446 3447 3448 3449 3450
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3451 3452

	if (ramp_delay == 0) {
3453
		rdev_dbg(rdev, "ramp_delay not set\n");
3454 3455 3456 3457 3458 3459
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3460 3461 3462 3463
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3464
	int delay = 0;
3465
	int best_val = 0;
3466
	unsigned int selector;
3467
	int old_selector = -1;
3468
	const struct regulator_ops *ops = rdev->desc->ops;
3469
	int old_uV = regulator_get_voltage_rdev(rdev);
3470 3471 3472

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3473 3474 3475
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3476 3477 3478 3479
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3480
	if (_regulator_is_enabled(rdev) &&
3481 3482
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3483 3484 3485 3486
		if (old_selector < 0)
			return old_selector;
	}

3487
	if (ops->set_voltage) {
3488 3489
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3490 3491

		if (ret >= 0) {
3492 3493 3494
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3495
			else
3496
				best_val = regulator_get_voltage_rdev(rdev);
3497 3498
		}

3499
	} else if (ops->set_voltage_sel) {
3500
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3501
		if (ret >= 0) {
3502
			best_val = ops->list_voltage(rdev, ret);
3503 3504
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3505 3506
				if (old_selector == selector)
					ret = 0;
3507 3508 3509
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3510
				else
3511 3512
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3513 3514 3515
			} else {
				ret = -EINVAL;
			}
3516
		}
3517 3518 3519
	} else {
		ret = -EINVAL;
	}
3520

3521 3522
	if (ret)
		goto out;
3523

3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3541
		}
3542
	}
3543

3544
	if (delay < 0) {
3545
		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3546
		delay = 0;
3547 3548
	}

3549 3550 3551 3552 3553 3554
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3555 3556
	}

3557
	if (best_val >= 0) {
3558 3559
		unsigned long data = best_val;

3560
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3561 3562
				     (void *)data);
	}
3563

3564
out:
3565
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3566 3567 3568 3569

	return ret;
}

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3596
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3597 3598
					  int min_uV, int max_uV,
					  suspend_state_t state)
3599 3600
{
	struct regulator_dev *rdev = regulator->rdev;
3601
	struct regulator_voltage *voltage = &regulator->voltage[state];
3602
	int ret = 0;
3603
	int old_min_uV, old_max_uV;
3604
	int current_uV;
3605

3606 3607 3608 3609
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3610
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3611 3612
		goto out;

3613
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3614
	 * return successfully even though the regulator does not support
3615 3616
	 * changing the voltage.
	 */
3617
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3618
		current_uV = regulator_get_voltage_rdev(rdev);
3619
		if (min_uV <= current_uV && current_uV <= max_uV) {
3620 3621
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3622 3623 3624 3625
			goto out;
		}
	}

3626
	/* sanity check */
3627 3628
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3629 3630 3631 3632 3633 3634 3635 3636
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3637

3638
	/* restore original values in case of error */
3639 3640 3641 3642
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3643

3644 3645
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3646 3647 3648 3649
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3650

3651 3652 3653 3654
out:
	return ret;
}

3655 3656
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3657 3658 3659 3660 3661
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3662 3663 3664
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3665 3666
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3667 3668 3669 3670 3671 3672
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3673
			goto out;
3674 3675
		}

M
Mark Brown 已提交
3676
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3677 3678
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3679
			goto out;
3680 3681 3682 3683
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3684
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3685 3686
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3687
			goto out;
3688 3689 3690 3691 3692 3693 3694
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3695
				best_supply_uV, INT_MAX, state);
3696
		if (ret) {
3697 3698
			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
				ERR_PTR(ret));
3699
			goto out;
3700 3701 3702
		}
	}

3703 3704 3705 3706 3707
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3708
	if (ret < 0)
3709
		goto out;
3710

3711 3712
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3713
				best_supply_uV, INT_MAX, state);
3714
		if (ret)
3715 3716
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
				 ERR_PTR(ret));
3717 3718 3719 3720
		/* No need to fail here */
		ret = 0;
	}

3721
out:
3722
	return ret;
3723
}
3724
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3725

3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3736
		*current_uV = regulator_get_voltage_rdev(rdev);
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3768
	int i, ret, max_spread;
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3802
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3813

3814 3815 3816 3817 3818 3819 3820 3821
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3822 3823
	max_spread = constraints->max_spread[0];

3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3841
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3879 3880 3881 3882
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3883
			ret = regulator_get_voltage_rdev(rdev);
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

3899 3900
int regulator_do_balance_voltage(struct regulator_dev *rdev,
				 suspend_state_t state, bool skip_coupled)
3901 3902 3903 3904 3905 3906
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3907 3908
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3909 3910

	c_rdevs = c_desc->coupled_rdevs;
3911
	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3938
			if (test_bit(i, &c_rdev_done))
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3966

3967 3968
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3969

3970 3971 3972
		if (ret < 0)
			goto out;

3973 3974
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3975 3976 3977 3978

	} while (n_coupled > 1);

out:
3979 3980 3981
	return ret;
}

3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_coupler *coupler = c_desc->coupler;
	bool skip_coupled = false;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		skip_coupled = true;

	if (c_desc->n_resolved < c_desc->n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);

	return regulator_do_balance_voltage(rdev, state, skip_coupled);
}

4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
4028 4029
	struct ww_acquire_ctx ww_ctx;
	int ret;
4030

4031
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4032

4033 4034
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
4035

4036
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4037

4038 4039 4040 4041
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

4054
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
4108 4109
	struct ww_acquire_ctx ww_ctx;
	int ret;
4110 4111 4112 4113 4114

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

4115
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4116 4117 4118 4119

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

4120
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4121 4122 4123 4124 4125

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
4139 4140
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
4141 4142 4143 4144 4145
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

4146 4147 4148 4149 4150
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

4151
	/* Currently requires operations to do this */
4152
	if (!ops->list_voltage || !rdev->desc->n_voltages)
4153 4154 4155 4156
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
4157 4158 4159
		if (i < rdev->desc->linear_min_sel)
			continue;

4160 4161 4162
		if (old_sel >= 0 && new_sel >= 0)
			break;

4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

4181
/**
4182 4183
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
4184 4185 4186 4187 4188 4189
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
4190
 * Drivers providing ramp_delay in regulation_constraints can use this as their
4191
 * set_voltage_time_sel() operation.
4192 4193 4194 4195 4196
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
4197
	int old_volt, new_volt;
4198

4199 4200 4201
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
4202

4203 4204 4205
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

4206 4207 4208 4209 4210
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4211
}
4212
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4213

4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
{
	int ret;

	regulator_lock(rdev);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* balance only, if regulator is coupled */
	if (rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
	else
		ret = -EOPNOTSUPP;

out:
	regulator_unlock(rdev);
	return ret;
}

4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
4248
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4249 4250
	int ret, min_uV, max_uV;

4251
	regulator_lock(rdev);
4252 4253 4254 4255 4256 4257 4258 4259

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
4260
	if (!voltage->min_uV && !voltage->max_uV) {
4261 4262 4263 4264
		ret = -EINVAL;
		goto out;
	}

4265 4266
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
4267 4268 4269 4270 4271 4272

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

4273
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4274 4275 4276
	if (ret < 0)
		goto out;

4277 4278 4279 4280 4281
	/* balance only, if regulator is coupled */
	if (rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
	else
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4282 4283

out:
4284
	regulator_unlock(rdev);
4285 4286 4287 4288
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

4289
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4290
{
4291
	int sel, ret;
4292 4293 4294 4295 4296 4297 4298 4299
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
4300 4301 4302 4303 4304
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4305

4306
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4307 4308
		}
	}
4309 4310 4311 4312 4313

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4314
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4315
	} else if (rdev->desc->ops->get_voltage) {
4316
		ret = rdev->desc->ops->get_voltage(rdev);
4317 4318
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4319 4320
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4321
	} else if (rdev->supply) {
4322
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4323 4324
	} else if (rdev->supply_name) {
		return -EPROBE_DEFER;
4325
	} else {
4326
		return -EINVAL;
4327
	}
4328

4329 4330
	if (ret < 0)
		return ret;
4331
	return ret - rdev->constraints->uV_offset;
4332
}
4333
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4346
	struct ww_acquire_ctx ww_ctx;
4347 4348
	int ret;

4349
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4350
	ret = regulator_get_voltage_rdev(regulator->rdev);
4351
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4352 4353 4354 4355 4356 4357 4358 4359

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4360
 * @min_uA: Minimum supported current in uA
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4379
	regulator_lock(rdev);
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4394
	regulator_unlock(rdev);
4395 4396 4397 4398
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4399 4400 4401 4402 4403 4404 4405 4406 4407
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4408 4409 4410 4411
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4412
	regulator_lock(rdev);
4413
	ret = _regulator_get_current_limit_unlocked(rdev);
4414
	regulator_unlock(rdev);
4415

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4449
	int regulator_curr_mode;
4450

4451
	regulator_lock(rdev);
4452 4453 4454 4455 4456 4457 4458

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4459 4460 4461 4462 4463 4464 4465 4466 4467
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4468
	/* constraints check */
4469
	ret = regulator_mode_constrain(rdev, &mode);
4470 4471 4472 4473 4474
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4475
	regulator_unlock(rdev);
4476 4477 4478 4479
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4480 4481 4482 4483 4484 4485 4486 4487 4488
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4489 4490 4491 4492
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4493
	regulator_lock(rdev);
4494
	ret = _regulator_get_mode_unlocked(rdev);
4495
	regulator_unlock(rdev);
4496

4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
{
	int ret = 0;

	if (rdev->use_cached_err) {
		spin_lock(&rdev->err_lock);
		ret = rdev->cached_err;
		spin_unlock(&rdev->err_lock);
	}
	return ret;
}

4524 4525 4526
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
4527
	int cached_flags, ret = 0;
4528

4529
	regulator_lock(rdev);
4530

4531 4532 4533 4534 4535
	cached_flags = rdev_get_cached_err_flags(rdev);

	if (rdev->desc->ops->get_error_flags)
		ret = rdev->desc->ops->get_error_flags(rdev, flags);
	else if (!rdev->use_cached_err)
4536 4537
		ret = -EINVAL;

4538 4539
	*flags |= cached_flags;

4540
	regulator_unlock(rdev);
4541

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4559
/**
4560
 * regulator_set_load - set regulator load
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4583 4584 4585 4586 4587 4588 4589 4590
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4591
 * On error a negative errno is returned.
4592
 */
4593
int regulator_set_load(struct regulator *regulator, int uA_load)
4594 4595
{
	struct regulator_dev *rdev = regulator->rdev;
4596 4597
	int old_uA_load;
	int ret = 0;
4598

4599
	regulator_lock(rdev);
4600
	old_uA_load = regulator->uA_load;
4601
	regulator->uA_load = uA_load;
4602 4603 4604 4605 4606
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4607
	regulator_unlock(rdev);
4608

4609 4610
	return ret;
}
4611
EXPORT_SYMBOL_GPL(regulator_set_load);
4612

4613 4614 4615 4616
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4617
 * @enable: enable or disable bypass mode
4618 4619 4620 4621 4622 4623 4624 4625 4626
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
4627
	const char *name = rdev_get_name(rdev);
4628 4629 4630 4631 4632
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4633
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4634 4635
		return 0;

4636
	regulator_lock(rdev);
4637 4638 4639 4640 4641

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
4642 4643
			trace_regulator_bypass_enable(name);

4644 4645 4646
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
4647 4648
			else
				trace_regulator_bypass_enable_complete(name);
4649 4650 4651 4652 4653 4654
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
4655 4656
			trace_regulator_bypass_disable(name);

4657 4658 4659
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
4660 4661
			else
				trace_regulator_bypass_disable_complete(name);
4662 4663 4664 4665 4666 4667
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4668
	regulator_unlock(rdev);
4669 4670 4671 4672 4673

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4674 4675 4676
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4677
 * @nb: notifier block
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4692
 * @nb: notifier block
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4704 4705 4706
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4707
static int _notifier_call_chain(struct regulator_dev *rdev,
4708 4709 4710
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4711
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4738 4739
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4750
	if (ret != -EPROBE_DEFER)
4751 4752
		dev_err(dev, "Failed to get supply '%s': %pe\n",
			consumers[i].supply, ERR_PTR(ret));
4753 4754 4755 4756
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4757
	while (--i >= 0)
4758 4759 4760 4761 4762 4763
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4764 4765 4766 4767 4768 4769 4770
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4786
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4787
	int i;
4788
	int ret = 0;
4789

4790
	for (i = 0; i < num_consumers; i++) {
4791 4792
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4793
	}
4794 4795 4796 4797

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4798
	for (i = 0; i < num_consumers; i++) {
4799 4800
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4801
			goto err;
4802
		}
4803 4804 4805 4806 4807
	}

	return 0;

err:
4808 4809
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
4810 4811
			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
			       ERR_PTR(consumers[i].ret));
4812 4813 4814
		else
			regulator_disable(consumers[i].consumer);
	}
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4828 4829
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4830 4831 4832 4833 4834 4835
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4836
	int ret, r;
4837

4838
	for (i = num_consumers - 1; i >= 0; --i) {
4839 4840 4841 4842 4843 4844 4845 4846
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4847
	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4848 4849 4850
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4851 4852
			pr_err("Failed to re-enable %s: %pe\n",
			       consumers[i].supply, ERR_PTR(r));
4853
	}
4854 4855 4856 4857 4858

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4877
	int ret = 0;
4878

4879
	for (i = 0; i < num_consumers; i++) {
4880 4881 4882
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4883 4884
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4885 4886 4887 4888 4889 4890 4891
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4915
 * @rdev: regulator source
4916
 * @event: notifier block
4917
 * @data: callback-specific data.
4918 4919
 *
 * Called by regulator drivers to notify clients a regulator event has
4920
 * occurred.
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4947
	case REGULATOR_MODE_STANDBY:
4948 4949
		return REGULATOR_STATUS_STANDBY;
	default:
4950
		return REGULATOR_STATUS_UNDEFINED;
4951 4952 4953 4954
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4982 4983 4984 4985
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4986 4987
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4988
{
4989
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4990
	struct regulator_dev *rdev = dev_to_rdev(dev);
4991
	const struct regulator_ops *ops = rdev->desc->ops;
4992 4993 4994 4995 4996 4997 4998
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4999 5000

	/* some attributes need specific methods to be displayed */
5001 5002 5003 5004 5005 5006 5007
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
5008
	}
5009

5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

5025
	/* constraints need specific supporting methods */
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
5061

5062 5063 5064
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
5065 5066 5067

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
5068
	kfree(rdev);
5069 5070
}

5071 5072
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5085
	if (!rdev->debugfs) {
5086 5087 5088 5089 5090 5091 5092 5093
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
5094 5095
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
5096 5097
}

5098 5099
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
5100 5101 5102 5103 5104 5105
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
5106 5107
}

5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

5159
static void regulator_resolve_coupling(struct regulator_dev *rdev)
5160
{
5161
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

5174 5175
		if (!c_rdev)
			continue;
5176

5177 5178 5179 5180 5181 5182
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

5183 5184
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
5185

5186 5187
		regulator_resolve_coupling(c_rdev);
	}
5188 5189
}

5190
static void regulator_remove_coupling(struct regulator_dev *rdev)
5191
{
5192
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5193 5194 5195 5196
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
5197
	int err;
5198

5199
	n_coupled = c_desc->n_coupled;
5200

5201 5202
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
5203

5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
5227 5228 5229 5230

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
5231 5232
			rdev_err(rdev, "failed to detach from coupler: %pe\n",
				 ERR_PTR(err));
5233 5234 5235 5236
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
5237 5238
}

5239
static int regulator_init_coupling(struct regulator_dev *rdev)
5240
{
5241
	struct regulator_dev **coupled;
5242
	int err, n_phandles;
5243 5244 5245 5246 5247 5248

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

5249 5250
	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
	if (!coupled)
5251
		return -ENOMEM;
5252

5253 5254
	rdev->coupling_desc.coupled_rdevs = coupled;

5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

5267
	if (!of_check_coupling_data(rdev))
5268 5269
		return -EPERM;

5270
	mutex_lock(&regulator_list_mutex);
5271
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5272 5273
	mutex_unlock(&regulator_list_mutex);

5274 5275
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
5276
		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5277
		return err;
5278 5279
	}

5280 5281 5282 5283 5284 5285 5286 5287 5288
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5289
		return -EPERM;
5290
	}
5291

5292 5293 5294 5295 5296 5297
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

5298 5299 5300
	return 0;
}

5301 5302 5303 5304
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

5305 5306
/**
 * regulator_register - register regulator
5307
 * @regulator_desc: regulator to register
5308
 * @cfg: runtime configuration for regulator
5309 5310
 *
 * Called by regulator drivers to register a regulator.
5311 5312
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
5313
 */
5314 5315
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
5316
		   const struct regulator_config *cfg)
5317
{
5318
	const struct regulator_init_data *init_data;
5319
	struct regulator_config *config = NULL;
5320
	static atomic_t regulator_no = ATOMIC_INIT(-1);
5321
	struct regulator_dev *rdev;
5322 5323
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5324
	struct device *dev;
5325
	int ret, i;
5326

5327
	if (cfg == NULL)
5328
		return ERR_PTR(-EINVAL);
5329 5330 5331 5332 5333 5334
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5335

5336
	dev = cfg->dev;
5337
	WARN_ON(!dev);
5338

5339 5340 5341 5342
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5343

5344
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5345 5346 5347 5348
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5349

5350 5351 5352
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5353 5354
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5355 5356 5357 5358

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5359 5360
		ret = -EINVAL;
		goto rinse;
5361
	}
5362 5363
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5364 5365
		ret = -EINVAL;
		goto rinse;
5366
	}
5367

5368
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5369 5370 5371 5372
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5373
	device_initialize(&rdev->dev);
5374
	spin_lock_init(&rdev->err_lock);
5375

5376 5377 5378 5379 5380 5381
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
5382
		ret = -ENOMEM;
5383
		goto clean;
5384 5385
	}

5386
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5387
					       &rdev->dev.of_node);
5388 5389 5390 5391 5392 5393 5394 5395

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		ret = -EPROBE_DEFER;
5396
		goto clean;
5397 5398
	}

5399 5400 5401 5402 5403
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5404
	 * a descriptor, we definitely got one from parsing the device
5405 5406 5407 5408
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5409 5410 5411 5412 5413
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5414
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5415
	rdev->reg_data = config->driver_data;
5416 5417
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5418 5419
	if (config->regmap)
		rdev->regmap = config->regmap;
5420
	else if (dev_get_regmap(dev, NULL))
5421
		rdev->regmap = dev_get_regmap(dev, NULL);
5422 5423
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5424 5425 5426
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5427
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5428

5429
	/* preform any regulator specific init */
5430
	if (init_data && init_data->regulator_init) {
5431
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5432 5433
		if (ret < 0)
			goto clean;
5434 5435
	}

5436
	if (config->ena_gpiod) {
5437 5438
		ret = regulator_ena_gpio_request(rdev, config);
		if (ret != 0) {
5439 5440
			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
				 ERR_PTR(ret));
5441
			goto clean;
5442
		}
5443 5444 5445
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5446 5447
	}

5448
	/* register with sysfs */
5449
	rdev->dev.class = &regulator_class;
5450
	rdev->dev.parent = dev;
5451
	dev_set_name(&rdev->dev, "regulator.%lu",
5452
		    (unsigned long) atomic_inc_return(&regulator_no));
5453
	dev_set_drvdata(&rdev->dev, rdev);
5454

5455
	/* set regulator constraints */
5456
	if (init_data)
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
		rdev->constraints = kmemdup(&init_data->constraints,
					    sizeof(*rdev->constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
					    GFP_KERNEL);
	if (!rdev->constraints) {
		ret = -ENOMEM;
		goto wash;
	}
5467 5468

	if (init_data && init_data->supply_regulator)
5469
		rdev->supply_name = init_data->supply_regulator;
5470
	else if (regulator_desc->supply_name)
5471
		rdev->supply_name = regulator_desc->supply_name;
5472

5473
	ret = set_machine_constraints(rdev);
5474 5475
	if (ret == -EPROBE_DEFER) {
		/* Regulator might be in bypass mode and so needs its supply
5476 5477
		 * to set the constraints
		 */
5478 5479
		/* FIXME: this currently triggers a chicken-and-egg problem
		 * when creating -SUPPLY symlink in sysfs to a regulator
5480 5481
		 * that is just being created
		 */
5482 5483
		rdev_dbg(rdev, "will resolve supply early: %s\n",
			 rdev->supply_name);
5484 5485
		ret = regulator_resolve_supply(rdev);
		if (!ret)
5486
			ret = set_machine_constraints(rdev);
5487 5488 5489 5490
		else
			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
				 ERR_PTR(ret));
	}
5491 5492 5493
	if (ret < 0)
		goto wash;

5494 5495
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5496 5497
		goto wash;

5498
	/* add consumers devices */
5499 5500 5501 5502
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5503
				init_data->consumer_supplies[i].supply);
5504 5505 5506 5507 5508
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5509
		}
5510
	}
5511

5512 5513 5514 5515 5516
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5517 5518
	ret = device_add(&rdev->dev);
	if (ret != 0)
5519 5520
		goto unset_supplies;

5521
	rdev_init_debugfs(rdev);
5522

5523 5524 5525 5526 5527
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5528 5529 5530
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5531
	kfree(config);
5532
	return rdev;
D
David Brownell 已提交
5533

5534
unset_supplies:
5535
	mutex_lock(&regulator_list_mutex);
5536
	unset_regulator_supplies(rdev);
5537
	regulator_remove_coupling(rdev);
5538
	mutex_unlock(&regulator_list_mutex);
5539
wash:
5540
	kfree(rdev->coupling_desc.coupled_rdevs);
5541
	mutex_lock(&regulator_list_mutex);
5542
	regulator_ena_gpio_free(rdev);
5543
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5544
clean:
5545 5546
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
5547
	kfree(config);
5548
	put_device(&rdev->dev);
5549 5550 5551
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5552
	return ERR_PTR(ret);
5553 5554 5555 5556 5557
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5558
 * @rdev: regulator to unregister
5559 5560 5561 5562 5563 5564 5565 5566
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5567 5568 5569
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5570
		regulator_put(rdev->supply);
5571
	}
5572

5573 5574
	flush_work(&rdev->disable_work.work);

5575
	mutex_lock(&regulator_list_mutex);
5576

5577
	debugfs_remove_recursive(rdev->debugfs);
5578
	WARN_ON(rdev->open_count);
5579
	regulator_remove_coupling(rdev);
5580
	unset_regulator_supplies(rdev);
5581
	list_del(&rdev->list);
5582
	regulator_ena_gpio_free(rdev);
5583
	device_unregister(&rdev->dev);
5584 5585

	mutex_unlock(&regulator_list_mutex);
5586 5587 5588
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5589
#ifdef CONFIG_SUSPEND
5590
/**
5591
 * regulator_suspend - prepare regulators for system wide suspend
5592
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5593 5594 5595
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5596
static int regulator_suspend(struct device *dev)
5597
{
5598
	struct regulator_dev *rdev = dev_to_rdev(dev);
5599
	suspend_state_t state = pm_suspend_target_state;
5600
	int ret;
5601 5602 5603 5604 5605
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev, state);
	if (!rstate)
		return 0;
5606 5607

	regulator_lock(rdev);
5608
	ret = __suspend_set_state(rdev, rstate);
5609
	regulator_unlock(rdev);
5610

5611
	return ret;
5612
}
5613

5614
static int regulator_resume(struct device *dev)
5615
{
5616
	suspend_state_t state = pm_suspend_target_state;
5617
	struct regulator_dev *rdev = dev_to_rdev(dev);
5618
	struct regulator_state *rstate;
5619
	int ret = 0;
5620

5621
	rstate = regulator_get_suspend_state(rdev, state);
5622
	if (rstate == NULL)
5623
		return 0;
5624

5625 5626 5627 5628
	/* Avoid grabbing the lock if we don't need to */
	if (!rdev->desc->ops->resume)
		return 0;

5629
	regulator_lock(rdev);
5630

5631 5632
	if (rstate->enabled == ENABLE_IN_SUSPEND ||
	    rstate->enabled == DISABLE_IN_SUSPEND)
5633
		ret = rdev->desc->ops->resume(rdev);
5634

5635
	regulator_unlock(rdev);
5636

5637
	return ret;
5638
}
5639 5640
#else /* !CONFIG_SUSPEND */

5641 5642
#define regulator_suspend	NULL
#define regulator_resume	NULL
5643 5644 5645 5646 5647

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5648 5649
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5650 5651 5652
};
#endif

M
Mark Brown 已提交
5653
struct class regulator_class = {
5654 5655 5656 5657 5658 5659 5660
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5678 5679
/**
 * rdev_get_drvdata - get rdev regulator driver data
5680
 * @rdev: regulator
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
5716
 * rdev_get_id - get regulator ID
5717
 * @rdev: regulator
5718 5719 5720 5721 5722 5723 5724
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5725 5726 5727 5728 5729 5730
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5731 5732 5733 5734 5735 5736
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5737 5738 5739 5740 5741 5742
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5743
#ifdef CONFIG_DEBUG_FS
5744
static int supply_map_show(struct seq_file *sf, void *data)
5745 5746 5747 5748
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5749 5750 5751
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5752 5753
	}

5754 5755
	return 0;
}
5756
DEFINE_SHOW_ATTRIBUTE(supply_map);
5757

5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5780 5781 5782 5783 5784 5785
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5786
	struct summary_data summary_data;
5787
	unsigned int opmode;
5788 5789 5790 5791

	if (!rdev)
		return;

5792
	opmode = _regulator_get_mode_unlocked(rdev);
5793
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5794 5795
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5796
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5797
		   regulator_opmode_to_str(opmode));
5798

5799
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5800 5801
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5820
		if (consumer->dev && consumer->dev->class == &regulator_class)
5821 5822 5823 5824
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5825
			   30 - (level + 1) * 3,
5826
			   consumer->supply_name ? consumer->supply_name :
5827
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5828 5829 5830

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5831 5832
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5833
				   consumer->uA_load / 1000,
5834 5835
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5836 5837
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5838 5839 5840 5841 5842 5843 5844 5845
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5846 5847 5848
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5849

5850 5851
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5889 5890

	regulator_unlock(rdev);
5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5921 5922
	mutex_lock(&regulator_list_mutex);

5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5949 5950

	mutex_unlock(&regulator_list_mutex);
5951 5952
}

5953
static int regulator_summary_show_roots(struct device *dev, void *data)
5954
{
5955 5956
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5957

5958 5959
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5960

5961 5962
	return 0;
}
5963

5964 5965
static int regulator_summary_show(struct seq_file *s, void *data)
{
5966 5967
	struct ww_acquire_ctx ww_ctx;

5968 5969
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5970

5971 5972
	regulator_summary_lock(&ww_ctx);

5973 5974
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5975

5976 5977
	regulator_summary_unlock(&ww_ctx);

5978 5979
	return 0;
}
5980 5981
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5982

5983 5984
static int __init regulator_init(void)
{
5985 5986 5987 5988
	int ret;

	ret = class_register(&regulator_class);

5989
	debugfs_root = debugfs_create_dir("regulator", NULL);
5990
	if (!debugfs_root)
5991
		pr_warn("regulator: Failed to create debugfs directory\n");
5992

5993
#ifdef CONFIG_DEBUG_FS
5994 5995
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5996

5997
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5998
			    NULL, &regulator_summary_fops);
5999
#endif
6000 6001
	regulator_dummy_init();

6002 6003
	regulator_coupler_register(&generic_regulator_coupler);

6004
	return ret;
6005 6006 6007 6008
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
6009

6010
static int regulator_late_cleanup(struct device *dev, void *data)
6011
{
6012 6013 6014
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
6015 6016
	int enabled, ret;

6017 6018 6019
	if (c && c->always_on)
		return 0;

6020
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6021 6022
		return 0;

6023
	regulator_lock(rdev);
6024 6025 6026 6027

	if (rdev->use_count)
		goto unlock;

6028
	/* If we can't read the status assume it's always on. */
6029 6030 6031 6032 6033
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

6034 6035
	/* But if reading the status failed, assume that it's off. */
	if (enabled <= 0)
6036 6037 6038 6039
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
6040 6041
		 * wrong.
		 */
6042 6043 6044
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
6045
			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
6056
	regulator_unlock(rdev);
6057 6058 6059 6060

	return 0;
}

6061
static void regulator_init_complete_work_function(struct work_struct *work)
6062
{
6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

6073
	/* If we have a full configuration then disable any regulators
6074 6075 6076
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
6077
	 */
6078 6079
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
6097 6098 6099 6100 6101 6102 6103 6104 6105
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
6106
	 */
6107 6108
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
6109 6110 6111

	return 0;
}
6112
late_initcall_sync(regulator_init_complete);