core.c 144.6 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio/consumer.h>
27
#include <linux/of.h>
28
#include <linux/regmap.h>
29
#include <linux/regulator/of_regulator.h>
30
#include <linux/regulator/consumer.h>
31
#include <linux/regulator/coupler.h>
32 33
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
55 56
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
57
static LIST_HEAD(regulator_ena_gpio_list);
58
static LIST_HEAD(regulator_supply_alias_list);
59
static LIST_HEAD(regulator_coupler_list);
60
static bool has_full_constraints;
61

62 63
static struct dentry *debugfs_root;

64
/*
65 66 67 68 69 70
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
71
	const char *dev_name;   /* The dev_name() for the consumer */
72
	const char *supply;
73
	struct regulator_dev *regulator;
74 75
};

76 77 78 79 80 81 82
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
83
	struct gpio_desc *gpiod;
84 85 86 87
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

101
static int _regulator_is_enabled(struct regulator_dev *rdev);
102
static int _regulator_disable(struct regulator *regulator);
103 104 105
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106
static int _notifier_call_chain(struct regulator_dev *rdev,
107
				  unsigned long event, void *data);
108 109
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
110 111
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
112 113 114
static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
				      int min_uV, int max_uV,
				      suspend_state_t state);
115 116 117
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
118
static void _regulator_put(struct regulator *regulator);
119

120 121 122 123 124 125 126 127 128 129
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

130 131
static bool have_full_constraints(void)
{
132
	return has_full_constraints || of_have_populated_dt();
133 134
}

135 136 137 138 139 140 141 142 143 144 145 146 147
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

148 149 150
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
151
 * @ww_ctx:		w/w mutex acquire context
152 153 154 155 156 157 158
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
159 160
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
161
{
162 163 164 165 166 167 168
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
169
			rdev->ref_cnt++;
170 171 172 173 174 175 176
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
177
		}
178 179
	} else {
		lock = true;
180 181
	}

182 183 184 185 186 187 188 189
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
190 191
}

192 193 194 195 196 197 198 199 200 201 202
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
void regulator_lock(struct regulator_dev *rdev)
203
{
204
	regulator_lock_nested(rdev, NULL);
205
}
206
EXPORT_SYMBOL_GPL(regulator_lock);
207 208 209 210 211 212 213 214

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
215
void regulator_unlock(struct regulator_dev *rdev)
216
{
217
	mutex_lock(&regulator_nesting_mutex);
218

219 220 221
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
222
	}
223 224 225 226

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
227
}
228
EXPORT_SYMBOL_GPL(regulator_unlock);
229

230
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
231
{
232 233 234 235 236
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
237

238 239 240 241 242 243 244
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

245 246
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
247
{
248
	struct regulator_dev *c_rdev;
249
	int i;
250

251 252
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
253 254 255 256

		if (!c_rdev)
			continue;

257
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
258 259 260
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
261

262 263
		regulator_unlock(c_rdev);
	}
264 265
}

266 267 268 269
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
270
{
271
	struct regulator_dev *c_rdev;
272
	int i, err;
273

274 275
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
276

277 278
		if (!c_rdev)
			continue;
279

280 281 282 283 284 285 286
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
287

288 289 290 291 292 293 294
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

295
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
296 297 298 299 300 301 302 303
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
304 305
		}
	}
306 307 308 309 310 311 312

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
313 314
}

315
/**
316 317 318 319 320
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
321
 * Unlock all regulators related with rdev by coupling or supplying.
322
 */
323 324
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
325
{
326 327
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
328 329 330
}

/**
331 332
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
333
 * @ww_ctx:			w/w mutex acquire context
334 335
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
336
 * all regulators related with rdev by coupling or supplying.
337
 */
338 339
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
340
{
341 342 343
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
344

345
	mutex_lock(&regulator_list_mutex);
346

347
	ww_acquire_init(ww_ctx, &regulator_ww_class);
348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
369 370
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
			if (regnode)
				return regnode;
		} else {
			return regnode;
		}
	}
	return NULL;
}

402 403 404 405 406 407
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
408
 * returns the device node corresponding to the regulator if found, else
409 410 411 412 413 414 415 416 417 418 419 420 421
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
422 423 424 425
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

426 427
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
428 429 430 431 432
		return NULL;
	}
	return regnode;
}

433 434 435 436 437 438
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

439
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
440
		rdev_err(rdev, "voltage operation not allowed\n");
441 442 443 444 445 446 447 448
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

449 450
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
451
			 *min_uV, *max_uV);
452
		return -EINVAL;
453
	}
454 455 456 457

	return 0;
}

458 459 460 461 462 463
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

464 465 466 467
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
468 469
				     int *min_uV, int *max_uV,
				     suspend_state_t state)
470 471
{
	struct regulator *regulator;
472
	struct regulator_voltage *voltage;
473 474

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
475
		voltage = &regulator->voltage[state];
476 477 478 479
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
480
		if (!voltage->min_uV && !voltage->max_uV)
481 482
			continue;

483 484 485 486
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
487 488
	}

489
	if (*min_uV > *max_uV) {
490 491
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
492
		return -EINVAL;
493
	}
494 495 496 497

	return 0;
}

498 499 500 501 502 503
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

504
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
505
		rdev_err(rdev, "current operation not allowed\n");
506 507 508 509 510 511 512 513
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

514 515
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
516
			 *min_uA, *max_uA);
517
		return -EINVAL;
518
	}
519 520 521 522 523

	return 0;
}

/* operating mode constraint check */
524 525
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
526
{
527
	switch (*mode) {
528 529 530 531 532 533
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
534
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
535 536 537
		return -EINVAL;
	}

538
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
539
		rdev_err(rdev, "mode operation not allowed\n");
540 541
		return -EPERM;
	}
542 543 544 545 546 547 548 549

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
550
	}
551 552

	return -EINVAL;
553 554
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

573 574 575
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
576
	struct regulator_dev *rdev = dev_get_drvdata(dev);
577 578
	ssize_t ret;

579
	regulator_lock(rdev);
580
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
581
	regulator_unlock(rdev);
582 583 584

	return ret;
}
585
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
586 587 588 589

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
590
	struct regulator_dev *rdev = dev_get_drvdata(dev);
591 592 593

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
594
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
595

596 597
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
598 599 600
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

601
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
602
}
603
static DEVICE_ATTR_RO(name);
604

605
static const char *regulator_opmode_to_str(int mode)
606 607 608
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
609
		return "fast";
610
	case REGULATOR_MODE_NORMAL:
611
		return "normal";
612
	case REGULATOR_MODE_IDLE:
613
		return "idle";
614
	case REGULATOR_MODE_STANDBY:
615
		return "standby";
616
	}
617 618 619 620 621 622
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
623 624
}

D
David Brownell 已提交
625 626
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
627
{
628
	struct regulator_dev *rdev = dev_get_drvdata(dev);
629

D
David Brownell 已提交
630 631
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
632
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
633 634 635

static ssize_t regulator_print_state(char *buf, int state)
{
636 637 638 639 640 641 642 643
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
644 645 646 647
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
648 649
	ssize_t ret;

650
	regulator_lock(rdev);
651
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
652
	regulator_unlock(rdev);
D
David Brownell 已提交
653

654
	return ret;
D
David Brownell 已提交
655
}
656
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
657

D
David Brownell 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
691 692 693
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
694 695 696
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
697 698 699 700 701 702 703 704
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

705 706 707
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
708
	struct regulator_dev *rdev = dev_get_drvdata(dev);
709 710 711 712 713 714

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
715
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
716 717 718 719

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
720
	struct regulator_dev *rdev = dev_get_drvdata(dev);
721 722 723 724 725 726

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
727
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
728 729 730 731

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
732
	struct regulator_dev *rdev = dev_get_drvdata(dev);
733 734 735 736 737 738

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
739
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
740 741 742 743

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
744
	struct regulator_dev *rdev = dev_get_drvdata(dev);
745 746 747 748 749 750

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
751
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
752 753 754 755

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
756
	struct regulator_dev *rdev = dev_get_drvdata(dev);
757 758 759
	struct regulator *regulator;
	int uA = 0;

760
	regulator_lock(rdev);
761 762 763 764
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
765
	regulator_unlock(rdev);
766 767
	return sprintf(buf, "%d\n", uA);
}
768
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
769

770 771
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
772
{
773
	struct regulator_dev *rdev = dev_get_drvdata(dev);
774 775
	return sprintf(buf, "%d\n", rdev->use_count);
}
776
static DEVICE_ATTR_RO(num_users);
777

778 779
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
780
{
781
	struct regulator_dev *rdev = dev_get_drvdata(dev);
782 783 784 785 786 787 788 789 790

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
791
static DEVICE_ATTR_RO(type);
792 793 794 795

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
796
	struct regulator_dev *rdev = dev_get_drvdata(dev);
797 798 799

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
800 801
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
802 803 804 805

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
806
	struct regulator_dev *rdev = dev_get_drvdata(dev);
807 808 809

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
810 811
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
812 813 814 815

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
816
	struct regulator_dev *rdev = dev_get_drvdata(dev);
817 818 819

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
820 821
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
822 823 824 825

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
826
	struct regulator_dev *rdev = dev_get_drvdata(dev);
827

D
David Brownell 已提交
828 829
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
830
}
831 832
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
833 834 835 836

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
837
	struct regulator_dev *rdev = dev_get_drvdata(dev);
838

D
David Brownell 已提交
839 840
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
841
}
842 843
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
844 845 846 847

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
848
	struct regulator_dev *rdev = dev_get_drvdata(dev);
849

D
David Brownell 已提交
850 851
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
852
}
853 854
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
855 856 857 858

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
859
	struct regulator_dev *rdev = dev_get_drvdata(dev);
860

D
David Brownell 已提交
861 862
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
863
}
864 865
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
866 867 868 869

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
870
	struct regulator_dev *rdev = dev_get_drvdata(dev);
871

D
David Brownell 已提交
872 873
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
874
}
875 876
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
877 878 879 880

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
881
	struct regulator_dev *rdev = dev_get_drvdata(dev);
882

D
David Brownell 已提交
883 884
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
885
}
886 887 888
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
910

911 912
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
913
static int drms_uA_update(struct regulator_dev *rdev)
914 915 916 917 918
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

919 920 921 922
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
923 924
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
925
		return 0;
926
	}
927

928 929
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
930 931
		return 0;

932 933
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
934
		return -EINVAL;
935 936

	/* calc total requested load */
937 938 939 940
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
941

942 943
	current_uA += rdev->constraints->system_load;

944 945 946 947 948 949
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
		/* get output voltage */
		output_uV = _regulator_get_voltage(rdev);
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

968 969 970 971 972 973 974 975 976 977 978
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
979

980 981 982
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
983 984 985
	}

	return err;
986 987 988
}

static int suspend_set_state(struct regulator_dev *rdev,
989
				    suspend_state_t state)
990 991
{
	int ret = 0;
992 993 994 995
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
996
		return 0;
997

998
	/* If we have no suspend mode configuration don't set anything;
999 1000
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
1001
	 */
1002 1003
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
1004 1005
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
1006
			rdev_warn(rdev, "No configuration\n");
1007 1008 1009
		return 0;
	}

1010 1011
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1012
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1013 1014
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1015
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1016 1017 1018
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1019
	if (ret < 0) {
1020
		rdev_err(rdev, "failed to enabled/disable\n");
1021 1022 1023 1024 1025 1026
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1027
			rdev_err(rdev, "failed to set voltage\n");
1028 1029 1030 1031 1032 1033 1034
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1035
			rdev_err(rdev, "failed to set mode\n");
1036 1037 1038 1039
			return ret;
		}
	}

1040
	return ret;
1041 1042 1043 1044 1045
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1046
	char buf[160] = "";
1047
	size_t len = sizeof(buf) - 1;
1048 1049
	int count = 0;
	int ret;
1050

1051
	if (constraints->min_uV && constraints->max_uV) {
1052
		if (constraints->min_uV == constraints->max_uV)
1053 1054
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1055
		else
1056 1057 1058 1059
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1060 1061 1062 1063 1064 1065
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
1066 1067
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1068 1069
	}

1070
	if (constraints->uV_offset)
1071 1072
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1073

1074
	if (constraints->min_uA && constraints->max_uA) {
1075
		if (constraints->min_uA == constraints->max_uA)
1076 1077
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1078
		else
1079 1080 1081 1082
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1083 1084 1085 1086 1087 1088
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1089 1090
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1091
	}
1092

1093
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1094
		count += scnprintf(buf + count, len - count, "fast ");
1095
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1096
		count += scnprintf(buf + count, len - count, "normal ");
1097
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1098
		count += scnprintf(buf + count, len - count, "idle ");
1099
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1100
		count += scnprintf(buf + count, len - count, "standby");
1101

1102
	if (!count)
1103
		scnprintf(buf, len, "no parameters");
1104

1105
	rdev_dbg(rdev, "%s\n", buf);
1106 1107

	if ((constraints->min_uV != constraints->max_uV) &&
1108
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1109 1110
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1111 1112
}

1113
static int machine_constraints_voltage(struct regulator_dev *rdev,
1114
	struct regulation_constraints *constraints)
1115
{
1116
	const struct regulator_ops *ops = rdev->desc->ops;
1117 1118 1119 1120
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1121 1122
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1123
		int current_uV = _regulator_get_voltage(rdev);
1124 1125

		if (current_uV == -ENOTRECOVERABLE) {
1126
			/* This regulator can't be read and must be initialized */
1127 1128 1129 1130 1131 1132 1133 1134 1135
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
			current_uV = _regulator_get_voltage(rdev);
		}

1136
		if (current_uV < 0) {
1137 1138 1139
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1140 1141
			return current_uV;
		}
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1162 1163
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1164
			ret = _regulator_do_set_voltage(
1165
				rdev, target_min, target_max);
1166 1167
			if (ret < 0) {
				rdev_err(rdev,
1168 1169
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1170 1171
				return ret;
			}
1172
		}
1173
	}
1174

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1186 1187
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1188
		if (count == 1 && !cmin) {
1189
			cmin = 1;
1190
			cmax = INT_MAX;
1191 1192
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1193 1194
		}

1195 1196
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1197
			return 0;
1198

1199
		/* else require explicit machine-level constraints */
1200
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1201
			rdev_err(rdev, "invalid voltage constraints\n");
1202
			return -EINVAL;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1222 1223 1224
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1225
			return -EINVAL;
1226 1227 1228 1229
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1230 1231
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1232 1233 1234
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1235 1236
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1237 1238 1239 1240
			constraints->max_uV = max_uV;
		}
	}

1241 1242 1243
	return 0;
}

1244 1245 1246
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1247
	const struct regulator_ops *ops = rdev->desc->ops;
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1274 1275
static int _regulator_do_enable(struct regulator_dev *rdev);

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1288
	const struct regulation_constraints *constraints)
1289 1290
{
	int ret = 0;
1291
	const struct regulator_ops *ops = rdev->desc->ops;
1292

1293 1294 1295 1296 1297 1298
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1299 1300
	if (!rdev->constraints)
		return -ENOMEM;
1301

1302
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1303
	if (ret != 0)
1304
		return ret;
1305

1306
	ret = machine_constraints_current(rdev, rdev->constraints);
1307
	if (ret != 0)
1308
		return ret;
1309

1310 1311 1312 1313 1314
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1315
			return ret;
1316 1317 1318
		}
	}

1319
	/* do we need to setup our suspend state */
1320
	if (rdev->constraints->initial_state) {
1321
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1322
		if (ret < 0) {
1323
			rdev_err(rdev, "failed to set suspend state\n");
1324
			return ret;
1325 1326
		}
	}
1327

1328
	if (rdev->constraints->initial_mode) {
1329
		if (!ops->set_mode) {
1330
			rdev_err(rdev, "no set_mode operation\n");
1331
			return -EINVAL;
1332 1333
		}

1334
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1335
		if (ret < 0) {
1336
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1337
			return ret;
1338
		}
1339 1340 1341 1342 1343 1344
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1345 1346
	}

1347 1348
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1349 1350 1351
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1352
			return ret;
1353 1354 1355
		}
	}

S
Stephen Boyd 已提交
1356 1357 1358 1359
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1360
			return ret;
S
Stephen Boyd 已提交
1361 1362 1363
		}
	}

S
Stephen Boyd 已提交
1364 1365 1366 1367
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1368
			return ret;
S
Stephen Boyd 已提交
1369 1370 1371
		}
	}

1372 1373 1374 1375 1376
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1377
			return ret;
1378 1379 1380
		}
	}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1392 1393 1394 1395
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1396 1397 1398 1399 1400 1401 1402 1403 1404
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1405 1406 1407 1408 1409
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
			rdev_err(rdev, "failed to enable\n");
			return ret;
		}
1410
		rdev->use_count++;
1411 1412
	}

1413
	print_constraints(rdev);
1414
	return 0;
1415 1416 1417 1418
}

/**
 * set_supply - set regulator supply regulator
1419 1420
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1421 1422 1423 1424 1425 1426
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1427
		      struct regulator_dev *supply_rdev)
1428 1429 1430
{
	int err;

1431 1432
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1433 1434 1435
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1436
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1437 1438
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1439
		return err;
1440
	}
1441
	supply_rdev->open_count++;
1442 1443

	return 0;
1444 1445 1446
}

/**
1447
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1448
 * @rdev:         regulator source
1449
 * @consumer_dev_name: dev_name() string for device supply applies to
1450
 * @supply:       symbolic name for supply
1451 1452 1453 1454 1455 1456 1457
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1458 1459
				      const char *consumer_dev_name,
				      const char *supply)
1460 1461
{
	struct regulator_map *node;
1462
	int has_dev;
1463 1464 1465 1466

	if (supply == NULL)
		return -EINVAL;

1467 1468 1469 1470 1471
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1472
	list_for_each_entry(node, &regulator_map_list, list) {
1473 1474 1475 1476
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1477
			continue;
1478 1479
		}

1480 1481 1482
		if (strcmp(node->supply, supply) != 0)
			continue;

1483 1484 1485 1486 1487 1488
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1489 1490 1491
		return -EBUSY;
	}

1492
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1493 1494 1495 1496 1497 1498
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1499 1500 1501 1502 1503 1504
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1505 1506
	}

1507 1508 1509 1510
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1511 1512 1513 1514 1515 1516 1517
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1518
			kfree(node->dev_name);
1519 1520 1521 1522 1523
			kfree(node);
		}
	}
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1573
#define REG_STR_SIZE	64
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1587
	regulator_lock(rdev);
1588 1589 1590 1591
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1592 1593
		regulator->dev = dev;

1594
		/* Add a link to the device sysfs entry */
1595 1596
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1597
		if (size >= REG_STR_SIZE)
1598
			goto overflow_err;
1599 1600 1601

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1602
			goto overflow_err;
1603

1604
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1605 1606
					buf);
		if (err) {
1607
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1608
				  dev->kobj.name, err);
1609
			/* non-fatal */
1610
		}
1611
	} else {
1612
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1613
		if (regulator->supply_name == NULL)
1614
			goto overflow_err;
1615 1616 1617 1618
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1619
	if (!regulator->debugfs) {
1620
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1621 1622 1623 1624
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1625
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1626
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1627
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1628 1629 1630
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1631
	}
1632

1633 1634 1635 1636 1637
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1638
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1639 1640 1641
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1642
	regulator_unlock(rdev);
1643 1644 1645 1646
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1647
	regulator_unlock(rdev);
1648 1649 1650
	return NULL;
}

1651 1652
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1653 1654
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1655
	if (!rdev->desc->ops->enable_time)
1656
		return rdev->desc->enable_time;
1657 1658 1659
	return rdev->desc->ops->enable_time(rdev);
}

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1708 1709 1710 1711 1712
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1713
 */
1714
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1715
						  const char *supply)
1716
{
1717
	struct regulator_dev *r = NULL;
1718
	struct device_node *node;
1719 1720
	struct regulator_map *map;
	const char *devname = NULL;
1721

1722 1723
	regulator_supply_alias(&dev, &supply);

1724 1725 1726
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1727
		if (node) {
1728 1729 1730
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1731

1732
			/*
1733 1734
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1735
			 */
1736
			return ERR_PTR(-EPROBE_DEFER);
1737
		}
1738 1739 1740
	}

	/* if not found, try doing it non-dt way */
1741 1742 1743
	if (dev)
		devname = dev_name(dev);

1744
	mutex_lock(&regulator_list_mutex);
1745 1746 1747 1748 1749 1750
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1751 1752
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1753 1754
			r = map->regulator;
			break;
1755
		}
1756
	}
1757
	mutex_unlock(&regulator_list_mutex);
1758

1759 1760 1761 1762
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1763 1764 1765 1766
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1767 1768
}

1769 1770 1771 1772 1773 1774
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

1775
	/* No supply to resolve? */
1776 1777 1778 1779 1780 1781 1782
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1783 1784 1785 1786
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1787 1788 1789 1790
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1791 1792
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1793
			get_device(&r->dev);
1794 1795 1796 1797 1798
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1799 1800
	}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1814 1815
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1816 1817
	if (ret < 0) {
		put_device(&r->dev);
1818
		return ret;
1819
	}
1820 1821

	ret = set_supply(rdev, r);
1822 1823
	if (ret < 0) {
		put_device(&r->dev);
1824
		return ret;
1825
	}
1826

1827 1828 1829 1830 1831 1832
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1833
		ret = regulator_enable(rdev->supply);
1834
		if (ret < 0) {
1835
			_regulator_put(rdev->supply);
1836
			rdev->supply = NULL;
1837
			return ret;
1838
		}
1839 1840 1841 1842 1843
	}

	return 0;
}

1844
/* Internal regulator request function */
1845 1846
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1847 1848
{
	struct regulator_dev *rdev;
1849
	struct regulator *regulator;
1850
	const char *devname = dev ? dev_name(dev) : "deviceless";
1851
	int ret;
1852

1853 1854 1855 1856 1857
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1858
	if (id == NULL) {
1859
		pr_err("get() with no identifier\n");
1860
		return ERR_PTR(-EINVAL);
1861 1862
	}

1863
	rdev = regulator_dev_lookup(dev, id);
1864 1865
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1866

1867 1868 1869 1870 1871 1872
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1873

1874 1875 1876 1877 1878
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1879

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1893

1894 1895 1896 1897
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1898

1899 1900 1901
		default:
			return ERR_PTR(-ENODEV);
		}
1902 1903
	}

1904 1905
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1906 1907
		put_device(&rdev->dev);
		return regulator;
1908 1909
	}

1910
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1911
		regulator = ERR_PTR(-EBUSY);
1912 1913
		put_device(&rdev->dev);
		return regulator;
1914 1915
	}

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1926 1927 1928
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1929 1930
		put_device(&rdev->dev);
		return regulator;
1931 1932
	}

1933
	if (!try_module_get(rdev->owner)) {
1934
		regulator = ERR_PTR(-EPROBE_DEFER);
1935 1936 1937
		put_device(&rdev->dev);
		return regulator;
	}
1938

1939 1940 1941
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1942
		put_device(&rdev->dev);
1943
		module_put(rdev->owner);
1944
		return regulator;
1945 1946
	}

1947
	rdev->open_count++;
1948
	if (get_type == EXCLUSIVE_GET) {
1949 1950 1951 1952 1953 1954 1955 1956 1957
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1958 1959
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);

1960 1961
	return regulator;
}
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1978
	return _regulator_get(dev, id, NORMAL_GET);
1979
}
1980 1981
EXPORT_SYMBOL_GPL(regulator_get);

1982 1983 1984 1985 1986 1987 1988
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1989 1990 1991
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2005
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2006 2007 2008
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2009 2010 2011 2012 2013 2014
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2015
 * or IS_ERR() condition containing errno.
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2031
	return _regulator_get(dev, id, OPTIONAL_GET);
2032 2033 2034
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2035
/* regulator_list_mutex lock held by regulator_put() */
2036
static void _regulator_put(struct regulator *regulator)
2037 2038 2039
{
	struct regulator_dev *rdev;

2040
	if (IS_ERR_OR_NULL(regulator))
2041 2042
		return;

2043 2044
	lockdep_assert_held_once(&regulator_list_mutex);

2045 2046 2047
	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

2048 2049
	rdev = regulator->rdev;

2050 2051
	debugfs_remove_recursive(regulator->debugfs);

2052
	if (regulator->dev) {
2053
		device_link_remove(regulator->dev, &rdev->dev);
2054 2055

		/* remove any sysfs entries */
2056
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2057 2058
	}

2059
	regulator_lock(rdev);
2060 2061
	list_del(&regulator->list);

2062 2063
	rdev->open_count--;
	rdev->exclusive = 0;
2064
	put_device(&rdev->dev);
2065
	regulator_unlock(rdev);
2066

2067
	kfree_const(regulator->supply_name);
2068 2069
	kfree(regulator);

2070
	module_put(rdev->owner);
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2085 2086 2087 2088
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2166 2167
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2168
					 struct device *alias_dev,
2169
					 const char *const *alias_id,
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2207
					    const char *const *id,
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2218 2219 2220 2221 2222
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2223
	struct gpio_desc *gpiod;
2224

2225
	gpiod = config->ena_gpiod;
2226

2227
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2228
		if (pin->gpiod == gpiod) {
2229
			rdev_dbg(rdev, "GPIO is already used\n");
2230 2231 2232 2233 2234
			goto update_ena_gpio_to_rdev;
		}
	}

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2235
	if (pin == NULL)
2236 2237
		return -ENOMEM;

2238
	pin->gpiod = gpiod;
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2256
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2257 2258
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2259
				gpiod_put(pin->gpiod);
2260 2261
				list_del(&pin->list);
				kfree(pin);
2262 2263
				rdev->ena_pin = NULL;
				return;
2264 2265 2266 2267 2268 2269 2270
			} else {
				pin->request_count--;
			}
		}
	}
}

2271
/**
2272 2273 2274 2275
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2289
			gpiod_set_value_cansleep(pin->gpiod, 1);
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2300
			gpiod_set_value_cansleep(pin->gpiod, 0);
2301 2302 2303 2304 2305 2306 2307
			pin->enable_count = 0;
		}
	}

	return 0;
}

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2377
			 * detected and we get a penalty of
2378 2379 2380 2381 2382 2383 2384 2385 2386
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2387
	if (rdev->ena_pin) {
2388 2389 2390 2391 2392 2393
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2394
	} else if (rdev->desc->ops->enable) {
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2407
	_regulator_enable_delay(delay);
2408 2409 2410 2411 2412 2413

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2473
/* locks held by regulator_enable() */
2474
static int _regulator_enable(struct regulator *regulator)
2475
{
2476
	struct regulator_dev *rdev = regulator->rdev;
2477
	int ret;
2478

2479 2480
	lockdep_assert_held_once(&rdev->mutex.base);

2481
	if (rdev->use_count == 0 && rdev->supply) {
2482
		ret = _regulator_enable(rdev->supply);
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2493

2494 2495 2496
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2497

2498 2499 2500 2501
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2502
			if (!regulator_ops_is_valid(rdev,
2503 2504
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2505
				goto err_consumer_disable;
2506
			}
2507

2508
			ret = _regulator_do_enable(rdev);
2509
			if (ret < 0)
2510
				goto err_consumer_disable;
2511

2512 2513
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2514
		} else if (ret < 0) {
2515
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2516
			goto err_consumer_disable;
2517
		}
2518
		/* Fallthrough on positive return values - already enabled */
2519 2520
	}

2521 2522 2523
	rdev->use_count++;

	return 0;
2524

2525 2526 2527
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2528
err_disable_supply:
2529
	if (rdev->use_count == 0 && rdev->supply)
2530
		_regulator_disable(rdev->supply);
2531 2532

	return ret;
2533 2534 2535 2536 2537 2538
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2539 2540 2541 2542
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2543
 * NOTE: the output value can be set by other drivers, boot loader or may be
2544
 * hardwired in the regulator.
2545 2546 2547
 */
int regulator_enable(struct regulator *regulator)
{
2548
	struct regulator_dev *rdev = regulator->rdev;
2549
	struct ww_acquire_ctx ww_ctx;
2550
	int ret;
2551

2552
	regulator_lock_dependent(rdev, &ww_ctx);
2553
	ret = _regulator_enable(regulator);
2554
	regulator_unlock_dependent(rdev, &ww_ctx);
2555

2556 2557 2558 2559
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2560 2561 2562 2563 2564 2565
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2566
	if (rdev->ena_pin) {
2567 2568 2569 2570 2571 2572
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2573 2574 2575 2576 2577 2578 2579

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2580 2581 2582 2583 2584 2585
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2586 2587 2588 2589 2590
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2591
/* locks held by regulator_disable() */
2592
static int _regulator_disable(struct regulator *regulator)
2593
{
2594
	struct regulator_dev *rdev = regulator->rdev;
2595 2596
	int ret = 0;

2597
	lockdep_assert_held_once(&rdev->mutex.base);
2598

D
David Brownell 已提交
2599
	if (WARN(rdev->use_count <= 0,
2600
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2601 2602
		return -EIO;

2603
	/* are we the last user and permitted to disable ? */
2604 2605
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2606 2607

		/* we are last user */
2608
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2609 2610 2611 2612 2613 2614
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2615
			ret = _regulator_do_disable(rdev);
2616
			if (ret < 0) {
2617
				rdev_err(rdev, "failed to disable\n");
2618 2619 2620
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2621 2622
				return ret;
			}
2623 2624
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2625 2626 2627 2628 2629 2630
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2631

2632 2633 2634
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2635 2636 2637
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2638
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2639
		ret = _regulator_disable(rdev->supply);
2640

2641 2642 2643 2644 2645 2646 2647
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2648 2649 2650
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2651
 *
2652
 * NOTE: this will only disable the regulator output if no other consumer
2653 2654
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2655 2656 2657
 */
int regulator_disable(struct regulator *regulator)
{
2658
	struct regulator_dev *rdev = regulator->rdev;
2659
	struct ww_acquire_ctx ww_ctx;
2660
	int ret;
2661

2662
	regulator_lock_dependent(rdev, &ww_ctx);
2663
	ret = _regulator_disable(regulator);
2664
	regulator_unlock_dependent(rdev, &ww_ctx);
2665

2666 2667 2668 2669 2670
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2671
static int _regulator_force_disable(struct regulator_dev *rdev)
2672 2673 2674
{
	int ret = 0;

2675
	lockdep_assert_held_once(&rdev->mutex.base);
2676

2677 2678 2679 2680 2681
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2682 2683 2684
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2685 2686
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2687
		return ret;
2688 2689
	}

2690 2691 2692 2693
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2707
	struct regulator_dev *rdev = regulator->rdev;
2708
	struct ww_acquire_ctx ww_ctx;
2709 2710
	int ret;

2711
	regulator_lock_dependent(rdev, &ww_ctx);
2712

2713
	ret = _regulator_force_disable(regulator->rdev);
2714

2715 2716
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2717 2718 2719 2720 2721 2722

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2723 2724
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2725

2726
	regulator_unlock_dependent(rdev, &ww_ctx);
2727

2728 2729 2730 2731
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2732 2733 2734 2735
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2736
	struct ww_acquire_ctx ww_ctx;
2737
	int count, i, ret;
2738 2739
	struct regulator *regulator;
	int total_count = 0;
2740

2741
	regulator_lock_dependent(rdev, &ww_ctx);
2742

2743 2744 2745 2746 2747 2748 2749 2750
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
		}
2765
	}
2766
	WARN_ON(!total_count);
2767

2768 2769 2770 2771
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2772 2773 2774 2775 2776
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2777
 * @ms: milliseconds until the regulator is disabled
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2790 2791 2792
	if (!ms)
		return regulator_disable(regulator);

2793
	regulator_lock(rdev);
2794
	regulator->deferred_disables++;
2795 2796
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2797
	regulator_unlock(rdev);
2798

2799
	return 0;
2800 2801 2802
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2803 2804
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2805
	/* A GPIO control always takes precedence */
2806
	if (rdev->ena_pin)
2807 2808
		return rdev->ena_gpio_state;

2809
	/* If we don't know then assume that the regulator is always on */
2810
	if (!rdev->desc->ops->is_enabled)
2811
		return 1;
2812

2813
	return rdev->desc->ops->is_enabled(rdev);
2814 2815
}

2816 2817
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2829
			regulator_lock(rdev);
2830 2831
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2832
			regulator_unlock(rdev);
2833
	} else if (rdev->is_switch && rdev->supply) {
2834 2835
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2850 2851 2852 2853
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2854 2855 2856 2857 2858 2859 2860
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2861 2862 2863
 */
int regulator_is_enabled(struct regulator *regulator)
{
2864 2865
	int ret;

2866 2867 2868
	if (regulator->always_on)
		return 1;

2869
	regulator_lock(regulator->rdev);
2870
	ret = _regulator_is_enabled(regulator->rdev);
2871
	regulator_unlock(regulator->rdev);
2872 2873

	return ret;
2874 2875 2876
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2889 2890 2891
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2892
	if (!rdev->is_switch || !rdev->supply)
2893 2894 2895
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2906
 * zero if this selector code can't be used on this system, or a
2907 2908 2909 2910
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2911
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2912 2913 2914
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2947 2948
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2949 2950 2951 2952

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2953 2954
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2974 2975
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3001 3002 3003 3004 3005 3006 3007
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3008
 * Returns a boolean.
3009 3010 3011 3012
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3013
	struct regulator_dev *rdev = regulator->rdev;
3014 3015
	int i, voltages, ret;

3016
	/* If we can't change voltage check the current voltage */
3017
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3018 3019
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3020
			return min_uV <= ret && ret <= max_uV;
3021 3022 3023 3024
		else
			return ret;
	}

3025 3026 3027 3028 3029
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3030 3031
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3032
		return 0;
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3044
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3045

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3060 3061 3062 3063 3064
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3065 3066 3067
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3117 3118 3119 3120 3121 3122 3123 3124 3125
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3126 3127
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3128 3129 3130 3131 3132 3133
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3134 3135

	if (ramp_delay == 0) {
3136
		rdev_dbg(rdev, "ramp_delay not set\n");
3137 3138 3139 3140 3141 3142
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3143 3144 3145 3146
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3147
	int delay = 0;
3148
	int best_val = 0;
3149
	unsigned int selector;
3150
	int old_selector = -1;
3151
	const struct regulator_ops *ops = rdev->desc->ops;
3152
	int old_uV = _regulator_get_voltage(rdev);
3153 3154 3155

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3156 3157 3158
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3159 3160 3161 3162
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3163
	if (_regulator_is_enabled(rdev) &&
3164 3165
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3166 3167 3168 3169
		if (old_selector < 0)
			return old_selector;
	}

3170
	if (ops->set_voltage) {
3171 3172
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3173 3174

		if (ret >= 0) {
3175 3176 3177
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3178 3179 3180 3181
			else
				best_val = _regulator_get_voltage(rdev);
		}

3182
	} else if (ops->set_voltage_sel) {
3183
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3184
		if (ret >= 0) {
3185
			best_val = ops->list_voltage(rdev, ret);
3186 3187
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3188 3189 3190
				if (old_selector == selector)
					ret = 0;
				else
3191 3192
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3193 3194 3195
			} else {
				ret = -EINVAL;
			}
3196
		}
3197 3198 3199
	} else {
		ret = -EINVAL;
	}
3200

3201 3202
	if (ret)
		goto out;
3203

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3221
		}
3222
	}
3223

3224 3225 3226
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3227 3228
	}

3229 3230 3231 3232 3233 3234
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3235 3236
	}

3237
	if (best_val >= 0) {
3238 3239
		unsigned long data = best_val;

3240
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3241 3242
				     (void *)data);
	}
3243

3244
out:
3245
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3246 3247 3248 3249

	return ret;
}

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3276
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3277 3278
					  int min_uV, int max_uV,
					  suspend_state_t state)
3279 3280
{
	struct regulator_dev *rdev = regulator->rdev;
3281
	struct regulator_voltage *voltage = &regulator->voltage[state];
3282
	int ret = 0;
3283
	int old_min_uV, old_max_uV;
3284
	int current_uV;
3285

3286 3287 3288 3289
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3290
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3291 3292
		goto out;

3293
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3294
	 * return successfully even though the regulator does not support
3295 3296
	 * changing the voltage.
	 */
3297
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3298 3299
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
3300 3301
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3302 3303 3304 3305
			goto out;
		}
	}

3306
	/* sanity check */
3307 3308
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3309 3310 3311 3312 3313 3314 3315 3316
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3317

3318
	/* restore original values in case of error */
3319 3320 3321 3322
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3323

3324 3325
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3326 3327 3328 3329
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3330

3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
out:
	return ret;
}

static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
				      int max_uV, suspend_state_t state)
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3342 3343 3344
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3345 3346
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3347 3348 3349 3350 3351 3352
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3353
			goto out;
3354 3355
		}

M
Mark Brown 已提交
3356
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3357 3358
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3359
			goto out;
3360 3361 3362 3363 3364 3365 3366
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3367
			goto out;
3368 3369 3370 3371 3372 3373 3374
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3375
				best_supply_uV, INT_MAX, state);
3376 3377 3378
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3379
			goto out;
3380 3381 3382
		}
	}

3383 3384 3385 3386 3387
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3388
	if (ret < 0)
3389
		goto out;
3390

3391 3392
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3393
				best_supply_uV, INT_MAX, state);
3394 3395 3396 3397 3398 3399 3400
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3401
out:
3402
	return ret;
3403 3404
}

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
		*current_uV = _regulator_get_voltage(rdev);

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3447
	int i, ret, max_spread;
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3481
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3492

3493 3494 3495 3496 3497 3498 3499 3500
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3501 3502
	max_spread = constraints->max_spread[0];

3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

		tmp_act = _regulator_get_voltage(c_rdevs[i]);
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
			ret = _regulator_get_voltage(rdev);
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
3584
	struct regulator_coupler *coupler = c_desc->coupler;
3585 3586
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3587 3588
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604

	c_rdevs = c_desc->coupled_rdevs;
	n_coupled = c_desc->n_coupled;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		n_coupled = 1;

	if (c_desc->n_resolved < n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

3605 3606 3607
	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3634
			if (test_bit(i, &c_rdev_done))
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3662

3663 3664
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3665

3666 3667 3668
		if (ret < 0)
			goto out;

3669 3670
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3671 3672 3673 3674

	} while (n_coupled > 1);

out:
3675 3676 3677
	return ret;
}

3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3698 3699
	struct ww_acquire_ctx ww_ctx;
	int ret;
3700

3701
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3702

3703 3704
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3705

3706
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3707

3708 3709 3710 3711
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3724
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3778 3779
	struct ww_acquire_ctx ww_ctx;
	int ret;
3780 3781 3782 3783 3784

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3785
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3786 3787 3788 3789

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3790
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3791 3792 3793 3794 3795

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3809 3810
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3811 3812 3813 3814 3815
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3816 3817 3818 3819 3820
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3821
	/* Currently requires operations to do this */
3822
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3845
/**
3846 3847
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3848 3849 3850 3851 3852 3853
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3854
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3855
 * set_voltage_time_sel() operation.
3856 3857 3858 3859 3860
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3861
	int old_volt, new_volt;
3862

3863 3864 3865
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3866

3867 3868 3869
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3870 3871 3872 3873 3874
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3875
}
3876
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3877

3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3889
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3890 3891
	int ret, min_uV, max_uV;

3892
	regulator_lock(rdev);
3893 3894 3895 3896 3897 3898 3899 3900

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3901
	if (!voltage->min_uV && !voltage->max_uV) {
3902 3903 3904 3905
		ret = -EINVAL;
		goto out;
	}

3906 3907
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3908 3909 3910 3911 3912 3913

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3914
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3915 3916 3917 3918 3919 3920
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3921
	regulator_unlock(rdev);
3922 3923 3924 3925
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3926 3927
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3928
	int sel, ret;
3929 3930 3931 3932 3933 3934 3935 3936
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3937 3938 3939 3940 3941
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3942 3943 3944 3945

			return _regulator_get_voltage(rdev->supply->rdev);
		}
	}
3946 3947 3948 3949 3950

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3951
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3952
	} else if (rdev->desc->ops->get_voltage) {
3953
		ret = rdev->desc->ops->get_voltage(rdev);
3954 3955
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3956 3957
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3958
	} else if (rdev->supply) {
3959
		ret = _regulator_get_voltage(rdev->supply->rdev);
3960
	} else {
3961
		return -EINVAL;
3962
	}
3963

3964 3965
	if (ret < 0)
		return ret;
3966
	return ret - rdev->constraints->uV_offset;
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
3980
	struct ww_acquire_ctx ww_ctx;
3981 3982
	int ret;

3983
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3984
	ret = _regulator_get_voltage(regulator->rdev);
3985
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3986 3987 3988 3989 3990 3991 3992 3993

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
3994
 * @min_uA: Minimum supported current in uA
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4013
	regulator_lock(rdev);
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4028
	regulator_unlock(rdev);
4029 4030 4031 4032
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4033 4034 4035 4036 4037 4038 4039 4040 4041
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4042 4043 4044 4045
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4046
	regulator_lock(rdev);
4047
	ret = _regulator_get_current_limit_unlocked(rdev);
4048
	regulator_unlock(rdev);
4049

4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4083
	int regulator_curr_mode;
4084

4085
	regulator_lock(rdev);
4086 4087 4088 4089 4090 4091 4092

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4093 4094 4095 4096 4097 4098 4099 4100 4101
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4102
	/* constraints check */
4103
	ret = regulator_mode_constrain(rdev, &mode);
4104 4105 4106 4107 4108
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4109
	regulator_unlock(rdev);
4110 4111 4112 4113
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4114 4115 4116 4117 4118 4119 4120 4121 4122
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4123 4124 4125 4126
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4127
	regulator_lock(rdev);
4128
	ret = _regulator_get_mode_unlocked(rdev);
4129
	regulator_unlock(rdev);
4130

4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4146 4147 4148 4149 4150
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4151
	regulator_lock(rdev);
4152 4153 4154 4155 4156 4157 4158 4159 4160

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4161
	regulator_unlock(rdev);
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4179
/**
4180
 * regulator_set_load - set regulator load
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4203 4204 4205 4206 4207 4208 4209 4210
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4211
 * On error a negative errno is returned.
4212
 */
4213
int regulator_set_load(struct regulator *regulator, int uA_load)
4214 4215
{
	struct regulator_dev *rdev = regulator->rdev;
4216 4217
	int old_uA_load;
	int ret = 0;
4218

4219
	regulator_lock(rdev);
4220
	old_uA_load = regulator->uA_load;
4221
	regulator->uA_load = uA_load;
4222 4223 4224 4225 4226
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4227
	regulator_unlock(rdev);
4228

4229 4230
	return ret;
}
4231
EXPORT_SYMBOL_GPL(regulator_set_load);
4232

4233 4234 4235 4236
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4237
 * @enable: enable or disable bypass mode
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4252
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4253 4254
		return 0;

4255
	regulator_lock(rdev);
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4279
	regulator_unlock(rdev);
4280 4281 4282 4283 4284

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4285 4286 4287
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4288
 * @nb: notifier block
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4303
 * @nb: notifier block
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4315 4316 4317
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4318
static int _notifier_call_chain(struct regulator_dev *rdev,
4319 4320 4321
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4322
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4349 4350
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4361 4362 4363 4364 4365 4366 4367
	if (ret != -EPROBE_DEFER)
		dev_err(dev, "Failed to get supply '%s': %d\n",
			consumers[i].supply, ret);
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4368
	while (--i >= 0)
4369 4370 4371 4372 4373 4374
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4375 4376 4377 4378 4379 4380 4381
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4397
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4398
	int i;
4399
	int ret = 0;
4400

4401
	for (i = 0; i < num_consumers; i++) {
4402 4403
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4404
	}
4405 4406 4407 4408

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4409
	for (i = 0; i < num_consumers; i++) {
4410 4411
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4412
			goto err;
4413
		}
4414 4415 4416 4417 4418
	}

	return 0;

err:
4419 4420 4421 4422 4423 4424 4425
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4439 4440
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4441 4442 4443 4444 4445 4446
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4447
	int ret, r;
4448

4449
	for (i = num_consumers - 1; i >= 0; --i) {
4450 4451 4452 4453 4454 4455 4456 4457
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4458
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4459 4460 4461
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4462
			pr_err("Failed to re-enable %s: %d\n",
4463 4464
			       consumers[i].supply, r);
	}
4465 4466 4467 4468 4469

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4488
	int ret = 0;
4489

4490
	for (i = 0; i < num_consumers; i++) {
4491 4492 4493
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4494 4495
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4496 4497 4498 4499 4500 4501 4502
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4526
 * @rdev: regulator source
4527
 * @event: notifier block
4528
 * @data: callback-specific data.
4529 4530 4531
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4532
 * Note lock must be held by caller.
4533 4534 4535 4536
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4537
	lockdep_assert_held_once(&rdev->mutex.base);
4538

4539 4540 4541 4542 4543 4544
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4561
	case REGULATOR_MODE_STANDBY:
4562 4563
		return REGULATOR_STATUS_STANDBY;
	default:
4564
		return REGULATOR_STATUS_UNDEFINED;
4565 4566 4567 4568
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4596 4597 4598 4599
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4600 4601
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4602
{
4603
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4604
	struct regulator_dev *rdev = dev_to_rdev(dev);
4605
	const struct regulator_ops *ops = rdev->desc->ops;
4606 4607 4608 4609 4610 4611 4612
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4613 4614

	/* some attributes need specific methods to be displayed */
4615 4616 4617 4618 4619 4620 4621
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4622
	}
4623

4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4639
	/* constraints need specific supporting methods */
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4675

4676 4677 4678
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4679 4680 4681

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4682
	kfree(rdev);
4683 4684
}

4685 4686
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4699
	if (!rdev->debugfs) {
4700 4701 4702 4703 4704 4705 4706 4707
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4708 4709
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4710 4711
}

4712 4713
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4714 4715 4716 4717 4718 4719
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4720 4721
}

4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

4773
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4774
{
4775
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4788 4789
		if (!c_rdev)
			continue;
4790

4791 4792 4793 4794 4795 4796
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

4797
		regulator_lock(c_rdev);
4798

4799 4800
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4801

4802
		regulator_unlock(c_rdev);
4803

4804 4805
		regulator_resolve_coupling(c_rdev);
	}
4806 4807
}

4808
static void regulator_remove_coupling(struct regulator_dev *rdev)
4809
{
4810
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4811 4812 4813 4814
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
4815
	int err;
4816

4817
	n_coupled = c_desc->n_coupled;
4818

4819 4820
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
4821

4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
			rdev_err(rdev, "failed to detach from coupler: %d\n",
				 err);
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
4855 4856
}

4857
static int regulator_init_coupling(struct regulator_dev *rdev)
4858
{
4859 4860
	int err, n_phandles;
	size_t alloc_size;
4861 4862 4863 4864 4865 4866

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

4867 4868 4869 4870 4871
	alloc_size = sizeof(*rdev) * (n_phandles + 1);

	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
	if (!rdev->coupling_desc.coupled_rdevs)
		return -ENOMEM;
4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

4885
	if (!of_check_coupling_data(rdev))
4886 4887
		return -EPERM;

4888 4889 4890 4891 4892
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
		rdev_err(rdev, "failed to get coupler: %d\n", err);
		return err;
4893 4894
	}

4895 4896 4897 4898 4899 4900 4901 4902 4903
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
4904
		return -EPERM;
4905
	}
4906 4907 4908 4909

	return 0;
}

4910 4911 4912 4913
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

4914 4915
/**
 * regulator_register - register regulator
4916
 * @regulator_desc: regulator to register
4917
 * @cfg: runtime configuration for regulator
4918 4919
 *
 * Called by regulator drivers to register a regulator.
4920 4921
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4922
 */
4923 4924
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4925
		   const struct regulator_config *cfg)
4926
{
4927
	const struct regulation_constraints *constraints = NULL;
4928
	const struct regulator_init_data *init_data;
4929
	struct regulator_config *config = NULL;
4930
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4931
	struct regulator_dev *rdev;
4932 4933
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
4934
	struct device *dev;
4935
	int ret, i;
4936

4937
	if (cfg == NULL)
4938
		return ERR_PTR(-EINVAL);
4939 4940 4941 4942 4943 4944
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
4945

4946
	dev = cfg->dev;
4947
	WARN_ON(!dev);
4948

4949 4950 4951 4952
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
4953

4954
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
4955 4956 4957 4958
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
4959

4960 4961 4962
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
4963 4964
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
4965 4966 4967 4968

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
4969 4970
		ret = -EINVAL;
		goto rinse;
4971
	}
4972 4973
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
4974 4975
		ret = -EINVAL;
		goto rinse;
4976
	}
4977

4978
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4979 4980 4981 4982
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
4983

4984 4985 4986 4987 4988 4989 4990
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
4991 4992
		ret = -ENOMEM;
		goto rinse;
4993 4994
	}

4995
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4996
					       &rdev->dev.of_node);
4997 4998 4999 5000 5001
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5002
	 * a descriptor, we definitely got one from parsing the device
5003 5004 5005 5006
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5007 5008 5009 5010 5011
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5012
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5013
	rdev->reg_data = config->driver_data;
5014 5015
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5016 5017
	if (config->regmap)
		rdev->regmap = config->regmap;
5018
	else if (dev_get_regmap(dev, NULL))
5019
		rdev->regmap = dev_get_regmap(dev, NULL);
5020 5021
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5022 5023 5024
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5025
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5026

5027
	/* preform any regulator specific init */
5028
	if (init_data && init_data->regulator_init) {
5029
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5030 5031
		if (ret < 0)
			goto clean;
5032 5033
	}

5034
	if (config->ena_gpiod) {
5035
		mutex_lock(&regulator_list_mutex);
5036
		ret = regulator_ena_gpio_request(rdev, config);
5037
		mutex_unlock(&regulator_list_mutex);
5038
		if (ret != 0) {
5039 5040
			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
				 ret);
5041
			goto clean;
5042
		}
5043 5044 5045
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5046 5047
	}

5048
	/* register with sysfs */
5049
	rdev->dev.class = &regulator_class;
5050
	rdev->dev.parent = dev;
5051
	dev_set_name(&rdev->dev, "regulator.%lu",
5052
		    (unsigned long) atomic_inc_return(&regulator_no));
5053

5054
	/* set regulator constraints */
5055 5056 5057 5058
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
5059
		rdev->supply_name = init_data->supply_regulator;
5060
	else if (regulator_desc->supply_name)
5061
		rdev->supply_name = regulator_desc->supply_name;
5062

5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

5075
	mutex_lock(&regulator_list_mutex);
5076
	ret = regulator_init_coupling(rdev);
5077
	mutex_unlock(&regulator_list_mutex);
5078
	if (ret < 0)
5079 5080
		goto wash;

5081
	/* add consumers devices */
5082
	if (init_data) {
5083
		mutex_lock(&regulator_list_mutex);
5084 5085 5086
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5087
				init_data->consumer_supplies[i].supply);
5088
			if (ret < 0) {
5089
				mutex_unlock(&regulator_list_mutex);
5090 5091 5092 5093
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5094
		}
5095
		mutex_unlock(&regulator_list_mutex);
5096
	}
5097

5098 5099 5100 5101 5102
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5103
	dev_set_drvdata(&rdev->dev, rdev);
5104 5105 5106 5107 5108 5109
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

5110
	rdev_init_debugfs(rdev);
5111

5112 5113 5114 5115 5116
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5117 5118 5119
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5120
	kfree(config);
5121
	return rdev;
D
David Brownell 已提交
5122

5123
unset_supplies:
5124
	mutex_lock(&regulator_list_mutex);
5125
	unset_regulator_supplies(rdev);
5126
	regulator_remove_coupling(rdev);
5127
	mutex_unlock(&regulator_list_mutex);
5128
wash:
5129
	kfree(rdev->constraints);
5130
	mutex_lock(&regulator_list_mutex);
5131
	regulator_ena_gpio_free(rdev);
5132
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5133
clean:
5134 5135
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
D
David Brownell 已提交
5136
	kfree(rdev);
5137
	kfree(config);
5138 5139 5140
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5141
	return ERR_PTR(ret);
5142 5143 5144 5145 5146
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5147
 * @rdev: regulator to unregister
5148 5149 5150 5151 5152 5153 5154 5155
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5156 5157 5158
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5159
		regulator_put(rdev->supply);
5160
	}
5161

5162 5163
	flush_work(&rdev->disable_work.work);

5164
	mutex_lock(&regulator_list_mutex);
5165

5166
	debugfs_remove_recursive(rdev->debugfs);
5167
	WARN_ON(rdev->open_count);
5168
	regulator_remove_coupling(rdev);
5169
	unset_regulator_supplies(rdev);
5170
	list_del(&rdev->list);
5171
	regulator_ena_gpio_free(rdev);
5172
	device_unregister(&rdev->dev);
5173 5174

	mutex_unlock(&regulator_list_mutex);
5175 5176 5177
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5178
#ifdef CONFIG_SUSPEND
5179
/**
5180
 * regulator_suspend - prepare regulators for system wide suspend
5181
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5182 5183 5184
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5185
static int regulator_suspend(struct device *dev)
5186
{
5187
	struct regulator_dev *rdev = dev_to_rdev(dev);
5188
	suspend_state_t state = pm_suspend_target_state;
5189 5190 5191 5192 5193
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
5194

5195
	return ret;
5196
}
5197

5198
static int regulator_resume(struct device *dev)
5199
{
5200
	suspend_state_t state = pm_suspend_target_state;
5201
	struct regulator_dev *rdev = dev_to_rdev(dev);
5202
	struct regulator_state *rstate;
5203
	int ret = 0;
5204

5205
	rstate = regulator_get_suspend_state(rdev, state);
5206
	if (rstate == NULL)
5207
		return 0;
5208

5209
	regulator_lock(rdev);
5210

5211
	if (rdev->desc->ops->resume &&
5212 5213
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
5214
		ret = rdev->desc->ops->resume(rdev);
5215

5216
	regulator_unlock(rdev);
5217

5218
	return ret;
5219
}
5220 5221
#else /* !CONFIG_SUSPEND */

5222 5223
#define regulator_suspend	NULL
#define regulator_resume	NULL
5224 5225 5226 5227 5228

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5229 5230
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5231 5232 5233
};
#endif

M
Mark Brown 已提交
5234
struct class regulator_class = {
5235 5236 5237 5238 5239 5240 5241
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5259 5260
/**
 * rdev_get_drvdata - get rdev regulator driver data
5261
 * @rdev: regulator
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5298
 * @rdev: regulator
5299 5300 5301 5302 5303 5304 5305
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5306 5307 5308 5309 5310 5311
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5312 5313 5314 5315 5316 5317
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5318 5319 5320 5321 5322 5323
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5324
#ifdef CONFIG_DEBUG_FS
5325
static int supply_map_show(struct seq_file *sf, void *data)
5326 5327 5328 5329
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5330 5331 5332
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5333 5334
	}

5335 5336
	return 0;
}
5337
DEFINE_SHOW_ATTRIBUTE(supply_map);
5338

5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5361 5362 5363 5364 5365 5366
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5367
	struct summary_data summary_data;
5368
	unsigned int opmode;
5369 5370 5371 5372

	if (!rdev)
		return;

5373
	opmode = _regulator_get_mode_unlocked(rdev);
5374
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5375 5376
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5377
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5378
		   regulator_opmode_to_str(opmode));
5379

5380
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
5381 5382
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5401
		if (consumer->dev && consumer->dev->class == &regulator_class)
5402 5403 5404 5405
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5406 5407
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5408 5409 5410

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5411 5412
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5413
				   consumer->uA_load / 1000,
5414 5415
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5416 5417
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5418 5419 5420 5421 5422 5423 5424 5425
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5426 5427 5428
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5429

5430 5431
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5469 5470

	regulator_unlock(rdev);
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5501 5502
	mutex_lock(&regulator_list_mutex);

5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5529 5530

	mutex_unlock(&regulator_list_mutex);
5531 5532
}

5533
static int regulator_summary_show_roots(struct device *dev, void *data)
5534
{
5535 5536
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5537

5538 5539
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5540

5541 5542
	return 0;
}
5543

5544 5545
static int regulator_summary_show(struct seq_file *s, void *data)
{
5546 5547
	struct ww_acquire_ctx ww_ctx;

5548 5549
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5550

5551 5552
	regulator_summary_lock(&ww_ctx);

5553 5554
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5555

5556 5557
	regulator_summary_unlock(&ww_ctx);

5558 5559
	return 0;
}
5560 5561
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5562

5563 5564
static int __init regulator_init(void)
{
5565 5566 5567 5568
	int ret;

	ret = class_register(&regulator_class);

5569
	debugfs_root = debugfs_create_dir("regulator", NULL);
5570
	if (!debugfs_root)
5571
		pr_warn("regulator: Failed to create debugfs directory\n");
5572

5573
#ifdef CONFIG_DEBUG_FS
5574 5575
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5576

5577
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5578
			    NULL, &regulator_summary_fops);
5579
#endif
5580 5581
	regulator_dummy_init();

5582 5583
	regulator_coupler_register(&generic_regulator_coupler);

5584
	return ret;
5585 5586 5587 5588
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5589

5590
static int __init regulator_late_cleanup(struct device *dev, void *data)
5591
{
5592 5593 5594
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5595 5596
	int enabled, ret;

5597 5598 5599
	if (c && c->always_on)
		return 0;

5600
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5601 5602
		return 0;

5603
	regulator_lock(rdev);
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5634
	regulator_unlock(rdev);
5635 5636 5637 5638 5639 5640

	return 0;
}

static int __init regulator_init_complete(void)
{
5641 5642 5643 5644 5645 5646 5647 5648 5649
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5660
	/* If we have a full configuration then disable any regulators
5661 5662 5663
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5664
	 */
5665 5666
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5667 5668 5669

	return 0;
}
5670
late_initcall_sync(regulator_init_complete);