intel_engine_cs.c 54.4 KB
Newer Older
C
Chris Wilson 已提交
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2016 Intel Corporation
 */

6 7
#include <drm/drm_print.h>

8
#include "gem/i915_gem_context.h"
9
#include "gt/intel_gt_regs.h"
10

11
#include "i915_cmd_parser.h"
12
#include "i915_drv.h"
13
#include "intel_breadcrumbs.h"
14
#include "intel_context.h"
15
#include "intel_engine.h"
16
#include "intel_engine_pm.h"
17
#include "intel_engine_regs.h"
18
#include "intel_engine_user.h"
19
#include "intel_execlists_submission.h"
20 21
#include "intel_gt.h"
#include "intel_gt_requests.h"
22
#include "intel_gt_pm.h"
23
#include "intel_lrc_reg.h"
24
#include "intel_reset.h"
25
#include "intel_ring.h"
26
#include "uc/intel_guc_submission.h"
27

28 29 30 31 32 33 34 35 36
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

37
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
38 39
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
40
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
41 42 43

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

44
#define MAX_MMIO_BASES 3
45
struct engine_info {
46 47
	u8 class;
	u8 instance;
48
	/* mmio bases table *must* be sorted in reverse graphics_ver order */
49
	struct engine_mmio_base {
50
		u32 graphics_ver : 8;
51 52
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
53 54 55
};

static const struct engine_info intel_engines[] = {
56
	[RCS0] = {
57 58
		.class = RENDER_CLASS,
		.instance = 0,
59
		.mmio_bases = {
60
			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
61
		},
62
	},
63
	[BCS0] = {
64 65
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
66
		.mmio_bases = {
67
			{ .graphics_ver = 6, .base = BLT_RING_BASE }
68
		},
69
	},
70
	[VCS0] = {
71 72
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
73
		.mmio_bases = {
74 75 76
			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
			{ .graphics_ver = 4, .base = BSD_RING_BASE }
77
		},
78
	},
79
	[VCS1] = {
80 81
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
82
		.mmio_bases = {
83 84
			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
85
		},
86
	},
87
	[VCS2] = {
88 89
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
90
		.mmio_bases = {
91
			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
92
		},
93
	},
94
	[VCS3] = {
95 96
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
97
		.mmio_bases = {
98
			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
99
		},
100
	},
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
	[VCS4] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 4,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
		},
	},
	[VCS5] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 5,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
		},
	},
	[VCS6] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 6,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
		},
	},
	[VCS7] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 7,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
		},
	},
129
	[VECS0] = {
130 131
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
132
		.mmio_bases = {
133 134
			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
135
		},
136
	},
137
	[VECS1] = {
138 139
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
140
		.mmio_bases = {
141
			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
142
		},
143
	},
144 145 146 147 148 149 150 151 152 153 154 155 156 157
	[VECS2] = {
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 2,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
		},
	},
	[VECS3] = {
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 3,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
		},
	},
158 159
};

160
/**
161
 * intel_engine_context_size() - return the size of the context for an engine
162
 * @gt: the gt
163 164 165 166 167 168 169 170 171 172 173
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
174
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
175
{
176
	struct intel_uncore *uncore = gt->uncore;
177 178 179 180 181 182
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
183
		switch (GRAPHICS_VER(gt->i915)) {
184
		default:
185
			MISSING_CASE(GRAPHICS_VER(gt->i915));
186
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
187
		case 12:
188 189
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
190 191 192
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
193
			return GEN8_LR_CONTEXT_RENDER_SIZE;
194
		case 7:
195
			if (IS_HASWELL(gt->i915))
196 197
				return HSW_CXT_TOTAL_SIZE;

198
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
199 200 201
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
202
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
203 204 205
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
206
		case 4:
207 208 209 210 211 212 213 214 215 216
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
217
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
218
			drm_dbg(&gt->i915->drm,
219 220
				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
				GRAPHICS_VER(gt->i915), cxt_size * 64,
221
				cxt_size - 1);
222
			return round_up(cxt_size * 64, PAGE_SIZE);
223 224 225 226 227 228 229 230 231
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
232
		fallthrough;
233 234 235
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
236
		if (GRAPHICS_VER(gt->i915) < 8)
237 238 239 240 241
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

242 243 244 245 246 247
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
248
		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
249 250 251 252 253 254 255 256
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

257
static void __sprint_engine_name(struct intel_engine_cs *engine)
258
{
259 260 261 262 263 264 265 266
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
267 268
}

269 270 271 272 273 274
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
275
	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
276 277
		return;

278
	if (GRAPHICS_VER(engine->i915) >= 3)
279
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
280
	else
281
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
282 283 284 285 286 287 288 289
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

290 291 292 293 294
static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
	GEM_DEBUG_WARN_ON(iir);
}

295 296
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
			      u8 logical_instance)
297 298
{
	const struct engine_info *info = &intel_engines[id];
299
	struct drm_i915_private *i915 = gt->i915;
300
	struct intel_engine_cs *engine;
301
	u8 guc_class;
302

303 304
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
305 306
	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
307

308 309 310
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

311
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
312 313
		return -EINVAL;

314
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
315 316
		return -EINVAL;

317
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
318 319
		return -EINVAL;

320 321 322
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
323

324 325
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

326
	INIT_LIST_HEAD(&engine->pinned_contexts_list);
327
	engine->id = id;
328
	engine->legacy_idx = INVALID_ENGINE;
329
	engine->mask = BIT(id);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	if (GRAPHICS_VER(gt->i915) >= 11) {
		static const u32 engine_reset_domains[] = {
			[RCS0]  = GEN11_GRDOM_RENDER,
			[BCS0]  = GEN11_GRDOM_BLT,
			[VCS0]  = GEN11_GRDOM_MEDIA,
			[VCS1]  = GEN11_GRDOM_MEDIA2,
			[VCS2]  = GEN11_GRDOM_MEDIA3,
			[VCS3]  = GEN11_GRDOM_MEDIA4,
			[VCS4]  = GEN11_GRDOM_MEDIA5,
			[VCS5]  = GEN11_GRDOM_MEDIA6,
			[VCS6]  = GEN11_GRDOM_MEDIA7,
			[VCS7]  = GEN11_GRDOM_MEDIA8,
			[VECS0] = GEN11_GRDOM_VECS,
			[VECS1] = GEN11_GRDOM_VECS2,
			[VECS2] = GEN11_GRDOM_VECS3,
			[VECS3] = GEN11_GRDOM_VECS4,
		};
		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
			   !engine_reset_domains[id]);
		engine->reset_domain = engine_reset_domains[id];
	} else {
		static const u32 engine_reset_domains[] = {
			[RCS0]  = GEN6_GRDOM_RENDER,
			[BCS0]  = GEN6_GRDOM_BLT,
			[VCS0]  = GEN6_GRDOM_MEDIA,
			[VCS1]  = GEN8_GRDOM_MEDIA2,
			[VECS0] = GEN6_GRDOM_VECS,
		};
		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
			   !engine_reset_domains[id]);
		engine->reset_domain = engine_reset_domains[id];
	}
362
	engine->i915 = i915;
363 364
	engine->gt = gt;
	engine->uncore = gt->uncore;
365 366 367
	guc_class = engine_class_to_guc_class(info->class);
	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
368

369 370
	engine->irq_handler = nop_irq_handler;

371 372
	engine->class = info->class;
	engine->instance = info->instance;
373
	engine->logical_mask = BIT(logical_instance);
374
	__sprint_engine_name(engine);
375

376 377
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
378 379
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
380 381
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
382 383
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
384 385
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
386

387
	/* Override to uninterruptible for OpenCL workloads. */
388
	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
389 390
		engine->props.preempt_timeout_ms = 0;

391 392
	engine->defaults = engine->props; /* never to change again */

393
	engine->context_size = intel_engine_context_size(gt, engine->class);
394 395
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
396
	if (engine->context_size)
397
		DRIVER_CAPS(i915)->has_logical_contexts = true;
398

399
	ewma__engine_latency_init(&engine->latency);
400
	seqcount_init(&engine->stats.execlists.lock);
401

402 403
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

404 405 406
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

407
	gt->engine_class[info->class][info->instance] = engine;
408
	gt->engine[id] = engine;
409

410
	return 0;
411 412
}

413 414 415 416 417 418 419 420 421
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
422 423
		if (GRAPHICS_VER(i915) >= 11 ||
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
424 425 426 427 428 429 430
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
431
		if ((GRAPHICS_VER(i915) >= 11 &&
432 433
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
434
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
435 436 437
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
438 439
		if (GRAPHICS_VER(i915) >= 9 &&
		    engine->gt->info.sfc_mask & BIT(engine->instance))
440 441 442 443 444
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

445
static void intel_setup_engine_capabilities(struct intel_gt *gt)
446 447 448 449
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

450
	for_each_engine(engine, gt, id)
451 452 453
		__setup_engine_capabilities(engine);
}

454
/**
455
 * intel_engines_release() - free the resources allocated for Command Streamers
456
 * @gt: pointer to struct intel_gt
457
 */
458
void intel_engines_release(struct intel_gt *gt)
459 460 461 462
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

463 464 465 466 467 468 469 470 471 472 473 474 475
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

476
	/* Decouple the backend; but keep the layout for late GPU resets */
477
	for_each_engine(engine, gt, id) {
478 479 480
		if (!engine->release)
			continue;

481 482 483
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

484 485 486 487
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
488 489 490
	}
}

491 492 493 494 495 496 497 498
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

499 500 501 502 503
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

504 505 506
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

507
	for_each_engine(engine, gt, id) {
508
		intel_engine_free_request_pool(engine);
509 510 511 512 513
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

514
static
515
bool gen11_vdbox_has_sfc(struct intel_gt *gt,
516 517 518
			 unsigned int physical_vdbox,
			 unsigned int logical_vdbox, u16 vdbox_mask)
{
519 520
	struct drm_i915_private *i915 = gt->i915;

521 522 523 524 525 526
	/*
	 * In Gen11, only even numbered logical VDBOXes are hooked
	 * up to an SFC (Scaler & Format Converter) unit.
	 * In Gen12, Even numbered physical instance always are connected
	 * to an SFC. Odd numbered physical instances have SFC only if
	 * previous even instance is fused off.
527 528 529
	 *
	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
	 * in the fuse register that tells us whether a specific SFC is present.
530
	 */
531 532 533
	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
		return false;
	else if (GRAPHICS_VER(i915) == 12)
534 535 536 537 538 539 540 541 542
		return (physical_vdbox % 2 == 0) ||
			!(BIT(physical_vdbox - 1) & vdbox_mask);
	else if (GRAPHICS_VER(i915) == 11)
		return logical_vdbox % 2 == 0;

	MISSING_CASE(GRAPHICS_VER(i915));
	return false;
}

543 544 545 546 547 548 549 550 551 552 553 554 555
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
556
	struct intel_gt_info *info = &gt->info;
557 558 559
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
560
	u32 media_fuse, fuse1;
561 562 563
	u16 vdbox_mask;
	u16 vebox_mask;

564 565
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

566
	if (GRAPHICS_VER(i915) < 11)
567 568
		return info->engine_mask;

569 570 571 572 573 574 575 576
	/*
	 * On newer platforms the fusing register is called 'enable' and has
	 * enable semantics, while on older platforms it is called 'disable'
	 * and bits have disable semantices.
	 */
	media_fuse = intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
	if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
		media_fuse = ~media_fuse;
577 578 579 580 581

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

582 583 584 585 586 587 588
	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
		fuse1 = intel_uncore_read(uncore, HSW_PAVP_FUSE1);
		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
	} else {
		gt->info.sfc_mask = ~0;
	}

589 590 591 592 593 594 595 596 597 598 599 600
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

601
		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
602
			gt->info.vdbox_sfc_access |= BIT(i);
603
		logical_vdbox++;
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
				 u8 class, const u8 *map, u8 num_instances)
{
	int i, j;
	u8 current_logical_id = 0;

	for (j = 0; j < num_instances; ++j) {
		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
			if (!HAS_ENGINE(gt, i) ||
			    intel_engines[i].class != class)
				continue;

			if (intel_engines[i].instance == map[j]) {
				logical_ids[intel_engines[i].instance] =
					current_logical_id++;
				break;
			}
		}
	}
}

static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
{
	int i;
	u8 map[MAX_ENGINE_INSTANCE + 1];

	for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
		map[i] = i;
	populate_logical_ids(gt, logical_ids, class, map, ARRAY_SIZE(map));
}

658
/**
659
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
660
 * @gt: pointer to struct intel_gt
661 662 663
 *
 * Return: non-zero if the initialization failed.
 */
664
int intel_engines_init_mmio(struct intel_gt *gt)
665
{
666
	struct drm_i915_private *i915 = gt->i915;
667
	const unsigned int engine_mask = init_engine_mask(gt);
668
	unsigned int mask = 0;
669 670
	unsigned int i, class;
	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
671
	int err;
672

673 674 675
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
676

677
	if (i915_inject_probe_failure(i915))
678 679
		return -ENODEV;

680 681
	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
		setup_logical_ids(gt, logical_ids, class);
682

683 684
		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
			u8 instance = intel_engines[i].instance;
685

686 687 688 689 690 691 692 693 694 695 696
			if (intel_engines[i].class != class ||
			    !HAS_ENGINE(gt, i))
				continue;

			err = intel_engine_setup(gt, i,
						 logical_ids[instance]);
			if (err)
				goto cleanup;

			mask |= BIT(i);
		}
697 698 699 700 701 702 703
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
704
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
705
		gt->info.engine_mask = mask;
706

707
	gt->info.num_engines = hweight32(mask);
708

709
	intel_gt_check_and_clear_faults(gt);
710

711
	intel_setup_engine_capabilities(gt);
712

713 714
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

715 716 717
	return 0;

cleanup:
718
	intel_engines_free(gt);
719 720 721
	return err;
}

722
void intel_engine_init_execlists(struct intel_engine_cs *engine)
723 724 725
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

726
	execlists->port_mask = 1;
727
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
728 729
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

730 731 732
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));
733 734
}

735
static void cleanup_status_page(struct intel_engine_cs *engine)
736
{
737 738
	struct i915_vma *vma;

739 740 741
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

742 743 744
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
745

746 747 748 749
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
750
	i915_gem_object_put(vma->obj);
751 752 753
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
754
				struct i915_gem_ww_ctx *ww,
755 756 757 758
				struct i915_vma *vma)
{
	unsigned int flags;

759
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
760 761 762 763 764 765 766 767 768 769 770
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
771
		flags = PIN_MAPPABLE;
772
	else
773
		flags = PIN_HIGH;
774

775
	return i915_ggtt_pin(vma, ww, 0, flags);
776 777 778 779 780
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
781
	struct i915_gem_ww_ctx ww;
782 783 784 785
	struct i915_vma *vma;
	void *vaddr;
	int ret;

786 787
	INIT_LIST_HEAD(&engine->status_page.timelines);

788 789 790 791 792 793 794
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
795 796
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
797 798
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
799 800 801
		return PTR_ERR(obj);
	}

802
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
803

804
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
805 806
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
807
		goto err_put;
808 809
	}

810 811 812 813 814 815 816 817
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

818 819 820
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
821
		goto err_unpin;
822 823
	}

824
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
825
	engine->status_page.vma = vma;
826

827
err_unpin:
828 829
	if (ret)
		i915_vma_unpin(vma);
830
err:
831 832 833 834 835 836 837 838 839
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
840 841 842
	return ret;
}

843
static int engine_setup_common(struct intel_engine_cs *engine)
844 845 846
{
	int err;

847 848
	init_llist_head(&engine->barrier_tasks);

849 850 851 852
	err = init_status_page(engine);
	if (err)
		return err;

853 854 855 856 857 858
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

859 860 861 862 863
	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
	if (!engine->sched_engine) {
		err = -ENOMEM;
		goto err_sched_engine;
	}
864
	engine->sched_engine->private_data = engine;
865

866 867 868 869
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

870 871
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
872
	intel_engine_init_retire(engine);
873

874 875
	/* Use the whole device by default */
	engine->sseu =
876
		intel_sseu_from_device_info(&engine->gt->info.sseu);
877

878 879 880 881
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

882
	if (GRAPHICS_VER(engine->i915) >= 12)
883 884
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

885
	return 0;
886

887
err_cmd_parser:
888 889
	i915_sched_engine_put(engine->sched_engine);
err_sched_engine:
890
	intel_breadcrumbs_put(engine->breadcrumbs);
891 892 893
err_status:
	cleanup_status_page(engine);
	return err;
894 895
}

896 897 898
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
899
	u32 cs[2048];
900 901
};

902
static int measure_breadcrumb_dw(struct intel_context *ce)
903
{
904
	struct intel_engine_cs *engine = ce->engine;
905
	struct measure_breadcrumb *frame;
906
	int dw;
907

908
	GEM_BUG_ON(!engine->gt->scratch);
909 910 911 912 913

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

914 915 916
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
917
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
918

919 920
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
921 922
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
923 924 925
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
926

927
	mutex_lock(&ce->timeline->mutex);
928
	spin_lock_irq(&engine->sched_engine->lock);
929

930
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
931

932
	spin_unlock_irq(&engine->sched_engine->lock);
933
	mutex_unlock(&ce->timeline->mutex);
934

935
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
936

937
	kfree(frame);
938 939 940
	return dw;
}

941 942 943 944 945 946 947
struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs *engine,
				   struct i915_address_space *vm,
				   unsigned int ring_size,
				   unsigned int hwsp,
				   struct lock_class_key *key,
				   const char *name)
948 949 950 951
{
	struct intel_context *ce;
	int err;

952
	ce = intel_context_create(engine);
953 954 955
	if (IS_ERR(ce))
		return ce;

956
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
957
	ce->timeline = page_pack_bits(NULL, hwsp);
958 959
	ce->ring = NULL;
	ce->ring_size = ring_size;
960 961 962

	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
963

964
	err = intel_context_pin(ce); /* perma-pin so it is always available */
965 966 967 968 969
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

970 971
	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);

972 973 974 975 976 977
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
978
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
979

980 981 982
	return ce;
}

983
void intel_engine_destroy_pinned_context(struct intel_context *ce)
984 985 986 987 988 989 990 991 992 993
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

994
	list_del(&ce->pinned_contexts_link);
995 996 997 998
	intel_context_unpin(ce);
	intel_context_put(ce);
}

999 1000 1001 1002 1003
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

1004 1005 1006
	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
						  I915_GEM_HWS_SEQNO_ADDR,
						  &kernel, "kernel_context");
1007 1008
}

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
1020
static int engine_init_common(struct intel_engine_cs *engine)
1021
{
1022
	struct intel_context *ce;
1023 1024
	int ret;

1025 1026
	engine->set_default_submission(engine);

1027 1028
	/*
	 * We may need to do things with the shrinker which
1029 1030 1031 1032 1033 1034
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
1035 1036 1037 1038
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

1039 1040 1041 1042 1043
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
1044
	engine->kernel_context = ce;
1045

1046
	return 0;
1047 1048

err_context:
1049
	intel_engine_destroy_pinned_context(ce);
1050
	return ret;
1051
}
1052

1053 1054 1055 1056 1057 1058 1059
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

1060 1061
	if (intel_uc_uses_guc_submission(&gt->uc)) {
		gt->submission_method = INTEL_SUBMISSION_GUC;
1062
		setup = intel_guc_submission_setup;
1063 1064
	} else if (HAS_EXECLISTS(gt->i915)) {
		gt->submission_method = INTEL_SUBMISSION_ELSP;
1065
		setup = intel_execlists_submission_setup;
1066 1067
	} else {
		gt->submission_method = INTEL_SUBMISSION_RING;
1068
		setup = intel_ring_submission_setup;
1069
	}
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

1090 1091 1092 1093 1094 1095 1096 1097 1098
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
1099
	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1100

1101
	i915_sched_engine_put(engine->sched_engine);
1102
	intel_breadcrumbs_put(engine->breadcrumbs);
1103

1104
	intel_engine_fini_retire(engine);
1105
	intel_engine_cleanup_cmd_parser(engine);
1106

1107
	if (engine->default_state)
1108
		fput(engine->default_state);
1109

1110
	if (engine->kernel_context)
1111
		intel_engine_destroy_pinned_context(engine->kernel_context);
1112

1113
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1114
	cleanup_status_page(engine);
1115

1116
	intel_wa_list_free(&engine->ctx_wa_list);
1117
	intel_wa_list_free(&engine->wa_list);
1118
	intel_wa_list_free(&engine->whitelist);
1119
}
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

1135
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1136
{
1137 1138
	struct drm_i915_private *i915 = engine->i915;

1139 1140
	u64 acthd;

1141
	if (GRAPHICS_VER(i915) >= 8)
1142
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1143
	else if (GRAPHICS_VER(i915) >= 4)
1144
		acthd = ENGINE_READ(engine, RING_ACTHD);
1145
	else
1146
		acthd = ENGINE_READ(engine, ACTHD);
1147 1148 1149 1150

	return acthd;
}

1151
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1152 1153 1154
{
	u64 bbaddr;

1155
	if (GRAPHICS_VER(engine->i915) >= 8)
1156
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1157
	else
1158
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1159 1160 1161

	return bbaddr;
}
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1178 1179 1180
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1181
{
1182
	struct intel_uncore *uncore = engine->uncore;
1183
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1184 1185
	int err;

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1202
	if (GRAPHICS_VER(engine->i915) < 3)
1203 1204
		return -ENODEV;

1205
	ENGINE_TRACE(engine, "\n");
1206
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1220 1221 1222 1223 1224
	}

	return err;
}

1225 1226
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1227
	ENGINE_TRACE(engine, "\n");
1228

1229
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1230 1231
}

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1243
static u32
1244 1245
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1246
{
1247 1248
	return intel_uncore_read_with_mcr_steering(engine->uncore, reg,
						   slice, subslice);
1249 1250 1251
}

/* NB: please notice the memset */
1252
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1253 1254
			       struct intel_instdone *instdone)
{
1255
	struct drm_i915_private *i915 = engine->i915;
1256
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1257
	struct intel_uncore *uncore = engine->uncore;
1258 1259 1260
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;
1261
	int iter;
1262 1263 1264

	memset(instdone, 0, sizeof(*instdone));

1265
	if (GRAPHICS_VER(i915) >= 8) {
1266 1267
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1268

1269
		if (engine->id != RCS0)
1270
			return;
1271

1272 1273
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1274
		if (GRAPHICS_VER(i915) >= 12) {
1275 1276 1277 1278 1279
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
			for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice) {
				instdone->sampler[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_SAMPLER_INSTDONE);
				instdone->row[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_ROW_INSTDONE);
			}
		} else {
			for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
				instdone->sampler[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_SAMPLER_INSTDONE);
				instdone->row[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_ROW_INSTDONE);
			}
1299
		}
1300 1301 1302 1303 1304 1305 1306

		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
			for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice)
				instdone->geom_svg[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  XEHPG_INSTDONE_GEOM_SVG);
		}
1307
	} else if (GRAPHICS_VER(i915) >= 7) {
1308 1309
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1310

1311
		if (engine->id != RCS0)
1312
			return;
1313

1314 1315 1316 1317 1318 1319
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1320
	} else if (GRAPHICS_VER(i915) >= 4) {
1321 1322
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1323
		if (engine->id == RCS0)
1324
			/* HACK: Using the wrong struct member */
1325 1326
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1327
	} else {
1328
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1329 1330
	}
}
1331

1332 1333 1334 1335
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1336 1337 1338
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1339
	if (!intel_engine_pm_get_if_awake(engine))
1340
		return true;
1341

1342
	/* First check that no commands are left in the ring */
1343 1344
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1345
		idle = false;
1346

1347
	/* No bit for gen2, so assume the CS parser is idle */
1348
	if (GRAPHICS_VER(engine->i915) > 2 &&
1349
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1350 1351
		idle = false;

1352
	intel_engine_pm_put(engine);
1353 1354 1355 1356

	return idle;
}

1357
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1358
{
1359
	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1360

1361
	if (!t->callback)
1362 1363
		return;

1364 1365 1366 1367
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
1368
			t->callback(t);
1369
		tasklet_unlock(t);
1370
	}
1371
	local_bh_enable();
1372 1373 1374 1375

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1376 1377
}

1378 1379 1380 1381 1382 1383 1384 1385 1386
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1387
	/* More white lies, if wedged, hw state is inconsistent */
1388
	if (intel_gt_is_wedged(engine->gt))
1389 1390
		return true;

1391
	if (!intel_engine_pm_is_awake(engine))
1392 1393
		return true;

1394
	/* Waiting to drain ELSP? */
1395
	intel_synchronize_hardirq(engine->i915);
1396
	intel_engine_flush_submission(engine);
1397

1398
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1399
	if (!i915_sched_engine_is_empty(engine->sched_engine))
1400 1401
		return false;

1402
	/* Ring stopped? */
1403
	return ring_is_idle(engine);
1404 1405
}

1406
bool intel_engines_are_idle(struct intel_gt *gt)
1407 1408 1409 1410
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1411 1412
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1413 1414
	 * report that it is still busy, even though we have stopped using it.
	 */
1415
	if (intel_gt_is_wedged(gt))
1416 1417
		return true;

1418
	/* Already parked (and passed an idleness test); must still be idle */
1419
	if (!READ_ONCE(gt->awake))
1420 1421
		return true;

1422
	for_each_engine(engine, gt, id) {
1423 1424 1425 1426 1427 1428 1429
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
bool intel_engine_irq_enable(struct intel_engine_cs *engine)
{
	if (!engine->irq_enable)
		return false;

	/* Caller disables interrupts */
	spin_lock(&engine->gt->irq_lock);
	engine->irq_enable(engine);
	spin_unlock(&engine->gt->irq_lock);

	return true;
}

void intel_engine_irq_disable(struct intel_engine_cs *engine)
{
	if (!engine->irq_disable)
		return;

	/* Caller disables interrupts */
	spin_lock(&engine->gt->irq_lock);
	engine->irq_disable(engine);
	spin_unlock(&engine->gt->irq_lock);
}

1454
void intel_engines_reset_default_submission(struct intel_gt *gt)
1455 1456 1457 1458
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1459 1460 1461 1462
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1463
		engine->set_default_submission(engine);
1464
	}
1465 1466
}

1467 1468
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
1469
	switch (GRAPHICS_VER(engine->i915)) {
1470 1471 1472 1473 1474
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1475 1476
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1477 1478 1479 1480 1481 1482 1483
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1484 1485 1486 1487 1488
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
1489
	 * Even though we are holding the engine->sched_engine->lock here, there
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1549
		drm_printf(m, "[%04zx] %s\n", pos, line);
1550 1551 1552 1553 1554 1555

		prev = buf + pos;
		skip = false;
	}
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1567
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1568
					 struct drm_printer *m)
1569 1570
{
	struct drm_i915_private *dev_priv = engine->i915;
1571
	struct intel_engine_execlists * const execlists = &engine->execlists;
1572 1573
	u64 addr;

1574
	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1575
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1576 1577 1578 1579 1580 1581
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1582
	drm_printf(m, "\tRING_START: 0x%08x\n",
1583
		   ENGINE_READ(engine, RING_START));
1584
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1585
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1586
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1587
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1588
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1589 1590
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1591
	if (GRAPHICS_VER(engine->i915) > 2) {
1592
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1593 1594
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1595
	}
1596

1597
	if (GRAPHICS_VER(dev_priv) >= 6) {
1598
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1599
			   ENGINE_READ(engine, RING_IMR));
1600 1601 1602 1603 1604 1605
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1606 1607
	}

1608 1609 1610 1611 1612 1613
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1614
	if (GRAPHICS_VER(dev_priv) >= 8)
1615
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1616
	else if (GRAPHICS_VER(dev_priv) >= 4)
1617
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1618
	else
1619
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1620 1621
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1622
	if (GRAPHICS_VER(dev_priv) >= 4) {
1623
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1624
			   ENGINE_READ(engine, RING_IPEIR));
1625
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1626
			   ENGINE_READ(engine, RING_IPEHR));
1627
	} else {
1628 1629
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1630
	}
1631

1632
	if (intel_engine_uses_guc(engine)) {
1633 1634
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1635
		struct i915_request * const *port, *rq;
1636 1637
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1638
		const u8 num_entries = execlists->csb_size;
1639
		unsigned int idx;
1640
		u8 read, write;
1641

1642
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1643
			   yesno(test_bit(TASKLET_STATE_SCHED,
1644 1645
					  &engine->sched_engine->tasklet.state)),
			   enableddisabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1646
			   repr_timer(&engine->execlists.preempt),
1647
			   repr_timer(&engine->execlists.timer));
1648

1649 1650 1651
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1652 1653 1654 1655 1656
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1657
		if (read >= num_entries)
1658
			read = 0;
1659
		if (write >= num_entries)
1660 1661
			write = 0;
		if (read > write)
1662
			write += num_entries;
1663
		while (read < write) {
1664 1665 1666
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1667 1668
		}

1669
		i915_sched_engine_active_lock_bh(engine->sched_engine);
1670
		rcu_read_lock();
1671
		for (port = execlists->active; (rq = *port); port++) {
1672
			char hdr[160];
1673 1674
			int len;

1675
			len = scnprintf(hdr, sizeof(hdr),
1676
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1677
					(int)(port - execlists->active),
1678 1679 1680
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1681
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1682
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1683
			i915_request_show(m, rq, hdr, 0);
1684 1685
		}
		for (port = execlists->pending; (rq = *port); port++) {
1686 1687
			char hdr[160];
			int len;
1688

1689
			len = scnprintf(hdr, sizeof(hdr),
1690
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1691
					(int)(port - execlists->pending),
1692 1693 1694
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1695 1696
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1697
			i915_request_show(m, rq, hdr, 0);
1698
		}
1699
		rcu_read_unlock();
1700
		i915_sched_engine_active_unlock_bh(engine->sched_engine);
1701
	} else if (GRAPHICS_VER(dev_priv) > 6) {
1702
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1703
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1704
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1705
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1706
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1707
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1708
	}
1709 1710
}

1711 1712
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
1713
	struct i915_vma_snapshot *vsnap = &rq->batch_snapshot;
1714 1715 1716
	void *ring;
	int size;

1717 1718 1719
	if (!i915_vma_snapshot_present(vsnap))
		vsnap = NULL;

1720 1721 1722
	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
1723 1724
		   vsnap ? upper_32_bits(vsnap->gtt_offset) : ~0u,
		   vsnap ? lower_32_bits(vsnap->gtt_offset) : ~0u);
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
{
	struct intel_timeline *tl = get_timeline(rq);

	i915_request_show(m, rq, msg, 0);

	drm_printf(m, "\t\tring->start:  0x%08x\n",
		   i915_ggtt_offset(rq->ring->vma));
	drm_printf(m, "\t\tring->head:   0x%08x\n",
		   rq->ring->head);
	drm_printf(m, "\t\tring->tail:   0x%08x\n",
		   rq->ring->tail);
	drm_printf(m, "\t\tring->emit:   0x%08x\n",
		   rq->ring->emit);
	drm_printf(m, "\t\tring->space:  0x%08x\n",
		   rq->ring->space);

	if (tl) {
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   tl->hwsp_offset);
		intel_timeline_put(tl);
	}

	print_request_ring(m, rq);

	if (rq->context->lrc_reg_state) {
		drm_printf(m, "Logical Ring Context:\n");
		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
	}
}

void intel_engine_dump_active_requests(struct list_head *requests,
				       struct i915_request *hung_rq,
				       struct drm_printer *m)
{
	struct i915_request *rq;
	const char *msg;
	enum i915_request_state state;

	list_for_each_entry(rq, requests, sched.link) {
		if (rq == hung_rq)
			continue;

		state = i915_test_request_state(rq);
		if (state < I915_REQUEST_QUEUED)
			continue;

		if (state == I915_REQUEST_ACTIVE)
			msg = "\t\tactive on engine";
		else
			msg = "\t\tactive in queue";

		engine_dump_request(rq, m, msg);
	}
}

static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m)
{
	struct i915_request *hung_rq = NULL;
	struct intel_context *ce;
	bool guc;

	/*
	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
	 * The GPU is still running so requests are still executing and any
	 * hardware reads will be out of date by the time they are reported.
	 * But the intention here is just to report an instantaneous snapshot
	 * so that's fine.
	 */
	lockdep_assert_held(&engine->sched_engine->lock);

	drm_printf(m, "\tRequests:\n");

	guc = intel_uc_uses_guc_submission(&engine->gt->uc);
	if (guc) {
		ce = intel_engine_get_hung_context(engine);
		if (ce)
			hung_rq = intel_context_find_active_request(ce);
	} else {
		hung_rq = intel_engine_execlist_find_hung_request(engine);
	}

	if (hung_rq)
		engine_dump_request(hung_rq, m, "\t\thung");

	if (guc)
		intel_guc_dump_active_requests(engine, hung_rq, m);
	else
		intel_engine_dump_active_requests(&engine->sched_engine->requests,
						  hung_rq, m);
}

1886 1887 1888 1889 1890
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1891
	struct i915_request *rq;
1892
	intel_wakeref_t wakeref;
1893
	unsigned long flags;
1894
	ktime_t dummy;
1895 1896 1897 1898 1899 1900 1901 1902 1903

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1904
	if (intel_gt_is_wedged(engine->gt))
1905 1906
		drm_printf(m, "*** WEDGED ***\n");

1907
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1908 1909
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1910 1911
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1912 1913 1914 1915
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1916
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1917
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1918 1919 1920 1921 1922 1923 1924

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1925 1926 1927
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1928
	print_properties(engine, m);
1929

1930
	spin_lock_irqsave(&engine->sched_engine->lock, flags);
1931
	engine_dump_active_requests(engine, m);
1932

1933 1934 1935
	drm_printf(m, "\tOn hold?: %lu\n",
		   list_count(&engine->sched_engine->hold));
	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
1936

1937
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1938
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1939
	if (wakeref) {
1940
		intel_engine_print_registers(engine, m);
1941
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1942 1943 1944
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1945

C
Chris Wilson 已提交
1946
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1947

1948
	drm_printf(m, "HWSP:\n");
1949
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1950

1951
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1952 1953

	intel_engine_print_breadcrumbs(engine, m);
1954 1955
}

1956 1957 1958
/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1959
 * @now: monotonic timestamp of sampling
1960 1961 1962
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1963
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1964
{
1965
	return engine->busyness(engine, now);
1966 1967
}

1968 1969
struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs **siblings,
1970
			    unsigned int count, unsigned long flags)
1971 1972 1973 1974
{
	if (count == 0)
		return ERR_PTR(-EINVAL);

1975
	if (count == 1 && !(flags & FORCE_VIRTUAL))
1976 1977 1978
		return intel_context_create(siblings[0]);

	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
1979
	return siblings[0]->cops->create_virtual(siblings, count, flags);
1980 1981
}

1982
struct i915_request *
1983
intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine)
1984 1985 1986
{
	struct i915_request *request, *active = NULL;

1987 1988 1989 1990 1991 1992 1993
	/*
	 * This search does not work in GuC submission mode. However, the GuC
	 * will report the hanging context directly to the driver itself. So
	 * the driver should never get here when in GuC mode.
	 */
	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
2005
	lockdep_assert_held(&engine->sched_engine->lock);
2006 2007 2008 2009 2010 2011 2012

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2013
			if (__i915_request_is_complete(request))
2014 2015 2016 2017 2018 2019 2020 2021 2022
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

2023 2024
	list_for_each_entry(request, &engine->sched_engine->requests,
			    sched.link) {
2025
		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2026
			continue;
2027 2028 2029 2030 2031 2032 2033 2034

		active = request;
		break;
	}

	return active;
}

2035
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2036
#include "mock_engine.c"
2037
#include "selftest_engine.c"
2038
#include "selftest_engine_cs.c"
2039
#endif