core.c 157.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

36 37
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
38 39
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
40
static LIST_HEAD(regulator_ena_gpio_list);
41
static LIST_HEAD(regulator_supply_alias_list);
42
static LIST_HEAD(regulator_coupler_list);
43
static bool has_full_constraints;
44

45 46
static struct dentry *debugfs_root;

47
/*
48 49 50 51 52 53
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
54
	const char *dev_name;   /* The dev_name() for the consumer */
55
	const char *supply;
56
	struct regulator_dev *regulator;
57 58
};

59 60 61 62 63 64 65
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
66
	struct gpio_desc *gpiod;
67 68 69 70
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

71 72 73 74 75 76 77 78 79 80 81 82 83
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

84
static int _regulator_is_enabled(struct regulator_dev *rdev);
85
static int _regulator_disable(struct regulator *regulator);
86
static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 88
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89
static int _notifier_call_chain(struct regulator_dev *rdev,
90
				  unsigned long event, void *data);
91 92
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
93 94
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
95 96 97
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
98
static void destroy_regulator(struct regulator *regulator);
99
static void _regulator_put(struct regulator *regulator);
100

101
const char *rdev_get_name(struct regulator_dev *rdev)
102 103 104 105 106 107 108 109
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}
110
EXPORT_SYMBOL_GPL(rdev_get_name);
111

112 113
static bool have_full_constraints(void)
{
114
	return has_full_constraints || of_have_populated_dt();
115 116
}

117 118 119 120 121 122 123 124 125 126 127 128 129
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

130 131 132
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
133
 * @ww_ctx:		w/w mutex acquire context
134 135 136 137 138 139 140
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
141 142
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
143
{
144 145 146 147 148
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

149
	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150
		if (rdev->mutex_owner == current)
151
			rdev->ref_cnt++;
152 153 154 155 156 157 158
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
159
		}
160 161
	} else {
		lock = true;
162 163
	}

164 165 166 167 168 169 170 171
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
172 173
}

174 175 176 177 178 179 180 181 182 183
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
184
static void regulator_lock(struct regulator_dev *rdev)
185
{
186
	regulator_lock_nested(rdev, NULL);
187 188 189 190 191 192 193 194 195
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
196
static void regulator_unlock(struct regulator_dev *rdev)
197
{
198
	mutex_lock(&regulator_nesting_mutex);
199

200 201 202
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
203
	}
204 205 206 207

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
208 209
}

210
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
211
{
212 213 214 215 216
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
217

218 219 220 221 222 223 224
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

225 226
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
227
{
228 229
	struct regulator_dev *c_rdev, *supply_rdev;
	int i, supply_n_coupled;
230

231 232
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
233 234 235 236

		if (!c_rdev)
			continue;

237 238 239 240 241 242 243
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
			supply_rdev = c_rdev->supply->rdev;
			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;

			regulator_unlock_recursive(supply_rdev,
						   supply_n_coupled);
		}
244

245 246
		regulator_unlock(c_rdev);
	}
247 248
}

249 250 251 252
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
253
{
254
	struct regulator_dev *c_rdev;
255
	int i, err;
256

257 258
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
259

260 261
		if (!c_rdev)
			continue;
262

263 264 265 266 267 268 269
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
270

271 272 273 274 275 276 277
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

278
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
279 280 281 282 283 284 285 286
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
287 288
		}
	}
289 290 291 292 293 294 295

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
296 297
}

298
/**
299 300 301 302 303
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
304
 * Unlock all regulators related with rdev by coupling or supplying.
305
 */
306 307
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
308
{
309 310
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
311 312 313
}

/**
314 315
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
316
 * @ww_ctx:			w/w mutex acquire context
317 318
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
319
 * all regulators related with rdev by coupling or supplying.
320
 */
321 322
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
323
{
324 325 326
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
327

328
	mutex_lock(&regulator_list_mutex);
329

330
	ww_acquire_init(ww_ctx, &regulator_ww_class);
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
352 353
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
376 377
			if (regnode)
				goto err_node_put;
378
		} else {
379
			goto err_node_put;
380 381 382
		}
	}
	return NULL;
383 384 385 386

err_node_put:
	of_node_put(child);
	return regnode;
387 388
}

389 390 391 392 393 394
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
395
 * returns the device node corresponding to the regulator if found, else
396 397 398 399 400
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
401
	char prop_name[64]; /* 64 is max size of property name */
402 403 404

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

405
	snprintf(prop_name, 64, "%s-supply", supply);
406 407 408
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
409 410 411 412
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

413 414
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
415 416 417 418 419
		return NULL;
	}
	return regnode;
}

420
/* Platform voltage constraint check */
421 422
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
423 424 425
{
	BUG_ON(*min_uV > *max_uV);

426
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
427
		rdev_err(rdev, "voltage operation not allowed\n");
428 429 430 431 432 433 434 435
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

436 437
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
438
			 *min_uV, *max_uV);
439
		return -EINVAL;
440
	}
441 442 443 444

	return 0;
}

445 446 447 448 449 450
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

451 452 453
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
454 455 456
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
457 458
{
	struct regulator *regulator;
459
	struct regulator_voltage *voltage;
460 461

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
462
		voltage = &regulator->voltage[state];
463 464 465 466
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
467
		if (!voltage->min_uV && !voltage->max_uV)
468 469
			continue;

470 471 472 473
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
474 475
	}

476
	if (*min_uV > *max_uV) {
477 478
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
479
		return -EINVAL;
480
	}
481 482 483 484

	return 0;
}

485 486 487 488 489 490
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

491
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
492
		rdev_err(rdev, "current operation not allowed\n");
493 494 495 496 497 498 499 500
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

501 502
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
503
			 *min_uA, *max_uA);
504
		return -EINVAL;
505
	}
506 507 508 509 510

	return 0;
}

/* operating mode constraint check */
511 512
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
513
{
514
	switch (*mode) {
515 516 517 518 519 520
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
521
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
522 523 524
		return -EINVAL;
	}

525
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
526
		rdev_err(rdev, "mode operation not allowed\n");
527 528
		return -EPERM;
	}
529 530 531

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
532 533
	 * try higher modes.
	 */
534 535 536 537
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
538
	}
539 540

	return -EINVAL;
541 542
}

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return NULL;

	/* If we have no suspend mode configuration don't set anything;
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
	 */
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
			rdev_warn(rdev, "No configuration\n");
		return NULL;
	}

	return rstate;
}

585 586
static ssize_t microvolts_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
587
{
588
	struct regulator_dev *rdev = dev_get_drvdata(dev);
589
	int uV;
590

591
	regulator_lock(rdev);
592
	uV = regulator_get_voltage_rdev(rdev);
593
	regulator_unlock(rdev);
594

595 596 597
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
598
}
599
static DEVICE_ATTR_RO(microvolts);
600

601 602
static ssize_t microamps_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
603
{
604
	struct regulator_dev *rdev = dev_get_drvdata(dev);
605 606 607

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
608
static DEVICE_ATTR_RO(microamps);
609

610 611
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
612 613 614
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

615
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
616
}
617
static DEVICE_ATTR_RO(name);
618

619
static const char *regulator_opmode_to_str(int mode)
620 621 622
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
623
		return "fast";
624
	case REGULATOR_MODE_NORMAL:
625
		return "normal";
626
	case REGULATOR_MODE_IDLE:
627
		return "idle";
628
	case REGULATOR_MODE_STANDBY:
629
		return "standby";
630
	}
631 632 633 634 635 636
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
637 638
}

639 640
static ssize_t opmode_show(struct device *dev,
			   struct device_attribute *attr, char *buf)
641
{
642
	struct regulator_dev *rdev = dev_get_drvdata(dev);
643

644 645
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
646
static DEVICE_ATTR_RO(opmode);
647 648 649

static ssize_t regulator_print_state(char *buf, int state)
{
650 651 652 653 654 655 656 657
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

658 659
static ssize_t state_show(struct device *dev,
			  struct device_attribute *attr, char *buf)
660 661
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
662 663
	ssize_t ret;

664
	regulator_lock(rdev);
665
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
666
	regulator_unlock(rdev);
667

668
	return ret;
669
}
670
static DEVICE_ATTR_RO(state);
671

672 673
static ssize_t status_show(struct device *dev,
			   struct device_attribute *attr, char *buf)
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
705 706 707
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
708 709 710
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
711 712 713 714 715 716
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
717
static DEVICE_ATTR_RO(status);
718

719 720
static ssize_t min_microamps_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
721
{
722
	struct regulator_dev *rdev = dev_get_drvdata(dev);
723 724 725 726 727 728

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
729
static DEVICE_ATTR_RO(min_microamps);
730

731 732
static ssize_t max_microamps_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
733
{
734
	struct regulator_dev *rdev = dev_get_drvdata(dev);
735 736 737 738 739 740

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
741
static DEVICE_ATTR_RO(max_microamps);
742

743 744
static ssize_t min_microvolts_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
745
{
746
	struct regulator_dev *rdev = dev_get_drvdata(dev);
747 748 749 750 751 752

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
753
static DEVICE_ATTR_RO(min_microvolts);
754

755 756
static ssize_t max_microvolts_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
757
{
758
	struct regulator_dev *rdev = dev_get_drvdata(dev);
759 760 761 762 763 764

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
765
static DEVICE_ATTR_RO(max_microvolts);
766

767 768
static ssize_t requested_microamps_show(struct device *dev,
					struct device_attribute *attr, char *buf)
769
{
770
	struct regulator_dev *rdev = dev_get_drvdata(dev);
771 772 773
	struct regulator *regulator;
	int uA = 0;

774
	regulator_lock(rdev);
775 776 777 778
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
779
	regulator_unlock(rdev);
780 781
	return sprintf(buf, "%d\n", uA);
}
782
static DEVICE_ATTR_RO(requested_microamps);
783

784 785
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
786
{
787
	struct regulator_dev *rdev = dev_get_drvdata(dev);
788 789
	return sprintf(buf, "%d\n", rdev->use_count);
}
790
static DEVICE_ATTR_RO(num_users);
791

792 793
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
794
{
795
	struct regulator_dev *rdev = dev_get_drvdata(dev);
796 797 798 799 800 801 802 803 804

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
805
static DEVICE_ATTR_RO(type);
806

807 808
static ssize_t suspend_mem_microvolts_show(struct device *dev,
					   struct device_attribute *attr, char *buf)
809
{
810
	struct regulator_dev *rdev = dev_get_drvdata(dev);
811 812 813

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
814
static DEVICE_ATTR_RO(suspend_mem_microvolts);
815

816 817
static ssize_t suspend_disk_microvolts_show(struct device *dev,
					    struct device_attribute *attr, char *buf)
818
{
819
	struct regulator_dev *rdev = dev_get_drvdata(dev);
820 821 822

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
823
static DEVICE_ATTR_RO(suspend_disk_microvolts);
824

825 826
static ssize_t suspend_standby_microvolts_show(struct device *dev,
					       struct device_attribute *attr, char *buf)
827
{
828
	struct regulator_dev *rdev = dev_get_drvdata(dev);
829 830 831

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
832
static DEVICE_ATTR_RO(suspend_standby_microvolts);
833

834 835
static ssize_t suspend_mem_mode_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
836
{
837
	struct regulator_dev *rdev = dev_get_drvdata(dev);
838

839 840
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
841
}
842
static DEVICE_ATTR_RO(suspend_mem_mode);
843

844 845
static ssize_t suspend_disk_mode_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
846
{
847
	struct regulator_dev *rdev = dev_get_drvdata(dev);
848

849 850
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
851
}
852
static DEVICE_ATTR_RO(suspend_disk_mode);
853

854 855
static ssize_t suspend_standby_mode_show(struct device *dev,
					 struct device_attribute *attr, char *buf)
856
{
857
	struct regulator_dev *rdev = dev_get_drvdata(dev);
858

859 860
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
861
}
862
static DEVICE_ATTR_RO(suspend_standby_mode);
863

864 865
static ssize_t suspend_mem_state_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
866
{
867
	struct regulator_dev *rdev = dev_get_drvdata(dev);
868

869 870
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
871
}
872
static DEVICE_ATTR_RO(suspend_mem_state);
873

874 875
static ssize_t suspend_disk_state_show(struct device *dev,
				       struct device_attribute *attr, char *buf)
876
{
877
	struct regulator_dev *rdev = dev_get_drvdata(dev);
878

879 880
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
881
}
882
static DEVICE_ATTR_RO(suspend_disk_state);
883

884 885
static ssize_t suspend_standby_state_show(struct device *dev,
					  struct device_attribute *attr, char *buf)
886
{
887
	struct regulator_dev *rdev = dev_get_drvdata(dev);
888

889 890
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
891
}
892
static DEVICE_ATTR_RO(suspend_standby_state);
893

894 895
static ssize_t bypass_show(struct device *dev,
			   struct device_attribute *attr, char *buf)
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
913
static DEVICE_ATTR_RO(bypass);
914

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
#define REGULATOR_ERROR_ATTR(name, bit)							\
	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
				   char *buf)						\
	{										\
		int ret;								\
		unsigned int flags;							\
		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
		ret = _regulator_get_error_flags(rdev, &flags);				\
		if (ret)								\
			return ret;							\
		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
	}										\
	static DEVICE_ATTR_RO(name)

REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);

939
/* Calculate the new optimum regulator operating mode based on the new total
940 941
 * consumer load. All locks held by caller
 */
942
static int drms_uA_update(struct regulator_dev *rdev)
943 944 945 946 947
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

948 949 950 951
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
952 953
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
954
		return 0;
955
	}
956

957 958
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
959 960
		return 0;

961 962
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
963
		return -EINVAL;
964 965

	/* calc total requested load */
966 967 968 969
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
970

971 972
	current_uA += rdev->constraints->system_load;

973 974 975 976
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
977 978
			rdev_err(rdev, "failed to set load %d: %pe\n",
				 current_uA, ERR_PTR(err));
979
	} else {
980
		/* get output voltage */
981
		output_uV = regulator_get_voltage_rdev(rdev);
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

998 999 1000 1001 1002 1003 1004
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
1005 1006
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
				 current_uA, input_uV, output_uV, ERR_PTR(err));
1007 1008
			return err;
		}
1009

1010 1011
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
1012 1013
			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
				 mode, ERR_PTR(err));
1014 1015 1016
	}

	return err;
1017 1018
}

1019 1020
static int __suspend_set_state(struct regulator_dev *rdev,
			       const struct regulator_state *rstate)
1021 1022
{
	int ret = 0;
1023

1024 1025
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1026
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1027 1028
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1029
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1030 1031 1032
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1033
	if (ret < 0) {
1034
		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1035 1036 1037 1038 1039 1040
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1041
			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1042 1043 1044 1045 1046 1047 1048
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1049
			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1050 1051 1052 1053
			return ret;
		}
	}

1054
	return ret;
1055 1056
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
static int suspend_set_initial_state(struct regulator_dev *rdev)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev,
			rdev->constraints->initial_state);
	if (!rstate)
		return 0;

	return __suspend_set_state(rdev, rstate);
}

1069 1070
#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
static void print_constraints_debug(struct regulator_dev *rdev)
1071 1072
{
	struct regulation_constraints *constraints = rdev->constraints;
1073
	char buf[160] = "";
1074
	size_t len = sizeof(buf) - 1;
1075 1076
	int count = 0;
	int ret;
1077

1078
	if (constraints->min_uV && constraints->max_uV) {
1079
		if (constraints->min_uV == constraints->max_uV)
1080 1081
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1082
		else
1083 1084 1085 1086
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1087 1088 1089 1090
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1091
		ret = regulator_get_voltage_rdev(rdev);
1092
		if (ret > 0)
1093 1094
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1095 1096
	}

1097
	if (constraints->uV_offset)
1098 1099
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1100

1101
	if (constraints->min_uA && constraints->max_uA) {
1102
		if (constraints->min_uA == constraints->max_uA)
1103 1104
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1105
		else
1106 1107 1108 1109
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1110 1111 1112 1113 1114 1115
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1116 1117
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1118
	}
1119

1120
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1121
		count += scnprintf(buf + count, len - count, "fast ");
1122
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1123
		count += scnprintf(buf + count, len - count, "normal ");
1124
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1125
		count += scnprintf(buf + count, len - count, "idle ");
1126
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1127
		count += scnprintf(buf + count, len - count, "standby ");
1128

1129
	if (!count)
1130 1131 1132 1133 1134 1135
		count = scnprintf(buf, len, "no parameters");
	else
		--count;

	count += scnprintf(buf + count, len - count, ", %s",
		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1136

1137
	rdev_dbg(rdev, "%s\n", buf);
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
}
#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
static inline void print_constraints_debug(struct regulator_dev *rdev) {}
#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;

	print_constraints_debug(rdev);
1148 1149

	if ((constraints->min_uV != constraints->max_uV) &&
1150
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1151 1152
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1153 1154
}

1155
static int machine_constraints_voltage(struct regulator_dev *rdev,
1156
	struct regulation_constraints *constraints)
1157
{
1158
	const struct regulator_ops *ops = rdev->desc->ops;
1159 1160 1161 1162
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1163 1164
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1165
		int current_uV = regulator_get_voltage_rdev(rdev);
1166 1167

		if (current_uV == -ENOTRECOVERABLE) {
1168
			/* This regulator can't be read and must be initialized */
1169 1170 1171 1172 1173 1174
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1175
			current_uV = regulator_get_voltage_rdev(rdev);
1176 1177
		}

1178
		if (current_uV < 0) {
1179 1180 1181 1182
			if (current_uV != -EPROBE_DEFER)
				rdev_err(rdev,
					 "failed to get the current voltage: %pe\n",
					 ERR_PTR(current_uV));
1183 1184
			return current_uV;
		}
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1205 1206
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1207
			ret = _regulator_do_set_voltage(
1208
				rdev, target_min, target_max);
1209 1210
			if (ret < 0) {
				rdev_err(rdev,
1211 1212
					"failed to apply %d-%duV constraint: %pe\n",
					target_min, target_max, ERR_PTR(ret));
1213 1214
				return ret;
			}
1215
		}
1216
	}
1217

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1229
		/* it's safe to autoconfigure fixed-voltage supplies
1230 1231
		 * and the constraints are used by list_voltage.
		 */
1232
		if (count == 1 && !cmin) {
1233
			cmin = 1;
1234
			cmax = INT_MAX;
1235 1236
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1237 1238
		}

1239 1240
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1241
			return 0;
1242

1243
		/* else require explicit machine-level constraints */
1244
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1245
			rdev_err(rdev, "invalid voltage constraints\n");
1246
			return -EINVAL;
1247 1248
		}

1249 1250 1251 1252
		/* no need to loop voltages if range is continuous */
		if (rdev->desc->continuous_voltage_range)
			return 0;

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1270 1271 1272
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1273
			return -EINVAL;
1274 1275 1276 1277
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1278 1279
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1280 1281 1282
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1283 1284
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1285 1286 1287 1288
			constraints->max_uV = max_uV;
		}
	}

1289 1290 1291
	return 0;
}

1292 1293 1294
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1295
	const struct regulator_ops *ops = rdev->desc->ops;
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1322 1323
static int _regulator_do_enable(struct regulator_dev *rdev);

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
static int notif_set_limit(struct regulator_dev *rdev,
			   int (*set)(struct regulator_dev *, int, int, bool),
			   int limit, int severity)
{
	bool enable;

	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
		enable = false;
		limit = 0;
	} else {
		enable = true;
	}

	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
		limit = 0;

	return set(rdev, limit, severity, enable);
}

static int handle_notify_limits(struct regulator_dev *rdev,
			int (*set)(struct regulator_dev *, int, int, bool),
			struct notification_limit *limits)
{
	int ret = 0;

	if (!set)
		return -EOPNOTSUPP;

	if (limits->prot)
		ret = notif_set_limit(rdev, set, limits->prot,
				      REGULATOR_SEVERITY_PROT);
	if (ret)
		return ret;

	if (limits->err)
		ret = notif_set_limit(rdev, set, limits->err,
				      REGULATOR_SEVERITY_ERR);
	if (ret)
		return ret;

	if (limits->warn)
		ret = notif_set_limit(rdev, set, limits->warn,
				      REGULATOR_SEVERITY_WARN);

	return ret;
}
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
1380
static int set_machine_constraints(struct regulator_dev *rdev)
1381 1382
{
	int ret = 0;
1383
	const struct regulator_ops *ops = rdev->desc->ops;
1384

1385
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1386
	if (ret != 0)
1387
		return ret;
1388

1389
	ret = machine_constraints_current(rdev, rdev->constraints);
1390
	if (ret != 0)
1391
		return ret;
1392

1393 1394 1395 1396
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
1397
			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1398
			return ret;
1399 1400 1401
		}
	}

1402
	/* do we need to setup our suspend state */
1403
	if (rdev->constraints->initial_state) {
1404
		ret = suspend_set_initial_state(rdev);
1405
		if (ret < 0) {
1406
			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1407
			return ret;
1408 1409
		}
	}
1410

1411
	if (rdev->constraints->initial_mode) {
1412
		if (!ops->set_mode) {
1413
			rdev_err(rdev, "no set_mode operation\n");
1414
			return -EINVAL;
1415 1416
		}

1417
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1418
		if (ret < 0) {
1419
			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1420
			return ret;
1421
		}
1422 1423 1424 1425 1426 1427
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1428 1429
	}

1430 1431
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1432 1433
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
1434
			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1435
			return ret;
1436 1437 1438
		}
	}

1439 1440 1441
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
1442
			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1443
			return ret;
1444 1445 1446
		}
	}

1447 1448 1449
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
1450
			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1451
			return ret;
1452 1453 1454
		}
	}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	/*
	 * Existing logic does not warn if over_current_protection is given as
	 * a constraint but driver does not support that. I think we should
	 * warn about this type of issues as it is possible someone changes
	 * PMIC on board to another type - and the another PMIC's driver does
	 * not support setting protection. Board composer may happily believe
	 * the DT limits are respected - especially if the new PMIC HW also
	 * supports protection but the driver does not. I won't change the logic
	 * without hearing more experienced opinion on this though.
	 *
	 * If warning is seen as a good idea then we can merge handling the
	 * over-curret protection and detection and get rid of this special
	 * handling.
	 */
1469 1470
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
1471 1472 1473 1474 1475
		int lim = rdev->constraints->over_curr_limits.prot;

		ret = ops->set_over_current_protection(rdev, lim,
						       REGULATOR_SEVERITY_PROT,
						       true);
1476
		if (ret < 0) {
1477 1478
			rdev_err(rdev, "failed to set over current protection: %pe\n",
				 ERR_PTR(ret));
1479
			return ret;
1480 1481 1482
		}
	}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	if (rdev->constraints->over_current_detection)
		ret = handle_notify_limits(rdev,
					   ops->set_over_current_protection,
					   &rdev->constraints->over_curr_limits);
	if (ret) {
		if (ret != -EOPNOTSUPP) {
			rdev_err(rdev, "failed to set over current limits: %pe\n",
				 ERR_PTR(ret));
			return ret;
		}
		rdev_warn(rdev,
			  "IC does not support requested over-current limits\n");
	}

	if (rdev->constraints->over_voltage_detection)
		ret = handle_notify_limits(rdev,
					   ops->set_over_voltage_protection,
					   &rdev->constraints->over_voltage_limits);
	if (ret) {
		if (ret != -EOPNOTSUPP) {
			rdev_err(rdev, "failed to set over voltage limits %pe\n",
				 ERR_PTR(ret));
			return ret;
		}
		rdev_warn(rdev,
			  "IC does not support requested over voltage limits\n");
	}

	if (rdev->constraints->under_voltage_detection)
		ret = handle_notify_limits(rdev,
					   ops->set_under_voltage_protection,
					   &rdev->constraints->under_voltage_limits);
	if (ret) {
		if (ret != -EOPNOTSUPP) {
			rdev_err(rdev, "failed to set under voltage limits %pe\n",
				 ERR_PTR(ret));
			return ret;
		}
		rdev_warn(rdev,
			  "IC does not support requested under voltage limits\n");
	}

	if (rdev->constraints->over_temp_detection)
		ret = handle_notify_limits(rdev,
					   ops->set_thermal_protection,
					   &rdev->constraints->temp_limits);
	if (ret) {
		if (ret != -EOPNOTSUPP) {
			rdev_err(rdev, "failed to set temperature limits %pe\n",
				 ERR_PTR(ret));
			return ret;
		}
		rdev_warn(rdev,
			  "IC does not support requested temperature limits\n");
	}

1539 1540 1541 1542 1543 1544
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
1545
			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1546 1547 1548 1549
			return ret;
		}
	}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	/*
	 * If there is no mechanism for controlling the regulator then
	 * flag it as always_on so we don't end up duplicating checks
	 * for this so much.  Note that we could control the state of
	 * a supply to control the output on a regulator that has no
	 * direct control.
	 */
	if (!rdev->ena_pin && !ops->enable) {
		if (rdev->supply_name && !rdev->supply)
			return -EPROBE_DEFER;

		if (rdev->supply)
			rdev->constraints->always_on =
				rdev->supply->rdev->constraints->always_on;
		else
			rdev->constraints->always_on = true;
	}

1568 1569 1570
	if (rdev->desc->off_on_delay)
		rdev->last_off = ktime_get();

1571 1572 1573 1574
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1575 1576 1577 1578 1579 1580
		/* If we want to enable this regulator, make sure that we know
		 * the supplying regulator.
		 */
		if (rdev->supply_name && !rdev->supply)
			return -EPROBE_DEFER;

1581 1582 1583 1584 1585 1586 1587 1588 1589
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1590 1591
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1592
			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1593 1594
			return ret;
		}
1595 1596 1597

		if (rdev->constraints->always_on)
			rdev->use_count++;
1598 1599
	}

1600
	print_constraints(rdev);
1601
	return 0;
1602 1603 1604 1605
}

/**
 * set_supply - set regulator supply regulator
1606 1607
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1608 1609 1610 1611 1612 1613
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1614
		      struct regulator_dev *supply_rdev)
1615 1616 1617
{
	int err;

1618
	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1619

1620 1621 1622
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1623
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1624 1625
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1626
		return err;
1627
	}
1628
	supply_rdev->open_count++;
1629 1630

	return 0;
1631 1632 1633
}

/**
1634
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1635
 * @rdev:         regulator source
1636
 * @consumer_dev_name: dev_name() string for device supply applies to
1637
 * @supply:       symbolic name for supply
1638 1639 1640 1641 1642 1643 1644
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1645 1646
				      const char *consumer_dev_name,
				      const char *supply)
1647
{
1648
	struct regulator_map *node, *new_node;
1649
	int has_dev;
1650 1651 1652 1653

	if (supply == NULL)
		return -EINVAL;

1654 1655 1656 1657 1658
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
	if (new_node == NULL)
		return -ENOMEM;

	new_node->regulator = rdev;
	new_node->supply = supply;

	if (has_dev) {
		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (new_node->dev_name == NULL) {
			kfree(new_node);
			return -ENOMEM;
		}
	}

	mutex_lock(&regulator_list_mutex);
1675
	list_for_each_entry(node, &regulator_map_list, list) {
1676 1677 1678 1679
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1680
			continue;
1681 1682
		}

1683 1684 1685
		if (strcmp(node->supply, supply) != 0)
			continue;

1686 1687 1688 1689 1690 1691
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1692
		goto fail;
1693 1694
	}

1695 1696
	list_add(&new_node->list, &regulator_map_list);
	mutex_unlock(&regulator_list_mutex);
1697

1698
	return 0;
1699 1700 1701 1702 1703 1704

fail:
	mutex_unlock(&regulator_list_mutex);
	kfree(new_node->dev_name);
	kfree(new_node);
	return -EBUSY;
1705 1706
}

1707 1708 1709 1710 1711 1712 1713
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1714
			kfree(node->dev_name);
1715 1716 1717 1718 1719
			kfree(node);
		}
	}
}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1769
#define REG_STR_SIZE	64
1770 1771 1772 1773 1774 1775

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
1776
	int err = 0;
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

	if (dev) {
		char buf[REG_STR_SIZE];
		int size;

		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			return NULL;

		supply_name = kstrdup(buf, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	} else {
		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	}
1795 1796

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1797 1798
	if (regulator == NULL) {
		kfree(supply_name);
1799
		return NULL;
1800
	}
1801 1802

	regulator->rdev = rdev;
1803 1804 1805
	regulator->supply_name = supply_name;

	regulator_lock(rdev);
1806
	list_add(&regulator->list, &rdev->consumer_list);
1807
	regulator_unlock(rdev);
1808 1809

	if (dev) {
1810 1811
		regulator->dev = dev;

1812
		/* Add a link to the device sysfs entry */
1813
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1814
					       supply_name);
1815
		if (err) {
1816 1817
			rdev_dbg(rdev, "could not add device link %s: %pe\n",
				  dev->kobj.name, ERR_PTR(err));
1818
			/* non-fatal */
1819
		}
1820 1821
	}

1822 1823
	if (err != -EEXIST)
		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1824
	if (!regulator->debugfs) {
1825
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1826 1827 1828 1829
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1830
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1831
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1832
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1833 1834 1835
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1836
	}
1837

1838 1839 1840 1841 1842
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1843
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1844 1845 1846
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1847 1848 1849
	return regulator;
}

1850 1851
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1852 1853
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1854 1855 1856
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1857 1858
}

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1907 1908 1909 1910 1911
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1912
 */
1913
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1914
						  const char *supply)
1915
{
1916
	struct regulator_dev *r = NULL;
1917
	struct device_node *node;
1918 1919
	struct regulator_map *map;
	const char *devname = NULL;
1920

1921 1922
	regulator_supply_alias(&dev, &supply);

1923 1924 1925
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1926
		if (node) {
1927 1928 1929
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1930

1931
			/*
1932 1933
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1934
			 */
1935
			return ERR_PTR(-EPROBE_DEFER);
1936
		}
1937 1938 1939
	}

	/* if not found, try doing it non-dt way */
1940 1941 1942
	if (dev)
		devname = dev_name(dev);

1943
	mutex_lock(&regulator_list_mutex);
1944 1945 1946 1947 1948 1949
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1950 1951
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1952 1953
			r = map->regulator;
			break;
1954
		}
1955
	}
1956
	mutex_unlock(&regulator_list_mutex);
1957

1958 1959 1960 1961
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1962 1963 1964 1965
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1966 1967
}

1968 1969 1970 1971
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
1972
	int ret = 0;
1973

1974
	/* No supply to resolve? */
1975 1976 1977
	if (!rdev->supply_name)
		return 0;

1978
	/* Supply already resolved? (fast-path without locking contention) */
1979 1980 1981
	if (rdev->supply)
		return 0;

1982 1983 1984 1985
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1986 1987
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
1988
			goto out;
1989

1990 1991
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1992
			get_device(&r->dev);
1993 1994 1995
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
1996 1997
			ret = -EPROBE_DEFER;
			goto out;
1998
		}
1999 2000
	}

2001 2002 2003
	if (r == rdev) {
		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
			rdev->desc->name, rdev->supply_name);
2004 2005 2006 2007
		if (!have_full_constraints()) {
			ret = -EINVAL;
			goto out;
		}
2008 2009
		r = dummy_regulator_rdev;
		get_device(&r->dev);
2010 2011
	}

2012 2013 2014 2015 2016 2017 2018 2019 2020
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
2021 2022
			ret = -EPROBE_DEFER;
			goto out;
2023 2024 2025
		}
	}

2026 2027
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
2028 2029
	if (ret < 0) {
		put_device(&r->dev);
2030
		goto out;
2031
	}
2032

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	/*
	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
	 * between rdev->supply null check and setting rdev->supply in
	 * set_supply() from concurrent tasks.
	 */
	regulator_lock(rdev);

	/* Supply just resolved by a concurrent task? */
	if (rdev->supply) {
		regulator_unlock(rdev);
		put_device(&r->dev);
		goto out;
	}

2047
	ret = set_supply(rdev, r);
2048
	if (ret < 0) {
2049
		regulator_unlock(rdev);
2050
		put_device(&r->dev);
2051
		goto out;
2052
	}
2053

2054 2055
	regulator_unlock(rdev);

2056 2057 2058 2059 2060 2061
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
2062
		ret = regulator_enable(rdev->supply);
2063
		if (ret < 0) {
2064
			_regulator_put(rdev->supply);
2065
			rdev->supply = NULL;
2066
			goto out;
2067
		}
2068 2069
	}

2070 2071
out:
	return ret;
2072 2073
}

2074
/* Internal regulator request function */
2075 2076
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
2077 2078
{
	struct regulator_dev *rdev;
2079
	struct regulator *regulator;
2080
	struct device_link *link;
2081
	int ret;
2082

2083 2084 2085 2086 2087
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

2088
	if (id == NULL) {
2089
		pr_err("get() with no identifier\n");
2090
		return ERR_PTR(-EINVAL);
2091 2092
	}

2093
	rdev = regulator_dev_lookup(dev, id);
2094 2095
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
2096

2097 2098 2099 2100 2101 2102
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
2103

2104 2105 2106 2107 2108
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
2109

2110 2111 2112 2113 2114 2115 2116
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
2117
			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2118 2119 2120
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
2121

2122 2123 2124
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
2125
			fallthrough;
2126

2127 2128 2129
		default:
			return ERR_PTR(-ENODEV);
		}
2130 2131
	}

2132 2133
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
2134 2135
		put_device(&rdev->dev);
		return regulator;
2136 2137
	}

2138
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2139
		regulator = ERR_PTR(-EBUSY);
2140 2141
		put_device(&rdev->dev);
		return regulator;
2142 2143
	}

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

2154 2155 2156
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
2157 2158
		put_device(&rdev->dev);
		return regulator;
2159 2160
	}

2161
	if (!try_module_get(rdev->owner)) {
2162
		regulator = ERR_PTR(-EPROBE_DEFER);
2163 2164 2165
		put_device(&rdev->dev);
		return regulator;
	}
2166

2167 2168 2169 2170
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
2171
		put_device(&rdev->dev);
2172
		return regulator;
2173 2174
	}

2175
	rdev->open_count++;
2176
	if (get_type == EXCLUSIVE_GET) {
2177 2178 2179
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
2180
		if (ret > 0) {
2181
			rdev->use_count = 1;
2182 2183
			regulator->enable_count = 1;
		} else {
2184
			rdev->use_count = 0;
2185 2186
			regulator->enable_count = 0;
		}
2187 2188
	}

2189 2190 2191
	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
	if (!IS_ERR_OR_NULL(link))
		regulator->device_link = true;
2192

2193 2194
	return regulator;
}
2195 2196 2197 2198 2199 2200 2201 2202 2203

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
2204
 * Use of supply names configured via set_consumer_device_supply() is
2205 2206 2207 2208 2209 2210
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
2211
	return _regulator_get(dev, id, NORMAL_GET);
2212
}
2213 2214
EXPORT_SYMBOL_GPL(regulator_get);

2215 2216 2217 2218 2219 2220 2221
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
2222 2223 2224
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
2225 2226 2227 2228 2229 2230
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
2231
 * Use of supply names configured via set_consumer_device_supply() is
2232 2233 2234 2235 2236 2237
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2238
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2239 2240 2241
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2242 2243 2244 2245 2246 2247
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2248
 * or IS_ERR() condition containing errno.
2249 2250 2251 2252 2253 2254 2255 2256
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
2257
 * Use of supply names configured via set_consumer_device_supply() is
2258 2259 2260 2261 2262 2263
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2264
	return _regulator_get(dev, id, OPTIONAL_GET);
2265 2266 2267
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2268
static void destroy_regulator(struct regulator *regulator)
2269
{
2270
	struct regulator_dev *rdev = regulator->rdev;
2271

2272 2273
	debugfs_remove_recursive(regulator->debugfs);

2274
	if (regulator->dev) {
2275 2276
		if (regulator->device_link)
			device_link_remove(regulator->dev, &rdev->dev);
2277 2278

		/* remove any sysfs entries */
2279
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2280 2281
	}

2282
	regulator_lock(rdev);
2283 2284
	list_del(&regulator->list);

2285 2286
	rdev->open_count--;
	rdev->exclusive = 0;
2287
	regulator_unlock(rdev);
2288

2289
	kfree_const(regulator->supply_name);
2290
	kfree(regulator);
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
}

/* regulator_list_mutex lock held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (IS_ERR_OR_NULL(regulator))
		return;

	lockdep_assert_held_once(&regulator_list_mutex);

	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

	rdev = regulator->rdev;

	destroy_regulator(regulator);
2309

2310
	module_put(rdev->owner);
2311
	put_device(&rdev->dev);
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2326 2327 2328 2329
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2407 2408
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2409
					 struct device *alias_dev,
2410
					 const char *const *alias_id,
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2448
					    const char *const *id,
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2459 2460 2461 2462
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
2463
	struct regulator_enable_gpio *pin, *new_pin;
2464
	struct gpio_desc *gpiod;
2465

2466
	gpiod = config->ena_gpiod;
2467 2468 2469
	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);

	mutex_lock(&regulator_list_mutex);
2470

2471
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2472
		if (pin->gpiod == gpiod) {
2473
			rdev_dbg(rdev, "GPIO is already used\n");
2474 2475 2476 2477
			goto update_ena_gpio_to_rdev;
		}
	}

2478 2479
	if (new_pin == NULL) {
		mutex_unlock(&regulator_list_mutex);
2480
		return -ENOMEM;
2481 2482 2483 2484
	}

	pin = new_pin;
	new_pin = NULL;
2485

2486
	pin->gpiod = gpiod;
2487 2488 2489 2490 2491
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
2492 2493 2494 2495

	mutex_unlock(&regulator_list_mutex);
	kfree(new_pin);

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
		if (pin != rdev->ena_pin)
			continue;

		if (--pin->request_count)
			break;

		gpiod_put(pin->gpiod);
		list_del(&pin->list);
		kfree(pin);
		break;
2518
	}
2519 2520

	rdev->ena_pin = NULL;
2521 2522
}

2523
/**
2524 2525 2526 2527
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2541
			gpiod_set_value_cansleep(pin->gpiod, 1);
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2552
			gpiod_set_value_cansleep(pin->gpiod, 0);
2553 2554 2555 2556 2557 2558 2559
			pin->enable_count = 0;
		}
	}

	return 0;
}

2560
/**
2561
 * _regulator_delay_helper - a delay helper function
2562 2563 2564 2565
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2566
 *     Documentation/timers/timers-howto.rst
2567
 *
2568
 * The assumption here is that these regulator operations will never used in
2569 2570
 * atomic context and therefore sleeping functions can be used.
 */
2571
static void _regulator_delay_helper(unsigned int delay)
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
/**
 * _regulator_check_status_enabled
 *
 * A helper function to check if the regulator status can be interpreted
 * as 'regulator is enabled'.
 * @rdev: the regulator device to check
 *
 * Return:
 * * 1			- if status shows regulator is in enabled state
 * * 0			- if not enabled state
 * * Error Value	- as received from ops->get_status()
 */
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
{
	int ret = rdev->desc->ops->get_status(rdev);

	if (ret < 0) {
		rdev_info(rdev, "get_status returned error: %d\n", ret);
		return ret;
	}

	switch (ret) {
	case REGULATOR_STATUS_OFF:
	case REGULATOR_STATUS_ERROR:
	case REGULATOR_STATUS_UNDEFINED:
		return 0;
	default:
		return 1;
	}
}

2630 2631 2632 2633 2634 2635 2636 2637 2638
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
2639
		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2640 2641 2642 2643 2644
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2645
	if (rdev->desc->off_on_delay && rdev->last_off) {
2646 2647 2648
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
2649 2650 2651 2652
		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
		s64 remaining = ktime_us_delta(end, ktime_get());

		if (remaining > 0)
2653
			_regulator_delay_helper(remaining);
2654 2655
	}

2656
	if (rdev->ena_pin) {
2657 2658 2659 2660 2661 2662
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2663
	} else if (rdev->desc->ops->enable) {
2664 2665 2666 2667 2668 2669 2670 2671 2672
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
2673 2674
	 * together.
	 */
2675 2676
	trace_regulator_enable_delay(rdev_get_name(rdev));

2677 2678 2679
	/* If poll_enabled_time is set, poll upto the delay calculated
	 * above, delaying poll_enabled_time uS to check if the regulator
	 * actually got enabled.
2680 2681
	 * If the regulator isn't enabled after our delay helper has expired,
	 * return -ETIMEDOUT.
2682 2683 2684 2685 2686
	 */
	if (rdev->desc->poll_enabled_time) {
		unsigned int time_remaining = delay;

		while (time_remaining > 0) {
2687
			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705

			if (rdev->desc->ops->get_status) {
				ret = _regulator_check_status_enabled(rdev);
				if (ret < 0)
					return ret;
				else if (ret)
					break;
			} else if (rdev->desc->ops->is_enabled(rdev))
				break;

			time_remaining -= rdev->desc->poll_enabled_time;
		}

		if (time_remaining <= 0) {
			rdev_err(rdev, "Enabled check timed out\n");
			return -ETIMEDOUT;
		}
	} else {
2706
		_regulator_delay_helper(delay);
2707
	}
2708 2709 2710 2711 2712 2713

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2773
/* locks held by regulator_enable() */
2774
static int _regulator_enable(struct regulator *regulator)
2775
{
2776
	struct regulator_dev *rdev = regulator->rdev;
2777
	int ret;
2778

2779 2780
	lockdep_assert_held_once(&rdev->mutex.base);

2781
	if (rdev->use_count == 0 && rdev->supply) {
2782
		ret = _regulator_enable(rdev->supply);
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2793

2794 2795 2796
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2797

2798
	if (rdev->use_count == 0) {
2799 2800 2801 2802
		/*
		 * The regulator may already be enabled if it's not switchable
		 * or was left on
		 */
2803 2804
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2805
			if (!regulator_ops_is_valid(rdev,
2806 2807
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2808
				goto err_consumer_disable;
2809
			}
2810

2811
			ret = _regulator_do_enable(rdev);
2812
			if (ret < 0)
2813
				goto err_consumer_disable;
2814

2815 2816
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2817
		} else if (ret < 0) {
2818
			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2819
			goto err_consumer_disable;
2820
		}
2821
		/* Fallthrough on positive return values - already enabled */
2822 2823
	}

2824 2825 2826
	rdev->use_count++;

	return 0;
2827

2828 2829 2830
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2831
err_disable_supply:
2832
	if (rdev->use_count == 0 && rdev->supply)
2833
		_regulator_disable(rdev->supply);
2834 2835

	return ret;
2836 2837 2838 2839 2840 2841
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2842 2843 2844 2845
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2846
 * NOTE: the output value can be set by other drivers, boot loader or may be
2847
 * hardwired in the regulator.
2848 2849 2850
 */
int regulator_enable(struct regulator *regulator)
{
2851
	struct regulator_dev *rdev = regulator->rdev;
2852
	struct ww_acquire_ctx ww_ctx;
2853
	int ret;
2854

2855
	regulator_lock_dependent(rdev, &ww_ctx);
2856
	ret = _regulator_enable(regulator);
2857
	regulator_unlock_dependent(rdev, &ww_ctx);
2858

2859 2860 2861 2862
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2863 2864 2865 2866 2867 2868
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2869
	if (rdev->ena_pin) {
2870 2871 2872 2873 2874 2875
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2876 2877 2878 2879 2880 2881 2882

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2883
	if (rdev->desc->off_on_delay)
2884
		rdev->last_off = ktime_get();
2885

2886 2887 2888 2889 2890
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2891
/* locks held by regulator_disable() */
2892
static int _regulator_disable(struct regulator *regulator)
2893
{
2894
	struct regulator_dev *rdev = regulator->rdev;
2895 2896
	int ret = 0;

2897
	lockdep_assert_held_once(&rdev->mutex.base);
2898

2899
	if (WARN(rdev->use_count <= 0,
2900
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2901 2902
		return -EIO;

2903
	/* are we the last user and permitted to disable ? */
2904 2905
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2906 2907

		/* we are last user */
2908
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2909 2910 2911 2912 2913 2914
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2915
			ret = _regulator_do_disable(rdev);
2916
			if (ret < 0) {
2917
				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2918 2919 2920
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2921 2922
				return ret;
			}
2923 2924
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2925 2926 2927 2928 2929 2930
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2931

2932 2933 2934
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2935 2936 2937
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2938
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2939
		ret = _regulator_disable(rdev->supply);
2940

2941 2942 2943 2944 2945 2946 2947
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2948 2949 2950
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2951
 *
2952
 * NOTE: this will only disable the regulator output if no other consumer
2953 2954
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2955 2956 2957
 */
int regulator_disable(struct regulator *regulator)
{
2958
	struct regulator_dev *rdev = regulator->rdev;
2959
	struct ww_acquire_ctx ww_ctx;
2960
	int ret;
2961

2962
	regulator_lock_dependent(rdev, &ww_ctx);
2963
	ret = _regulator_disable(regulator);
2964
	regulator_unlock_dependent(rdev, &ww_ctx);
2965

2966 2967 2968 2969 2970
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2971
static int _regulator_force_disable(struct regulator_dev *rdev)
2972 2973 2974
{
	int ret = 0;

2975
	lockdep_assert_held_once(&rdev->mutex.base);
2976

2977 2978 2979 2980 2981
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2982 2983
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
2984
		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2985 2986
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2987
		return ret;
2988 2989
	}

2990 2991 2992 2993
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
3007
	struct regulator_dev *rdev = regulator->rdev;
3008
	struct ww_acquire_ctx ww_ctx;
3009 3010
	int ret;

3011
	regulator_lock_dependent(rdev, &ww_ctx);
3012

3013
	ret = _regulator_force_disable(regulator->rdev);
3014

3015 3016
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3017 3018 3019 3020 3021 3022

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

3023 3024
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
3025

3026
	regulator_unlock_dependent(rdev, &ww_ctx);
3027

3028 3029 3030 3031
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

3032 3033 3034 3035
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
3036
	struct ww_acquire_ctx ww_ctx;
3037
	int count, i, ret;
3038 3039
	struct regulator *regulator;
	int total_count = 0;
3040

3041
	regulator_lock_dependent(rdev, &ww_ctx);
3042

3043 3044 3045 3046 3047 3048 3049 3050
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
3063 3064
				rdev_err(rdev, "Deferred disable failed: %pe\n",
					 ERR_PTR(ret));
3065
		}
3066
	}
3067
	WARN_ON(!total_count);
3068

3069 3070 3071 3072
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
3073 3074 3075 3076 3077
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
3078
 * @ms: milliseconds until the regulator is disabled
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

3091 3092 3093
	if (!ms)
		return regulator_disable(regulator);

3094
	regulator_lock(rdev);
3095
	regulator->deferred_disables++;
3096 3097
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
3098
	regulator_unlock(rdev);
3099

3100
	return 0;
3101 3102 3103
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

3104 3105
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
3106
	/* A GPIO control always takes precedence */
3107
	if (rdev->ena_pin)
3108 3109
		return rdev->ena_gpio_state;

3110
	/* If we don't know then assume that the regulator is always on */
3111
	if (!rdev->desc->ops->is_enabled)
3112
		return 1;
3113

3114
	return rdev->desc->ops->is_enabled(rdev);
3115 3116
}

3117 3118
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
3129 3130
		if (selector < rdev->desc->linear_min_sel)
			return 0;
3131
		if (lock)
3132
			regulator_lock(rdev);
3133 3134
		ret = ops->list_voltage(rdev, selector);
		if (lock)
3135
			regulator_unlock(rdev);
3136
	} else if (rdev->is_switch && rdev->supply) {
3137 3138
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

3153 3154 3155 3156
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
3157 3158 3159 3160 3161 3162 3163
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
3164 3165 3166
 */
int regulator_is_enabled(struct regulator *regulator)
{
3167 3168
	int ret;

3169 3170 3171
	if (regulator->always_on)
		return 1;

3172
	regulator_lock(regulator->rdev);
3173
	ret = _regulator_is_enabled(regulator->rdev);
3174
	regulator_unlock(regulator->rdev);
3175 3176

	return ret;
3177 3178 3179
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

3192 3193 3194
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

3195
	if (!rdev->is_switch || !rdev->supply)
3196 3197 3198
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
3209
 * zero if this selector code can't be used on this system, or a
3210 3211 3212 3213
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
3214
	return _regulator_list_voltage(regulator->rdev, selector, 1);
3215 3216 3217
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
3250 3251
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3252 3253 3254 3255

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

3256 3257
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
3258

3259
	return 0;
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3277 3278
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3279 3280 3281

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
3282 3283
	if (selector < rdev->desc->linear_min_sel)
		return 0;
3284 3285 3286 3287 3288 3289 3290
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3306 3307 3308 3309 3310 3311 3312
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3313
 * Returns a boolean.
3314 3315 3316 3317
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3318
	struct regulator_dev *rdev = regulator->rdev;
3319 3320
	int i, voltages, ret;

3321
	/* If we can't change voltage check the current voltage */
3322
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3323 3324
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3325
			return min_uV <= ret && ret <= max_uV;
3326 3327 3328 3329
		else
			return ret;
	}

3330 3331 3332 3333 3334
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3335 3336
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3337
		return 0;
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3349
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3350

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3365 3366 3367 3368 3369
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3370 3371 3372
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3373 3374 3375 3376 3377 3378 3379
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3380
	data.old_uV = regulator_get_voltage_rdev(rdev);
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3404
	data.old_uV = regulator_get_voltage_rdev(rdev);
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3482 3483 3484 3485 3486 3487 3488 3489 3490
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3491 3492
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3493 3494 3495 3496 3497 3498
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3499 3500

	if (ramp_delay == 0) {
3501
		rdev_dbg(rdev, "ramp_delay not set\n");
3502 3503 3504 3505 3506 3507
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3508 3509 3510 3511
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3512
	int delay = 0;
3513
	int best_val = 0;
3514
	unsigned int selector;
3515
	int old_selector = -1;
3516
	const struct regulator_ops *ops = rdev->desc->ops;
3517
	int old_uV = regulator_get_voltage_rdev(rdev);
3518 3519 3520

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3521 3522 3523
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3524 3525 3526 3527
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3528
	if (_regulator_is_enabled(rdev) &&
3529 3530
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3531 3532 3533 3534
		if (old_selector < 0)
			return old_selector;
	}

3535
	if (ops->set_voltage) {
3536 3537
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3538 3539

		if (ret >= 0) {
3540 3541 3542
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3543
			else
3544
				best_val = regulator_get_voltage_rdev(rdev);
3545 3546
		}

3547
	} else if (ops->set_voltage_sel) {
3548
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3549
		if (ret >= 0) {
3550
			best_val = ops->list_voltage(rdev, ret);
3551 3552
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3553 3554
				if (old_selector == selector)
					ret = 0;
3555 3556 3557
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3558
				else
3559 3560
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3561 3562 3563
			} else {
				ret = -EINVAL;
			}
3564
		}
3565 3566 3567
	} else {
		ret = -EINVAL;
	}
3568

3569 3570
	if (ret)
		goto out;
3571

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3589
		}
3590
	}
3591

3592
	if (delay < 0) {
3593
		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3594
		delay = 0;
3595 3596
	}

3597
	/* Insert any necessary delays */
3598
	_regulator_delay_helper(delay);
3599

3600
	if (best_val >= 0) {
3601 3602
		unsigned long data = best_val;

3603
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3604 3605
				     (void *)data);
	}
3606

3607
out:
3608
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3609 3610 3611 3612

	return ret;
}

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3639
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3640 3641
					  int min_uV, int max_uV,
					  suspend_state_t state)
3642 3643
{
	struct regulator_dev *rdev = regulator->rdev;
3644
	struct regulator_voltage *voltage = &regulator->voltage[state];
3645
	int ret = 0;
3646
	int old_min_uV, old_max_uV;
3647
	int current_uV;
3648

3649 3650 3651 3652
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3653
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3654 3655
		goto out;

3656
	/* If we're trying to set a range that overlaps the current voltage,
3657
	 * return successfully even though the regulator does not support
3658 3659
	 * changing the voltage.
	 */
3660
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3661
		current_uV = regulator_get_voltage_rdev(rdev);
3662
		if (min_uV <= current_uV && current_uV <= max_uV) {
3663 3664
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3665 3666 3667 3668
			goto out;
		}
	}

3669
	/* sanity check */
3670 3671
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3672 3673 3674 3675 3676 3677 3678 3679
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3680

3681
	/* restore original values in case of error */
3682 3683 3684 3685
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3686

3687 3688
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3689 3690 3691 3692
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3693

3694 3695 3696 3697
out:
	return ret;
}

3698 3699
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3700 3701 3702 3703 3704
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3705 3706 3707
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3708 3709
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3710 3711 3712 3713 3714 3715
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3716
			goto out;
3717 3718
		}

M
Mark Brown 已提交
3719
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3720 3721
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3722
			goto out;
3723 3724 3725 3726
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3727
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3728 3729
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3730
			goto out;
3731 3732 3733 3734 3735 3736 3737
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3738
				best_supply_uV, INT_MAX, state);
3739
		if (ret) {
3740 3741
			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
				ERR_PTR(ret));
3742
			goto out;
3743 3744 3745
		}
	}

3746 3747 3748 3749 3750
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3751
	if (ret < 0)
3752
		goto out;
3753

3754 3755
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3756
				best_supply_uV, INT_MAX, state);
3757
		if (ret)
3758 3759
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
				 ERR_PTR(ret));
3760 3761 3762 3763
		/* No need to fail here */
		ret = 0;
	}

3764
out:
3765
	return ret;
3766
}
3767
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3768

3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3779
		*current_uV = regulator_get_voltage_rdev(rdev);
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3811
	int i, ret, max_spread;
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3845
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3856

3857 3858 3859 3860 3861 3862 3863 3864
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3865 3866
	max_spread = constraints->max_spread[0];

3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3884
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3922 3923 3924 3925
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3926
			ret = regulator_get_voltage_rdev(rdev);
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

3942 3943
int regulator_do_balance_voltage(struct regulator_dev *rdev,
				 suspend_state_t state, bool skip_coupled)
3944 3945 3946 3947 3948 3949
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3950 3951
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3952 3953

	c_rdevs = c_desc->coupled_rdevs;
3954
	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3981
			if (test_bit(i, &c_rdev_done))
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
4009

4010 4011
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
4012

4013 4014 4015
		if (ret < 0)
			goto out;

4016 4017
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
4018 4019 4020 4021

	} while (n_coupled > 1);

out:
4022 4023 4024
	return ret;
}

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_coupler *coupler = c_desc->coupler;
	bool skip_coupled = false;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		skip_coupled = true;

	if (c_desc->n_resolved < c_desc->n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);

	return regulator_do_balance_voltage(rdev, state, skip_coupled);
}

4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
4071 4072
	struct ww_acquire_ctx ww_ctx;
	int ret;
4073

4074
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4075

4076 4077
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
4078

4079
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4080

4081 4082 4083 4084
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

4097
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
4151 4152
	struct ww_acquire_ctx ww_ctx;
	int ret;
4153 4154 4155 4156 4157

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

4158
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4159 4160 4161 4162

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

4163
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4164 4165 4166 4167 4168

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
4182 4183
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
4184 4185 4186 4187 4188
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

4189 4190 4191 4192 4193
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

4194
	/* Currently requires operations to do this */
4195
	if (!ops->list_voltage || !rdev->desc->n_voltages)
4196 4197 4198 4199
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
4200 4201 4202
		if (i < rdev->desc->linear_min_sel)
			continue;

4203 4204 4205
		if (old_sel >= 0 && new_sel >= 0)
			break;

4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

4224
/**
4225 4226
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
4227 4228 4229 4230 4231 4232
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
4233
 * Drivers providing ramp_delay in regulation_constraints can use this as their
4234
 * set_voltage_time_sel() operation.
4235 4236 4237 4238 4239
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
4240
	int old_volt, new_volt;
4241

4242 4243 4244
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
4245

4246 4247 4248
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

4249 4250 4251 4252 4253
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4254
}
4255
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4256

4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
{
	int ret;

	regulator_lock(rdev);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* balance only, if regulator is coupled */
	if (rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
	else
		ret = -EOPNOTSUPP;

out:
	regulator_unlock(rdev);
	return ret;
}

4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
4291
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4292 4293
	int ret, min_uV, max_uV;

4294 4295 4296
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
		return 0;

4297
	regulator_lock(rdev);
4298 4299 4300 4301 4302 4303 4304 4305

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
4306
	if (!voltage->min_uV && !voltage->max_uV) {
4307 4308 4309 4310
		ret = -EINVAL;
		goto out;
	}

4311 4312
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
4313 4314 4315 4316 4317 4318

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

4319
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4320 4321 4322
	if (ret < 0)
		goto out;

4323 4324 4325 4326 4327
	/* balance only, if regulator is coupled */
	if (rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
	else
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4328 4329

out:
4330
	regulator_unlock(rdev);
4331 4332 4333 4334
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

4335
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4336
{
4337
	int sel, ret;
4338 4339 4340 4341 4342 4343 4344 4345
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
4346 4347 4348 4349 4350
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4351

4352
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4353 4354
		}
	}
4355 4356 4357 4358 4359

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4360
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4361
	} else if (rdev->desc->ops->get_voltage) {
4362
		ret = rdev->desc->ops->get_voltage(rdev);
4363 4364
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4365 4366
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4367
	} else if (rdev->supply) {
4368
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4369 4370
	} else if (rdev->supply_name) {
		return -EPROBE_DEFER;
4371
	} else {
4372
		return -EINVAL;
4373
	}
4374

4375 4376
	if (ret < 0)
		return ret;
4377
	return ret - rdev->constraints->uV_offset;
4378
}
4379
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4392
	struct ww_acquire_ctx ww_ctx;
4393 4394
	int ret;

4395
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4396
	ret = regulator_get_voltage_rdev(regulator->rdev);
4397
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4398 4399 4400 4401 4402 4403 4404 4405

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4406
 * @min_uA: Minimum supported current in uA
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4425
	regulator_lock(rdev);
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4440
	regulator_unlock(rdev);
4441 4442 4443 4444
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4445 4446 4447 4448 4449 4450 4451 4452 4453
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4454 4455 4456 4457
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4458
	regulator_lock(rdev);
4459
	ret = _regulator_get_current_limit_unlocked(rdev);
4460
	regulator_unlock(rdev);
4461

4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4495
	int regulator_curr_mode;
4496

4497
	regulator_lock(rdev);
4498 4499 4500 4501 4502 4503 4504

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4505 4506 4507 4508 4509 4510 4511 4512 4513
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4514
	/* constraints check */
4515
	ret = regulator_mode_constrain(rdev, &mode);
4516 4517 4518 4519 4520
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4521
	regulator_unlock(rdev);
4522 4523 4524 4525
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4526 4527 4528 4529 4530 4531 4532 4533 4534
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4535 4536 4537 4538
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4539
	regulator_lock(rdev);
4540
	ret = _regulator_get_mode_unlocked(rdev);
4541
	regulator_unlock(rdev);
4542

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
{
	int ret = 0;

	if (rdev->use_cached_err) {
		spin_lock(&rdev->err_lock);
		ret = rdev->cached_err;
		spin_unlock(&rdev->err_lock);
	}
	return ret;
}

4570 4571 4572
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
4573
	int cached_flags, ret = 0;
4574

4575
	regulator_lock(rdev);
4576

4577 4578 4579 4580 4581
	cached_flags = rdev_get_cached_err_flags(rdev);

	if (rdev->desc->ops->get_error_flags)
		ret = rdev->desc->ops->get_error_flags(rdev, flags);
	else if (!rdev->use_cached_err)
4582 4583
		ret = -EINVAL;

4584 4585
	*flags |= cached_flags;

4586
	regulator_unlock(rdev);
4587

4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4605
/**
4606
 * regulator_set_load - set regulator load
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4629 4630 4631 4632 4633 4634 4635 4636
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4637
 * On error a negative errno is returned.
4638
 */
4639
int regulator_set_load(struct regulator *regulator, int uA_load)
4640 4641
{
	struct regulator_dev *rdev = regulator->rdev;
4642 4643
	int old_uA_load;
	int ret = 0;
4644

4645
	regulator_lock(rdev);
4646
	old_uA_load = regulator->uA_load;
4647
	regulator->uA_load = uA_load;
4648 4649 4650 4651 4652
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4653
	regulator_unlock(rdev);
4654

4655 4656
	return ret;
}
4657
EXPORT_SYMBOL_GPL(regulator_set_load);
4658

4659 4660 4661 4662
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4663
 * @enable: enable or disable bypass mode
4664 4665 4666 4667 4668 4669 4670 4671 4672
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
4673
	const char *name = rdev_get_name(rdev);
4674 4675 4676 4677 4678
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4679
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4680 4681
		return 0;

4682
	regulator_lock(rdev);
4683 4684 4685 4686 4687

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
4688 4689
			trace_regulator_bypass_enable(name);

4690 4691 4692
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
4693 4694
			else
				trace_regulator_bypass_enable_complete(name);
4695 4696 4697 4698 4699 4700
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
4701 4702
			trace_regulator_bypass_disable(name);

4703 4704 4705
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
4706 4707
			else
				trace_regulator_bypass_disable_complete(name);
4708 4709 4710 4711 4712 4713
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4714
	regulator_unlock(rdev);
4715 4716 4717 4718 4719

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4720 4721 4722
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4723
 * @nb: notifier block
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4738
 * @nb: notifier block
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4750 4751 4752
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4753
static int _notifier_call_chain(struct regulator_dev *rdev,
4754 4755 4756
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4757
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4784 4785
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4786
		if (IS_ERR(consumers[i].consumer)) {
4787 4788 4789
			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
					    "Failed to get supply '%s'",
					    consumers[i].supply);
4790
			consumers[i].consumer = NULL;
4791 4792
			goto err;
		}
4793 4794 4795 4796 4797 4798 4799 4800 4801

		if (consumers[i].init_load_uA > 0) {
			ret = regulator_set_load(consumers[i].consumer,
						 consumers[i].init_load_uA);
			if (ret) {
				i++;
				goto err;
			}
		}
4802 4803 4804 4805 4806
	}

	return 0;

err:
4807
	while (--i >= 0)
4808 4809 4810 4811 4812 4813
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4814 4815 4816 4817 4818 4819 4820
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4836
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4837
	int i;
4838
	int ret = 0;
4839

4840
	for (i = 0; i < num_consumers; i++) {
4841 4842
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4843
	}
4844 4845 4846 4847

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4848
	for (i = 0; i < num_consumers; i++) {
4849 4850
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4851
			goto err;
4852
		}
4853 4854 4855 4856 4857
	}

	return 0;

err:
4858 4859
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
4860 4861
			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
			       ERR_PTR(consumers[i].ret));
4862 4863 4864
		else
			regulator_disable(consumers[i].consumer);
	}
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4878 4879
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4880 4881 4882 4883 4884 4885
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4886
	int ret, r;
4887

4888
	for (i = num_consumers - 1; i >= 0; --i) {
4889 4890 4891 4892 4893 4894 4895 4896
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4897
	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4898 4899 4900
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4901 4902
			pr_err("Failed to re-enable %s: %pe\n",
			       consumers[i].supply, ERR_PTR(r));
4903
	}
4904 4905 4906 4907 4908

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4927
	int ret = 0;
4928

4929
	for (i = 0; i < num_consumers; i++) {
4930 4931 4932
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4933 4934
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4935 4936 4937 4938 4939 4940 4941
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4965
 * @rdev: regulator source
4966
 * @event: notifier block
4967
 * @data: callback-specific data.
4968 4969
 *
 * Called by regulator drivers to notify clients a regulator event has
4970
 * occurred.
4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4997
	case REGULATOR_MODE_STANDBY:
4998 4999
		return REGULATOR_STATUS_STANDBY;
	default:
5000
		return REGULATOR_STATUS_UNDEFINED;
5001 5002 5003 5004
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
5020 5021 5022 5023 5024 5025 5026 5027 5028
	&dev_attr_under_voltage.attr,
	&dev_attr_over_current.attr,
	&dev_attr_regulation_out.attr,
	&dev_attr_fail.attr,
	&dev_attr_over_temp.attr,
	&dev_attr_under_voltage_warn.attr,
	&dev_attr_over_current_warn.attr,
	&dev_attr_over_voltage_warn.attr,
	&dev_attr_over_temp_warn.attr,
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

5041 5042 5043 5044
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
5045 5046
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
5047
{
5048
	struct device *dev = kobj_to_dev(kobj);
5049
	struct regulator_dev *rdev = dev_to_rdev(dev);
5050
	const struct regulator_ops *ops = rdev->desc->ops;
5051 5052 5053 5054 5055 5056 5057
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
5058 5059

	/* some attributes need specific methods to be displayed */
5060 5061 5062 5063 5064 5065 5066
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
5067
	}
5068

5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
	if (attr == &dev_attr_under_voltage.attr ||
	    attr == &dev_attr_over_current.attr ||
	    attr == &dev_attr_regulation_out.attr ||
	    attr == &dev_attr_fail.attr ||
	    attr == &dev_attr_over_temp.attr ||
	    attr == &dev_attr_under_voltage_warn.attr ||
	    attr == &dev_attr_over_current_warn.attr ||
	    attr == &dev_attr_over_voltage_warn.attr ||
	    attr == &dev_attr_over_temp_warn.attr)
		return ops->get_error_flags ? mode : 0;

5095
	/* constraints need specific supporting methods */
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
5131

5132 5133 5134
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
5135 5136 5137

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
5138
	kfree(rdev);
5139 5140
}

5141 5142
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5155
	if (!rdev->debugfs) {
5156 5157 5158 5159 5160 5161 5162 5163
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
5164 5165
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
5166 5167
}

5168 5169
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
5170 5171 5172 5173 5174 5175
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
5176 5177
}

5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

5229
static void regulator_resolve_coupling(struct regulator_dev *rdev)
5230
{
5231
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

5244 5245
		if (!c_rdev)
			continue;
5246

5247 5248 5249 5250 5251 5252
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

5253 5254
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
5255

5256 5257
		regulator_resolve_coupling(c_rdev);
	}
5258 5259
}

5260
static void regulator_remove_coupling(struct regulator_dev *rdev)
5261
{
5262
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5263 5264 5265 5266
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
5267
	int err;
5268

5269
	n_coupled = c_desc->n_coupled;
5270

5271 5272
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
5273

5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
5297 5298 5299 5300

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
5301 5302
			rdev_err(rdev, "failed to detach from coupler: %pe\n",
				 ERR_PTR(err));
5303 5304 5305 5306
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
5307 5308
}

5309
static int regulator_init_coupling(struct regulator_dev *rdev)
5310
{
5311
	struct regulator_dev **coupled;
5312
	int err, n_phandles;
5313 5314 5315 5316 5317 5318

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

5319 5320
	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
	if (!coupled)
5321
		return -ENOMEM;
5322

5323 5324
	rdev->coupling_desc.coupled_rdevs = coupled;

5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

5337
	if (!of_check_coupling_data(rdev))
5338 5339
		return -EPERM;

5340
	mutex_lock(&regulator_list_mutex);
5341
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5342 5343
	mutex_unlock(&regulator_list_mutex);

5344 5345
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
5346
		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5347
		return err;
5348 5349
	}

5350 5351 5352 5353 5354 5355 5356 5357 5358
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5359
		return -EPERM;
5360
	}
5361

5362 5363 5364 5365 5366 5367
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

5368 5369 5370
	return 0;
}

5371 5372 5373 5374
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

5375 5376
/**
 * regulator_register - register regulator
5377
 * @regulator_desc: regulator to register
5378
 * @cfg: runtime configuration for regulator
5379 5380
 *
 * Called by regulator drivers to register a regulator.
5381 5382
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
5383
 */
5384 5385
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
5386
		   const struct regulator_config *cfg)
5387
{
5388
	const struct regulator_init_data *init_data;
5389
	struct regulator_config *config = NULL;
5390
	static atomic_t regulator_no = ATOMIC_INIT(-1);
5391
	struct regulator_dev *rdev;
5392 5393
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5394
	struct device *dev;
5395
	int ret, i;
5396

5397
	if (cfg == NULL)
5398
		return ERR_PTR(-EINVAL);
5399 5400 5401 5402 5403 5404
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5405

5406
	dev = cfg->dev;
5407
	WARN_ON(!dev);
5408

5409 5410 5411 5412
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5413

5414
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5415 5416 5417 5418
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5419

5420 5421 5422
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5423 5424
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5425 5426 5427 5428

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5429 5430
		ret = -EINVAL;
		goto rinse;
5431
	}
5432 5433
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5434 5435
		ret = -EINVAL;
		goto rinse;
5436
	}
5437

5438
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5439 5440 5441 5442
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5443
	device_initialize(&rdev->dev);
5444
	spin_lock_init(&rdev->err_lock);
5445

5446 5447 5448 5449 5450 5451
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
5452
		ret = -ENOMEM;
5453
		goto clean;
5454 5455
	}

5456
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5457
					       &rdev->dev.of_node);
5458 5459 5460 5461 5462 5463 5464 5465

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		ret = -EPROBE_DEFER;
5466
		goto clean;
5467 5468
	}

5469 5470 5471 5472 5473
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5474
	 * a descriptor, we definitely got one from parsing the device
5475 5476 5477 5478
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5479 5480 5481 5482 5483
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5484
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5485
	rdev->reg_data = config->driver_data;
5486 5487
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5488 5489
	if (config->regmap)
		rdev->regmap = config->regmap;
5490
	else if (dev_get_regmap(dev, NULL))
5491
		rdev->regmap = dev_get_regmap(dev, NULL);
5492 5493
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5494 5495 5496
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5497
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5498

5499
	/* preform any regulator specific init */
5500
	if (init_data && init_data->regulator_init) {
5501
		ret = init_data->regulator_init(rdev->reg_data);
5502 5503
		if (ret < 0)
			goto clean;
5504 5505
	}

5506
	if (config->ena_gpiod) {
5507 5508
		ret = regulator_ena_gpio_request(rdev, config);
		if (ret != 0) {
5509 5510
			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
				 ERR_PTR(ret));
5511
			goto clean;
5512
		}
5513 5514 5515
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5516 5517
	}

5518
	/* register with sysfs */
5519
	rdev->dev.class = &regulator_class;
5520
	rdev->dev.parent = dev;
5521
	dev_set_name(&rdev->dev, "regulator.%lu",
5522
		    (unsigned long) atomic_inc_return(&regulator_no));
5523
	dev_set_drvdata(&rdev->dev, rdev);
5524

5525
	/* set regulator constraints */
5526
	if (init_data)
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536
		rdev->constraints = kmemdup(&init_data->constraints,
					    sizeof(*rdev->constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
					    GFP_KERNEL);
	if (!rdev->constraints) {
		ret = -ENOMEM;
		goto wash;
	}
5537 5538

	if (init_data && init_data->supply_regulator)
5539
		rdev->supply_name = init_data->supply_regulator;
5540
	else if (regulator_desc->supply_name)
5541
		rdev->supply_name = regulator_desc->supply_name;
5542

5543
	ret = set_machine_constraints(rdev);
5544 5545
	if (ret == -EPROBE_DEFER) {
		/* Regulator might be in bypass mode and so needs its supply
5546 5547
		 * to set the constraints
		 */
5548 5549
		/* FIXME: this currently triggers a chicken-and-egg problem
		 * when creating -SUPPLY symlink in sysfs to a regulator
5550 5551
		 * that is just being created
		 */
5552 5553
		rdev_dbg(rdev, "will resolve supply early: %s\n",
			 rdev->supply_name);
5554 5555
		ret = regulator_resolve_supply(rdev);
		if (!ret)
5556
			ret = set_machine_constraints(rdev);
5557 5558 5559 5560
		else
			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
				 ERR_PTR(ret));
	}
5561 5562 5563
	if (ret < 0)
		goto wash;

5564 5565
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5566 5567
		goto wash;

5568
	/* add consumers devices */
5569 5570 5571 5572
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5573
				init_data->consumer_supplies[i].supply);
5574 5575 5576 5577 5578
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5579
		}
5580
	}
5581

5582 5583 5584 5585 5586
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5587 5588
	ret = device_add(&rdev->dev);
	if (ret != 0)
5589 5590
		goto unset_supplies;

5591
	rdev_init_debugfs(rdev);
5592

5593 5594 5595 5596 5597
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5598 5599 5600
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5601
	kfree(config);
5602
	return rdev;
5603

5604
unset_supplies:
5605
	mutex_lock(&regulator_list_mutex);
5606
	unset_regulator_supplies(rdev);
5607
	regulator_remove_coupling(rdev);
5608
	mutex_unlock(&regulator_list_mutex);
5609
wash:
5610
	kfree(rdev->coupling_desc.coupled_rdevs);
5611
	mutex_lock(&regulator_list_mutex);
5612
	regulator_ena_gpio_free(rdev);
5613
	mutex_unlock(&regulator_list_mutex);
5614
clean:
5615 5616
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
5617
	kfree(config);
5618
	put_device(&rdev->dev);
5619 5620 5621
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5622
	return ERR_PTR(ret);
5623 5624 5625 5626 5627
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5628
 * @rdev: regulator to unregister
5629 5630 5631 5632 5633 5634 5635 5636
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5637 5638 5639
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5640
		regulator_put(rdev->supply);
5641
	}
5642

5643 5644
	flush_work(&rdev->disable_work.work);

5645
	mutex_lock(&regulator_list_mutex);
5646

5647
	debugfs_remove_recursive(rdev->debugfs);
5648
	WARN_ON(rdev->open_count);
5649
	regulator_remove_coupling(rdev);
5650
	unset_regulator_supplies(rdev);
5651
	list_del(&rdev->list);
5652
	regulator_ena_gpio_free(rdev);
5653
	device_unregister(&rdev->dev);
5654 5655

	mutex_unlock(&regulator_list_mutex);
5656 5657 5658
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5659
#ifdef CONFIG_SUSPEND
5660
/**
5661
 * regulator_suspend - prepare regulators for system wide suspend
5662
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5663 5664 5665
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5666
static int regulator_suspend(struct device *dev)
5667
{
5668
	struct regulator_dev *rdev = dev_to_rdev(dev);
5669
	suspend_state_t state = pm_suspend_target_state;
5670
	int ret;
5671 5672 5673 5674 5675
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev, state);
	if (!rstate)
		return 0;
5676 5677

	regulator_lock(rdev);
5678
	ret = __suspend_set_state(rdev, rstate);
5679
	regulator_unlock(rdev);
5680

5681
	return ret;
5682
}
5683

5684
static int regulator_resume(struct device *dev)
5685
{
5686
	suspend_state_t state = pm_suspend_target_state;
5687
	struct regulator_dev *rdev = dev_to_rdev(dev);
5688
	struct regulator_state *rstate;
5689
	int ret = 0;
5690

5691
	rstate = regulator_get_suspend_state(rdev, state);
5692
	if (rstate == NULL)
5693
		return 0;
5694

5695 5696 5697 5698
	/* Avoid grabbing the lock if we don't need to */
	if (!rdev->desc->ops->resume)
		return 0;

5699
	regulator_lock(rdev);
5700

5701 5702
	if (rstate->enabled == ENABLE_IN_SUSPEND ||
	    rstate->enabled == DISABLE_IN_SUSPEND)
5703
		ret = rdev->desc->ops->resume(rdev);
5704

5705
	regulator_unlock(rdev);
5706

5707
	return ret;
5708
}
5709 5710
#else /* !CONFIG_SUSPEND */

5711 5712
#define regulator_suspend	NULL
#define regulator_resume	NULL
5713 5714 5715 5716 5717

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5718 5719
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5720 5721 5722
};
#endif

5723
struct class regulator_class = {
5724 5725 5726 5727 5728 5729 5730
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5748 5749
/**
 * rdev_get_drvdata - get rdev regulator driver data
5750
 * @rdev: regulator
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
5786
 * rdev_get_id - get regulator ID
5787
 * @rdev: regulator
5788 5789 5790 5791 5792 5793 5794
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5795 5796 5797 5798 5799 5800
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5801 5802 5803 5804 5805 5806
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5807 5808 5809 5810 5811 5812
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5813
#ifdef CONFIG_DEBUG_FS
5814
static int supply_map_show(struct seq_file *sf, void *data)
5815 5816 5817 5818
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5819 5820 5821
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5822 5823
	}

5824 5825
	return 0;
}
5826
DEFINE_SHOW_ATTRIBUTE(supply_map);
5827

5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5850 5851 5852 5853 5854 5855
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5856
	struct summary_data summary_data;
5857
	unsigned int opmode;
5858 5859 5860 5861

	if (!rdev)
		return;

5862
	opmode = _regulator_get_mode_unlocked(rdev);
5863
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5864 5865
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5866
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5867
		   regulator_opmode_to_str(opmode));
5868

5869
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5870 5871
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5890
		if (consumer->dev && consumer->dev->class == &regulator_class)
5891 5892 5893 5894
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5895
			   30 - (level + 1) * 3,
5896
			   consumer->supply_name ? consumer->supply_name :
5897
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5898 5899 5900

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5901 5902
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5903
				   consumer->uA_load / 1000,
5904 5905
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5906 5907
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5908 5909 5910 5911 5912 5913 5914 5915
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5916 5917 5918
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5919

5920 5921
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5959 5960

	regulator_unlock(rdev);
5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5991 5992
	mutex_lock(&regulator_list_mutex);

5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
6019 6020

	mutex_unlock(&regulator_list_mutex);
6021 6022
}

6023
static int regulator_summary_show_roots(struct device *dev, void *data)
6024
{
6025 6026
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
6027

6028 6029
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
6030

6031 6032
	return 0;
}
6033

6034 6035
static int regulator_summary_show(struct seq_file *s, void *data)
{
6036 6037
	struct ww_acquire_ctx ww_ctx;

6038 6039
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6040

6041 6042
	regulator_summary_lock(&ww_ctx);

6043 6044
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
6045

6046 6047
	regulator_summary_unlock(&ww_ctx);

6048 6049
	return 0;
}
6050 6051
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
6052

6053 6054
static int __init regulator_init(void)
{
6055 6056 6057 6058
	int ret;

	ret = class_register(&regulator_class);

6059
	debugfs_root = debugfs_create_dir("regulator", NULL);
6060
	if (!debugfs_root)
6061
		pr_warn("regulator: Failed to create debugfs directory\n");
6062

6063
#ifdef CONFIG_DEBUG_FS
6064 6065
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
6066

6067
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6068
			    NULL, &regulator_summary_fops);
6069
#endif
6070 6071
	regulator_dummy_init();

6072 6073
	regulator_coupler_register(&generic_regulator_coupler);

6074
	return ret;
6075 6076 6077 6078
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
6079

6080
static int regulator_late_cleanup(struct device *dev, void *data)
6081
{
6082 6083
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct regulation_constraints *c = rdev->constraints;
6084
	int ret;
6085

6086 6087 6088
	if (c && c->always_on)
		return 0;

6089
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6090 6091
		return 0;

6092
	regulator_lock(rdev);
6093 6094 6095 6096

	if (rdev->use_count)
		goto unlock;

6097 6098
	/* If reading the status failed, assume that it's off. */
	if (_regulator_is_enabled(rdev) <= 0)
6099 6100 6101 6102
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
6103 6104
		 * wrong.
		 */
6105 6106 6107
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
6108
			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
6119
	regulator_unlock(rdev);
6120 6121 6122 6123

	return 0;
}

6124
static void regulator_init_complete_work_function(struct work_struct *work)
6125
{
6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

6136
	/* If we have a full configuration then disable any regulators
6137 6138 6139
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
6140
	 */
6141 6142
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
6160 6161 6162 6163 6164 6165 6166 6167 6168
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
6169
	 */
6170 6171
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
6172 6173 6174

	return 0;
}
6175
late_initcall_sync(regulator_init_complete);
反馈
建议
客服 返回
顶部