memcontrol.c 191.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76 77 78
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);

79 80 81
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

82 83 84
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

85
/* Whether the swap controller is active */
A
Andrew Morton 已提交
86
#ifdef CONFIG_MEMCG_SWAP
87
bool cgroup_memory_noswap __read_mostly;
88
#else
89
#define cgroup_memory_noswap		1
90
#endif
91

92 93 94 95
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

96 97 98
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
99
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
100 101
}

102 103
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
104

105 106 107 108 109
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

110
struct mem_cgroup_tree_per_node {
111
	struct rb_root rb_root;
112
	struct rb_node *rb_rightmost;
113 114 115 116 117 118 119 120 121
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
122 123 124 125 126
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
127

128 129 130
/*
 * cgroup_event represents events which userspace want to receive.
 */
131
struct mem_cgroup_event {
132
	/*
133
	 * memcg which the event belongs to.
134
	 */
135
	struct mem_cgroup *memcg;
136 137 138 139 140 141 142 143
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
144 145 146 147 148
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
149
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
150
			      struct eventfd_ctx *eventfd, const char *args);
151 152 153 154 155
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
156
	void (*unregister_event)(struct mem_cgroup *memcg,
157
				 struct eventfd_ctx *eventfd);
158 159 160 161 162 163
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
164
	wait_queue_entry_t wait;
165 166 167
	struct work_struct remove;
};

168 169
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170

171 172
/* Stuffs for move charges at task migration. */
/*
173
 * Types of charges to be moved.
174
 */
175 176 177
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
178

179 180
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
181
	spinlock_t	  lock; /* for from, to */
182
	struct mm_struct  *mm;
183 184
	struct mem_cgroup *from;
	struct mem_cgroup *to;
185
	unsigned long flags;
186
	unsigned long precharge;
187
	unsigned long moved_charge;
188
	unsigned long moved_swap;
189 190 191
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
192
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
193 194
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
195

196 197 198 199
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
200
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
201
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
202

203
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
204 205 206 207
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
208
	_KMEM,
V
Vladimir Davydov 已提交
209
	_TCP,
G
Glauber Costa 已提交
210 211
};

212 213
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
214
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
215 216
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

233 234 235 236 237 238
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

239 240 241 242 243 244 245 246 247 248 249 250 251
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

252
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
extern spinlock_t css_set_lock;

static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	struct mem_cgroup *memcg;
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	spin_lock_irqsave(&css_set_lock, flags);
	memcg = obj_cgroup_memcg(objcg);
	if (nr_pages)
		__memcg_kmem_uncharge(memcg, nr_pages);
	list_del(&objcg->list);
	mem_cgroup_put(memcg);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

	/* Move active objcg to the parent's list */
	xchg(&objcg->memcg, parent);
	css_get(&parent->css);
	list_add(&objcg->list, &parent->objcg_list);

	/* Move already reparented objcgs to the parent's list */
	list_for_each_entry(iter, &memcg->objcg_list, list) {
		css_get(&parent->css);
		xchg(&iter->memcg, parent);
		css_put(&memcg->css);
	}
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

345
/*
346
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
347 348 349 350 351
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
352
 *
353 354
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
355
 */
356 357
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
358

359 360 361 362 363 364 365 366 367 368 369 370 371
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

372 373 374 375 376 377
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
378
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
379 380
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
381
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
382 383 384
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
385
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
386

387 388
/*
 * A lot of the calls to the cache allocation functions are expected to be
389
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
390 391 392
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
393
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
394
EXPORT_SYMBOL(memcg_kmem_enabled_key);
395
#endif
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

420
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
464
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
495 496
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
497
			goto unlock;
498
		}
499 500 501 502 503 504 505
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
506 507 508 509 510 511 512 513

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
514 515
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
516 517 518 519 520
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

538
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
539 540 541 542 543
		memcg = root_mem_cgroup;

	return &memcg->css;
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
563
	memcg = page->mem_cgroup;
564

565 566 567 568 569 570 571 572
	/*
	 * The lowest bit set means that memcg isn't a valid
	 * memcg pointer, but a obj_cgroups pointer.
	 * In this case the page is shared and doesn't belong
	 * to any specific memory cgroup.
	 */
	if ((unsigned long) memcg & 0x1UL)
		memcg = NULL;
573

574 575 576 577 578 579 580 581
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

582 583
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
584
{
585
	int nid = page_to_nid(page);
586

587
	return memcg->nodeinfo[nid];
588 589
}

590 591
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
592
{
593
	return soft_limit_tree.rb_tree_per_node[nid];
594 595
}

596
static struct mem_cgroup_tree_per_node *
597 598 599 600
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

601
	return soft_limit_tree.rb_tree_per_node[nid];
602 603
}

604 605
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
606
					 unsigned long new_usage_in_excess)
607 608 609
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
610
	struct mem_cgroup_per_node *mz_node;
611
	bool rightmost = true;
612 613 614 615 616 617 618 619 620

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
621
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
622
					tree_node);
623
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
624
			p = &(*p)->rb_left;
625 626 627
			rightmost = false;
		}

628 629 630 631 632 633 634
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
635 636 637 638

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

639 640 641 642 643
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

644 645
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
646 647 648
{
	if (!mz->on_tree)
		return;
649 650 651 652

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

653 654 655 656
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

657 658
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
659
{
660 661 662
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
663
	__mem_cgroup_remove_exceeded(mz, mctz);
664
	spin_unlock_irqrestore(&mctz->lock, flags);
665 666
}

667 668 669
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
670
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
671 672 673 674 675 676 677
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
678 679 680

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
681
	unsigned long excess;
682 683
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
684

685
	mctz = soft_limit_tree_from_page(page);
686 687
	if (!mctz)
		return;
688 689 690 691 692
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
693
		mz = mem_cgroup_page_nodeinfo(memcg, page);
694
		excess = soft_limit_excess(memcg);
695 696 697 698 699
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
700 701 702
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
703 704
			/* if on-tree, remove it */
			if (mz->on_tree)
705
				__mem_cgroup_remove_exceeded(mz, mctz);
706 707 708 709
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
710
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
711
			spin_unlock_irqrestore(&mctz->lock, flags);
712 713 714 715 716 717
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
718 719 720
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
721

722
	for_each_node(nid) {
723 724
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
725 726
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
727 728 729
	}
}

730 731
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
732
{
733
	struct mem_cgroup_per_node *mz;
734 735 736

retry:
	mz = NULL;
737
	if (!mctz->rb_rightmost)
738 739
		goto done;		/* Nothing to reclaim from */

740 741
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
742 743 744 745 746
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
747
	__mem_cgroup_remove_exceeded(mz, mctz);
748
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
749
	    !css_tryget(&mz->memcg->css))
750 751 752 753 754
		goto retry;
done:
	return mz;
}

755 756
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
757
{
758
	struct mem_cgroup_per_node *mz;
759

760
	spin_lock_irq(&mctz->lock);
761
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
762
	spin_unlock_irq(&mctz->lock);
763 764 765
	return mz;
}

766 767 768 769 770 771 772 773
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
774
	long x, threshold = MEMCG_CHARGE_BATCH;
775 776 777 778

	if (mem_cgroup_disabled())
		return;

779
	if (memcg_stat_item_in_bytes(idx))
780 781
		threshold <<= PAGE_SHIFT;

782
	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
783
	if (unlikely(abs(x) > threshold)) {
784 785
		struct mem_cgroup *mi;

786 787 788 789 790
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
791 792
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
793 794 795 796 797
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

798 799 800 801 802 803 804 805 806 807 808
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

809 810
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
811 812
{
	struct mem_cgroup_per_node *pn;
813
	struct mem_cgroup *memcg;
814
	long x, threshold = MEMCG_CHARGE_BATCH;
815 816

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
817
	memcg = pn->memcg;
818 819

	/* Update memcg */
820
	__mod_memcg_state(memcg, idx, val);
821

822 823 824
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

825 826 827
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

828
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
829
	if (unlikely(abs(x) > threshold)) {
830
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
831 832 833 834
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
835 836 837 838 839
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

861 862
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
863
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
864 865 866 867
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
868
	memcg = mem_cgroup_from_obj(p);
869 870 871 872 873

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!memcg || memcg == root_mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
	} else {
874
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
875 876 877 878 879
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

880 881 882 883 884 885 886 887 888 889 890
void mod_memcg_obj_state(void *p, int idx, int val)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
	memcg = mem_cgroup_from_obj(p);
	if (memcg)
		mod_memcg_state(memcg, idx, val);
	rcu_read_unlock();
}

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
907 908
		struct mem_cgroup *mi;

909 910 911 912 913
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
914 915
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
916 917 918 919 920
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

921
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
922
{
923
	return atomic_long_read(&memcg->vmevents[event]);
924 925
}

926 927
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
928 929 930 931 932 933
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
934 935
}

936
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
937
					 struct page *page,
938
					 int nr_pages)
939
{
940 941
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
942
		__count_memcg_events(memcg, PGPGIN, 1);
943
	else {
944
		__count_memcg_events(memcg, PGPGOUT, 1);
945 946
		nr_pages = -nr_pages; /* for event */
	}
947

948
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
949 950
}

951 952
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
953 954 955
{
	unsigned long val, next;

956 957
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
958
	/* from time_after() in jiffies.h */
959
	if ((long)(next - val) < 0) {
960 961 962 963
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
964 965 966
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
967 968 969
		default:
			break;
		}
970
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
971
		return true;
972
	}
973
	return false;
974 975 976 977 978 979
}

/*
 * Check events in order.
 *
 */
980
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
981 982
{
	/* threshold event is triggered in finer grain than soft limit */
983 984
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
985
		bool do_softlimit;
986

987 988
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
989
		mem_cgroup_threshold(memcg);
990 991
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
992
	}
993 994
}

995
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
996
{
997 998 999 1000 1001 1002 1003 1004
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1005
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1006
}
M
Michal Hocko 已提交
1007
EXPORT_SYMBOL(mem_cgroup_from_task);
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1018
{
1019 1020 1021 1022
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
1023

1024 1025
	rcu_read_lock();
	do {
1026 1027 1028 1029 1030 1031
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1032
			memcg = root_mem_cgroup;
1033 1034 1035 1036 1037
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1038
	} while (!css_tryget(&memcg->css));
1039
	rcu_read_unlock();
1040
	return memcg;
1041
}
1042 1043
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
1059 1060
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1061 1062 1063 1064 1065 1066
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

1067
static __always_inline struct mem_cgroup *active_memcg(void)
1068
{
1069 1070 1071 1072 1073
	if (in_interrupt())
		return this_cpu_read(int_active_memcg);
	else
		return current->active_memcg;
}
1074

1075 1076 1077
static __always_inline struct mem_cgroup *get_active_memcg(void)
{
	struct mem_cgroup *memcg;
1078

1079 1080 1081
	rcu_read_lock();
	memcg = active_memcg();
	if (memcg) {
S
Shakeel Butt 已提交
1082
		/* current->active_memcg must hold a ref. */
1083
		if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
S
Shakeel Butt 已提交
1084 1085
			memcg = root_mem_cgroup;
		else
1086 1087
			memcg = current->active_memcg;
	}
1088 1089 1090 1091 1092
	rcu_read_unlock();

	return memcg;
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
static __always_inline bool memcg_kmem_bypass(void)
{
	/* Allow remote memcg charging from any context. */
	if (unlikely(active_memcg()))
		return false;

	/* Memcg to charge can't be determined. */
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;

	return false;
}

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
/**
 * If active memcg is set, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (memcg_kmem_bypass())
		return NULL;

	if (unlikely(active_memcg()))
		return get_active_memcg();

1117 1118
	return get_mem_cgroup_from_mm(current->mm);
}
1119

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1133 1134 1135
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
1136
 */
1137
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1138
				   struct mem_cgroup *prev,
1139
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1140
{
1141
	struct mem_cgroup_reclaim_iter *iter;
1142
	struct cgroup_subsys_state *css = NULL;
1143
	struct mem_cgroup *memcg = NULL;
1144
	struct mem_cgroup *pos = NULL;
1145

1146 1147
	if (mem_cgroup_disabled())
		return NULL;
1148

1149 1150
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1151

1152
	if (prev && !reclaim)
1153
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1154

1155 1156
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1157
			goto out;
1158
		return root;
1159
	}
K
KAMEZAWA Hiroyuki 已提交
1160

1161
	rcu_read_lock();
M
Michal Hocko 已提交
1162

1163
	if (reclaim) {
1164
		struct mem_cgroup_per_node *mz;
1165

1166
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1167
		iter = &mz->iter;
1168 1169 1170 1171

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1172
		while (1) {
1173
			pos = READ_ONCE(iter->position);
1174 1175
			if (!pos || css_tryget(&pos->css))
				break;
1176
			/*
1177 1178 1179 1180 1181 1182
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1183
			 */
1184 1185
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1203
		}
K
KAMEZAWA Hiroyuki 已提交
1204

1205 1206 1207 1208 1209 1210
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1211

1212 1213
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1214

1215 1216
		if (css_tryget(css))
			break;
1217

1218
		memcg = NULL;
1219
	}
1220 1221 1222

	if (reclaim) {
		/*
1223 1224 1225
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1226
		 */
1227 1228
		(void)cmpxchg(&iter->position, pos, memcg);

1229 1230 1231 1232 1233 1234 1235
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1236
	}
1237

1238 1239
out_unlock:
	rcu_read_unlock();
1240
out:
1241 1242 1243
	if (prev && prev != root)
		css_put(&prev->css);

1244
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1245
}
K
KAMEZAWA Hiroyuki 已提交
1246

1247 1248 1249 1250 1251 1252 1253
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1254 1255 1256 1257 1258 1259
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1260

1261 1262
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1263 1264
{
	struct mem_cgroup_reclaim_iter *iter;
1265 1266
	struct mem_cgroup_per_node *mz;
	int nid;
1267

1268 1269
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1270 1271
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1272 1273 1274
	}
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1321
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1333
/**
1334
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1335
 * @page: the page
1336
 * @pgdat: pgdat of the page
1337
 *
1338 1339
 * This function relies on page->mem_cgroup being stable - see the
 * access rules in commit_charge().
1340
 */
M
Mel Gorman 已提交
1341
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1342
{
1343
	struct mem_cgroup_per_node *mz;
1344
	struct mem_cgroup *memcg;
1345
	struct lruvec *lruvec;
1346

1347
	if (mem_cgroup_disabled()) {
1348
		lruvec = &pgdat->__lruvec;
1349 1350
		goto out;
	}
1351

1352
	memcg = page->mem_cgroup;
1353
	/*
1354
	 * Swapcache readahead pages are added to the LRU - and
1355
	 * possibly migrated - before they are charged.
1356
	 */
1357 1358
	if (!memcg)
		memcg = root_mem_cgroup;
1359

1360
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1361 1362 1363 1364 1365 1366 1367
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1368 1369
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1370
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1371
}
1372

1373
/**
1374 1375 1376
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1377
 * @zid: zone id of the accounted pages
1378
 * @nr_pages: positive when adding or negative when removing
1379
 *
1380 1381 1382
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1383
 */
1384
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1385
				int zid, int nr_pages)
1386
{
1387
	struct mem_cgroup_per_node *mz;
1388
	unsigned long *lru_size;
1389
	long size;
1390 1391 1392 1393

	if (mem_cgroup_disabled())
		return;

1394
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1395
	lru_size = &mz->lru_zone_size[zid][lru];
1396 1397 1398 1399 1400

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1401 1402 1403
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1404 1405 1406 1407 1408 1409
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1410
}
1411

1412
/**
1413
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1414
 * @memcg: the memory cgroup
1415
 *
1416
 * Returns the maximum amount of memory @mem can be charged with, in
1417
 * pages.
1418
 */
1419
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1420
{
1421 1422 1423
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1424

1425
	count = page_counter_read(&memcg->memory);
1426
	limit = READ_ONCE(memcg->memory.max);
1427 1428 1429
	if (count < limit)
		margin = limit - count;

1430
	if (do_memsw_account()) {
1431
		count = page_counter_read(&memcg->memsw);
1432
		limit = READ_ONCE(memcg->memsw.max);
1433
		if (count < limit)
1434
			margin = min(margin, limit - count);
1435 1436
		else
			margin = 0;
1437 1438 1439
	}

	return margin;
1440 1441
}

1442
/*
Q
Qiang Huang 已提交
1443
 * A routine for checking "mem" is under move_account() or not.
1444
 *
Q
Qiang Huang 已提交
1445 1446 1447
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1448
 */
1449
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1450
{
1451 1452
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1453
	bool ret = false;
1454 1455 1456 1457 1458 1459 1460 1461 1462
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1463

1464 1465
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1466 1467
unlock:
	spin_unlock(&mc.lock);
1468 1469 1470
	return ret;
}

1471
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1472 1473
{
	if (mc.moving_task && current != mc.moving_task) {
1474
		if (mem_cgroup_under_move(memcg)) {
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
struct memory_stat {
	const char *name;
	unsigned int ratio;
	unsigned int idx;
};

static struct memory_stat memory_stats[] = {
	{ "anon", PAGE_SIZE, NR_ANON_MAPPED },
	{ "file", PAGE_SIZE, NR_FILE_PAGES },
	{ "kernel_stack", 1024, NR_KERNEL_STACK_KB },
	{ "percpu", 1, MEMCG_PERCPU_B },
	{ "sock", PAGE_SIZE, MEMCG_SOCK },
	{ "shmem", PAGE_SIZE, NR_SHMEM },
	{ "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
	{ "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
	{ "file_writeback", PAGE_SIZE, NR_WRITEBACK },
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	/*
	 * The ratio will be initialized in memory_stats_init(). Because
	 * on some architectures, the macro of HPAGE_PMD_SIZE is not
	 * constant(e.g. powerpc).
	 */
	{ "anon_thp", 0, NR_ANON_THPS },
#endif
	{ "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
	{ "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
	{ "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
	{ "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
	{ "unevictable", PAGE_SIZE, NR_UNEVICTABLE },

	/*
	 * Note: The slab_reclaimable and slab_unreclaimable must be
	 * together and slab_reclaimable must be in front.
	 */
	{ "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
	{ "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },

	/* The memory events */
	{ "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
	{ "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
	{ "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
	{ "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
	{ "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
	{ "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
	{ "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
};

static int __init memory_stats_init(void)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memory_stats[i].idx == NR_ANON_THPS)
			memory_stats[i].ratio = HPAGE_PMD_SIZE;
#endif
		VM_BUG_ON(!memory_stats[i].ratio);
		VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
	}

	return 0;
}
pure_initcall(memory_stats_init);

1551 1552 1553 1554
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

1571 1572
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1573

1574 1575 1576
		size = memcg_page_state(memcg, memory_stats[i].idx);
		size *= memory_stats[i].ratio;
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1577

1578 1579 1580 1581 1582 1583
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
			size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
			       memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1584 1585 1586

	/* Accumulated memory events */

1587 1588 1589 1590 1591 1592
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1593 1594 1595 1596 1597 1598
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1599 1600 1601 1602 1603 1604 1605 1606
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1607 1608

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1609
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1610
		       memcg_events(memcg, THP_FAULT_ALLOC));
1611
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1612 1613 1614 1615 1616 1617 1618 1619
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1620

1621
#define K(x) ((x) << (PAGE_SHIFT-10))
1622
/**
1623 1624
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1625 1626 1627 1628 1629 1630
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1631
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1632 1633 1634
{
	rcu_read_lock();

1635 1636 1637 1638 1639
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1640
	if (p) {
1641
		pr_cont(",task_memcg=");
1642 1643
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1644
	rcu_read_unlock();
1645 1646 1647 1648 1649 1650 1651 1652 1653
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1654
	char *buf;
1655

1656 1657
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1658
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1659 1660 1661
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1662
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1663 1664 1665 1666 1667 1668 1669
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1670
	}
1671 1672 1673 1674 1675 1676 1677 1678 1679

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1680 1681
}

D
David Rientjes 已提交
1682 1683 1684
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1685
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1686
{
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1700
	}
1701
	return max;
D
David Rientjes 已提交
1702 1703
}

1704 1705 1706 1707 1708
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1709
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1710
				     int order)
1711
{
1712 1713 1714
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1715
		.memcg = memcg,
1716 1717 1718
		.gfp_mask = gfp_mask,
		.order = order,
	};
1719
	bool ret = true;
1720

1721 1722
	if (mutex_lock_killable(&oom_lock))
		return true;
1723 1724 1725 1726

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1727 1728 1729 1730 1731
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1732 1733

unlock:
1734
	mutex_unlock(&oom_lock);
1735
	return ret;
1736 1737
}

1738
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1739
				   pg_data_t *pgdat,
1740 1741 1742 1743 1744 1745 1746 1747 1748
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1749
		.pgdat = pgdat,
1750 1751
	};

1752
	excess = soft_limit_excess(root_memcg);
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1778
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1779
					pgdat, &nr_scanned);
1780
		*total_scanned += nr_scanned;
1781
		if (!soft_limit_excess(root_memcg))
1782
			break;
1783
	}
1784 1785
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1786 1787
}

1788 1789 1790 1791 1792 1793
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1794 1795
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1796 1797 1798 1799
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1800
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1801
{
1802
	struct mem_cgroup *iter, *failed = NULL;
1803

1804 1805
	spin_lock(&memcg_oom_lock);

1806
	for_each_mem_cgroup_tree(iter, memcg) {
1807
		if (iter->oom_lock) {
1808 1809 1810 1811 1812
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1813 1814
			mem_cgroup_iter_break(memcg, iter);
			break;
1815 1816
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1817
	}
K
KAMEZAWA Hiroyuki 已提交
1818

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1830
		}
1831 1832
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1833 1834 1835 1836

	spin_unlock(&memcg_oom_lock);

	return !failed;
1837
}
1838

1839
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1840
{
K
KAMEZAWA Hiroyuki 已提交
1841 1842
	struct mem_cgroup *iter;

1843
	spin_lock(&memcg_oom_lock);
1844
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1845
	for_each_mem_cgroup_tree(iter, memcg)
1846
		iter->oom_lock = false;
1847
	spin_unlock(&memcg_oom_lock);
1848 1849
}

1850
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1851 1852 1853
{
	struct mem_cgroup *iter;

1854
	spin_lock(&memcg_oom_lock);
1855
	for_each_mem_cgroup_tree(iter, memcg)
1856 1857
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1858 1859
}

1860
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1861 1862 1863
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1864
	/*
1865 1866
	 * Be careful about under_oom underflows becase a child memcg
	 * could have been added after mem_cgroup_mark_under_oom.
K
KAMEZAWA Hiroyuki 已提交
1867
	 */
1868
	spin_lock(&memcg_oom_lock);
1869
	for_each_mem_cgroup_tree(iter, memcg)
1870 1871 1872
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1873 1874
}

K
KAMEZAWA Hiroyuki 已提交
1875 1876
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1877
struct oom_wait_info {
1878
	struct mem_cgroup *memcg;
1879
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1880 1881
};

1882
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1883 1884
	unsigned mode, int sync, void *arg)
{
1885 1886
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1887 1888 1889
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1890
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1891

1892 1893
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1894 1895 1896 1897
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1898
static void memcg_oom_recover(struct mem_cgroup *memcg)
1899
{
1900 1901 1902 1903 1904 1905 1906 1907 1908
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1909
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1910 1911
}

1912 1913 1914 1915 1916 1917 1918 1919
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1920
{
1921 1922 1923
	enum oom_status ret;
	bool locked;

1924 1925 1926
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1927 1928
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1929
	/*
1930 1931 1932 1933
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1934 1935 1936 1937
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1938
	 *
1939 1940 1941 1942 1943 1944 1945
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1946
	 */
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1958 1959 1960 1961 1962 1963 1964 1965
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1966
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1967 1968 1969 1970 1971 1972
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1973

1974
	return ret;
1975 1976 1977 1978
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1979
 * @handle: actually kill/wait or just clean up the OOM state
1980
 *
1981 1982
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1983
 *
1984
 * Memcg supports userspace OOM handling where failed allocations must
1985 1986 1987 1988
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1989
 * the end of the page fault to complete the OOM handling.
1990 1991
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1992
 * completed, %false otherwise.
1993
 */
1994
bool mem_cgroup_oom_synchronize(bool handle)
1995
{
T
Tejun Heo 已提交
1996
	struct mem_cgroup *memcg = current->memcg_in_oom;
1997
	struct oom_wait_info owait;
1998
	bool locked;
1999 2000 2001

	/* OOM is global, do not handle */
	if (!memcg)
2002
		return false;
2003

2004
	if (!handle)
2005
		goto cleanup;
2006 2007 2008 2009 2010

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
2011
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
2012

2013
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
2024 2025
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
2026
	} else {
2027
		schedule();
2028 2029 2030 2031 2032
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2033 2034 2035 2036 2037 2038 2039 2040
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2041
cleanup:
T
Tejun Heo 已提交
2042
	current->memcg_in_oom = NULL;
2043
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2044
	return true;
2045 2046
}

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

2075 2076 2077 2078 2079 2080 2081 2082
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2111
/**
2112 2113
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
2114
 *
2115
 * This function protects unlocked LRU pages from being moved to
2116 2117 2118 2119 2120
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2121
 */
2122
struct mem_cgroup *lock_page_memcg(struct page *page)
2123
{
2124
	struct page *head = compound_head(page); /* rmap on tail pages */
2125
	struct mem_cgroup *memcg;
2126
	unsigned long flags;
2127

2128 2129 2130 2131
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2132 2133 2134 2135 2136 2137 2138
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2139 2140 2141
	rcu_read_lock();

	if (mem_cgroup_disabled())
2142
		return NULL;
2143
again:
2144
	memcg = head->mem_cgroup;
2145
	if (unlikely(!memcg))
2146
		return NULL;
2147

Q
Qiang Huang 已提交
2148
	if (atomic_read(&memcg->moving_account) <= 0)
2149
		return memcg;
2150

2151
	spin_lock_irqsave(&memcg->move_lock, flags);
2152
	if (memcg != head->mem_cgroup) {
2153
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2154 2155
		goto again;
	}
2156 2157 2158 2159

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2160
	 * the task who has the lock for unlock_page_memcg().
2161 2162 2163
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2164

2165
	return memcg;
2166
}
2167
EXPORT_SYMBOL(lock_page_memcg);
2168

2169
/**
2170 2171 2172 2173
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2174
 */
2175
void __unlock_page_memcg(struct mem_cgroup *memcg)
2176
{
2177 2178 2179 2180 2181 2182 2183 2184
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2185

2186
	rcu_read_unlock();
2187
}
2188 2189 2190 2191 2192 2193 2194

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2195 2196 2197
	struct page *head = compound_head(page);

	__unlock_page_memcg(head->mem_cgroup);
2198
}
2199
EXPORT_SYMBOL(unlock_page_memcg);
2200

2201 2202
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2203
	unsigned int nr_pages;
R
Roman Gushchin 已提交
2204 2205 2206 2207 2208 2209

#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
	unsigned int nr_bytes;
#endif

2210
	struct work_struct work;
2211
	unsigned long flags;
2212
#define FLUSHING_CACHED_CHARGE	0
2213 2214
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2215
static DEFINE_MUTEX(percpu_charge_mutex);
2216

R
Roman Gushchin 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
#ifdef CONFIG_MEMCG_KMEM
static void drain_obj_stock(struct memcg_stock_pcp *stock);
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2243
 */
2244
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2245 2246
{
	struct memcg_stock_pcp *stock;
2247
	unsigned long flags;
2248
	bool ret = false;
2249

2250
	if (nr_pages > MEMCG_CHARGE_BATCH)
2251
		return ret;
2252

2253 2254 2255
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2256
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2257
		stock->nr_pages -= nr_pages;
2258 2259
		ret = true;
	}
2260 2261 2262

	local_irq_restore(flags);

2263 2264 2265 2266
	return ret;
}

/*
2267
 * Returns stocks cached in percpu and reset cached information.
2268 2269 2270 2271 2272
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2273 2274 2275
	if (!old)
		return;

2276
	if (stock->nr_pages) {
2277
		page_counter_uncharge(&old->memory, stock->nr_pages);
2278
		if (do_memsw_account())
2279
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2280
		stock->nr_pages = 0;
2281
	}
2282 2283

	css_put(&old->css);
2284 2285 2286 2287 2288
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2289 2290 2291
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2292 2293 2294 2295
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2296 2297 2298
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
R
Roman Gushchin 已提交
2299
	drain_obj_stock(stock);
2300
	drain_stock(stock);
2301
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2302 2303

	local_irq_restore(flags);
2304 2305 2306
}

/*
2307
 * Cache charges(val) to local per_cpu area.
2308
 * This will be consumed by consume_stock() function, later.
2309
 */
2310
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2311
{
2312 2313 2314 2315
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2316

2317
	stock = this_cpu_ptr(&memcg_stock);
2318
	if (stock->cached != memcg) { /* reset if necessary */
2319
		drain_stock(stock);
2320
		css_get(&memcg->css);
2321
		stock->cached = memcg;
2322
	}
2323
	stock->nr_pages += nr_pages;
2324

2325
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2326 2327
		drain_stock(stock);

2328
	local_irq_restore(flags);
2329 2330 2331
}

/*
2332
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2333
 * of the hierarchy under it.
2334
 */
2335
static void drain_all_stock(struct mem_cgroup *root_memcg)
2336
{
2337
	int cpu, curcpu;
2338

2339 2340 2341
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2342 2343 2344 2345 2346 2347
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2348
	curcpu = get_cpu();
2349 2350
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2351
		struct mem_cgroup *memcg;
2352
		bool flush = false;
2353

2354
		rcu_read_lock();
2355
		memcg = stock->cached;
2356 2357 2358
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2359 2360
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2361 2362 2363 2364
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2365 2366 2367 2368 2369
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2370
	}
2371
	put_cpu();
2372
	mutex_unlock(&percpu_charge_mutex);
2373 2374
}

2375
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2376 2377
{
	struct memcg_stock_pcp *stock;
2378
	struct mem_cgroup *memcg, *mi;
2379 2380 2381

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2382 2383 2384 2385 2386 2387 2388 2389

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2390
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2391
			if (x)
2392 2393
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2394 2395 2396 2397 2398 2399 2400 2401 2402

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2403
				if (x)
2404 2405 2406
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2407 2408 2409
			}
		}

2410
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2411 2412
			long x;

2413
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2414
			if (x)
2415 2416
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2417 2418 2419
		}
	}

2420
	return 0;
2421 2422
}

2423 2424 2425
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2426
{
2427 2428
	unsigned long nr_reclaimed = 0;

2429
	do {
2430 2431
		unsigned long pflags;

2432 2433
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2434
			continue;
2435

2436
		memcg_memory_event(memcg, MEMCG_HIGH);
2437 2438

		psi_memstall_enter(&pflags);
2439 2440
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2441
		psi_memstall_leave(&pflags);
2442 2443
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2444 2445

	return nr_reclaimed;
2446 2447 2448 2449 2450 2451 2452
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2453
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2454 2455
}

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2470
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2509
static u64 calculate_overage(unsigned long usage, unsigned long high)
2510
{
2511
	u64 overage;
2512

2513 2514
	if (usage <= high)
		return 0;
2515

2516 2517 2518 2519 2520
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2521

2522 2523 2524 2525
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2526

2527 2528 2529
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2530

2531 2532
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2533
					    READ_ONCE(memcg->memory.high));
2534
		max_overage = max(overage, max_overage);
2535 2536 2537
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2538 2539 2540
	return max_overage;
}

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2567 2568
	if (!max_overage)
		return 0;
2569 2570 2571 2572 2573 2574 2575 2576 2577

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2578 2579 2580
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2581 2582 2583 2584 2585 2586 2587 2588 2589

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2590
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2601
	unsigned long nr_reclaimed;
2602
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2603
	int nr_retries = MAX_RECLAIM_RETRIES;
2604
	struct mem_cgroup *memcg;
2605
	bool in_retry = false;
2606 2607 2608 2609 2610 2611 2612

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2627 2628 2629 2630
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2631 2632
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2633

2634 2635 2636
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2637 2638 2639 2640 2641 2642 2643
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2644 2645 2646 2647 2648 2649 2650 2651 2652
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2674 2675
}

2676 2677
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2678
{
2679
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2680
	int nr_retries = MAX_RECLAIM_RETRIES;
2681
	struct mem_cgroup *mem_over_limit;
2682
	struct page_counter *counter;
2683
	enum oom_status oom_status;
2684
	unsigned long nr_reclaimed;
2685 2686
	bool may_swap = true;
	bool drained = false;
2687
	unsigned long pflags;
2688

2689
	if (mem_cgroup_is_root(memcg))
2690
		return 0;
2691
retry:
2692
	if (consume_stock(memcg, nr_pages))
2693
		return 0;
2694

2695
	if (!do_memsw_account() ||
2696 2697
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2698
			goto done_restock;
2699
		if (do_memsw_account())
2700 2701
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2702
	} else {
2703
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2704
		may_swap = false;
2705
	}
2706

2707 2708 2709 2710
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2711

2712 2713 2714 2715 2716 2717 2718 2719 2720
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2721 2722 2723 2724 2725 2726
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2727
	if (unlikely(should_force_charge()))
2728
		goto force;
2729

2730 2731 2732 2733 2734 2735 2736 2737 2738
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2739 2740 2741
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2742
	if (!gfpflags_allow_blocking(gfp_mask))
2743
		goto nomem;
2744

2745
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2746

2747
	psi_memstall_enter(&pflags);
2748 2749
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2750
	psi_memstall_leave(&pflags);
2751

2752
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2753
		goto retry;
2754

2755
	if (!drained) {
2756
		drain_all_stock(mem_over_limit);
2757 2758 2759 2760
		drained = true;
		goto retry;
	}

2761 2762
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2763 2764 2765 2766 2767 2768 2769 2770 2771
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2772
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2773 2774 2775 2776 2777 2778 2779 2780
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2781 2782 2783
	if (nr_retries--)
		goto retry;

2784
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2785 2786
		goto nomem;

2787
	if (gfp_mask & __GFP_NOFAIL)
2788
		goto force;
2789

2790
	if (fatal_signal_pending(current))
2791
		goto force;
2792

2793 2794 2795 2796 2797 2798
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2799
		       get_order(nr_pages * PAGE_SIZE));
2800 2801
	switch (oom_status) {
	case OOM_SUCCESS:
2802
		nr_retries = MAX_RECLAIM_RETRIES;
2803 2804 2805 2806 2807 2808
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2809
nomem:
2810
	if (!(gfp_mask & __GFP_NOFAIL))
2811
		return -ENOMEM;
2812 2813 2814 2815 2816 2817 2818
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2819
	if (do_memsw_account())
2820 2821 2822
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2823 2824 2825 2826

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2827

2828
	/*
2829 2830
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2831
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2832 2833 2834 2835
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2836 2837
	 */
	do {
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2848 2849 2850
				schedule_work(&memcg->high_work);
				break;
			}
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2864
			current->memcg_nr_pages_over_high += batch;
2865 2866 2867
			set_notify_resume(current);
			break;
		}
2868
	} while ((memcg = parent_mem_cgroup(memcg)));
2869 2870

	return 0;
2871
}
2872

2873
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2874
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2875
{
2876 2877 2878
	if (mem_cgroup_is_root(memcg))
		return;

2879
	page_counter_uncharge(&memcg->memory, nr_pages);
2880
	if (do_memsw_account())
2881
		page_counter_uncharge(&memcg->memsw, nr_pages);
2882
}
2883
#endif
2884

2885
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2886
{
2887
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2888
	/*
2889
	 * Any of the following ensures page->mem_cgroup stability:
2890
	 *
2891 2892 2893 2894
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2895
	 */
2896
	page->mem_cgroup = memcg;
2897
}
2898

2899
#ifdef CONFIG_MEMCG_KMEM
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
				 gfp_t gfp)
{
	unsigned int objects = objs_per_slab_page(s, page);
	void *vec;

	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

	if (cmpxchg(&page->obj_cgroups, NULL,
		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
		kfree(vec);
	else
		kmemleak_not_leak(vec);

	return 0;
}

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	/*
	 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
	 * or a pointer to obj_cgroup vector. In the latter case the lowest
	 * bit of the pointer is set.
	 * The page->mem_cgroup pointer can be asynchronously changed
	 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
	 * from a valid memcg pointer to objcg vector or back.
	 */
	if (!page->mem_cgroup)
		return NULL;

2946
	/*
2947 2948 2949
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2950
	 */
2951 2952 2953 2954 2955 2956
	if (page_has_obj_cgroups(page)) {
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
		objcg = page_obj_cgroups(page)[off];
2957 2958 2959 2960
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2961
	}
2962 2963 2964 2965 2966

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

R
Roman Gushchin 已提交
2967 2968 2969 2970 2971
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

2972 2973 2974
	if (memcg_kmem_bypass())
		return NULL;

R
Roman Gushchin 已提交
2975
	rcu_read_lock();
2976 2977
	if (unlikely(active_memcg()))
		memcg = active_memcg();
R
Roman Gushchin 已提交
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
	}
	rcu_read_unlock();

	return objcg;
}

2991
static int memcg_alloc_cache_id(void)
2992
{
2993 2994 2995
	int id, size;
	int err;

2996
	id = ida_simple_get(&memcg_cache_ida,
2997 2998 2999
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
3000

3001
	if (id < memcg_nr_cache_ids)
3002 3003 3004 3005 3006 3007
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
3008
	down_write(&memcg_cache_ids_sem);
3009 3010

	size = 2 * (id + 1);
3011 3012 3013 3014 3015
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

3016
	err = memcg_update_all_list_lrus(size);
3017 3018 3019 3020 3021
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

3022
	if (err) {
3023
		ida_simple_remove(&memcg_cache_ida, id);
3024 3025 3026 3027 3028 3029 3030
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
3031
	ida_simple_remove(&memcg_cache_ida, id);
3032 3033
}

3034
/**
3035
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3036
 * @memcg: memory cgroup to charge
3037
 * @gfp: reclaim mode
3038
 * @nr_pages: number of pages to charge
3039 3040 3041
 *
 * Returns 0 on success, an error code on failure.
 */
3042 3043
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
3044
{
3045
	struct page_counter *counter;
3046 3047
	int ret;

3048
	ret = try_charge(memcg, gfp, nr_pages);
3049
	if (ret)
3050
		return ret;
3051 3052 3053

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
3064 3065
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
3066
	}
3067
	return 0;
3068 3069
}

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}

3085
/**
3086
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3087 3088 3089 3090 3091 3092
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3093
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3094
{
3095
	struct mem_cgroup *memcg;
3096
	int ret = 0;
3097

3098
	memcg = get_mem_cgroup_from_current();
3099
	if (memcg && !mem_cgroup_is_root(memcg)) {
3100
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3101 3102
		if (!ret) {
			page->mem_cgroup = memcg;
3103
			__SetPageKmemcg(page);
3104
			return 0;
3105
		}
3106
		css_put(&memcg->css);
3107
	}
3108
	return ret;
3109
}
3110

3111
/**
3112
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3113 3114 3115
 * @page: page to uncharge
 * @order: allocation order
 */
3116
void __memcg_kmem_uncharge_page(struct page *page, int order)
3117
{
3118
	struct mem_cgroup *memcg = page->mem_cgroup;
3119
	unsigned int nr_pages = 1 << order;
3120 3121 3122 3123

	if (!memcg)
		return;

3124
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3125
	__memcg_kmem_uncharge(memcg, nr_pages);
3126
	page->mem_cgroup = NULL;
3127
	css_put(&memcg->css);
3128 3129 3130 3131

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);
3132
}
R
Roman Gushchin 已提交
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266

static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;
	bool ret = false;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

	local_irq_restore(flags);

	return ret;
}

static void drain_obj_stock(struct memcg_stock_pcp *stock)
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

		if (nr_pages) {
			rcu_read_lock();
			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
			rcu_read_unlock();
		}

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

	if (stock->cached_objcg) {
		memcg = obj_cgroup_memcg(stock->cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
	}
	stock->nr_bytes += nr_bytes;

	if (stock->nr_bytes > PAGE_SIZE)
		drain_obj_stock(stock);

	local_irq_restore(flags);
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	struct mem_cgroup *memcg;
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
	 * In theory, memcg->nr_charged_bytes can have enough
	 * pre-charged bytes to satisfy the allocation. However,
	 * flushing memcg->nr_charged_bytes requires two atomic
	 * operations, and memcg->nr_charged_bytes can't be big,
	 * so it's better to ignore it and try grab some new pages.
	 * memcg->nr_charged_bytes will be flushed in
	 * refill_obj_stock(), called from this function or
	 * independently later.
	 */
	rcu_read_lock();
	memcg = obj_cgroup_memcg(objcg);
	css_get(&memcg->css);
	rcu_read_unlock();

	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
	if (!ret && nr_bytes)
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);

	css_put(&memcg->css);
	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
	refill_obj_stock(objcg, size);
}

3267
#endif /* CONFIG_MEMCG_KMEM */
3268

3269 3270 3271 3272
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3273
 * pgdat->lru_lock and migration entries setup in all page mappings.
3274
 */
3275
void mem_cgroup_split_huge_fixup(struct page *head)
3276
{
3277
	struct mem_cgroup *memcg = head->mem_cgroup;
3278
	int i;
3279

3280 3281
	if (mem_cgroup_disabled())
		return;
3282

3283 3284 3285 3286
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		css_get(&memcg->css);
		head[i].mem_cgroup = memcg;
	}
3287
}
3288
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3289

A
Andrew Morton 已提交
3290
#ifdef CONFIG_MEMCG_SWAP
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3302
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3303 3304 3305
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3306
				struct mem_cgroup *from, struct mem_cgroup *to)
3307 3308 3309
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3310 3311
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3312 3313

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3314 3315
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3316 3317 3318 3319 3320 3321
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3322
				struct mem_cgroup *from, struct mem_cgroup *to)
3323 3324 3325
{
	return -EINVAL;
}
3326
#endif
K
KAMEZAWA Hiroyuki 已提交
3327

3328
static DEFINE_MUTEX(memcg_max_mutex);
3329

3330 3331
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3332
{
3333
	bool enlarge = false;
3334
	bool drained = false;
3335
	int ret;
3336 3337
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3338

3339
	do {
3340 3341 3342 3343
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3344

3345
		mutex_lock(&memcg_max_mutex);
3346 3347
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3348
		 * break our basic invariant rule memory.max <= memsw.max.
3349
		 */
3350
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3351
					   max <= memcg->memsw.max;
3352
		if (!limits_invariant) {
3353
			mutex_unlock(&memcg_max_mutex);
3354 3355 3356
			ret = -EINVAL;
			break;
		}
3357
		if (max > counter->max)
3358
			enlarge = true;
3359 3360
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3361 3362 3363 3364

		if (!ret)
			break;

3365 3366 3367 3368 3369 3370
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3371 3372 3373 3374 3375 3376
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3377

3378 3379
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3380

3381 3382 3383
	return ret;
}

3384
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3385 3386 3387 3388
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3389
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3390 3391
	unsigned long reclaimed;
	int loop = 0;
3392
	struct mem_cgroup_tree_per_node *mctz;
3393
	unsigned long excess;
3394 3395 3396 3397 3398
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3399
	mctz = soft_limit_tree_node(pgdat->node_id);
3400 3401 3402 3403 3404 3405

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3406
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3407 3408
		return 0;

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3423
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3424 3425 3426
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3427
		spin_lock_irq(&mctz->lock);
3428
		__mem_cgroup_remove_exceeded(mz, mctz);
3429 3430 3431 3432 3433 3434

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3435 3436 3437
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3438
		excess = soft_limit_excess(mz->memcg);
3439 3440 3441 3442 3443 3444 3445 3446 3447
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3448
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3449
		spin_unlock_irq(&mctz->lock);
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3467 3468 3469 3470
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
3471
 * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3472
 */
3473 3474
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3475 3476 3477 3478 3479 3480
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3481 3482
}

3483
/*
3484
 * Reclaims as many pages from the given memcg as possible.
3485 3486 3487 3488 3489
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3490
	int nr_retries = MAX_RECLAIM_RETRIES;
3491

3492 3493
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3494 3495 3496

	drain_all_stock(memcg);

3497
	/* try to free all pages in this cgroup */
3498
	while (nr_retries && page_counter_read(&memcg->memory)) {
3499
		int progress;
3500

3501 3502 3503
		if (signal_pending(current))
			return -EINTR;

3504 3505
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3506
		if (!progress) {
3507
			nr_retries--;
3508
			/* maybe some writeback is necessary */
3509
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3510
		}
3511 3512

	}
3513 3514

	return 0;
3515 3516
}

3517 3518 3519
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3520
{
3521
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3522

3523 3524
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3525
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3526 3527
}

3528 3529
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3530
{
3531
	return mem_cgroup_from_css(css)->use_hierarchy;
3532 3533
}

3534 3535
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3536 3537
{
	int retval = 0;
3538
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3539
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3540

3541
	if (memcg->use_hierarchy == val)
3542
		return 0;
3543

3544
	/*
3545
	 * If parent's use_hierarchy is set, we can't make any modifications
3546 3547 3548 3549 3550 3551
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3552
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3553
				(val == 1 || val == 0)) {
3554
		if (!memcg_has_children(memcg))
3555
			memcg->use_hierarchy = val;
3556 3557 3558 3559
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3560

3561 3562 3563
	return retval;
}

3564
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3565
{
3566
	unsigned long val;
3567

3568
	if (mem_cgroup_is_root(memcg)) {
3569
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3570
			memcg_page_state(memcg, NR_ANON_MAPPED);
3571 3572
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3573
	} else {
3574
		if (!swap)
3575
			val = page_counter_read(&memcg->memory);
3576
		else
3577
			val = page_counter_read(&memcg->memsw);
3578
	}
3579
	return val;
3580 3581
}

3582 3583 3584 3585 3586 3587 3588
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3589

3590
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3591
			       struct cftype *cft)
B
Balbir Singh 已提交
3592
{
3593
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3594
	struct page_counter *counter;
3595

3596
	switch (MEMFILE_TYPE(cft->private)) {
3597
	case _MEM:
3598 3599
		counter = &memcg->memory;
		break;
3600
	case _MEMSWAP:
3601 3602
		counter = &memcg->memsw;
		break;
3603
	case _KMEM:
3604
		counter = &memcg->kmem;
3605
		break;
V
Vladimir Davydov 已提交
3606
	case _TCP:
3607
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3608
		break;
3609 3610 3611
	default:
		BUG();
	}
3612 3613 3614 3615

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3616
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3617
		if (counter == &memcg->memsw)
3618
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3619 3620
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3621
		return (u64)counter->max * PAGE_SIZE;
3622 3623 3624 3625 3626 3627 3628 3629 3630
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3631
}
3632

3633
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3634
{
3635
	unsigned long stat[MEMCG_NR_STAT] = {0};
3636 3637 3638 3639
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3640
		for (i = 0; i < MEMCG_NR_STAT; i++)
3641
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3642 3643

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3644
		for (i = 0; i < MEMCG_NR_STAT; i++)
3645 3646 3647 3648 3649 3650
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3651
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3652 3653 3654
			stat[i] = 0;

		for_each_online_cpu(cpu)
3655
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3656 3657
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3658 3659

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3660
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3661 3662 3663 3664
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3676 3677
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3678 3679 3680 3681 3682 3683

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3684
#ifdef CONFIG_MEMCG_KMEM
3685
static int memcg_online_kmem(struct mem_cgroup *memcg)
3686
{
R
Roman Gushchin 已提交
3687
	struct obj_cgroup *objcg;
3688 3689
	int memcg_id;

3690 3691 3692
	if (cgroup_memory_nokmem)
		return 0;

3693
	BUG_ON(memcg->kmemcg_id >= 0);
3694
	BUG_ON(memcg->kmem_state);
3695

3696
	memcg_id = memcg_alloc_cache_id();
3697 3698
	if (memcg_id < 0)
		return memcg_id;
3699

R
Roman Gushchin 已提交
3700 3701 3702 3703 3704 3705 3706 3707
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3708 3709
	static_branch_enable(&memcg_kmem_enabled_key);

3710
	/*
3711
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3712
	 * kmemcg_id. Setting the id after enabling static branching will
3713 3714 3715
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3716
	memcg->kmemcg_id = memcg_id;
3717
	memcg->kmem_state = KMEM_ONLINE;
3718 3719

	return 0;
3720 3721
}

3722 3723 3724 3725 3726 3727 3728 3729
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3730

3731 3732 3733 3734 3735 3736
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3737
	memcg_reparent_objcgs(memcg, parent);
3738 3739 3740 3741

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3742 3743 3744 3745 3746 3747 3748 3749
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3750
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3751 3752 3753 3754 3755 3756 3757
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3758 3759
	rcu_read_unlock();

3760
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3761 3762 3763 3764 3765 3766

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3767 3768 3769
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3770
}
3771
#else
3772
static int memcg_online_kmem(struct mem_cgroup *memcg)
3773 3774 3775 3776 3777 3778 3779 3780 3781
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3782
#endif /* CONFIG_MEMCG_KMEM */
3783

3784 3785
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3786
{
3787
	int ret;
3788

3789 3790 3791
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3792
	return ret;
3793
}
3794

3795
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3796 3797 3798
{
	int ret;

3799
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3800

3801
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3802 3803 3804
	if (ret)
		goto out;

3805
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3806 3807 3808
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3809 3810 3811
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3812 3813 3814 3815 3816 3817
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3818
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3819 3820 3821 3822
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3823
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3824 3825
	}
out:
3826
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3827 3828 3829
	return ret;
}

3830 3831 3832 3833
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3834 3835
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3836
{
3837
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3838
	unsigned long nr_pages;
3839 3840
	int ret;

3841
	buf = strstrip(buf);
3842
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3843 3844
	if (ret)
		return ret;
3845

3846
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3847
	case RES_LIMIT:
3848 3849 3850 3851
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3852 3853
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3854
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3855
			break;
3856
		case _MEMSWAP:
3857
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3858
			break;
3859
		case _KMEM:
3860 3861 3862
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3863
			ret = memcg_update_kmem_max(memcg, nr_pages);
3864
			break;
V
Vladimir Davydov 已提交
3865
		case _TCP:
3866
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3867
			break;
3868
		}
3869
		break;
3870 3871 3872
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3873 3874
		break;
	}
3875
	return ret ?: nbytes;
B
Balbir Singh 已提交
3876 3877
}

3878 3879
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3880
{
3881
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3882
	struct page_counter *counter;
3883

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3894
	case _TCP:
3895
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3896
		break;
3897 3898 3899
	default:
		BUG();
	}
3900

3901
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3902
	case RES_MAX_USAGE:
3903
		page_counter_reset_watermark(counter);
3904 3905
		break;
	case RES_FAILCNT:
3906
		counter->failcnt = 0;
3907
		break;
3908 3909
	default:
		BUG();
3910
	}
3911

3912
	return nbytes;
3913 3914
}

3915
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3916 3917
					struct cftype *cft)
{
3918
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3919 3920
}

3921
#ifdef CONFIG_MMU
3922
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3923 3924
					struct cftype *cft, u64 val)
{
3925
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3926

3927
	if (val & ~MOVE_MASK)
3928
		return -EINVAL;
3929

3930
	/*
3931 3932 3933 3934
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3935
	 */
3936
	memcg->move_charge_at_immigrate = val;
3937 3938
	return 0;
}
3939
#else
3940
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3941 3942 3943 3944 3945
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3946

3947
#ifdef CONFIG_NUMA
3948 3949 3950 3951 3952 3953

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3954
				int nid, unsigned int lru_mask, bool tree)
3955
{
3956
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3957 3958 3959 3960 3961 3962 3963 3964
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3965 3966 3967 3968
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3969 3970 3971 3972 3973
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3974 3975
					     unsigned int lru_mask,
					     bool tree)
3976 3977 3978 3979 3980 3981 3982
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3983 3984 3985 3986
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3987 3988 3989 3990
	}
	return nr;
}

3991
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3992
{
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
4005
	int nid;
4006
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4007

4008
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4009 4010 4011 4012 4013 4014 4015
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
4016
		seq_putc(m, '\n');
4017 4018
	}

4019
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4020 4021 4022 4023 4024 4025 4026 4027

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
4028
		seq_putc(m, '\n');
4029 4030 4031 4032 4033 4034
	}

	return 0;
}
#endif /* CONFIG_NUMA */

4035
static const unsigned int memcg1_stats[] = {
4036
	NR_FILE_PAGES,
4037
	NR_ANON_MAPPED,
4038 4039 4040
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
4051
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4052
	"rss_huge",
4053
#endif
4054 4055 4056 4057 4058 4059 4060
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

4061
/* Universal VM events cgroup1 shows, original sort order */
4062
static const unsigned int memcg1_events[] = {
4063 4064 4065 4066 4067 4068
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

4069
static int memcg_stat_show(struct seq_file *m, void *v)
4070
{
4071
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4072
	unsigned long memory, memsw;
4073 4074
	struct mem_cgroup *mi;
	unsigned int i;
4075

4076
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4077

4078
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4079 4080
		unsigned long nr;

4081
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4082
			continue;
4083 4084 4085 4086 4087 4088
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4089
	}
L
Lee Schermerhorn 已提交
4090

4091
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4092
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4093
			   memcg_events_local(memcg, memcg1_events[i]));
4094 4095

	for (i = 0; i < NR_LRU_LISTS; i++)
4096
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4097
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4098
			   PAGE_SIZE);
4099

K
KAMEZAWA Hiroyuki 已提交
4100
	/* Hierarchical information */
4101 4102
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4103 4104
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4105
	}
4106 4107
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4108
	if (do_memsw_account())
4109 4110
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4111

4112
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4113 4114
		unsigned long nr;

4115
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4116
			continue;
4117 4118 4119 4120 4121
		nr = memcg_page_state(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
4122
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4123
						(u64)nr * PAGE_SIZE);
4124 4125
	}

4126
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4127 4128
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4129
			   (u64)memcg_events(memcg, memcg1_events[i]));
4130

4131
	for (i = 0; i < NR_LRU_LISTS; i++)
4132
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4133 4134
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4135

K
KOSAKI Motohiro 已提交
4136 4137
#ifdef CONFIG_DEBUG_VM
	{
4138 4139
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4140 4141
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4142

4143 4144
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
K
KOSAKI Motohiro 已提交
4145

4146 4147
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4148
		}
4149 4150
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4151 4152 4153
	}
#endif

4154 4155 4156
	return 0;
}

4157 4158
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4159
{
4160
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4161

4162
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4163 4164
}

4165 4166
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4167
{
4168
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4169

4170
	if (val > 100)
K
KOSAKI Motohiro 已提交
4171 4172
		return -EINVAL;

4173
	if (css->parent)
4174 4175 4176
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4177

K
KOSAKI Motohiro 已提交
4178 4179 4180
	return 0;
}

4181 4182 4183
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4184
	unsigned long usage;
4185 4186 4187 4188
	int i;

	rcu_read_lock();
	if (!swap)
4189
		t = rcu_dereference(memcg->thresholds.primary);
4190
	else
4191
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4192 4193 4194 4195

	if (!t)
		goto unlock;

4196
	usage = mem_cgroup_usage(memcg, swap);
4197 4198

	/*
4199
	 * current_threshold points to threshold just below or equal to usage.
4200 4201 4202
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4203
	i = t->current_threshold;
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4227
	t->current_threshold = i - 1;
4228 4229 4230 4231 4232 4233
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4234 4235
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4236
		if (do_memsw_account())
4237 4238 4239 4240
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4241 4242 4243 4244 4245 4246 4247
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4248 4249 4250 4251 4252 4253 4254
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4255 4256
}

4257
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4258 4259 4260
{
	struct mem_cgroup_eventfd_list *ev;

4261 4262
	spin_lock(&memcg_oom_lock);

4263
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4264
		eventfd_signal(ev->eventfd, 1);
4265 4266

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4267 4268 4269
	return 0;
}

4270
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4271
{
K
KAMEZAWA Hiroyuki 已提交
4272 4273
	struct mem_cgroup *iter;

4274
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4275
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4276 4277
}

4278
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4279
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4280
{
4281 4282
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4283 4284
	unsigned long threshold;
	unsigned long usage;
4285
	int i, size, ret;
4286

4287
	ret = page_counter_memparse(args, "-1", &threshold);
4288 4289 4290 4291
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4292

4293
	if (type == _MEM) {
4294
		thresholds = &memcg->thresholds;
4295
		usage = mem_cgroup_usage(memcg, false);
4296
	} else if (type == _MEMSWAP) {
4297
		thresholds = &memcg->memsw_thresholds;
4298
		usage = mem_cgroup_usage(memcg, true);
4299
	} else
4300 4301 4302
		BUG();

	/* Check if a threshold crossed before adding a new one */
4303
	if (thresholds->primary)
4304 4305
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4306
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4307 4308

	/* Allocate memory for new array of thresholds */
4309
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4310
	if (!new) {
4311 4312 4313
		ret = -ENOMEM;
		goto unlock;
	}
4314
	new->size = size;
4315 4316

	/* Copy thresholds (if any) to new array */
4317 4318 4319
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4320

4321
	/* Add new threshold */
4322 4323
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4324 4325

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4326
	sort(new->entries, size, sizeof(*new->entries),
4327 4328 4329
			compare_thresholds, NULL);

	/* Find current threshold */
4330
	new->current_threshold = -1;
4331
	for (i = 0; i < size; i++) {
4332
		if (new->entries[i].threshold <= usage) {
4333
			/*
4334 4335
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4336 4337
			 * it here.
			 */
4338
			++new->current_threshold;
4339 4340
		} else
			break;
4341 4342
	}

4343 4344 4345 4346 4347
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4348

4349
	/* To be sure that nobody uses thresholds */
4350 4351 4352 4353 4354 4355 4356 4357
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4358
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4359 4360
	struct eventfd_ctx *eventfd, const char *args)
{
4361
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4362 4363
}

4364
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4365 4366
	struct eventfd_ctx *eventfd, const char *args)
{
4367
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4368 4369
}

4370
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4371
	struct eventfd_ctx *eventfd, enum res_type type)
4372
{
4373 4374
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4375
	unsigned long usage;
4376
	int i, j, size, entries;
4377 4378

	mutex_lock(&memcg->thresholds_lock);
4379 4380

	if (type == _MEM) {
4381
		thresholds = &memcg->thresholds;
4382
		usage = mem_cgroup_usage(memcg, false);
4383
	} else if (type == _MEMSWAP) {
4384
		thresholds = &memcg->memsw_thresholds;
4385
		usage = mem_cgroup_usage(memcg, true);
4386
	} else
4387 4388
		BUG();

4389 4390 4391
	if (!thresholds->primary)
		goto unlock;

4392 4393 4394 4395
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4396
	size = entries = 0;
4397 4398
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4399
			size++;
4400 4401
		else
			entries++;
4402 4403
	}

4404
	new = thresholds->spare;
4405

4406 4407 4408 4409
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4410 4411
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4412 4413
		kfree(new);
		new = NULL;
4414
		goto swap_buffers;
4415 4416
	}

4417
	new->size = size;
4418 4419

	/* Copy thresholds and find current threshold */
4420 4421 4422
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4423 4424
			continue;

4425
		new->entries[j] = thresholds->primary->entries[i];
4426
		if (new->entries[j].threshold <= usage) {
4427
			/*
4428
			 * new->current_threshold will not be used
4429 4430 4431
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4432
			++new->current_threshold;
4433 4434 4435 4436
		}
		j++;
	}

4437
swap_buffers:
4438 4439
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4440

4441
	rcu_assign_pointer(thresholds->primary, new);
4442

4443
	/* To be sure that nobody uses thresholds */
4444
	synchronize_rcu();
4445 4446 4447 4448 4449 4450

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4451
unlock:
4452 4453
	mutex_unlock(&memcg->thresholds_lock);
}
4454

4455
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4456 4457
	struct eventfd_ctx *eventfd)
{
4458
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4459 4460
}

4461
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4462 4463
	struct eventfd_ctx *eventfd)
{
4464
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4465 4466
}

4467
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4468
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4469 4470 4471 4472 4473 4474 4475
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4476
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4477 4478 4479 4480 4481

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4482
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4483
		eventfd_signal(eventfd, 1);
4484
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4485 4486 4487 4488

	return 0;
}

4489
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4490
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4491 4492 4493
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4494
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4495

4496
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4497 4498 4499 4500 4501 4502
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4503
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4504 4505
}

4506
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4507
{
4508
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4509

4510
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4511
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4512 4513
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4514 4515 4516
	return 0;
}

4517
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4518 4519
	struct cftype *cft, u64 val)
{
4520
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4521 4522

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4523
	if (!css->parent || !((val == 0) || (val == 1)))
4524 4525
		return -EINVAL;

4526
	memcg->oom_kill_disable = val;
4527
	if (!val)
4528
		memcg_oom_recover(memcg);
4529

4530 4531 4532
	return 0;
}

4533 4534
#ifdef CONFIG_CGROUP_WRITEBACK

4535 4536
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4547 4548 4549 4550 4551
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4562 4563 4564 4565 4566 4567
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4568
	long x = atomic_long_read(&memcg->vmstats[idx]);
4569 4570 4571
	int cpu;

	for_each_online_cpu(cpu)
4572
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4573 4574 4575 4576 4577
	if (x < 0)
		x = 0;
	return x;
}

4578 4579 4580
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4581 4582
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4583 4584 4585
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4586 4587 4588
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4589
 *
4590 4591 4592 4593 4594
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4595
 */
4596 4597 4598
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4599 4600 4601 4602
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4603
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4604

4605
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4606 4607
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4608
	*pheadroom = PAGE_COUNTER_MAX;
4609 4610

	while ((parent = parent_mem_cgroup(memcg))) {
4611
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4612
					    READ_ONCE(memcg->memory.high));
4613 4614
		unsigned long used = page_counter_read(&memcg->memory);

4615
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4616 4617 4618 4619
		memcg = parent;
	}
}

4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4674 4675
	trace_track_foreign_dirty(page, wb);

4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4736
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4737 4738 4739 4740 4741 4742 4743
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4755 4756 4757 4758
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4759 4760
#endif	/* CONFIG_CGROUP_WRITEBACK */

4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4774 4775 4776 4777 4778
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4779
static void memcg_event_remove(struct work_struct *work)
4780
{
4781 4782
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4783
	struct mem_cgroup *memcg = event->memcg;
4784 4785 4786

	remove_wait_queue(event->wqh, &event->wait);

4787
	event->unregister_event(memcg, event->eventfd);
4788 4789 4790 4791 4792 4793

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4794
	css_put(&memcg->css);
4795 4796 4797
}

/*
4798
 * Gets called on EPOLLHUP on eventfd when user closes it.
4799 4800 4801
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4802
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4803
			    int sync, void *key)
4804
{
4805 4806
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4807
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4808
	__poll_t flags = key_to_poll(key);
4809

4810
	if (flags & EPOLLHUP) {
4811 4812 4813 4814 4815 4816 4817 4818 4819
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4820
		spin_lock(&memcg->event_list_lock);
4821 4822 4823 4824 4825 4826 4827 4828
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4829
		spin_unlock(&memcg->event_list_lock);
4830 4831 4832 4833 4834
	}

	return 0;
}

4835
static void memcg_event_ptable_queue_proc(struct file *file,
4836 4837
		wait_queue_head_t *wqh, poll_table *pt)
{
4838 4839
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4840 4841 4842 4843 4844 4845

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4846 4847
 * DO NOT USE IN NEW FILES.
 *
4848 4849 4850 4851 4852
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4853 4854
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4855
{
4856
	struct cgroup_subsys_state *css = of_css(of);
4857
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4858
	struct mem_cgroup_event *event;
4859 4860 4861 4862
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4863
	const char *name;
4864 4865 4866
	char *endp;
	int ret;

4867 4868 4869
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4870 4871
	if (*endp != ' ')
		return -EINVAL;
4872
	buf = endp + 1;
4873

4874
	cfd = simple_strtoul(buf, &endp, 10);
4875 4876
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4877
	buf = endp + 1;
4878 4879 4880 4881 4882

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4883
	event->memcg = memcg;
4884
	INIT_LIST_HEAD(&event->list);
4885 4886 4887
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4913 4914 4915 4916 4917
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4918 4919
	 *
	 * DO NOT ADD NEW FILES.
4920
	 */
A
Al Viro 已提交
4921
	name = cfile.file->f_path.dentry->d_name.name;
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4933 4934
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4935 4936 4937 4938 4939
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4940
	/*
4941 4942 4943
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4944
	 */
A
Al Viro 已提交
4945
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4946
					       &memory_cgrp_subsys);
4947
	ret = -EINVAL;
4948
	if (IS_ERR(cfile_css))
4949
		goto out_put_cfile;
4950 4951
	if (cfile_css != css) {
		css_put(cfile_css);
4952
		goto out_put_cfile;
4953
	}
4954

4955
	ret = event->register_event(memcg, event->eventfd, buf);
4956 4957 4958
	if (ret)
		goto out_put_css;

4959
	vfs_poll(efile.file, &event->pt);
4960

4961 4962 4963
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4964 4965 4966 4967

	fdput(cfile);
	fdput(efile);

4968
	return nbytes;
4969 4970

out_put_css:
4971
	css_put(css);
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4984
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4985
	{
4986
		.name = "usage_in_bytes",
4987
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4988
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4989
	},
4990 4991
	{
		.name = "max_usage_in_bytes",
4992
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4993
		.write = mem_cgroup_reset,
4994
		.read_u64 = mem_cgroup_read_u64,
4995
	},
B
Balbir Singh 已提交
4996
	{
4997
		.name = "limit_in_bytes",
4998
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4999
		.write = mem_cgroup_write,
5000
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5001
	},
5002 5003 5004
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5005
		.write = mem_cgroup_write,
5006
		.read_u64 = mem_cgroup_read_u64,
5007
	},
B
Balbir Singh 已提交
5008 5009
	{
		.name = "failcnt",
5010
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5011
		.write = mem_cgroup_reset,
5012
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5013
	},
5014 5015
	{
		.name = "stat",
5016
		.seq_show = memcg_stat_show,
5017
	},
5018 5019
	{
		.name = "force_empty",
5020
		.write = mem_cgroup_force_empty_write,
5021
	},
5022 5023 5024 5025 5026
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
5027
	{
5028
		.name = "cgroup.event_control",		/* XXX: for compat */
5029
		.write = memcg_write_event_control,
5030
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5031
	},
K
KOSAKI Motohiro 已提交
5032 5033 5034 5035 5036
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5037 5038 5039 5040 5041
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5042 5043
	{
		.name = "oom_control",
5044
		.seq_show = mem_cgroup_oom_control_read,
5045
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5046 5047
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5048 5049 5050
	{
		.name = "pressure_level",
	},
5051 5052 5053
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5054
		.seq_show = memcg_numa_stat_show,
5055 5056
	},
#endif
5057 5058 5059
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5060
		.write = mem_cgroup_write,
5061
		.read_u64 = mem_cgroup_read_u64,
5062 5063 5064 5065
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5066
		.read_u64 = mem_cgroup_read_u64,
5067 5068 5069 5070
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5071
		.write = mem_cgroup_reset,
5072
		.read_u64 = mem_cgroup_read_u64,
5073 5074 5075 5076
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5077
		.write = mem_cgroup_reset,
5078
		.read_u64 = mem_cgroup_read_u64,
5079
	},
5080 5081
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5082 5083
	{
		.name = "kmem.slabinfo",
5084
		.seq_show = memcg_slab_show,
5085 5086
	},
#endif
V
Vladimir Davydov 已提交
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5110
	{ },	/* terminate */
5111
};
5112

5113 5114 5115 5116 5117 5118 5119 5120
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5121
 * However, there usually are many references to the offline CSS after
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5139 5140 5141 5142 5143 5144 5145 5146
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5147 5148
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5149
{
5150
	refcount_add(n, &memcg->id.ref);
5151 5152
}

5153
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5154
{
5155
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5156
		mem_cgroup_id_remove(memcg);
5157 5158 5159 5160 5161 5162

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5163 5164 5165 5166 5167
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5180
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5181 5182
{
	struct mem_cgroup_per_node *pn;
5183
	int tmp = node;
5184 5185 5186 5187 5188 5189 5190 5191
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5192 5193
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5194
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5195 5196
	if (!pn)
		return 1;
5197

5198 5199
	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
						 GFP_KERNEL_ACCOUNT);
5200 5201 5202 5203 5204
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5205 5206
	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
					       GFP_KERNEL_ACCOUNT);
5207
	if (!pn->lruvec_stat_cpu) {
5208
		free_percpu(pn->lruvec_stat_local);
5209 5210 5211 5212
		kfree(pn);
		return 1;
	}

5213 5214 5215 5216 5217
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5218
	memcg->nodeinfo[node] = pn;
5219 5220 5221
	return 0;
}

5222
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5223
{
5224 5225
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5226 5227 5228
	if (!pn)
		return;

5229
	free_percpu(pn->lruvec_stat_cpu);
5230
	free_percpu(pn->lruvec_stat_local);
5231
	kfree(pn);
5232 5233
}

5234
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5235
{
5236
	int node;
5237

5238
	for_each_node(node)
5239
		free_mem_cgroup_per_node_info(memcg, node);
5240
	free_percpu(memcg->vmstats_percpu);
5241
	free_percpu(memcg->vmstats_local);
5242
	kfree(memcg);
5243
}
5244

5245 5246 5247
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
5248 5249 5250 5251
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
5252
	memcg_flush_percpu_vmstats(memcg);
5253
	memcg_flush_percpu_vmevents(memcg);
5254 5255 5256
	__mem_cgroup_free(memcg);
}

5257
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5258
{
5259
	struct mem_cgroup *memcg;
5260
	unsigned int size;
5261
	int node;
5262
	int __maybe_unused i;
5263
	long error = -ENOMEM;
B
Balbir Singh 已提交
5264

5265 5266 5267 5268
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5269
	if (!memcg)
5270
		return ERR_PTR(error);
5271

5272 5273 5274
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5275 5276
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5277
		goto fail;
5278
	}
5279

5280 5281
	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						GFP_KERNEL_ACCOUNT);
5282 5283 5284
	if (!memcg->vmstats_local)
		goto fail;

5285 5286
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5287
	if (!memcg->vmstats_percpu)
5288
		goto fail;
5289

B
Bob Liu 已提交
5290
	for_each_node(node)
5291
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5292
			goto fail;
5293

5294 5295
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5296

5297
	INIT_WORK(&memcg->high_work, high_work_func);
5298 5299 5300
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5301
	vmpressure_init(&memcg->vmpressure);
5302 5303
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5304
	memcg->socket_pressure = jiffies;
5305
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5306
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5307
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5308
#endif
5309 5310
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5311 5312 5313
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5314 5315 5316 5317 5318
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5319
#endif
5320
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5321 5322
	return memcg;
fail:
5323
	mem_cgroup_id_remove(memcg);
5324
	__mem_cgroup_free(memcg);
5325
	return ERR_PTR(error);
5326 5327
}

5328 5329
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5330
{
5331
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5332
	struct mem_cgroup *memcg, *old_memcg;
5333
	long error = -ENOMEM;
5334

5335
	old_memcg = set_active_memcg(parent);
5336
	memcg = mem_cgroup_alloc();
5337
	set_active_memcg(old_memcg);
5338 5339
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5340

5341
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5342
	memcg->soft_limit = PAGE_COUNTER_MAX;
5343
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5344 5345 5346 5347 5348 5349
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
5350
		page_counter_init(&memcg->memory, &parent->memory);
5351
		page_counter_init(&memcg->swap, &parent->swap);
5352
		page_counter_init(&memcg->kmem, &parent->kmem);
5353
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5354
	} else {
5355
		page_counter_init(&memcg->memory, NULL);
5356
		page_counter_init(&memcg->swap, NULL);
5357
		page_counter_init(&memcg->kmem, NULL);
5358
		page_counter_init(&memcg->tcpmem, NULL);
5359 5360 5361 5362 5363
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5364
		if (parent != root_mem_cgroup)
5365
			memory_cgrp_subsys.broken_hierarchy = true;
5366
	}
5367

5368 5369 5370 5371 5372 5373
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5374
	error = memcg_online_kmem(memcg);
5375 5376
	if (error)
		goto fail;
5377

5378
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5379
		static_branch_inc(&memcg_sockets_enabled_key);
5380

5381 5382
	return &memcg->css;
fail:
5383
	mem_cgroup_id_remove(memcg);
5384
	mem_cgroup_free(memcg);
5385
	return ERR_PTR(error);
5386 5387
}

5388
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5389
{
5390 5391
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5402
	/* Online state pins memcg ID, memcg ID pins CSS */
5403
	refcount_set(&memcg->id.ref, 1);
5404
	css_get(css);
5405
	return 0;
B
Balbir Singh 已提交
5406 5407
}

5408
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5409
{
5410
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5411
	struct mem_cgroup_event *event, *tmp;
5412 5413 5414 5415 5416 5417

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5418 5419
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5420 5421 5422
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5423
	spin_unlock(&memcg->event_list_lock);
5424

R
Roman Gushchin 已提交
5425
	page_counter_set_min(&memcg->memory, 0);
5426
	page_counter_set_low(&memcg->memory, 0);
5427

5428
	memcg_offline_kmem(memcg);
5429
	wb_memcg_offline(memcg);
5430

5431 5432
	drain_all_stock(memcg);

5433
	mem_cgroup_id_put(memcg);
5434 5435
}

5436 5437 5438 5439 5440 5441 5442
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5443
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5444
{
5445
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5446
	int __maybe_unused i;
5447

5448 5449 5450 5451
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5452
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5453
		static_branch_dec(&memcg_sockets_enabled_key);
5454

5455
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5456
		static_branch_dec(&memcg_sockets_enabled_key);
5457

5458 5459 5460
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5461
	memcg_free_shrinker_maps(memcg);
5462
	memcg_free_kmem(memcg);
5463
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5464 5465
}

5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5483 5484 5485 5486
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5487
	page_counter_set_min(&memcg->memory, 0);
5488
	page_counter_set_low(&memcg->memory, 0);
5489
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5490
	memcg->soft_limit = PAGE_COUNTER_MAX;
5491
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5492
	memcg_wb_domain_size_changed(memcg);
5493 5494
}

5495
#ifdef CONFIG_MMU
5496
/* Handlers for move charge at task migration. */
5497
static int mem_cgroup_do_precharge(unsigned long count)
5498
{
5499
	int ret;
5500

5501 5502
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5503
	if (!ret) {
5504 5505 5506
		mc.precharge += count;
		return ret;
	}
5507

5508
	/* Try charges one by one with reclaim, but do not retry */
5509
	while (count--) {
5510
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5511 5512
		if (ret)
			return ret;
5513
		mc.precharge++;
5514
		cond_resched();
5515
	}
5516
	return 0;
5517 5518 5519 5520
}

union mc_target {
	struct page	*page;
5521
	swp_entry_t	ent;
5522 5523 5524
};

enum mc_target_type {
5525
	MC_TARGET_NONE = 0,
5526
	MC_TARGET_PAGE,
5527
	MC_TARGET_SWAP,
5528
	MC_TARGET_DEVICE,
5529 5530
};

D
Daisuke Nishimura 已提交
5531 5532
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5533
{
5534
	struct page *page = vm_normal_page(vma, addr, ptent);
5535

D
Daisuke Nishimura 已提交
5536 5537 5538
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5539
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5540
			return NULL;
5541 5542 5543 5544
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5545 5546 5547 5548 5549 5550
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5551
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5552
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5553
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5554 5555 5556 5557
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5558
	if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5559
		return NULL;
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5577 5578 5579
	if (non_swap_entry(ent))
		return NULL;

5580 5581 5582 5583
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5584
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5585
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5586 5587 5588

	return page;
}
5589 5590
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5591
			pte_t ptent, swp_entry_t *entry)
5592 5593 5594 5595
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5596

5597 5598 5599 5600 5601
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5602
	if (!(mc.flags & MOVE_FILE))
5603 5604 5605
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5606
	/* shmem/tmpfs may report page out on swap: account for that too. */
5607 5608
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5609 5610
}

5611 5612 5613
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5614
 * @compound: charge the page as compound or small page
5615 5616 5617
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5618
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5619 5620 5621 5622 5623
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5624
				   bool compound,
5625 5626 5627
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5628 5629
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5630
	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5631 5632 5633 5634
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5635
	VM_BUG_ON(compound && !PageTransHuge(page));
5636 5637

	/*
5638
	 * Prevent mem_cgroup_migrate() from looking at
5639
	 * page->mem_cgroup of its source page while we change it.
5640
	 */
5641
	ret = -EBUSY;
5642 5643 5644 5645 5646 5647 5648
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5649
	pgdat = page_pgdat(page);
5650 5651
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5652

5653
	lock_page_memcg(page);
5654

5655 5656 5657 5658
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5659 5660 5661 5662 5663 5664 5665
			if (PageTransHuge(page)) {
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
			}

5666 5667
		}
	} else {
5668 5669 5670 5671 5672 5673 5674 5675
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5676 5677 5678 5679
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5680

5681 5682
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5683

5684
			if (mapping_can_writeback(mapping)) {
5685 5686 5687 5688 5689
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5690 5691 5692
		}
	}

5693
	if (PageWriteback(page)) {
5694 5695
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5696 5697 5698
	}

	/*
5699 5700
	 * All state has been migrated, let's switch to the new memcg.
	 *
5701
	 * It is safe to change page->mem_cgroup here because the page
5702 5703 5704 5705 5706 5707 5708 5709
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
	 * that would rely on a stable page->mem_cgroup.
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
	 * to save space. As soon as we switch page->mem_cgroup to a
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5710
	 */
5711
	smp_mb();
5712

5713 5714 5715 5716
	css_get(&to->css);
	css_put(&from->css);

	page->mem_cgroup = to;
5717

5718
	__unlock_page_memcg(from);
5719 5720 5721 5722

	ret = 0;

	local_irq_disable();
5723
	mem_cgroup_charge_statistics(to, page, nr_pages);
5724
	memcg_check_events(to, page);
5725
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5726 5727 5728 5729 5730 5731 5732 5733
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5749 5750
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5751 5752 5753
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5754 5755
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5756 5757 5758 5759
 *
 * Called with pte lock held.
 */

5760
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5761 5762 5763
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5764
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5765 5766 5767 5768 5769
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5770
		page = mc_handle_swap_pte(vma, ptent, &ent);
5771
	else if (pte_none(ptent))
5772
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5773 5774

	if (!page && !ent.val)
5775
		return ret;
5776 5777
	if (page) {
		/*
5778
		 * Do only loose check w/o serialization.
5779
		 * mem_cgroup_move_account() checks the page is valid or
5780
		 * not under LRU exclusion.
5781
		 */
5782
		if (page->mem_cgroup == mc.from) {
5783
			ret = MC_TARGET_PAGE;
5784
			if (is_device_private_page(page))
5785
				ret = MC_TARGET_DEVICE;
5786 5787 5788 5789 5790 5791
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5792 5793 5794 5795 5796
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5797
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5798 5799 5800
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5801 5802 5803 5804
	}
	return ret;
}

5805 5806
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5807 5808
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5809 5810 5811 5812 5813 5814 5815 5816
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5817 5818 5819 5820 5821
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5822
	page = pmd_page(pmd);
5823
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5824
	if (!(mc.flags & MOVE_ANON))
5825
		return ret;
5826
	if (page->mem_cgroup == mc.from) {
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5843 5844 5845 5846
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5847
	struct vm_area_struct *vma = walk->vma;
5848 5849 5850
	pte_t *pte;
	spinlock_t *ptl;

5851 5852
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5853 5854
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5855 5856
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5857
		 */
5858 5859
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5860
		spin_unlock(ptl);
5861
		return 0;
5862
	}
5863

5864 5865
	if (pmd_trans_unstable(pmd))
		return 0;
5866 5867
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5868
		if (get_mctgt_type(vma, addr, *pte, NULL))
5869 5870 5871 5872
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5873 5874 5875
	return 0;
}

5876 5877 5878 5879
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5880 5881 5882 5883
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5884
	mmap_read_lock(mm);
5885
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5886
	mmap_read_unlock(mm);
5887 5888 5889 5890 5891 5892 5893 5894 5895

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5896 5897 5898 5899 5900
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5901 5902
}

5903 5904
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5905
{
5906 5907 5908
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5909
	/* we must uncharge all the leftover precharges from mc.to */
5910
	if (mc.precharge) {
5911
		cancel_charge(mc.to, mc.precharge);
5912 5913 5914 5915 5916 5917 5918
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5919
		cancel_charge(mc.from, mc.moved_charge);
5920
		mc.moved_charge = 0;
5921
	}
5922 5923 5924
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5925
		if (!mem_cgroup_is_root(mc.from))
5926
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5927

5928 5929
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5930
		/*
5931 5932
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5933
		 */
5934
		if (!mem_cgroup_is_root(mc.to))
5935 5936
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5937 5938
		mc.moved_swap = 0;
	}
5939 5940 5941 5942 5943 5944 5945
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5946 5947
	struct mm_struct *mm = mc.mm;

5948 5949 5950 5951 5952 5953
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5954
	spin_lock(&mc.lock);
5955 5956
	mc.from = NULL;
	mc.to = NULL;
5957
	mc.mm = NULL;
5958
	spin_unlock(&mc.lock);
5959 5960

	mmput(mm);
5961 5962
}

5963
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5964
{
5965
	struct cgroup_subsys_state *css;
5966
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5967
	struct mem_cgroup *from;
5968
	struct task_struct *leader, *p;
5969
	struct mm_struct *mm;
5970
	unsigned long move_flags;
5971
	int ret = 0;
5972

5973 5974
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5975 5976
		return 0;

5977 5978 5979 5980 5981 5982 5983
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5984
	cgroup_taskset_for_each_leader(leader, css, tset) {
5985 5986
		WARN_ON_ONCE(p);
		p = leader;
5987
		memcg = mem_cgroup_from_css(css);
5988 5989 5990 5991
	}
	if (!p)
		return 0;

5992 5993 5994 5995 5996 5997 5998 5999 6000
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
6017
		mc.mm = mm;
6018 6019 6020 6021 6022 6023 6024 6025 6026
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
6027 6028
	} else {
		mmput(mm);
6029 6030 6031 6032
	}
	return ret;
}

6033
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6034
{
6035 6036
	if (mc.to)
		mem_cgroup_clear_mc();
6037 6038
}

6039 6040 6041
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6042
{
6043
	int ret = 0;
6044
	struct vm_area_struct *vma = walk->vma;
6045 6046
	pte_t *pte;
	spinlock_t *ptl;
6047 6048 6049
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
6050

6051 6052
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
6053
		if (mc.precharge < HPAGE_PMD_NR) {
6054
			spin_unlock(ptl);
6055 6056 6057 6058 6059 6060
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6061
				if (!mem_cgroup_move_account(page, true,
6062
							     mc.from, mc.to)) {
6063 6064 6065 6066 6067 6068
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6069 6070 6071 6072 6073 6074 6075 6076
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6077
		}
6078
		spin_unlock(ptl);
6079
		return 0;
6080 6081
	}

6082 6083
	if (pmd_trans_unstable(pmd))
		return 0;
6084 6085 6086 6087
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6088
		bool device = false;
6089
		swp_entry_t ent;
6090 6091 6092 6093

		if (!mc.precharge)
			break;

6094
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6095 6096
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6097
			fallthrough;
6098 6099
		case MC_TARGET_PAGE:
			page = target.page;
6100 6101 6102 6103 6104 6105 6106 6107
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6108
			if (!device && isolate_lru_page(page))
6109
				goto put;
6110 6111
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6112
				mc.precharge--;
6113 6114
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6115
			}
6116 6117
			if (!device)
				putback_lru_page(page);
6118
put:			/* get_mctgt_type() gets the page */
6119 6120
			put_page(page);
			break;
6121 6122
		case MC_TARGET_SWAP:
			ent = target.ent;
6123
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6124
				mc.precharge--;
6125 6126
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6127 6128
				mc.moved_swap++;
			}
6129
			break;
6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6144
		ret = mem_cgroup_do_precharge(1);
6145 6146 6147 6148 6149 6150 6151
		if (!ret)
			goto retry;
	}

	return ret;
}

6152 6153 6154 6155
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6156
static void mem_cgroup_move_charge(void)
6157 6158
{
	lru_add_drain_all();
6159
	/*
6160 6161 6162
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6163 6164 6165
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6166
retry:
6167
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6168
		/*
6169
		 * Someone who are holding the mmap_lock might be waiting in
6170 6171 6172 6173 6174 6175 6176 6177 6178
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6179 6180 6181 6182
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6183 6184
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6185

6186
	mmap_read_unlock(mc.mm);
6187
	atomic_dec(&mc.from->moving_account);
6188 6189
}

6190
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6191
{
6192 6193
	if (mc.to) {
		mem_cgroup_move_charge();
6194
		mem_cgroup_clear_mc();
6195
	}
B
Balbir Singh 已提交
6196
}
6197
#else	/* !CONFIG_MMU */
6198
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6199 6200 6201
{
	return 0;
}
6202
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6203 6204
{
}
6205
static void mem_cgroup_move_task(void)
6206 6207 6208
{
}
#endif
B
Balbir Singh 已提交
6209

6210 6211
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6212 6213
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
6214
 */
6215
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6216 6217
{
	/*
6218
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6219 6220 6221
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6222
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6223 6224 6225
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
6226 6227
}

6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6238 6239 6240
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6241 6242 6243
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6244 6245
}

R
Roman Gushchin 已提交
6246 6247
static int memory_min_show(struct seq_file *m, void *v)
{
6248 6249
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6269 6270
static int memory_low_show(struct seq_file *m, void *v)
{
6271 6272
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6283
	err = page_counter_memparse(buf, "max", &low);
6284 6285 6286
	if (err)
		return err;

6287
	page_counter_set_low(&memcg->memory, low);
6288 6289 6290 6291 6292 6293

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6294 6295
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6296 6297 6298 6299 6300 6301
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6302
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6303
	bool drained = false;
6304 6305 6306 6307
	unsigned long high;
	int err;

	buf = strstrip(buf);
6308
	err = page_counter_memparse(buf, "max", &high);
6309 6310 6311
	if (err)
		return err;

6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6334

6335 6336
	page_counter_set_high(&memcg->memory, high);

6337 6338
	memcg_wb_domain_size_changed(memcg);

6339 6340 6341 6342 6343
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6344 6345
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6346 6347 6348 6349 6350 6351
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6352
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6353
	bool drained = false;
6354 6355 6356 6357
	unsigned long max;
	int err;

	buf = strstrip(buf);
6358
	err = page_counter_memparse(buf, "max", &max);
6359 6360 6361
	if (err)
		return err;

6362
	xchg(&memcg->memory.max, max);
6363 6364 6365 6366 6367 6368 6369

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6370
		if (signal_pending(current))
6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6386
		memcg_memory_event(memcg, MEMCG_OOM);
6387 6388 6389
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6390

6391
	memcg_wb_domain_size_changed(memcg);
6392 6393 6394
	return nbytes;
}

6395 6396 6397 6398 6399 6400 6401 6402 6403 6404
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6405 6406
static int memory_events_show(struct seq_file *m, void *v)
{
6407
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6408

6409 6410 6411 6412 6413 6414 6415
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6416

6417
	__memory_events_show(m, memcg->memory_events_local);
6418 6419 6420
	return 0;
}

6421 6422
static int memory_stat_show(struct seq_file *m, void *v)
{
6423
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6424
	char *buf;
6425

6426 6427 6428 6429 6430
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6431 6432 6433
	return 0;
}

6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
#ifdef CONFIG_NUMA
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
			size = lruvec_page_state(lruvec, memory_stats[i].idx);
			size *= memory_stats[i].ratio;
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6463 6464
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6465
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6494 6495 6496
static struct cftype memory_files[] = {
	{
		.name = "current",
6497
		.flags = CFTYPE_NOT_ON_ROOT,
6498 6499
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6500 6501 6502 6503 6504 6505
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6527
		.file_offset = offsetof(struct mem_cgroup, events_file),
6528 6529
		.seq_show = memory_events_show,
	},
6530 6531 6532 6533 6534 6535
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6536 6537 6538 6539
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6540 6541 6542 6543 6544 6545
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6546 6547 6548 6549 6550 6551
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6552 6553 6554
	{ }	/* terminate */
};

6555
struct cgroup_subsys memory_cgrp_subsys = {
6556
	.css_alloc = mem_cgroup_css_alloc,
6557
	.css_online = mem_cgroup_css_online,
6558
	.css_offline = mem_cgroup_css_offline,
6559
	.css_released = mem_cgroup_css_released,
6560
	.css_free = mem_cgroup_css_free,
6561
	.css_reset = mem_cgroup_css_reset,
6562 6563
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6564
	.post_attach = mem_cgroup_move_task,
6565
	.bind = mem_cgroup_bind,
6566 6567
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6568
	.early_init = 0,
B
Balbir Singh 已提交
6569
};
6570

6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6613 6614
 */
static unsigned long effective_protection(unsigned long usage,
6615
					  unsigned long parent_usage,
6616 6617 6618 6619 6620
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6621
	unsigned long ep;
6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6665 6666 6667 6668
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6669 6670 6671
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6672 6673 6674
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6685 6686
}

6687
/**
R
Roman Gushchin 已提交
6688
 * mem_cgroup_protected - check if memory consumption is in the normal range
6689
 * @root: the top ancestor of the sub-tree being checked
6690 6691
 * @memcg: the memory cgroup to check
 *
6692 6693
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6694
 */
6695 6696
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6697
{
6698
	unsigned long usage, parent_usage;
6699 6700
	struct mem_cgroup *parent;

6701
	if (mem_cgroup_disabled())
6702
		return;
6703

6704 6705
	if (!root)
		root = root_mem_cgroup;
6706 6707 6708 6709 6710 6711 6712 6713

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6714
	if (memcg == root)
6715
		return;
6716

6717
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6718
	if (!usage)
6719
		return;
R
Roman Gushchin 已提交
6720 6721

	parent = parent_mem_cgroup(memcg);
6722 6723
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6724
		return;
6725

6726
	if (parent == root) {
6727
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6728
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6729
		return;
R
Roman Gushchin 已提交
6730 6731
	}

6732 6733
	parent_usage = page_counter_read(&parent->memory);

6734
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6735 6736
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6737
			atomic_long_read(&parent->memory.children_min_usage)));
6738

6739
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6740 6741
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6742
			atomic_long_read(&parent->memory.children_low_usage)));
6743 6744
}

6745
/**
6746
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6747 6748 6749 6750 6751 6752 6753
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6754
 * Returns 0 on success. Otherwise, an error code is returned.
6755
 */
6756
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6757
{
6758
	unsigned int nr_pages = thp_nr_pages(page);
6759 6760 6761 6762 6763 6764 6765
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6766 6767 6768
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6769 6770 6771
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6772 6773
		 * already charged pages, too.  page->mem_cgroup is protected
		 * by the page lock, which serializes swap cache removal, which
6774 6775
		 * in turn serializes uncharging.
		 */
6776
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6777
		if (compound_head(page)->mem_cgroup)
6778
			goto out;
6779

6780 6781 6782 6783 6784 6785
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6786 6787 6788 6789 6790 6791
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6792 6793
	if (ret)
		goto out_put;
6794

6795
	css_get(&memcg->css);
6796
	commit_charge(page, memcg);
6797 6798

	local_irq_disable();
6799
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6800 6801
	memcg_check_events(memcg, page);
	local_irq_enable();
6802

6803
	if (PageSwapCache(page)) {
6804 6805 6806 6807 6808 6809
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6810
		mem_cgroup_uncharge_swap(entry, nr_pages);
6811 6812
	}

6813 6814 6815 6816
out_put:
	css_put(&memcg->css);
out:
	return ret;
6817 6818
}

6819 6820
struct uncharge_gather {
	struct mem_cgroup *memcg;
6821
	unsigned long nr_pages;
6822 6823 6824 6825 6826 6827
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6828
{
6829 6830 6831 6832 6833
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6834 6835
	unsigned long flags;

6836
	if (!mem_cgroup_is_root(ug->memcg)) {
6837
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6838
		if (do_memsw_account())
6839
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6840 6841 6842
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6843
	}
6844 6845

	local_irq_save(flags);
6846
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6847
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6848
	memcg_check_events(ug->memcg, ug->dummy_page);
6849
	local_irq_restore(flags);
6850 6851 6852

	/* drop reference from uncharge_page */
	css_put(&ug->memcg->css);
6853 6854 6855 6856
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6857 6858
	unsigned long nr_pages;

6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875
	VM_BUG_ON_PAGE(PageLRU(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
6876 6877 6878

		/* pairs with css_put in uncharge_batch */
		css_get(&ug->memcg->css);
6879 6880
	}

6881 6882
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
6883

6884
	if (!PageKmemcg(page)) {
6885 6886
		ug->pgpgout++;
	} else {
6887
		ug->nr_kmem += nr_pages;
6888 6889 6890 6891 6892
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6893
	css_put(&ug->memcg->css);
6894 6895 6896 6897
}

static void uncharge_list(struct list_head *page_list)
{
6898
	struct uncharge_gather ug;
6899
	struct list_head *next;
6900 6901

	uncharge_gather_clear(&ug);
6902

6903 6904 6905 6906
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6907 6908
	next = page_list->next;
	do {
6909 6910
		struct page *page;

6911 6912 6913
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6914
		uncharge_page(page, &ug);
6915 6916
	} while (next != page_list);

6917 6918
	if (ug.memcg)
		uncharge_batch(&ug);
6919 6920
}

6921 6922 6923 6924
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6925
 * Uncharge a page previously charged with mem_cgroup_charge().
6926 6927 6928
 */
void mem_cgroup_uncharge(struct page *page)
{
6929 6930
	struct uncharge_gather ug;

6931 6932 6933
	if (mem_cgroup_disabled())
		return;

6934
	/* Don't touch page->lru of any random page, pre-check: */
6935
	if (!page->mem_cgroup)
6936 6937
		return;

6938 6939 6940
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6941
}
6942

6943 6944 6945 6946 6947
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6948
 * mem_cgroup_charge().
6949 6950 6951 6952 6953
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6954

6955 6956
	if (!list_empty(page_list))
		uncharge_list(page_list);
6957 6958 6959
}

/**
6960 6961 6962
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6963
 *
6964 6965
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6966 6967 6968
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6969
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6970
{
6971
	struct mem_cgroup *memcg;
6972
	unsigned int nr_pages;
6973
	unsigned long flags;
6974 6975 6976 6977

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6978 6979
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6980 6981 6982 6983 6984

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6985
	if (newpage->mem_cgroup)
6986 6987
		return;

6988
	/* Swapcache readahead pages can get replaced before being charged */
6989
	memcg = oldpage->mem_cgroup;
6990
	if (!memcg)
6991 6992
		return;

6993
	/* Force-charge the new page. The old one will be freed soon */
6994
	nr_pages = thp_nr_pages(newpage);
6995 6996 6997 6998

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
6999

7000
	css_get(&memcg->css);
7001
	commit_charge(newpage, memcg);
7002

7003
	local_irq_save(flags);
7004
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7005
	memcg_check_events(memcg, newpage);
7006
	local_irq_restore(flags);
7007 7008
}

7009
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7010 7011
EXPORT_SYMBOL(memcg_sockets_enabled_key);

7012
void mem_cgroup_sk_alloc(struct sock *sk)
7013 7014 7015
{
	struct mem_cgroup *memcg;

7016 7017 7018
	if (!mem_cgroup_sockets_enabled)
		return;

7019 7020 7021 7022
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

7023 7024
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
7025 7026
	if (memcg == root_mem_cgroup)
		goto out;
7027
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7028
		goto out;
S
Shakeel Butt 已提交
7029
	if (css_tryget(&memcg->css))
7030
		sk->sk_memcg = memcg;
7031
out:
7032 7033 7034
	rcu_read_unlock();
}

7035
void mem_cgroup_sk_free(struct sock *sk)
7036
{
7037 7038
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7051
	gfp_t gfp_mask = GFP_KERNEL;
7052

7053
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7054
		struct page_counter *fail;
7055

7056 7057
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
7058 7059
			return true;
		}
7060 7061
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
7062
		return false;
7063
	}
7064

7065 7066 7067 7068
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

7069
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7070

7071 7072 7073 7074
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7075 7076 7077 7078 7079
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
7080 7081
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7082 7083 7084
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7085
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7086
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7087 7088
		return;
	}
7089

7090
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7091

7092
	refill_stock(memcg, nr_pages);
7093 7094
}

7095 7096 7097 7098 7099 7100 7101 7102 7103
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7104 7105
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7106 7107 7108 7109
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7110

7111
/*
7112 7113
 * subsys_initcall() for memory controller.
 *
7114 7115 7116 7117
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7118 7119 7120
 */
static int __init mem_cgroup_init(void)
{
7121 7122
	int cpu, node;

7123 7124
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7136
		rtpn->rb_root = RB_ROOT;
7137
		rtpn->rb_rightmost = NULL;
7138
		spin_lock_init(&rtpn->lock);
7139 7140 7141
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7142 7143 7144
	return 0;
}
subsys_initcall(mem_cgroup_init);
7145 7146

#ifdef CONFIG_MEMCG_SWAP
7147 7148
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7149
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7165 7166 7167 7168 7169 7170 7171 7172 7173
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7174
	struct mem_cgroup *memcg, *swap_memcg;
7175
	unsigned int nr_entries;
7176 7177 7178 7179 7180
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7181
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7182 7183 7184 7185 7186 7187 7188 7189
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

7190 7191 7192 7193 7194 7195
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7196
	nr_entries = thp_nr_pages(page);
7197 7198 7199 7200 7201
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7202
	VM_BUG_ON_PAGE(oldid, page);
7203
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7204 7205 7206 7207

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
7208
		page_counter_uncharge(&memcg->memory, nr_entries);
7209

7210
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7211
		if (!mem_cgroup_is_root(swap_memcg))
7212 7213
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7214 7215
	}

7216 7217
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7218
	 * i_pages lock which is taken with interrupts-off. It is
7219
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7220
	 * only synchronisation we have for updating the per-CPU variables.
7221 7222
	 */
	VM_BUG_ON(!irqs_disabled());
7223
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7224
	memcg_check_events(memcg, page);
7225

7226
	css_put(&memcg->css);
7227 7228
}

7229 7230
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7231 7232 7233
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7234
 * Try to charge @page's memcg for the swap space at @entry.
7235 7236 7237 7238 7239
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7240
	unsigned int nr_pages = thp_nr_pages(page);
7241
	struct page_counter *counter;
7242
	struct mem_cgroup *memcg;
7243 7244
	unsigned short oldid;

7245
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7246 7247 7248 7249 7250 7251 7252 7253
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

7254 7255
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7256
		return 0;
7257
	}
7258

7259 7260
	memcg = mem_cgroup_id_get_online(memcg);

7261
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7262
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7263 7264
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7265
		mem_cgroup_id_put(memcg);
7266
		return -ENOMEM;
7267
	}
7268

7269 7270 7271 7272
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7273
	VM_BUG_ON_PAGE(oldid, page);
7274
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7275 7276 7277 7278

	return 0;
}

7279
/**
7280
 * mem_cgroup_uncharge_swap - uncharge swap space
7281
 * @entry: swap entry to uncharge
7282
 * @nr_pages: the amount of swap space to uncharge
7283
 */
7284
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7285 7286 7287 7288
{
	struct mem_cgroup *memcg;
	unsigned short id;

7289
	id = swap_cgroup_record(entry, 0, nr_pages);
7290
	rcu_read_lock();
7291
	memcg = mem_cgroup_from_id(id);
7292
	if (memcg) {
7293
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7294
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7295
				page_counter_uncharge(&memcg->swap, nr_pages);
7296
			else
7297
				page_counter_uncharge(&memcg->memsw, nr_pages);
7298
		}
7299
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7300
		mem_cgroup_id_put_many(memcg, nr_pages);
7301 7302 7303 7304
	}
	rcu_read_unlock();
}

7305 7306 7307 7308
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7309
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7310 7311 7312
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7313
				      READ_ONCE(memcg->swap.max) -
7314 7315 7316 7317
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7318 7319 7320 7321 7322 7323 7324 7325
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7326
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7327 7328 7329 7330 7331 7332
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

7333 7334 7335 7336 7337
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7338
			return true;
7339
	}
7340 7341 7342 7343

	return false;
}

7344
static int __init setup_swap_account(char *s)
7345 7346
{
	if (!strcmp(s, "1"))
7347
		cgroup_memory_noswap = 0;
7348
	else if (!strcmp(s, "0"))
7349
		cgroup_memory_noswap = 1;
7350 7351
	return 1;
}
7352
__setup("swapaccount=", setup_swap_account);
7353

7354 7355 7356 7357 7358 7359 7360 7361
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7385 7386
static int swap_max_show(struct seq_file *m, void *v)
{
7387 7388
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7403
	xchg(&memcg->swap.max, max);
7404 7405 7406 7407

	return nbytes;
}

7408 7409
static int swap_events_show(struct seq_file *m, void *v)
{
7410
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7411

7412 7413
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7414 7415 7416 7417 7418 7419 7420 7421
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7422 7423 7424 7425 7426 7427
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7428 7429 7430 7431 7432 7433
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7434 7435 7436 7437 7438 7439
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7440 7441 7442 7443 7444 7445
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7446 7447 7448
	{ }	/* terminate */
};

7449
static struct cftype memsw_files[] = {
7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7476 7477 7478 7479 7480 7481 7482
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7483 7484
static int __init mem_cgroup_swap_init(void)
{
7485 7486 7487 7488 7489
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7490 7491 7492 7493 7494
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7495 7496
	return 0;
}
7497
core_initcall(mem_cgroup_swap_init);
7498 7499

#endif /* CONFIG_MEMCG_SWAP */