core.c 152.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

M
Mark Brown 已提交
36 37
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 39 40 41 42 43 44 45 46
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

47 48
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
49 50
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
51
static LIST_HEAD(regulator_ena_gpio_list);
52
static LIST_HEAD(regulator_supply_alias_list);
53
static LIST_HEAD(regulator_coupler_list);
54
static bool has_full_constraints;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69
};

70 71 72 73 74 75 76
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
77
	struct gpio_desc *gpiod;
78 79 80 81
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

95
static int _regulator_is_enabled(struct regulator_dev *rdev);
96
static int _regulator_disable(struct regulator *regulator);
97 98
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99
static int _notifier_call_chain(struct regulator_dev *rdev,
100
				  unsigned long event, void *data);
101 102
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
103 104
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
105 106 107
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
108
static void destroy_regulator(struct regulator *regulator);
109
static void _regulator_put(struct regulator *regulator);
110

111
const char *rdev_get_name(struct regulator_dev *rdev)
112 113 114 115 116 117 118 119 120
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

121 122
static bool have_full_constraints(void)
{
123
	return has_full_constraints || of_have_populated_dt();
124 125
}

126 127 128 129 130 131 132 133 134 135 136 137 138
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

139 140 141
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
142
 * @ww_ctx:		w/w mutex acquire context
143 144 145 146 147 148 149
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
150 151
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
152
{
153 154 155 156 157 158 159
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
160
			rdev->ref_cnt++;
161 162 163 164 165 166 167
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
168
		}
169 170
	} else {
		lock = true;
171 172
	}

173 174 175 176 177 178 179 180
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
181 182
}

183 184 185 186 187 188 189 190 191 192
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
193
static void regulator_lock(struct regulator_dev *rdev)
194
{
195
	regulator_lock_nested(rdev, NULL);
196 197 198 199 200 201 202 203 204
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
205
static void regulator_unlock(struct regulator_dev *rdev)
206
{
207
	mutex_lock(&regulator_nesting_mutex);
208

209 210 211
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
212
	}
213 214 215 216

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
217 218
}

219
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220
{
221 222 223 224 225
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226

227 228 229 230 231 232 233
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

234 235
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
236
{
237 238
	struct regulator_dev *c_rdev, *supply_rdev;
	int i, supply_n_coupled;
239

240 241
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242 243 244 245

		if (!c_rdev)
			continue;

246 247 248 249 250 251 252
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
			supply_rdev = c_rdev->supply->rdev;
			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;

			regulator_unlock_recursive(supply_rdev,
						   supply_n_coupled);
		}
253

254 255
		regulator_unlock(c_rdev);
	}
256 257
}

258 259 260 261
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
262
{
263
	struct regulator_dev *c_rdev;
264
	int i, err;
265

266 267
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268

269 270
		if (!c_rdev)
			continue;
271

272 273 274 275 276 277 278
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
279

280 281 282 283 284 285 286
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

287
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288 289 290 291 292 293 294 295
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
296 297
		}
	}
298 299 300 301 302 303 304

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
305 306
}

307
/**
308 309 310 311 312
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
313
 * Unlock all regulators related with rdev by coupling or supplying.
314
 */
315 316
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
317
{
318 319
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
320 321 322
}

/**
323 324
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
325
 * @ww_ctx:			w/w mutex acquire context
326 327
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
328
 * all regulators related with rdev by coupling or supplying.
329
 */
330 331
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
332
{
333 334 335
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
336

337
	mutex_lock(&regulator_list_mutex);
338

339
	ww_acquire_init(ww_ctx, &regulator_ww_class);
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
361 362
}

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
385 386
			if (regnode)
				goto err_node_put;
387
		} else {
388
			goto err_node_put;
389 390 391
		}
	}
	return NULL;
392 393 394 395

err_node_put:
	of_node_put(child);
	return regnode;
396 397
}

398 399 400 401 402 403
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
404
 * returns the device node corresponding to the regulator if found, else
405 406 407 408 409
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
410
	char prop_name[64]; /* 64 is max size of property name */
411 412 413

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

414
	snprintf(prop_name, 64, "%s-supply", supply);
415 416 417
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
418 419 420 421
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

422 423
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
424 425 426 427 428
		return NULL;
	}
	return regnode;
}

429
/* Platform voltage constraint check */
430 431
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
432 433 434
{
	BUG_ON(*min_uV > *max_uV);

435
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436
		rdev_err(rdev, "voltage operation not allowed\n");
437 438 439 440 441 442 443 444
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

445 446
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447
			 *min_uV, *max_uV);
448
		return -EINVAL;
449
	}
450 451 452 453

	return 0;
}

454 455 456 457 458 459
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

460 461 462
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
463 464 465
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
466 467
{
	struct regulator *regulator;
468
	struct regulator_voltage *voltage;
469 470

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
471
		voltage = &regulator->voltage[state];
472 473 474 475
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
476
		if (!voltage->min_uV && !voltage->max_uV)
477 478
			continue;

479 480 481 482
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
483 484
	}

485
	if (*min_uV > *max_uV) {
486 487
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
488
		return -EINVAL;
489
	}
490 491 492 493

	return 0;
}

494 495 496 497 498 499
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

500
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501
		rdev_err(rdev, "current operation not allowed\n");
502 503 504 505 506 507 508 509
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

510 511
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512
			 *min_uA, *max_uA);
513
		return -EINVAL;
514
	}
515 516 517 518 519

	return 0;
}

/* operating mode constraint check */
520 521
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
522
{
523
	switch (*mode) {
524 525 526 527 528 529
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
530
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
531 532 533
		return -EINVAL;
	}

534
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535
		rdev_err(rdev, "mode operation not allowed\n");
536 537
		return -EPERM;
	}
538 539 540 541 542 543 544 545

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
546
	}
547 548

	return -EINVAL;
549 550
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return NULL;

	/* If we have no suspend mode configuration don't set anything;
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
	 */
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
			rdev_warn(rdev, "No configuration\n");
		return NULL;
	}

	return rstate;
}

593 594 595
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
596
	struct regulator_dev *rdev = dev_get_drvdata(dev);
597
	int uV;
598

599
	regulator_lock(rdev);
600
	uV = regulator_get_voltage_rdev(rdev);
601
	regulator_unlock(rdev);
602

603 604 605
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
606
}
607
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
608 609 610 611

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
612
	struct regulator_dev *rdev = dev_get_drvdata(dev);
613 614 615

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
616
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
617

618 619
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
620 621 622
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

623
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
624
}
625
static DEVICE_ATTR_RO(name);
626

627
static const char *regulator_opmode_to_str(int mode)
628 629 630
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
631
		return "fast";
632
	case REGULATOR_MODE_NORMAL:
633
		return "normal";
634
	case REGULATOR_MODE_IDLE:
635
		return "idle";
636
	case REGULATOR_MODE_STANDBY:
637
		return "standby";
638
	}
639 640 641 642 643 644
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
645 646
}

D
David Brownell 已提交
647 648
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
649
{
650
	struct regulator_dev *rdev = dev_get_drvdata(dev);
651

D
David Brownell 已提交
652 653
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
654
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
655 656 657

static ssize_t regulator_print_state(char *buf, int state)
{
658 659 660 661 662 663 664 665
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
666 667 668 669
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
670 671
	ssize_t ret;

672
	regulator_lock(rdev);
673
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
674
	regulator_unlock(rdev);
D
David Brownell 已提交
675

676
	return ret;
D
David Brownell 已提交
677
}
678
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
679

D
David Brownell 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
713 714 715
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
716 717 718
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
719 720 721 722 723 724 725 726
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

727 728 729
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
730
	struct regulator_dev *rdev = dev_get_drvdata(dev);
731 732 733 734 735 736

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
737
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
738 739 740 741

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
742
	struct regulator_dev *rdev = dev_get_drvdata(dev);
743 744 745 746 747 748

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
749
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
750 751 752 753

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
754
	struct regulator_dev *rdev = dev_get_drvdata(dev);
755 756 757 758 759 760

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
761
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
762 763 764 765

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
766
	struct regulator_dev *rdev = dev_get_drvdata(dev);
767 768 769 770 771 772

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
773
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
774 775 776 777

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
778
	struct regulator_dev *rdev = dev_get_drvdata(dev);
779 780 781
	struct regulator *regulator;
	int uA = 0;

782
	regulator_lock(rdev);
783 784 785 786
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
787
	regulator_unlock(rdev);
788 789
	return sprintf(buf, "%d\n", uA);
}
790
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
791

792 793
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
794
{
795
	struct regulator_dev *rdev = dev_get_drvdata(dev);
796 797
	return sprintf(buf, "%d\n", rdev->use_count);
}
798
static DEVICE_ATTR_RO(num_users);
799

800 801
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
802
{
803
	struct regulator_dev *rdev = dev_get_drvdata(dev);
804 805 806 807 808 809 810 811 812

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
813
static DEVICE_ATTR_RO(type);
814 815 816 817

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
818
	struct regulator_dev *rdev = dev_get_drvdata(dev);
819 820 821

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
822 823
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
824 825 826 827

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
828
	struct regulator_dev *rdev = dev_get_drvdata(dev);
829 830 831

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
832 833
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
834 835 836 837

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
838
	struct regulator_dev *rdev = dev_get_drvdata(dev);
839 840 841

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
842 843
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
844 845 846 847

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
848
	struct regulator_dev *rdev = dev_get_drvdata(dev);
849

D
David Brownell 已提交
850 851
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
852
}
853 854
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
855 856 857 858

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
859
	struct regulator_dev *rdev = dev_get_drvdata(dev);
860

D
David Brownell 已提交
861 862
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
863
}
864 865
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
866 867 868 869

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
870
	struct regulator_dev *rdev = dev_get_drvdata(dev);
871

D
David Brownell 已提交
872 873
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
874
}
875 876
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
877 878 879 880

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
881
	struct regulator_dev *rdev = dev_get_drvdata(dev);
882

D
David Brownell 已提交
883 884
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
885
}
886 887
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
888 889 890 891

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
892
	struct regulator_dev *rdev = dev_get_drvdata(dev);
893

D
David Brownell 已提交
894 895
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
896
}
897 898
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
899 900 901 902

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
903
	struct regulator_dev *rdev = dev_get_drvdata(dev);
904

D
David Brownell 已提交
905 906
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
907
}
908 909 910
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
932

933 934
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
935
static int drms_uA_update(struct regulator_dev *rdev)
936 937 938 939 940
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

941 942 943 944
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
945 946
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
947
		return 0;
948
	}
949

950 951
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
952 953
		return 0;

954 955
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
956
		return -EINVAL;
957 958

	/* calc total requested load */
959 960 961 962
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
963

964 965
	current_uA += rdev->constraints->system_load;

966 967 968 969
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
970 971
			rdev_err(rdev, "failed to set load %d: %pe\n",
				 current_uA, ERR_PTR(err));
972
	} else {
973
		/* get output voltage */
974
		output_uV = regulator_get_voltage_rdev(rdev);
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

991 992 993 994 995 996 997
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
998 999
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
				 current_uA, input_uV, output_uV, ERR_PTR(err));
1000 1001
			return err;
		}
1002

1003 1004
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
1005 1006
			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
				 mode, ERR_PTR(err));
1007 1008 1009
	}

	return err;
1010 1011
}

1012 1013
static int __suspend_set_state(struct regulator_dev *rdev,
			       const struct regulator_state *rstate)
1014 1015
{
	int ret = 0;
1016

1017 1018
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1019
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1020 1021
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1022
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1023 1024 1025
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1026
	if (ret < 0) {
1027
		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1028 1029 1030 1031 1032 1033
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1034
			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1035 1036 1037 1038 1039 1040 1041
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1042
			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1043 1044 1045 1046
			return ret;
		}
	}

1047
	return ret;
1048 1049
}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static int suspend_set_initial_state(struct regulator_dev *rdev)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev,
			rdev->constraints->initial_state);
	if (!rstate)
		return 0;

	return __suspend_set_state(rdev, rstate);
}

1062 1063
#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
static void print_constraints_debug(struct regulator_dev *rdev)
1064 1065
{
	struct regulation_constraints *constraints = rdev->constraints;
1066
	char buf[160] = "";
1067
	size_t len = sizeof(buf) - 1;
1068 1069
	int count = 0;
	int ret;
1070

1071
	if (constraints->min_uV && constraints->max_uV) {
1072
		if (constraints->min_uV == constraints->max_uV)
1073 1074
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1075
		else
1076 1077 1078 1079
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1080 1081 1082 1083
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1084
		ret = regulator_get_voltage_rdev(rdev);
1085
		if (ret > 0)
1086 1087
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1088 1089
	}

1090
	if (constraints->uV_offset)
1091 1092
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1093

1094
	if (constraints->min_uA && constraints->max_uA) {
1095
		if (constraints->min_uA == constraints->max_uA)
1096 1097
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1098
		else
1099 1100 1101 1102
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1103 1104 1105 1106 1107 1108
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1109 1110
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1111
	}
1112

1113
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114
		count += scnprintf(buf + count, len - count, "fast ");
1115
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116
		count += scnprintf(buf + count, len - count, "normal ");
1117
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118
		count += scnprintf(buf + count, len - count, "idle ");
1119
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120
		count += scnprintf(buf + count, len - count, "standby ");
1121

1122
	if (!count)
1123 1124 1125 1126 1127 1128
		count = scnprintf(buf, len, "no parameters");
	else
		--count;

	count += scnprintf(buf + count, len - count, ", %s",
		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1129

1130
	rdev_dbg(rdev, "%s\n", buf);
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
}
#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
static inline void print_constraints_debug(struct regulator_dev *rdev) {}
#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;

	print_constraints_debug(rdev);
1141 1142

	if ((constraints->min_uV != constraints->max_uV) &&
1143
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1144 1145
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1146 1147
}

1148
static int machine_constraints_voltage(struct regulator_dev *rdev,
1149
	struct regulation_constraints *constraints)
1150
{
1151
	const struct regulator_ops *ops = rdev->desc->ops;
1152 1153 1154 1155
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1156 1157
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1158
		int current_uV = regulator_get_voltage_rdev(rdev);
1159 1160

		if (current_uV == -ENOTRECOVERABLE) {
1161
			/* This regulator can't be read and must be initialized */
1162 1163 1164 1165 1166 1167
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1168
			current_uV = regulator_get_voltage_rdev(rdev);
1169 1170
		}

1171
		if (current_uV < 0) {
1172
			rdev_err(rdev,
1173 1174
				 "failed to get the current voltage: %pe\n",
				 ERR_PTR(current_uV));
1175 1176
			return current_uV;
		}
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1197 1198
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1199
			ret = _regulator_do_set_voltage(
1200
				rdev, target_min, target_max);
1201 1202
			if (ret < 0) {
				rdev_err(rdev,
1203 1204
					"failed to apply %d-%duV constraint: %pe\n",
					target_min, target_max, ERR_PTR(ret));
1205 1206
				return ret;
			}
1207
		}
1208
	}
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1221 1222
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1223
		if (count == 1 && !cmin) {
1224
			cmin = 1;
1225
			cmax = INT_MAX;
1226 1227
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1228 1229
		}

1230 1231
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1232
			return 0;
1233

1234
		/* else require explicit machine-level constraints */
1235
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236
			rdev_err(rdev, "invalid voltage constraints\n");
1237
			return -EINVAL;
1238 1239
		}

1240 1241 1242 1243
		/* no need to loop voltages if range is continuous */
		if (rdev->desc->continuous_voltage_range)
			return 0;

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1261 1262 1263
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1264
			return -EINVAL;
1265 1266 1267 1268
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1269 1270
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1271 1272 1273
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1274 1275
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1276 1277 1278 1279
			constraints->max_uV = max_uV;
		}
	}

1280 1281 1282
	return 0;
}

1283 1284 1285
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1286
	const struct regulator_ops *ops = rdev->desc->ops;
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1313 1314
static int _regulator_do_enable(struct regulator_dev *rdev);

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
1325
static int set_machine_constraints(struct regulator_dev *rdev)
1326 1327
{
	int ret = 0;
1328
	const struct regulator_ops *ops = rdev->desc->ops;
1329

1330
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1331
	if (ret != 0)
1332
		return ret;
1333

1334
	ret = machine_constraints_current(rdev, rdev->constraints);
1335
	if (ret != 0)
1336
		return ret;
1337

1338 1339 1340 1341
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
1342
			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1343
			return ret;
1344 1345 1346
		}
	}

1347
	/* do we need to setup our suspend state */
1348
	if (rdev->constraints->initial_state) {
1349
		ret = suspend_set_initial_state(rdev);
1350
		if (ret < 0) {
1351
			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1352
			return ret;
1353 1354
		}
	}
1355

1356
	if (rdev->constraints->initial_mode) {
1357
		if (!ops->set_mode) {
1358
			rdev_err(rdev, "no set_mode operation\n");
1359
			return -EINVAL;
1360 1361
		}

1362
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1363
		if (ret < 0) {
1364
			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1365
			return ret;
1366
		}
1367 1368 1369 1370 1371 1372
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1373 1374
	}

1375 1376
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1377 1378
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
1379
			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1380
			return ret;
1381 1382 1383
		}
	}

S
Stephen Boyd 已提交
1384 1385 1386
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
1387
			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1388
			return ret;
S
Stephen Boyd 已提交
1389 1390 1391
		}
	}

S
Stephen Boyd 已提交
1392 1393 1394
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
1395
			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1396
			return ret;
S
Stephen Boyd 已提交
1397 1398 1399
		}
	}

1400 1401 1402 1403
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
1404 1405
			rdev_err(rdev, "failed to set over current protection: %pe\n",
				 ERR_PTR(ret));
1406
			return ret;
1407 1408 1409
		}
	}

1410 1411 1412 1413 1414 1415
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
1416
			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1417 1418 1419 1420
			return ret;
		}
	}

1421 1422 1423 1424
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1425 1426 1427 1428 1429 1430 1431 1432 1433
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1434 1435
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1436
			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1437 1438
			return ret;
		}
1439 1440 1441

		if (rdev->constraints->always_on)
			rdev->use_count++;
1442 1443
	}

1444
	print_constraints(rdev);
1445
	return 0;
1446 1447 1448 1449
}

/**
 * set_supply - set regulator supply regulator
1450 1451
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1452 1453 1454 1455 1456 1457
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1458
		      struct regulator_dev *supply_rdev)
1459 1460 1461
{
	int err;

1462 1463
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1464 1465 1466
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1467
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1468 1469
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1470
		return err;
1471
	}
1472
	supply_rdev->open_count++;
1473 1474

	return 0;
1475 1476 1477
}

/**
1478
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1479
 * @rdev:         regulator source
1480
 * @consumer_dev_name: dev_name() string for device supply applies to
1481
 * @supply:       symbolic name for supply
1482 1483 1484 1485 1486 1487 1488
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1489 1490
				      const char *consumer_dev_name,
				      const char *supply)
1491
{
1492
	struct regulator_map *node, *new_node;
1493
	int has_dev;
1494 1495 1496 1497

	if (supply == NULL)
		return -EINVAL;

1498 1499 1500 1501 1502
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
	if (new_node == NULL)
		return -ENOMEM;

	new_node->regulator = rdev;
	new_node->supply = supply;

	if (has_dev) {
		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (new_node->dev_name == NULL) {
			kfree(new_node);
			return -ENOMEM;
		}
	}

	mutex_lock(&regulator_list_mutex);
1519
	list_for_each_entry(node, &regulator_map_list, list) {
1520 1521 1522 1523
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1524
			continue;
1525 1526
		}

1527 1528 1529
		if (strcmp(node->supply, supply) != 0)
			continue;

1530 1531 1532 1533 1534 1535
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1536
		goto fail;
1537 1538
	}

1539 1540
	list_add(&new_node->list, &regulator_map_list);
	mutex_unlock(&regulator_list_mutex);
1541

1542
	return 0;
1543 1544 1545 1546 1547 1548

fail:
	mutex_unlock(&regulator_list_mutex);
	kfree(new_node->dev_name);
	kfree(new_node);
	return -EBUSY;
1549 1550
}

1551 1552 1553 1554 1555 1556 1557
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1558
			kfree(node->dev_name);
1559 1560 1561 1562 1563
			kfree(node);
		}
	}
}

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1613
#define REG_STR_SIZE	64
1614 1615 1616 1617 1618 1619

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
1620
	int err = 0;
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638

	if (dev) {
		char buf[REG_STR_SIZE];
		int size;

		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			return NULL;

		supply_name = kstrdup(buf, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	} else {
		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	}
1639 1640

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1641 1642
	if (regulator == NULL) {
		kfree(supply_name);
1643
		return NULL;
1644
	}
1645 1646

	regulator->rdev = rdev;
1647 1648 1649
	regulator->supply_name = supply_name;

	regulator_lock(rdev);
1650
	list_add(&regulator->list, &rdev->consumer_list);
1651
	regulator_unlock(rdev);
1652 1653

	if (dev) {
1654 1655
		regulator->dev = dev;

1656
		/* Add a link to the device sysfs entry */
1657
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1658
					       supply_name);
1659
		if (err) {
1660 1661
			rdev_dbg(rdev, "could not add device link %s: %pe\n",
				  dev->kobj.name, ERR_PTR(err));
1662
			/* non-fatal */
1663
		}
1664 1665
	}

1666 1667
	if (err != -EEXIST)
		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1668
	if (!regulator->debugfs) {
1669
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1670 1671 1672 1673
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1674
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1675
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1676
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1677 1678 1679
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1680
	}
1681

1682 1683 1684 1685 1686
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1687
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1688 1689 1690
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1691 1692 1693
	return regulator;
}

1694 1695
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1696 1697
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1698 1699 1700
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1701 1702
}

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1751 1752 1753 1754 1755
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1756
 */
1757
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1758
						  const char *supply)
1759
{
1760
	struct regulator_dev *r = NULL;
1761
	struct device_node *node;
1762 1763
	struct regulator_map *map;
	const char *devname = NULL;
1764

1765 1766
	regulator_supply_alias(&dev, &supply);

1767 1768 1769
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1770
		if (node) {
1771 1772 1773
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1774

1775
			/*
1776 1777
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1778
			 */
1779
			return ERR_PTR(-EPROBE_DEFER);
1780
		}
1781 1782 1783
	}

	/* if not found, try doing it non-dt way */
1784 1785 1786
	if (dev)
		devname = dev_name(dev);

1787
	mutex_lock(&regulator_list_mutex);
1788 1789 1790 1791 1792 1793
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1794 1795
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1796 1797
			r = map->regulator;
			break;
1798
		}
1799
	}
1800
	mutex_unlock(&regulator_list_mutex);
1801

1802 1803 1804 1805
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1806 1807 1808 1809
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1810 1811
}

1812 1813 1814 1815
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
1816
	int ret = 0;
1817

1818
	/* No supply to resolve? */
1819 1820 1821
	if (!rdev->supply_name)
		return 0;

1822
	/* Supply already resolved? (fast-path without locking contention) */
1823 1824 1825
	if (rdev->supply)
		return 0;

1826 1827 1828 1829
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1830 1831
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
1832
			goto out;
1833

1834 1835
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1836
			get_device(&r->dev);
1837 1838 1839
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
1840 1841
			ret = -EPROBE_DEFER;
			goto out;
1842
		}
1843 1844
	}

1845 1846 1847
	if (r == rdev) {
		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
			rdev->desc->name, rdev->supply_name);
1848 1849 1850 1851
		if (!have_full_constraints()) {
			ret = -EINVAL;
			goto out;
		}
1852 1853
		r = dummy_regulator_rdev;
		get_device(&r->dev);
1854 1855
	}

1856 1857 1858 1859 1860 1861 1862 1863 1864
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
1865 1866
			ret = -EPROBE_DEFER;
			goto out;
1867 1868 1869
		}
	}

1870 1871
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1872 1873
	if (ret < 0) {
		put_device(&r->dev);
1874
		goto out;
1875
	}
1876

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	/*
	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
	 * between rdev->supply null check and setting rdev->supply in
	 * set_supply() from concurrent tasks.
	 */
	regulator_lock(rdev);

	/* Supply just resolved by a concurrent task? */
	if (rdev->supply) {
		regulator_unlock(rdev);
		put_device(&r->dev);
		goto out;
	}

1891
	ret = set_supply(rdev, r);
1892
	if (ret < 0) {
1893
		regulator_unlock(rdev);
1894
		put_device(&r->dev);
1895
		goto out;
1896
	}
1897

1898 1899
	regulator_unlock(rdev);

1900 1901 1902 1903 1904 1905
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1906
		ret = regulator_enable(rdev->supply);
1907
		if (ret < 0) {
1908
			_regulator_put(rdev->supply);
1909
			rdev->supply = NULL;
1910
			goto out;
1911
		}
1912 1913
	}

1914 1915
out:
	return ret;
1916 1917
}

1918
/* Internal regulator request function */
1919 1920
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1921 1922
{
	struct regulator_dev *rdev;
1923
	struct regulator *regulator;
1924
	struct device_link *link;
1925
	int ret;
1926

1927 1928 1929 1930 1931
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1932
	if (id == NULL) {
1933
		pr_err("get() with no identifier\n");
1934
		return ERR_PTR(-EINVAL);
1935 1936
	}

1937
	rdev = regulator_dev_lookup(dev, id);
1938 1939
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1940

1941 1942 1943 1944 1945 1946
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1947

1948 1949 1950 1951 1952
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1953

1954 1955 1956 1957 1958 1959 1960
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
1961
			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1962 1963 1964
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1965

1966 1967 1968
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
1969
			fallthrough;
1970

1971 1972 1973
		default:
			return ERR_PTR(-ENODEV);
		}
1974 1975
	}

1976 1977
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1978 1979
		put_device(&rdev->dev);
		return regulator;
1980 1981
	}

1982
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1983
		regulator = ERR_PTR(-EBUSY);
1984 1985
		put_device(&rdev->dev);
		return regulator;
1986 1987
	}

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1998 1999 2000
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
2001 2002
		put_device(&rdev->dev);
		return regulator;
2003 2004
	}

2005
	if (!try_module_get(rdev->owner)) {
2006
		regulator = ERR_PTR(-EPROBE_DEFER);
2007 2008 2009
		put_device(&rdev->dev);
		return regulator;
	}
2010

2011 2012 2013 2014
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
W
Wen Yang 已提交
2015
		put_device(&rdev->dev);
2016
		return regulator;
2017 2018
	}

2019
	rdev->open_count++;
2020
	if (get_type == EXCLUSIVE_GET) {
2021 2022 2023 2024 2025 2026 2027 2028 2029
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

2030 2031 2032
	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
	if (!IS_ERR_OR_NULL(link))
		regulator->device_link = true;
2033

2034 2035
	return regulator;
}
2036 2037 2038 2039 2040 2041 2042 2043 2044

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
2045
 * Use of supply names configured via set_consumer_device_supply() is
2046 2047 2048 2049 2050 2051
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
2052
	return _regulator_get(dev, id, NORMAL_GET);
2053
}
2054 2055
EXPORT_SYMBOL_GPL(regulator_get);

2056 2057 2058 2059 2060 2061 2062
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
2063 2064 2065
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
2066 2067 2068 2069 2070 2071
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
2072
 * Use of supply names configured via set_consumer_device_supply() is
2073 2074 2075 2076 2077 2078
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2079
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2080 2081 2082
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2083 2084 2085 2086 2087 2088
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2089
 * or IS_ERR() condition containing errno.
2090 2091 2092 2093 2094 2095 2096 2097
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
2098
 * Use of supply names configured via set_consumer_device_supply() is
2099 2100 2101 2102 2103 2104
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2105
	return _regulator_get(dev, id, OPTIONAL_GET);
2106 2107 2108
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2109
static void destroy_regulator(struct regulator *regulator)
2110
{
2111
	struct regulator_dev *rdev = regulator->rdev;
2112

2113 2114
	debugfs_remove_recursive(regulator->debugfs);

2115
	if (regulator->dev) {
2116 2117
		if (regulator->device_link)
			device_link_remove(regulator->dev, &rdev->dev);
2118 2119

		/* remove any sysfs entries */
2120
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2121 2122
	}

2123
	regulator_lock(rdev);
2124 2125
	list_del(&regulator->list);

2126 2127
	rdev->open_count--;
	rdev->exclusive = 0;
2128
	regulator_unlock(rdev);
2129

2130
	kfree_const(regulator->supply_name);
2131
	kfree(regulator);
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
}

/* regulator_list_mutex lock held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (IS_ERR_OR_NULL(regulator))
		return;

	lockdep_assert_held_once(&regulator_list_mutex);

	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

	rdev = regulator->rdev;

	destroy_regulator(regulator);
2150

2151
	module_put(rdev->owner);
W
Wen Yang 已提交
2152
	put_device(&rdev->dev);
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2167 2168 2169 2170
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2248 2249
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2250
					 struct device *alias_dev,
2251
					 const char *const *alias_id,
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2289
					    const char *const *id,
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2300 2301 2302 2303
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
2304
	struct regulator_enable_gpio *pin, *new_pin;
2305
	struct gpio_desc *gpiod;
2306

2307
	gpiod = config->ena_gpiod;
2308 2309 2310
	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);

	mutex_lock(&regulator_list_mutex);
2311

2312
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2313
		if (pin->gpiod == gpiod) {
2314
			rdev_dbg(rdev, "GPIO is already used\n");
2315 2316 2317 2318
			goto update_ena_gpio_to_rdev;
		}
	}

2319 2320
	if (new_pin == NULL) {
		mutex_unlock(&regulator_list_mutex);
2321
		return -ENOMEM;
2322 2323 2324 2325
	}

	pin = new_pin;
	new_pin = NULL;
2326

2327
	pin->gpiod = gpiod;
2328 2329 2330 2331 2332
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
2333 2334 2335 2336

	mutex_unlock(&regulator_list_mutex);
	kfree(new_pin);

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
		if (pin != rdev->ena_pin)
			continue;

		if (--pin->request_count)
			break;

		gpiod_put(pin->gpiod);
		list_del(&pin->list);
		kfree(pin);
		break;
2359
	}
2360 2361

	rdev->ena_pin = NULL;
2362 2363
}

2364
/**
2365 2366 2367 2368
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2382
			gpiod_set_value_cansleep(pin->gpiod, 1);
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2393
			gpiod_set_value_cansleep(pin->gpiod, 0);
2394 2395 2396 2397 2398 2399 2400
			pin->enable_count = 0;
		}
	}

	return 0;
}

2401 2402 2403 2404 2405 2406
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2407
 *     Documentation/timers/timers-howto.rst
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
/**
 * _regulator_check_status_enabled
 *
 * A helper function to check if the regulator status can be interpreted
 * as 'regulator is enabled'.
 * @rdev: the regulator device to check
 *
 * Return:
 * * 1			- if status shows regulator is in enabled state
 * * 0			- if not enabled state
 * * Error Value	- as received from ops->get_status()
 */
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
{
	int ret = rdev->desc->ops->get_status(rdev);

	if (ret < 0) {
		rdev_info(rdev, "get_status returned error: %d\n", ret);
		return ret;
	}

	switch (ret) {
	case REGULATOR_STATUS_OFF:
	case REGULATOR_STATUS_ERROR:
	case REGULATOR_STATUS_UNDEFINED:
		return 0;
	default:
		return 1;
	}
}

2471 2472 2473 2474 2475 2476 2477 2478 2479
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
2480
		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2481 2482 2483 2484 2485
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2501
			 * detected and we get a penalty of
2502 2503 2504 2505 2506 2507 2508 2509 2510
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2511
	if (rdev->ena_pin) {
2512 2513 2514 2515 2516 2517
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2518
	} else if (rdev->desc->ops->enable) {
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
	/* If poll_enabled_time is set, poll upto the delay calculated
	 * above, delaying poll_enabled_time uS to check if the regulator
	 * actually got enabled.
	 * If the regulator isn't enabled after enable_delay has
	 * expired, return -ETIMEDOUT.
	 */
	if (rdev->desc->poll_enabled_time) {
		unsigned int time_remaining = delay;

		while (time_remaining > 0) {
			_regulator_enable_delay(rdev->desc->poll_enabled_time);

			if (rdev->desc->ops->get_status) {
				ret = _regulator_check_status_enabled(rdev);
				if (ret < 0)
					return ret;
				else if (ret)
					break;
			} else if (rdev->desc->ops->is_enabled(rdev))
				break;

			time_remaining -= rdev->desc->poll_enabled_time;
		}

		if (time_remaining <= 0) {
			rdev_err(rdev, "Enabled check timed out\n");
			return -ETIMEDOUT;
		}
	} else {
		_regulator_enable_delay(delay);
	}
2562 2563 2564 2565 2566 2567

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2627
/* locks held by regulator_enable() */
2628
static int _regulator_enable(struct regulator *regulator)
2629
{
2630
	struct regulator_dev *rdev = regulator->rdev;
2631
	int ret;
2632

2633 2634
	lockdep_assert_held_once(&rdev->mutex.base);

2635
	if (rdev->use_count == 0 && rdev->supply) {
2636
		ret = _regulator_enable(rdev->supply);
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2647

2648 2649 2650
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2651

2652 2653 2654 2655
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2656
			if (!regulator_ops_is_valid(rdev,
2657 2658
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2659
				goto err_consumer_disable;
2660
			}
2661

2662
			ret = _regulator_do_enable(rdev);
2663
			if (ret < 0)
2664
				goto err_consumer_disable;
2665

2666 2667
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2668
		} else if (ret < 0) {
2669
			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2670
			goto err_consumer_disable;
2671
		}
2672
		/* Fallthrough on positive return values - already enabled */
2673 2674
	}

2675 2676 2677
	rdev->use_count++;

	return 0;
2678

2679 2680 2681
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2682
err_disable_supply:
2683
	if (rdev->use_count == 0 && rdev->supply)
2684
		_regulator_disable(rdev->supply);
2685 2686

	return ret;
2687 2688 2689 2690 2691 2692
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2693 2694 2695 2696
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2697
 * NOTE: the output value can be set by other drivers, boot loader or may be
2698
 * hardwired in the regulator.
2699 2700 2701
 */
int regulator_enable(struct regulator *regulator)
{
2702
	struct regulator_dev *rdev = regulator->rdev;
2703
	struct ww_acquire_ctx ww_ctx;
2704
	int ret;
2705

2706
	regulator_lock_dependent(rdev, &ww_ctx);
2707
	ret = _regulator_enable(regulator);
2708
	regulator_unlock_dependent(rdev, &ww_ctx);
2709

2710 2711 2712 2713
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2714 2715 2716 2717 2718 2719
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2720
	if (rdev->ena_pin) {
2721 2722 2723 2724 2725 2726
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2727 2728 2729 2730 2731 2732 2733

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2734 2735 2736 2737 2738 2739
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2740 2741 2742 2743 2744
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2745
/* locks held by regulator_disable() */
2746
static int _regulator_disable(struct regulator *regulator)
2747
{
2748
	struct regulator_dev *rdev = regulator->rdev;
2749 2750
	int ret = 0;

2751
	lockdep_assert_held_once(&rdev->mutex.base);
2752

D
David Brownell 已提交
2753
	if (WARN(rdev->use_count <= 0,
2754
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2755 2756
		return -EIO;

2757
	/* are we the last user and permitted to disable ? */
2758 2759
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2760 2761

		/* we are last user */
2762
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2763 2764 2765 2766 2767 2768
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2769
			ret = _regulator_do_disable(rdev);
2770
			if (ret < 0) {
2771
				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2772 2773 2774
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2775 2776
				return ret;
			}
2777 2778
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2779 2780 2781 2782 2783 2784
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2785

2786 2787 2788
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2789 2790 2791
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2792
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2793
		ret = _regulator_disable(rdev->supply);
2794

2795 2796 2797 2798 2799 2800 2801
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2802 2803 2804
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2805
 *
2806
 * NOTE: this will only disable the regulator output if no other consumer
2807 2808
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2809 2810 2811
 */
int regulator_disable(struct regulator *regulator)
{
2812
	struct regulator_dev *rdev = regulator->rdev;
2813
	struct ww_acquire_ctx ww_ctx;
2814
	int ret;
2815

2816
	regulator_lock_dependent(rdev, &ww_ctx);
2817
	ret = _regulator_disable(regulator);
2818
	regulator_unlock_dependent(rdev, &ww_ctx);
2819

2820 2821 2822 2823 2824
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2825
static int _regulator_force_disable(struct regulator_dev *rdev)
2826 2827 2828
{
	int ret = 0;

2829
	lockdep_assert_held_once(&rdev->mutex.base);
2830

2831 2832 2833 2834 2835
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2836 2837
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
2838
		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2839 2840
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2841
		return ret;
2842 2843
	}

2844 2845 2846 2847
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2861
	struct regulator_dev *rdev = regulator->rdev;
2862
	struct ww_acquire_ctx ww_ctx;
2863 2864
	int ret;

2865
	regulator_lock_dependent(rdev, &ww_ctx);
2866

2867
	ret = _regulator_force_disable(regulator->rdev);
2868

2869 2870
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2871 2872 2873 2874 2875 2876

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2877 2878
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2879

2880
	regulator_unlock_dependent(rdev, &ww_ctx);
2881

2882 2883 2884 2885
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2886 2887 2888 2889
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2890
	struct ww_acquire_ctx ww_ctx;
2891
	int count, i, ret;
2892 2893
	struct regulator *regulator;
	int total_count = 0;
2894

2895
	regulator_lock_dependent(rdev, &ww_ctx);
2896

2897 2898 2899 2900 2901 2902 2903 2904
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
2917 2918
				rdev_err(rdev, "Deferred disable failed: %pe\n",
					 ERR_PTR(ret));
2919
		}
2920
	}
2921
	WARN_ON(!total_count);
2922

2923 2924 2925 2926
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2927 2928 2929 2930 2931
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2932
 * @ms: milliseconds until the regulator is disabled
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2945 2946 2947
	if (!ms)
		return regulator_disable(regulator);

2948
	regulator_lock(rdev);
2949
	regulator->deferred_disables++;
2950 2951
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2952
	regulator_unlock(rdev);
2953

2954
	return 0;
2955 2956 2957
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2958 2959
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2960
	/* A GPIO control always takes precedence */
2961
	if (rdev->ena_pin)
2962 2963
		return rdev->ena_gpio_state;

2964
	/* If we don't know then assume that the regulator is always on */
2965
	if (!rdev->desc->ops->is_enabled)
2966
		return 1;
2967

2968
	return rdev->desc->ops->is_enabled(rdev);
2969 2970
}

2971 2972
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
2983 2984
		if (selector < rdev->desc->linear_min_sel)
			return 0;
2985
		if (lock)
2986
			regulator_lock(rdev);
2987 2988
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2989
			regulator_unlock(rdev);
2990
	} else if (rdev->is_switch && rdev->supply) {
2991 2992
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

3007 3008 3009 3010
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
3011 3012 3013 3014 3015 3016 3017
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
3018 3019 3020
 */
int regulator_is_enabled(struct regulator *regulator)
{
3021 3022
	int ret;

3023 3024 3025
	if (regulator->always_on)
		return 1;

3026
	regulator_lock(regulator->rdev);
3027
	ret = _regulator_is_enabled(regulator->rdev);
3028
	regulator_unlock(regulator->rdev);
3029 3030

	return ret;
3031 3032 3033
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

3046 3047 3048
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

3049
	if (!rdev->is_switch || !rdev->supply)
3050 3051 3052
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
3063
 * zero if this selector code can't be used on this system, or a
3064 3065 3066 3067
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
3068
	return _regulator_list_voltage(regulator->rdev, selector, 1);
3069 3070 3071
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
3104 3105
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3106 3107 3108 3109

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

3110 3111
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
3112

3113
	return 0;
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3131 3132
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3133 3134 3135

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
3136 3137
	if (selector < rdev->desc->linear_min_sel)
		return 0;
3138 3139 3140 3141 3142 3143 3144
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3160 3161 3162 3163 3164 3165 3166
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3167
 * Returns a boolean.
3168 3169 3170 3171
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3172
	struct regulator_dev *rdev = regulator->rdev;
3173 3174
	int i, voltages, ret;

3175
	/* If we can't change voltage check the current voltage */
3176
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3177 3178
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3179
			return min_uV <= ret && ret <= max_uV;
3180 3181 3182 3183
		else
			return ret;
	}

3184 3185 3186 3187 3188
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3189 3190
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3191
		return 0;
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3203
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3204

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3219 3220 3221 3222 3223
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3224 3225 3226
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3227 3228 3229 3230 3231 3232 3233
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3234
	data.old_uV = regulator_get_voltage_rdev(rdev);
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3258
	data.old_uV = regulator_get_voltage_rdev(rdev);
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3336 3337 3338 3339 3340 3341 3342 3343 3344
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3345 3346
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3347 3348 3349 3350 3351 3352
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3353 3354

	if (ramp_delay == 0) {
3355
		rdev_dbg(rdev, "ramp_delay not set\n");
3356 3357 3358 3359 3360 3361
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3362 3363 3364 3365
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3366
	int delay = 0;
3367
	int best_val = 0;
3368
	unsigned int selector;
3369
	int old_selector = -1;
3370
	const struct regulator_ops *ops = rdev->desc->ops;
3371
	int old_uV = regulator_get_voltage_rdev(rdev);
3372 3373 3374

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3375 3376 3377
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3378 3379 3380 3381
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3382
	if (_regulator_is_enabled(rdev) &&
3383 3384
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3385 3386 3387 3388
		if (old_selector < 0)
			return old_selector;
	}

3389
	if (ops->set_voltage) {
3390 3391
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3392 3393

		if (ret >= 0) {
3394 3395 3396
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3397
			else
3398
				best_val = regulator_get_voltage_rdev(rdev);
3399 3400
		}

3401
	} else if (ops->set_voltage_sel) {
3402
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3403
		if (ret >= 0) {
3404
			best_val = ops->list_voltage(rdev, ret);
3405 3406
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3407 3408
				if (old_selector == selector)
					ret = 0;
3409 3410 3411
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3412
				else
3413 3414
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3415 3416 3417
			} else {
				ret = -EINVAL;
			}
3418
		}
3419 3420 3421
	} else {
		ret = -EINVAL;
	}
3422

3423 3424
	if (ret)
		goto out;
3425

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3443
		}
3444
	}
3445

3446
	if (delay < 0) {
3447
		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3448
		delay = 0;
3449 3450
	}

3451 3452 3453 3454 3455 3456
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3457 3458
	}

3459
	if (best_val >= 0) {
3460 3461
		unsigned long data = best_val;

3462
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3463 3464
				     (void *)data);
	}
3465

3466
out:
3467
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3468 3469 3470 3471

	return ret;
}

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3498
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3499 3500
					  int min_uV, int max_uV,
					  suspend_state_t state)
3501 3502
{
	struct regulator_dev *rdev = regulator->rdev;
3503
	struct regulator_voltage *voltage = &regulator->voltage[state];
3504
	int ret = 0;
3505
	int old_min_uV, old_max_uV;
3506
	int current_uV;
3507

3508 3509 3510 3511
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3512
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3513 3514
		goto out;

3515
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3516
	 * return successfully even though the regulator does not support
3517 3518
	 * changing the voltage.
	 */
3519
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3520
		current_uV = regulator_get_voltage_rdev(rdev);
3521
		if (min_uV <= current_uV && current_uV <= max_uV) {
3522 3523
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3524 3525 3526 3527
			goto out;
		}
	}

3528
	/* sanity check */
3529 3530
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3531 3532 3533 3534 3535 3536 3537 3538
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3539

3540
	/* restore original values in case of error */
3541 3542 3543 3544
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3545

3546 3547
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3548 3549 3550 3551
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3552

3553 3554 3555 3556
out:
	return ret;
}

3557 3558
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3559 3560 3561 3562 3563
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3564 3565 3566
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3567 3568
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3569 3570 3571 3572 3573 3574
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3575
			goto out;
3576 3577
		}

M
Mark Brown 已提交
3578
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3579 3580
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3581
			goto out;
3582 3583 3584 3585
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3586
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3587 3588
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3589
			goto out;
3590 3591 3592 3593 3594 3595 3596
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3597
				best_supply_uV, INT_MAX, state);
3598
		if (ret) {
3599 3600
			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
				ERR_PTR(ret));
3601
			goto out;
3602 3603 3604
		}
	}

3605 3606 3607 3608 3609
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3610
	if (ret < 0)
3611
		goto out;
3612

3613 3614
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3615
				best_supply_uV, INT_MAX, state);
3616
		if (ret)
3617 3618
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
				 ERR_PTR(ret));
3619 3620 3621 3622
		/* No need to fail here */
		ret = 0;
	}

3623
out:
3624
	return ret;
3625
}
3626
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3627

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3638
		*current_uV = regulator_get_voltage_rdev(rdev);
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3670
	int i, ret, max_spread;
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3704
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3715

3716 3717 3718 3719 3720 3721 3722 3723
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3724 3725
	max_spread = constraints->max_spread[0];

3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3743
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3781 3782 3783 3784
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3785
			ret = regulator_get_voltage_rdev(rdev);
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

3801 3802
int regulator_do_balance_voltage(struct regulator_dev *rdev,
				 suspend_state_t state, bool skip_coupled)
3803 3804 3805 3806 3807 3808
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3809 3810
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3811 3812

	c_rdevs = c_desc->coupled_rdevs;
3813
	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3840
			if (test_bit(i, &c_rdev_done))
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3868

3869 3870
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3871

3872 3873 3874
		if (ret < 0)
			goto out;

3875 3876
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3877 3878 3879 3880

	} while (n_coupled > 1);

out:
3881 3882 3883
	return ret;
}

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_coupler *coupler = c_desc->coupler;
	bool skip_coupled = false;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		skip_coupled = true;

	if (c_desc->n_resolved < c_desc->n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);

	return regulator_do_balance_voltage(rdev, state, skip_coupled);
}

3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3930 3931
	struct ww_acquire_ctx ww_ctx;
	int ret;
3932

3933
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3934

3935 3936
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3937

3938
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3939

3940 3941 3942 3943
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3956
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
4010 4011
	struct ww_acquire_ctx ww_ctx;
	int ret;
4012 4013 4014 4015 4016

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

4017
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4018 4019 4020 4021

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

4022
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4023 4024 4025 4026 4027

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
4041 4042
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
4043 4044 4045 4046 4047
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

4048 4049 4050 4051 4052
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

4053
	/* Currently requires operations to do this */
4054
	if (!ops->list_voltage || !rdev->desc->n_voltages)
4055 4056 4057 4058
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
4059 4060 4061
		if (i < rdev->desc->linear_min_sel)
			continue;

4062 4063 4064
		if (old_sel >= 0 && new_sel >= 0)
			break;

4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

4083
/**
4084 4085
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
4086 4087 4088 4089 4090 4091
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
4092
 * Drivers providing ramp_delay in regulation_constraints can use this as their
4093
 * set_voltage_time_sel() operation.
4094 4095 4096 4097 4098
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
4099
	int old_volt, new_volt;
4100

4101 4102 4103
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
4104

4105 4106 4107
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

4108 4109 4110 4111 4112
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4113
}
4114
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4115

4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
4127
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4128 4129
	int ret, min_uV, max_uV;

4130
	regulator_lock(rdev);
4131 4132 4133 4134 4135 4136 4137 4138

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
4139
	if (!voltage->min_uV && !voltage->max_uV) {
4140 4141 4142 4143
		ret = -EINVAL;
		goto out;
	}

4144 4145
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
4146 4147 4148 4149 4150 4151

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

4152
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4153 4154 4155
	if (ret < 0)
		goto out;

4156 4157 4158 4159 4160
	/* balance only, if regulator is coupled */
	if (rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
	else
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4161 4162

out:
4163
	regulator_unlock(rdev);
4164 4165 4166 4167
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

4168
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4169
{
4170
	int sel, ret;
4171 4172 4173 4174 4175 4176 4177 4178
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
4179 4180 4181 4182 4183
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4184

4185
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4186 4187
		}
	}
4188 4189 4190 4191 4192

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4193
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4194
	} else if (rdev->desc->ops->get_voltage) {
4195
		ret = rdev->desc->ops->get_voltage(rdev);
4196 4197
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4198 4199
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4200
	} else if (rdev->supply) {
4201
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4202 4203
	} else if (rdev->supply_name) {
		return -EPROBE_DEFER;
4204
	} else {
4205
		return -EINVAL;
4206
	}
4207

4208 4209
	if (ret < 0)
		return ret;
4210
	return ret - rdev->constraints->uV_offset;
4211
}
4212
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4225
	struct ww_acquire_ctx ww_ctx;
4226 4227
	int ret;

4228
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4229
	ret = regulator_get_voltage_rdev(regulator->rdev);
4230
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4231 4232 4233 4234 4235 4236 4237 4238

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4239
 * @min_uA: Minimum supported current in uA
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4258
	regulator_lock(rdev);
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4273
	regulator_unlock(rdev);
4274 4275 4276 4277
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4278 4279 4280 4281 4282 4283 4284 4285 4286
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4287 4288 4289 4290
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4291
	regulator_lock(rdev);
4292
	ret = _regulator_get_current_limit_unlocked(rdev);
4293
	regulator_unlock(rdev);
4294

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4328
	int regulator_curr_mode;
4329

4330
	regulator_lock(rdev);
4331 4332 4333 4334 4335 4336 4337

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4338 4339 4340 4341 4342 4343 4344 4345 4346
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4347
	/* constraints check */
4348
	ret = regulator_mode_constrain(rdev, &mode);
4349 4350 4351 4352 4353
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4354
	regulator_unlock(rdev);
4355 4356 4357 4358
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4359 4360 4361 4362 4363 4364 4365 4366 4367
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4368 4369 4370 4371
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4372
	regulator_lock(rdev);
4373
	ret = _regulator_get_mode_unlocked(rdev);
4374
	regulator_unlock(rdev);
4375

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4391 4392 4393 4394 4395
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4396
	regulator_lock(rdev);
4397 4398 4399 4400 4401 4402 4403 4404 4405

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4406
	regulator_unlock(rdev);
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4424
/**
4425
 * regulator_set_load - set regulator load
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4448 4449 4450 4451 4452 4453 4454 4455
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4456
 * On error a negative errno is returned.
4457
 */
4458
int regulator_set_load(struct regulator *regulator, int uA_load)
4459 4460
{
	struct regulator_dev *rdev = regulator->rdev;
4461 4462
	int old_uA_load;
	int ret = 0;
4463

4464
	regulator_lock(rdev);
4465
	old_uA_load = regulator->uA_load;
4466
	regulator->uA_load = uA_load;
4467 4468 4469 4470 4471
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4472
	regulator_unlock(rdev);
4473

4474 4475
	return ret;
}
4476
EXPORT_SYMBOL_GPL(regulator_set_load);
4477

4478 4479 4480 4481
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4482
 * @enable: enable or disable bypass mode
4483 4484 4485 4486 4487 4488 4489 4490 4491
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
4492
	const char *name = rdev_get_name(rdev);
4493 4494 4495 4496 4497
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4498
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4499 4500
		return 0;

4501
	regulator_lock(rdev);
4502 4503 4504 4505 4506

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
4507 4508
			trace_regulator_bypass_enable(name);

4509 4510 4511
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
4512 4513
			else
				trace_regulator_bypass_enable_complete(name);
4514 4515 4516 4517 4518 4519
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
4520 4521
			trace_regulator_bypass_disable(name);

4522 4523 4524
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
4525 4526
			else
				trace_regulator_bypass_disable_complete(name);
4527 4528 4529 4530 4531 4532
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4533
	regulator_unlock(rdev);
4534 4535 4536 4537 4538

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4539 4540 4541
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4542
 * @nb: notifier block
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4557
 * @nb: notifier block
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4569 4570 4571
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4572
static int _notifier_call_chain(struct regulator_dev *rdev,
4573 4574 4575
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4576
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4603 4604
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4615
	if (ret != -EPROBE_DEFER)
4616 4617
		dev_err(dev, "Failed to get supply '%s': %pe\n",
			consumers[i].supply, ERR_PTR(ret));
4618 4619 4620 4621
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4622
	while (--i >= 0)
4623 4624 4625 4626 4627 4628
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4629 4630 4631 4632 4633 4634 4635
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4651
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4652
	int i;
4653
	int ret = 0;
4654

4655
	for (i = 0; i < num_consumers; i++) {
4656 4657
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4658
	}
4659 4660 4661 4662

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4663
	for (i = 0; i < num_consumers; i++) {
4664 4665
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4666
			goto err;
4667
		}
4668 4669 4670 4671 4672
	}

	return 0;

err:
4673 4674
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
4675 4676
			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
			       ERR_PTR(consumers[i].ret));
4677 4678 4679
		else
			regulator_disable(consumers[i].consumer);
	}
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4693 4694
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4695 4696 4697 4698 4699 4700
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4701
	int ret, r;
4702

4703
	for (i = num_consumers - 1; i >= 0; --i) {
4704 4705 4706 4707 4708 4709 4710 4711
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4712
	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4713 4714 4715
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4716 4717
			pr_err("Failed to re-enable %s: %pe\n",
			       consumers[i].supply, ERR_PTR(r));
4718
	}
4719 4720 4721 4722 4723

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4742
	int ret = 0;
4743

4744
	for (i = 0; i < num_consumers; i++) {
4745 4746 4747
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4748 4749
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4750 4751 4752 4753 4754 4755 4756
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4780
 * @rdev: regulator source
4781
 * @event: notifier block
4782
 * @data: callback-specific data.
4783 4784
 *
 * Called by regulator drivers to notify clients a regulator event has
4785
 * occurred.
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4812
	case REGULATOR_MODE_STANDBY:
4813 4814
		return REGULATOR_STATUS_STANDBY;
	default:
4815
		return REGULATOR_STATUS_UNDEFINED;
4816 4817 4818 4819
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4847 4848 4849 4850
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4851 4852
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4853
{
4854
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4855
	struct regulator_dev *rdev = dev_to_rdev(dev);
4856
	const struct regulator_ops *ops = rdev->desc->ops;
4857 4858 4859 4860 4861 4862 4863
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4864 4865

	/* some attributes need specific methods to be displayed */
4866 4867 4868 4869 4870 4871 4872
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4873
	}
4874

4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4890
	/* constraints need specific supporting methods */
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4926

4927 4928 4929
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4930 4931 4932

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4933
	kfree(rdev);
4934 4935
}

4936 4937
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4950
	if (!rdev->debugfs) {
4951 4952 4953 4954 4955 4956 4957 4958
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4959 4960
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4961 4962
}

4963 4964
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4965 4966 4967 4968 4969 4970
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4971 4972
}

4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

5024
static void regulator_resolve_coupling(struct regulator_dev *rdev)
5025
{
5026
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

5039 5040
		if (!c_rdev)
			continue;
5041

5042 5043 5044 5045 5046 5047
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

5048 5049
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
5050

5051 5052
		regulator_resolve_coupling(c_rdev);
	}
5053 5054
}

5055
static void regulator_remove_coupling(struct regulator_dev *rdev)
5056
{
5057
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5058 5059 5060 5061
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
5062
	int err;
5063

5064
	n_coupled = c_desc->n_coupled;
5065

5066 5067
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
5068

5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
5092 5093 5094 5095

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
5096 5097
			rdev_err(rdev, "failed to detach from coupler: %pe\n",
				 ERR_PTR(err));
5098 5099 5100 5101
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
5102 5103
}

5104
static int regulator_init_coupling(struct regulator_dev *rdev)
5105
{
5106
	struct regulator_dev **coupled;
5107
	int err, n_phandles;
5108 5109 5110 5111 5112 5113

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

5114 5115
	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
	if (!coupled)
5116
		return -ENOMEM;
5117

5118 5119
	rdev->coupling_desc.coupled_rdevs = coupled;

5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

5132
	if (!of_check_coupling_data(rdev))
5133 5134
		return -EPERM;

5135
	mutex_lock(&regulator_list_mutex);
5136
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5137 5138
	mutex_unlock(&regulator_list_mutex);

5139 5140
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
5141
		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5142
		return err;
5143 5144
	}

5145 5146 5147 5148 5149 5150 5151 5152 5153
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5154
		return -EPERM;
5155
	}
5156

5157 5158 5159 5160 5161 5162
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

5163 5164 5165
	return 0;
}

5166 5167 5168 5169
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

5170 5171
/**
 * regulator_register - register regulator
5172
 * @regulator_desc: regulator to register
5173
 * @cfg: runtime configuration for regulator
5174 5175
 *
 * Called by regulator drivers to register a regulator.
5176 5177
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
5178
 */
5179 5180
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
5181
		   const struct regulator_config *cfg)
5182
{
5183
	const struct regulator_init_data *init_data;
5184
	struct regulator_config *config = NULL;
5185
	static atomic_t regulator_no = ATOMIC_INIT(-1);
5186
	struct regulator_dev *rdev;
5187 5188
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5189
	struct device *dev;
5190
	int ret, i;
5191

5192
	if (cfg == NULL)
5193
		return ERR_PTR(-EINVAL);
5194 5195 5196 5197 5198 5199
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5200

5201
	dev = cfg->dev;
5202
	WARN_ON(!dev);
5203

5204 5205 5206 5207
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5208

5209
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5210 5211 5212 5213
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5214

5215 5216 5217
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5218 5219
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5220 5221 5222 5223

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5224 5225
		ret = -EINVAL;
		goto rinse;
5226
	}
5227 5228
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5229 5230
		ret = -EINVAL;
		goto rinse;
5231
	}
5232

5233
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5234 5235 5236 5237
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5238
	device_initialize(&rdev->dev);
5239

5240 5241 5242 5243 5244 5245
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
5246
		ret = -ENOMEM;
5247
		goto clean;
5248 5249
	}

5250
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5251
					       &rdev->dev.of_node);
5252 5253 5254 5255 5256 5257 5258 5259

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		ret = -EPROBE_DEFER;
5260
		goto clean;
5261 5262
	}

5263 5264 5265 5266 5267
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5268
	 * a descriptor, we definitely got one from parsing the device
5269 5270 5271 5272
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5273 5274 5275 5276 5277
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5278
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5279
	rdev->reg_data = config->driver_data;
5280 5281
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5282 5283
	if (config->regmap)
		rdev->regmap = config->regmap;
5284
	else if (dev_get_regmap(dev, NULL))
5285
		rdev->regmap = dev_get_regmap(dev, NULL);
5286 5287
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5288 5289 5290
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5291
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5292

5293
	/* preform any regulator specific init */
5294
	if (init_data && init_data->regulator_init) {
5295
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5296 5297
		if (ret < 0)
			goto clean;
5298 5299
	}

5300
	if (config->ena_gpiod) {
5301 5302
		ret = regulator_ena_gpio_request(rdev, config);
		if (ret != 0) {
5303 5304
			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
				 ERR_PTR(ret));
5305
			goto clean;
5306
		}
5307 5308 5309
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5310 5311
	}

5312
	/* register with sysfs */
5313
	rdev->dev.class = &regulator_class;
5314
	rdev->dev.parent = dev;
5315
	dev_set_name(&rdev->dev, "regulator.%lu",
5316
		    (unsigned long) atomic_inc_return(&regulator_no));
5317
	dev_set_drvdata(&rdev->dev, rdev);
5318

5319
	/* set regulator constraints */
5320
	if (init_data)
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
		rdev->constraints = kmemdup(&init_data->constraints,
					    sizeof(*rdev->constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
					    GFP_KERNEL);
	if (!rdev->constraints) {
		ret = -ENOMEM;
		goto wash;
	}
5331 5332

	if (init_data && init_data->supply_regulator)
5333
		rdev->supply_name = init_data->supply_regulator;
5334
	else if (regulator_desc->supply_name)
5335
		rdev->supply_name = regulator_desc->supply_name;
5336

5337
	ret = set_machine_constraints(rdev);
5338 5339 5340 5341 5342 5343
	if (ret == -EPROBE_DEFER) {
		/* Regulator might be in bypass mode and so needs its supply
		 * to set the constraints */
		/* FIXME: this currently triggers a chicken-and-egg problem
		 * when creating -SUPPLY symlink in sysfs to a regulator
		 * that is just being created */
5344 5345
		rdev_dbg(rdev, "will resolve supply early: %s\n",
			 rdev->supply_name);
5346 5347
		ret = regulator_resolve_supply(rdev);
		if (!ret)
5348
			ret = set_machine_constraints(rdev);
5349 5350 5351 5352
		else
			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
				 ERR_PTR(ret));
	}
5353 5354 5355
	if (ret < 0)
		goto wash;

5356 5357
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5358 5359
		goto wash;

5360
	/* add consumers devices */
5361 5362 5363 5364
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5365
				init_data->consumer_supplies[i].supply);
5366 5367 5368 5369 5370
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5371
		}
5372
	}
5373

5374 5375 5376 5377 5378
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5379 5380
	ret = device_add(&rdev->dev);
	if (ret != 0)
5381 5382
		goto unset_supplies;

5383
	rdev_init_debugfs(rdev);
5384

5385 5386 5387 5388 5389
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5390 5391 5392
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5393
	kfree(config);
5394
	return rdev;
D
David Brownell 已提交
5395

5396
unset_supplies:
5397
	mutex_lock(&regulator_list_mutex);
5398
	unset_regulator_supplies(rdev);
5399
	regulator_remove_coupling(rdev);
5400
	mutex_unlock(&regulator_list_mutex);
5401
wash:
5402
	kfree(rdev->coupling_desc.coupled_rdevs);
5403
	mutex_lock(&regulator_list_mutex);
5404
	regulator_ena_gpio_free(rdev);
5405
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5406
clean:
5407 5408
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
5409
	kfree(config);
5410
	put_device(&rdev->dev);
5411 5412 5413
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5414
	return ERR_PTR(ret);
5415 5416 5417 5418 5419
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5420
 * @rdev: regulator to unregister
5421 5422 5423 5424 5425 5426 5427 5428
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5429 5430 5431
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5432
		regulator_put(rdev->supply);
5433
	}
5434

5435 5436
	flush_work(&rdev->disable_work.work);

5437
	mutex_lock(&regulator_list_mutex);
5438

5439
	debugfs_remove_recursive(rdev->debugfs);
5440
	WARN_ON(rdev->open_count);
5441
	regulator_remove_coupling(rdev);
5442
	unset_regulator_supplies(rdev);
5443
	list_del(&rdev->list);
5444
	regulator_ena_gpio_free(rdev);
5445
	device_unregister(&rdev->dev);
5446 5447

	mutex_unlock(&regulator_list_mutex);
5448 5449 5450
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5451
#ifdef CONFIG_SUSPEND
5452
/**
5453
 * regulator_suspend - prepare regulators for system wide suspend
5454
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5455 5456 5457
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5458
static int regulator_suspend(struct device *dev)
5459
{
5460
	struct regulator_dev *rdev = dev_to_rdev(dev);
5461
	suspend_state_t state = pm_suspend_target_state;
5462
	int ret;
5463 5464 5465 5466 5467
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev, state);
	if (!rstate)
		return 0;
5468 5469

	regulator_lock(rdev);
5470
	ret = __suspend_set_state(rdev, rstate);
5471
	regulator_unlock(rdev);
5472

5473
	return ret;
5474
}
5475

5476
static int regulator_resume(struct device *dev)
5477
{
5478
	suspend_state_t state = pm_suspend_target_state;
5479
	struct regulator_dev *rdev = dev_to_rdev(dev);
5480
	struct regulator_state *rstate;
5481
	int ret = 0;
5482

5483
	rstate = regulator_get_suspend_state(rdev, state);
5484
	if (rstate == NULL)
5485
		return 0;
5486

5487 5488 5489 5490
	/* Avoid grabbing the lock if we don't need to */
	if (!rdev->desc->ops->resume)
		return 0;

5491
	regulator_lock(rdev);
5492

5493 5494
	if (rstate->enabled == ENABLE_IN_SUSPEND ||
	    rstate->enabled == DISABLE_IN_SUSPEND)
5495
		ret = rdev->desc->ops->resume(rdev);
5496

5497
	regulator_unlock(rdev);
5498

5499
	return ret;
5500
}
5501 5502
#else /* !CONFIG_SUSPEND */

5503 5504
#define regulator_suspend	NULL
#define regulator_resume	NULL
5505 5506 5507 5508 5509

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5510 5511
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5512 5513 5514
};
#endif

M
Mark Brown 已提交
5515
struct class regulator_class = {
5516 5517 5518 5519 5520 5521 5522
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5540 5541
/**
 * rdev_get_drvdata - get rdev regulator driver data
5542
 * @rdev: regulator
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
5578
 * rdev_get_id - get regulator ID
5579
 * @rdev: regulator
5580 5581 5582 5583 5584 5585 5586
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5587 5588 5589 5590 5591 5592
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5593 5594 5595 5596 5597 5598
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5599 5600 5601 5602 5603 5604
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5605
#ifdef CONFIG_DEBUG_FS
5606
static int supply_map_show(struct seq_file *sf, void *data)
5607 5608 5609 5610
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5611 5612 5613
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5614 5615
	}

5616 5617
	return 0;
}
5618
DEFINE_SHOW_ATTRIBUTE(supply_map);
5619

5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5642 5643 5644 5645 5646 5647
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5648
	struct summary_data summary_data;
5649
	unsigned int opmode;
5650 5651 5652 5653

	if (!rdev)
		return;

5654
	opmode = _regulator_get_mode_unlocked(rdev);
5655
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5656 5657
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5658
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5659
		   regulator_opmode_to_str(opmode));
5660

5661
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5662 5663
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5682
		if (consumer->dev && consumer->dev->class == &regulator_class)
5683 5684 5685 5686
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5687
			   30 - (level + 1) * 3,
5688
			   consumer->supply_name ? consumer->supply_name :
5689
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5690 5691 5692

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5693 5694
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5695
				   consumer->uA_load / 1000,
5696 5697
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5698 5699
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5700 5701 5702 5703 5704 5705 5706 5707
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5708 5709 5710
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5711

5712 5713
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5751 5752

	regulator_unlock(rdev);
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5783 5784
	mutex_lock(&regulator_list_mutex);

5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5811 5812

	mutex_unlock(&regulator_list_mutex);
5813 5814
}

5815
static int regulator_summary_show_roots(struct device *dev, void *data)
5816
{
5817 5818
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5819

5820 5821
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5822

5823 5824
	return 0;
}
5825

5826 5827
static int regulator_summary_show(struct seq_file *s, void *data)
{
5828 5829
	struct ww_acquire_ctx ww_ctx;

5830 5831
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5832

5833 5834
	regulator_summary_lock(&ww_ctx);

5835 5836
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5837

5838 5839
	regulator_summary_unlock(&ww_ctx);

5840 5841
	return 0;
}
5842 5843
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5844

5845 5846
static int __init regulator_init(void)
{
5847 5848 5849 5850
	int ret;

	ret = class_register(&regulator_class);

5851
	debugfs_root = debugfs_create_dir("regulator", NULL);
5852
	if (!debugfs_root)
5853
		pr_warn("regulator: Failed to create debugfs directory\n");
5854

5855
#ifdef CONFIG_DEBUG_FS
5856 5857
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5858

5859
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5860
			    NULL, &regulator_summary_fops);
5861
#endif
5862 5863
	regulator_dummy_init();

5864 5865
	regulator_coupler_register(&generic_regulator_coupler);

5866
	return ret;
5867 5868 5869 5870
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5871

5872
static int regulator_late_cleanup(struct device *dev, void *data)
5873
{
5874 5875 5876
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5877 5878
	int enabled, ret;

5879 5880 5881
	if (c && c->always_on)
		return 0;

5882
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5883 5884
		return 0;

5885
	regulator_lock(rdev);
5886 5887 5888 5889

	if (rdev->use_count)
		goto unlock;

5890
	/* If we can't read the status assume it's always on. */
5891 5892 5893 5894 5895
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

5896 5897
	/* But if reading the status failed, assume that it's off. */
	if (enabled <= 0)
5898 5899 5900 5901 5902 5903 5904 5905
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
5906
			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5917
	regulator_unlock(rdev);
5918 5919 5920 5921

	return 0;
}

5922
static void regulator_init_complete_work_function(struct work_struct *work)
5923
{
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5934
	/* If we have a full configuration then disable any regulators
5935 5936 5937
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5938
	 */
5939 5940
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
5958 5959 5960 5961 5962 5963 5964 5965 5966
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
5967
	 */
5968 5969
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
5970 5971 5972

	return 0;
}
5973
late_initcall_sync(regulator_init_complete);