memcontrol.c 195.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 24 25
 *
 * Per memcg lru locking
 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
B
Balbir Singh 已提交
26 27
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/pagewalk.h>
32
#include <linux/sched/mm.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
35
#include <linux/pagemap.h>
36
#include <linux/vm_event_item.h>
37
#include <linux/smp.h>
38
#include <linux/page-flags.h>
39
#include <linux/backing-dev.h>
40 41
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
42
#include <linux/limits.h>
43
#include <linux/export.h>
44
#include <linux/mutex.h>
45
#include <linux/rbtree.h>
46
#include <linux/slab.h>
47
#include <linux/swap.h>
48
#include <linux/swapops.h>
49
#include <linux/spinlock.h>
50
#include <linux/eventfd.h>
51
#include <linux/poll.h>
52
#include <linux/sort.h>
53
#include <linux/fs.h>
54
#include <linux/seq_file.h>
55
#include <linux/vmpressure.h>
56
#include <linux/mm_inline.h>
57
#include <linux/swap_cgroup.h>
58
#include <linux/cpu.h>
59
#include <linux/oom.h>
60
#include <linux/lockdep.h>
61
#include <linux/file.h>
62
#include <linux/tracehook.h>
63
#include <linux/psi.h>
64
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
68
#include "slab.h"
B
Balbir Singh 已提交
69

70
#include <linux/uaccess.h>
71

72 73
#include <trace/events/vmscan.h>

74 75
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
76

77 78
struct mem_cgroup *root_mem_cgroup __read_mostly;

79 80 81
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86
/* Kernel memory accounting disabled */
static bool cgroup_memory_nokmem = true;
87

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90
bool cgroup_memory_noswap __read_mostly;
91
#else
92
#define cgroup_memory_noswap		1
93
#endif
94

95 96 97 98
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

99 100 101
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
102
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103 104
}

105 106
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
107

108 109 110 111 112
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

113
struct mem_cgroup_tree_per_node {
114
	struct rb_root rb_root;
115
	struct rb_node *rb_rightmost;
116 117 118 119 120 121 122 123 124
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
125 126 127 128 129
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
130

131 132 133
/*
 * cgroup_event represents events which userspace want to receive.
 */
134
struct mem_cgroup_event {
135
	/*
136
	 * memcg which the event belongs to.
137
	 */
138
	struct mem_cgroup *memcg;
139 140 141 142 143 144 145 146
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
147 148 149 150 151
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
152
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
153
			      struct eventfd_ctx *eventfd, const char *args);
154 155 156 157 158
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
159
	void (*unregister_event)(struct mem_cgroup *memcg,
160
				 struct eventfd_ctx *eventfd);
161 162 163 164 165 166
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
167
	wait_queue_entry_t wait;
168 169 170
	struct work_struct remove;
};

171 172
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173

174 175
/* Stuffs for move charges at task migration. */
/*
176
 * Types of charges to be moved.
177
 */
178 179 180
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181

182 183
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
184
	spinlock_t	  lock; /* for from, to */
185
	struct mm_struct  *mm;
186 187
	struct mem_cgroup *from;
	struct mem_cgroup *to;
188
	unsigned long flags;
189
	unsigned long precharge;
190
	unsigned long moved_charge;
191
	unsigned long moved_swap;
192 193 194
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
195
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 197
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
198

199 200 201 202
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
203
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205

206
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
207 208 209 210
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
211
	_KMEM,
V
Vladimir Davydov 已提交
212
	_TCP,
G
Glauber Costa 已提交
213 214
};

215 216
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
217
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
218 219
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

236 237 238 239 240 241
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

242 243 244 245 246 247 248 249 250 251 252 253 254
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

255
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
extern spinlock_t css_set_lock;

static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	struct mem_cgroup *memcg;
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	spin_lock_irqsave(&css_set_lock, flags);
	memcg = obj_cgroup_memcg(objcg);
	if (nr_pages)
		__memcg_kmem_uncharge(memcg, nr_pages);
	list_del(&objcg->list);
	mem_cgroup_put(memcg);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

	/* Move active objcg to the parent's list */
	xchg(&objcg->memcg, parent);
	css_get(&parent->css);
	list_add(&objcg->list, &parent->objcg_list);

	/* Move already reparented objcgs to the parent's list */
	list_for_each_entry(iter, &memcg->objcg_list, list) {
		css_get(&parent->css);
		xchg(&iter->memcg, parent);
		css_put(&memcg->css);
	}
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

348
/*
349
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
350 351 352 353 354
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
355
 *
356 357
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
358
 */
359 360
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
361

362 363 364 365 366 367 368 369 370 371 372 373 374
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

375 376 377 378 379 380
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
381
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
382 383
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
384
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
385 386 387
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
388
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
389

390 391
/*
 * A lot of the calls to the cache allocation functions are expected to be
392
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
393 394 395
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
396
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
397
EXPORT_SYMBOL(memcg_kmem_enabled_key);
398
#endif
399

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

417
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
418 419 420 421 422
		memcg = root_mem_cgroup;

	return &memcg->css;
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
442
	memcg = page->mem_cgroup;
443

444 445 446 447 448 449 450 451
	/*
	 * The lowest bit set means that memcg isn't a valid
	 * memcg pointer, but a obj_cgroups pointer.
	 * In this case the page is shared and doesn't belong
	 * to any specific memory cgroup.
	 */
	if ((unsigned long) memcg & 0x1UL)
		memcg = NULL;
452

453 454 455 456 457 458 459 460
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

461 462
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
463
{
464
	int nid = page_to_nid(page);
465

466
	return memcg->nodeinfo[nid];
467 468
}

469 470
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
471
{
472
	return soft_limit_tree.rb_tree_per_node[nid];
473 474
}

475
static struct mem_cgroup_tree_per_node *
476 477 478 479
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

480
	return soft_limit_tree.rb_tree_per_node[nid];
481 482
}

483 484
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
485
					 unsigned long new_usage_in_excess)
486 487 488
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
489
	struct mem_cgroup_per_node *mz_node;
490
	bool rightmost = true;
491 492 493 494 495 496 497 498 499

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
500
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
501
					tree_node);
502
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
503
			p = &(*p)->rb_left;
504 505 506
			rightmost = false;
		}

507 508 509 510 511 512 513
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
514 515 516 517

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

518 519 520 521 522
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

523 524
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
525 526 527
{
	if (!mz->on_tree)
		return;
528 529 530 531

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

532 533 534 535
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

536 537
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
538
{
539 540 541
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
542
	__mem_cgroup_remove_exceeded(mz, mctz);
543
	spin_unlock_irqrestore(&mctz->lock, flags);
544 545
}

546 547 548
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
549
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
550 551 552 553 554 555 556
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
557 558 559

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
560
	unsigned long excess;
561 562
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
563

564
	mctz = soft_limit_tree_from_page(page);
565 566
	if (!mctz)
		return;
567 568 569 570 571
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
572
		mz = mem_cgroup_page_nodeinfo(memcg, page);
573
		excess = soft_limit_excess(memcg);
574 575 576 577 578
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
579 580 581
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
582 583
			/* if on-tree, remove it */
			if (mz->on_tree)
584
				__mem_cgroup_remove_exceeded(mz, mctz);
585 586 587 588
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
589
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
590
			spin_unlock_irqrestore(&mctz->lock, flags);
591 592 593 594 595 596
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
597 598 599
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
600

601
	for_each_node(nid) {
602 603
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
604 605
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
606 607 608
	}
}

609 610
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
611
{
612
	struct mem_cgroup_per_node *mz;
613 614 615

retry:
	mz = NULL;
616
	if (!mctz->rb_rightmost)
617 618
		goto done;		/* Nothing to reclaim from */

619 620
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
621 622 623 624 625
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
626
	__mem_cgroup_remove_exceeded(mz, mctz);
627
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
628
	    !css_tryget(&mz->memcg->css))
629 630 631 632 633
		goto retry;
done:
	return mz;
}

634 635
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
636
{
637
	struct mem_cgroup_per_node *mz;
638

639
	spin_lock_irq(&mctz->lock);
640
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
641
	spin_unlock_irq(&mctz->lock);
642 643 644
	return mz;
}

645 646 647 648 649 650 651 652
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
653
	long x, threshold = MEMCG_CHARGE_BATCH;
654 655 656 657

	if (mem_cgroup_disabled())
		return;

658
	if (memcg_stat_item_in_bytes(idx))
659 660
		threshold <<= PAGE_SHIFT;

661
	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
662
	if (unlikely(abs(x) > threshold)) {
663 664
		struct mem_cgroup *mi;

665 666 667 668 669
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
670 671
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
672 673 674 675 676
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

677 678 679 680 681 682 683 684 685 686 687
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

688 689
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
690 691
{
	struct mem_cgroup_per_node *pn;
692
	struct mem_cgroup *memcg;
693
	long x, threshold = MEMCG_CHARGE_BATCH;
694 695

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
696
	memcg = pn->memcg;
697 698

	/* Update memcg */
699
	__mod_memcg_state(memcg, idx, val);
700

701 702 703
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

704 705 706
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

707
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
708
	if (unlikely(abs(x) > threshold)) {
709
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
710 711 712 713
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
714 715 716 717 718
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

740 741
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
742
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
743 744 745 746
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
747
	memcg = mem_cgroup_from_obj(p);
748

749 750 751 752 753 754 755
	/*
	 * Untracked pages have no memcg, no lruvec. Update only the
	 * node. If we reparent the slab objects to the root memcg,
	 * when we free the slab object, we need to update the per-memcg
	 * vmstats to keep it correct for the root memcg.
	 */
	if (!memcg) {
756 757
		__mod_node_page_state(pgdat, idx, val);
	} else {
758
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
759 760 761 762 763
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

764 765 766 767 768 769 770 771 772 773 774
void mod_memcg_obj_state(void *p, int idx, int val)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
	memcg = mem_cgroup_from_obj(p);
	if (memcg)
		mod_memcg_state(memcg, idx, val);
	rcu_read_unlock();
}

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
791 792
		struct mem_cgroup *mi;

793 794 795 796 797
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
798 799
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
800 801 802 803 804
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

805
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
806
{
807
	return atomic_long_read(&memcg->vmevents[event]);
808 809
}

810 811
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
812 813 814 815 816 817
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
818 819
}

820
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
821
					 struct page *page,
822
					 int nr_pages)
823
{
824 825
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
826
		__count_memcg_events(memcg, PGPGIN, 1);
827
	else {
828
		__count_memcg_events(memcg, PGPGOUT, 1);
829 830
		nr_pages = -nr_pages; /* for event */
	}
831

832
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
833 834
}

835 836
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
837 838 839
{
	unsigned long val, next;

840 841
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
842
	/* from time_after() in jiffies.h */
843
	if ((long)(next - val) < 0) {
844 845 846 847
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
848 849 850
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
851 852 853
		default:
			break;
		}
854
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
855
		return true;
856
	}
857
	return false;
858 859 860 861 862 863
}

/*
 * Check events in order.
 *
 */
864
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
865 866
{
	/* threshold event is triggered in finer grain than soft limit */
867 868
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
869
		bool do_softlimit;
870

871 872
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
873
		mem_cgroup_threshold(memcg);
874 875
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
876
	}
877 878
}

879
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
880
{
881 882 883 884 885 886 887 888
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

889
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
890
}
M
Michal Hocko 已提交
891
EXPORT_SYMBOL(mem_cgroup_from_task);
892

893 894 895 896 897 898 899 900 901
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
902
{
903 904 905 906
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
907

908 909
	rcu_read_lock();
	do {
910 911 912 913 914 915
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
916
			memcg = root_mem_cgroup;
917 918 919 920 921
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
922
	} while (!css_tryget(&memcg->css));
923
	rcu_read_unlock();
924
	return memcg;
925
}
926 927
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
943 944
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
945 946 947 948 949 950
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

951
static __always_inline struct mem_cgroup *active_memcg(void)
952
{
953 954 955 956 957
	if (in_interrupt())
		return this_cpu_read(int_active_memcg);
	else
		return current->active_memcg;
}
958

959 960 961
static __always_inline struct mem_cgroup *get_active_memcg(void)
{
	struct mem_cgroup *memcg;
962

963 964
	rcu_read_lock();
	memcg = active_memcg();
965 966 967
	/* remote memcg must hold a ref. */
	if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
		memcg = root_mem_cgroup;
968 969 970 971 972
	rcu_read_unlock();

	return memcg;
}

973 974 975 976 977 978 979 980 981 982 983 984 985
static __always_inline bool memcg_kmem_bypass(void)
{
	/* Allow remote memcg charging from any context. */
	if (unlikely(active_memcg()))
		return false;

	/* Memcg to charge can't be determined. */
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;

	return false;
}

986 987 988 989 990 991 992 993 994 995 996
/**
 * If active memcg is set, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (memcg_kmem_bypass())
		return NULL;

	if (unlikely(active_memcg()))
		return get_active_memcg();

997 998
	return get_mem_cgroup_from_mm(current->mm);
}
999

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1013 1014 1015
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
1016
 */
1017
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1018
				   struct mem_cgroup *prev,
1019
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1020
{
1021
	struct mem_cgroup_reclaim_iter *iter;
1022
	struct cgroup_subsys_state *css = NULL;
1023
	struct mem_cgroup *memcg = NULL;
1024
	struct mem_cgroup *pos = NULL;
1025

1026 1027
	if (mem_cgroup_disabled())
		return NULL;
1028

1029 1030
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1031

1032
	if (prev && !reclaim)
1033
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1034

1035 1036
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1037
			goto out;
1038
		return root;
1039
	}
K
KAMEZAWA Hiroyuki 已提交
1040

1041
	rcu_read_lock();
M
Michal Hocko 已提交
1042

1043
	if (reclaim) {
1044
		struct mem_cgroup_per_node *mz;
1045

1046
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1047
		iter = &mz->iter;
1048 1049 1050 1051

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1052
		while (1) {
1053
			pos = READ_ONCE(iter->position);
1054 1055
			if (!pos || css_tryget(&pos->css))
				break;
1056
			/*
1057 1058 1059 1060 1061 1062
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1063
			 */
1064 1065
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1083
		}
K
KAMEZAWA Hiroyuki 已提交
1084

1085 1086 1087 1088 1089 1090
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1091

1092 1093
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1094

1095 1096
		if (css_tryget(css))
			break;
1097

1098
		memcg = NULL;
1099
	}
1100 1101 1102

	if (reclaim) {
		/*
1103 1104 1105
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1106
		 */
1107 1108
		(void)cmpxchg(&iter->position, pos, memcg);

1109 1110 1111 1112 1113 1114 1115
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1116
	}
1117

1118 1119
out_unlock:
	rcu_read_unlock();
1120
out:
1121 1122 1123
	if (prev && prev != root)
		css_put(&prev->css);

1124
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1125
}
K
KAMEZAWA Hiroyuki 已提交
1126

1127 1128 1129 1130 1131 1132 1133
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1134 1135 1136 1137 1138 1139
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1140

1141 1142
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1143 1144
{
	struct mem_cgroup_reclaim_iter *iter;
1145 1146
	struct mem_cgroup_per_node *mz;
	int nid;
1147

1148 1149
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1150 1151
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1152 1153 1154
	}
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1201
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1202 1203 1204 1205 1206 1207 1208 1209
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
J
Jing Xiangfeng 已提交
1210 1211 1212
#ifdef CONFIG_MEMCG_QOS
	memcg_print_bad_task(arg, ret);
#endif
1213 1214 1215
	return ret;
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
#ifdef CONFIG_DEBUG_VM
void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
{
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return;

	memcg = page_memcg(page);

	if (!memcg)
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
	else
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
}
#endif

1233
/**
1234
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1235
 * @page: the page
1236
 * @pgdat: pgdat of the page
1237
 *
1238 1239
 * This function relies on page->mem_cgroup being stable - see the
 * access rules in commit_charge().
1240
 */
M
Mel Gorman 已提交
1241
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1242
{
1243
	struct mem_cgroup_per_node *mz;
1244
	struct mem_cgroup *memcg;
1245
	struct lruvec *lruvec;
1246

1247
	if (mem_cgroup_disabled()) {
1248
		lruvec = &pgdat->__lruvec;
1249 1250
		goto out;
	}
1251

1252
	memcg = page->mem_cgroup;
1253
	/*
1254
	 * Swapcache readahead pages are added to the LRU - and
1255
	 * possibly migrated - before they are charged.
1256
	 */
1257 1258
	if (!memcg)
		memcg = root_mem_cgroup;
1259

1260
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1261 1262 1263 1264 1265 1266 1267
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1268 1269
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1270
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1271
}
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
/**
 * lock_page_lruvec - lock and return lruvec for a given page.
 * @page: the page
 *
 * This series functions should be used in either conditions:
 * PageLRU is cleared or unset
 * or page->_refcount is zero
 * or page is locked.
 */
struct lruvec *lock_page_lruvec(struct page *page)
{
	struct lruvec *lruvec;
	struct pglist_data *pgdat = page_pgdat(page);

	rcu_read_lock();
	lruvec = mem_cgroup_page_lruvec(page, pgdat);
	spin_lock(&lruvec->lru_lock);
	rcu_read_unlock();

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irq(struct page *page)
{
	struct lruvec *lruvec;
	struct pglist_data *pgdat = page_pgdat(page);

	rcu_read_lock();
	lruvec = mem_cgroup_page_lruvec(page, pgdat);
	spin_lock_irq(&lruvec->lru_lock);
	rcu_read_unlock();

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
{
	struct lruvec *lruvec;
	struct pglist_data *pgdat = page_pgdat(page);

	rcu_read_lock();
	lruvec = mem_cgroup_page_lruvec(page, pgdat);
	spin_lock_irqsave(&lruvec->lru_lock, *flags);
	rcu_read_unlock();

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

1327
/**
1328 1329 1330
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1331
 * @zid: zone id of the accounted pages
1332
 * @nr_pages: positive when adding or negative when removing
1333
 *
1334 1335 1336
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1337
 */
1338
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1339
				int zid, int nr_pages)
1340
{
1341
	struct mem_cgroup_per_node *mz;
1342
	unsigned long *lru_size;
1343
	long size;
1344 1345 1346 1347

	if (mem_cgroup_disabled())
		return;

1348
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1349
	lru_size = &mz->lru_zone_size[zid][lru];
1350 1351 1352 1353 1354

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1355 1356 1357
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1358 1359 1360 1361 1362 1363
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1364
}
1365

1366
/**
1367
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1368
 * @memcg: the memory cgroup
1369
 *
1370
 * Returns the maximum amount of memory @mem can be charged with, in
1371
 * pages.
1372
 */
1373
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1374
{
1375 1376 1377
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1378

1379
	count = page_counter_read(&memcg->memory);
1380
	limit = READ_ONCE(memcg->memory.max);
1381 1382 1383
	if (count < limit)
		margin = limit - count;

1384
	if (do_memsw_account()) {
1385
		count = page_counter_read(&memcg->memsw);
1386
		limit = READ_ONCE(memcg->memsw.max);
1387
		if (count < limit)
1388
			margin = min(margin, limit - count);
1389 1390
		else
			margin = 0;
1391 1392 1393
	}

	return margin;
1394 1395
}

1396
/*
Q
Qiang Huang 已提交
1397
 * A routine for checking "mem" is under move_account() or not.
1398
 *
Q
Qiang Huang 已提交
1399 1400 1401
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1402
 */
1403
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1404
{
1405 1406
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1407
	bool ret = false;
1408 1409 1410 1411 1412 1413 1414 1415 1416
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1417

1418 1419
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1420 1421
unlock:
	spin_unlock(&mc.lock);
1422 1423 1424
	return ret;
}

1425
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1426 1427
{
	if (mc.moving_task && current != mc.moving_task) {
1428
		if (mem_cgroup_under_move(memcg)) {
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
struct memory_stat {
	const char *name;
	unsigned int ratio;
	unsigned int idx;
};

static struct memory_stat memory_stats[] = {
	{ "anon", PAGE_SIZE, NR_ANON_MAPPED },
	{ "file", PAGE_SIZE, NR_FILE_PAGES },
	{ "kernel_stack", 1024, NR_KERNEL_STACK_KB },
	{ "percpu", 1, MEMCG_PERCPU_B },
	{ "sock", PAGE_SIZE, MEMCG_SOCK },
	{ "shmem", PAGE_SIZE, NR_SHMEM },
	{ "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
	{ "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
	{ "file_writeback", PAGE_SIZE, NR_WRITEBACK },
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	/*
	 * The ratio will be initialized in memory_stats_init(). Because
	 * on some architectures, the macro of HPAGE_PMD_SIZE is not
	 * constant(e.g. powerpc).
	 */
	{ "anon_thp", 0, NR_ANON_THPS },
#endif
	{ "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
	{ "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
	{ "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
	{ "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
	{ "unevictable", PAGE_SIZE, NR_UNEVICTABLE },

	/*
	 * Note: The slab_reclaimable and slab_unreclaimable must be
	 * together and slab_reclaimable must be in front.
	 */
	{ "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
	{ "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },

	/* The memory events */
	{ "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
	{ "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
	{ "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
	{ "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
	{ "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
	{ "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
	{ "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
};

static int __init memory_stats_init(void)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memory_stats[i].idx == NR_ANON_THPS)
			memory_stats[i].ratio = HPAGE_PMD_SIZE;
#endif
		VM_BUG_ON(!memory_stats[i].ratio);
		VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
	}

	return 0;
}
pure_initcall(memory_stats_init);

1505 1506 1507 1508
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

1525 1526
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1527

1528 1529 1530
		size = memcg_page_state(memcg, memory_stats[i].idx);
		size *= memory_stats[i].ratio;
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1531

1532 1533 1534 1535 1536 1537
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
			size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
			       memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1538 1539 1540

	/* Accumulated memory events */

1541 1542 1543 1544 1545 1546
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1547 1548 1549 1550 1551 1552
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1553 1554 1555 1556 1557 1558 1559 1560
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1561 1562

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1563
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1564
		       memcg_events(memcg, THP_FAULT_ALLOC));
1565
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1566 1567 1568 1569 1570 1571 1572 1573
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1574

1575
#define K(x) ((x) << (PAGE_SHIFT-10))
1576
/**
1577 1578
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1579 1580 1581 1582 1583 1584
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1585
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1586 1587 1588
{
	rcu_read_lock();

1589 1590 1591 1592 1593
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1594
	if (p) {
1595
		pr_cont(",task_memcg=");
1596 1597
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1598
	rcu_read_unlock();
1599 1600 1601 1602 1603 1604 1605 1606 1607
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1608
	char *buf;
1609

1610 1611
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1612
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1613 1614 1615
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1616
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1617 1618 1619 1620 1621 1622 1623
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1624
	}
1625 1626 1627 1628 1629 1630 1631 1632 1633

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1634 1635
}

D
David Rientjes 已提交
1636 1637 1638
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1639
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1640
{
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1654
	}
1655
	return max;
D
David Rientjes 已提交
1656 1657
}

1658 1659 1660 1661 1662
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1663
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1664
				     int order)
1665
{
1666 1667 1668
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1669
		.memcg = memcg,
1670 1671 1672
		.gfp_mask = gfp_mask,
		.order = order,
	};
1673
	bool ret = true;
1674

1675 1676
	if (mutex_lock_killable(&oom_lock))
		return true;
1677 1678 1679 1680

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1681 1682 1683 1684 1685
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1686 1687

unlock:
1688
	mutex_unlock(&oom_lock);
1689
	return ret;
1690 1691
}

1692
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1693
				   pg_data_t *pgdat,
1694 1695 1696 1697 1698 1699 1700 1701 1702
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1703
		.pgdat = pgdat,
1704 1705
	};

1706
	excess = soft_limit_excess(root_memcg);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1732
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1733
					pgdat, &nr_scanned);
1734
		*total_scanned += nr_scanned;
1735
		if (!soft_limit_excess(root_memcg))
1736
			break;
1737
	}
1738 1739
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1740 1741
}

1742 1743 1744 1745 1746 1747
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1748 1749
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1750 1751 1752 1753
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1754
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1755
{
1756
	struct mem_cgroup *iter, *failed = NULL;
1757

1758 1759
	spin_lock(&memcg_oom_lock);

1760
	for_each_mem_cgroup_tree(iter, memcg) {
1761
		if (iter->oom_lock) {
1762 1763 1764 1765 1766
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1767 1768
			mem_cgroup_iter_break(memcg, iter);
			break;
1769 1770
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1771
	}
K
KAMEZAWA Hiroyuki 已提交
1772

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1784
		}
1785 1786
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1787 1788 1789 1790

	spin_unlock(&memcg_oom_lock);

	return !failed;
1791
}
1792

1793
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1794
{
K
KAMEZAWA Hiroyuki 已提交
1795 1796
	struct mem_cgroup *iter;

1797
	spin_lock(&memcg_oom_lock);
1798
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1799
	for_each_mem_cgroup_tree(iter, memcg)
1800
		iter->oom_lock = false;
1801
	spin_unlock(&memcg_oom_lock);
1802 1803
}

1804
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1805 1806 1807
{
	struct mem_cgroup *iter;

1808
	spin_lock(&memcg_oom_lock);
1809
	for_each_mem_cgroup_tree(iter, memcg)
1810 1811
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1812 1813
}

1814
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1815 1816 1817
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1818
	/*
1819 1820
	 * Be careful about under_oom underflows becase a child memcg
	 * could have been added after mem_cgroup_mark_under_oom.
K
KAMEZAWA Hiroyuki 已提交
1821
	 */
1822
	spin_lock(&memcg_oom_lock);
1823
	for_each_mem_cgroup_tree(iter, memcg)
1824 1825 1826
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1827 1828
}

K
KAMEZAWA Hiroyuki 已提交
1829 1830
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1831
struct oom_wait_info {
1832
	struct mem_cgroup *memcg;
1833
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1834 1835
};

1836
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1837 1838
	unsigned mode, int sync, void *arg)
{
1839 1840
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1841 1842 1843
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1844
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1845

1846 1847
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1848 1849 1850 1851
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1852
static void memcg_oom_recover(struct mem_cgroup *memcg)
1853
{
1854 1855 1856 1857 1858 1859 1860 1861 1862
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1863
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1864 1865
}

1866 1867 1868 1869 1870 1871 1872 1873
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1874
{
1875 1876 1877
	enum oom_status ret;
	bool locked;

1878 1879 1880
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1881 1882
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1883
	/*
1884 1885 1886 1887
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1888 1889 1890 1891
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1892
	 *
1893 1894 1895 1896 1897 1898 1899
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1900
	 */
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1912 1913 1914 1915 1916 1917 1918 1919
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1920
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1921 1922 1923 1924 1925 1926
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1927

1928
	return ret;
1929 1930 1931 1932
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1933
 * @handle: actually kill/wait or just clean up the OOM state
1934
 *
1935 1936
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1937
 *
1938
 * Memcg supports userspace OOM handling where failed allocations must
1939 1940 1941 1942
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1943
 * the end of the page fault to complete the OOM handling.
1944 1945
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1946
 * completed, %false otherwise.
1947
 */
1948
bool mem_cgroup_oom_synchronize(bool handle)
1949
{
T
Tejun Heo 已提交
1950
	struct mem_cgroup *memcg = current->memcg_in_oom;
1951
	struct oom_wait_info owait;
1952
	bool locked;
1953 1954 1955

	/* OOM is global, do not handle */
	if (!memcg)
1956
		return false;
1957

1958
	if (!handle)
1959
		goto cleanup;
1960 1961 1962 1963 1964

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1965
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1966

1967
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1978 1979
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1980
	} else {
1981
		schedule();
1982 1983 1984 1985 1986
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1987 1988 1989 1990 1991 1992 1993 1994
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1995
cleanup:
T
Tejun Heo 已提交
1996
	current->memcg_in_oom = NULL;
1997
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1998
	return true;
1999 2000
}

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

2029 2030 2031 2032 2033 2034 2035 2036
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2065
/**
2066 2067
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
2068
 *
2069
 * This function protects unlocked LRU pages from being moved to
2070 2071 2072 2073 2074
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2075
 */
2076
struct mem_cgroup *lock_page_memcg(struct page *page)
2077
{
2078
	struct page *head = compound_head(page); /* rmap on tail pages */
2079
	struct mem_cgroup *memcg;
2080
	unsigned long flags;
2081

2082 2083 2084 2085
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2086 2087 2088 2089 2090 2091 2092
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2093 2094 2095
	rcu_read_lock();

	if (mem_cgroup_disabled())
2096
		return NULL;
2097
again:
2098
	memcg = head->mem_cgroup;
2099
	if (unlikely(!memcg))
2100
		return NULL;
2101

2102 2103 2104 2105 2106 2107
#ifdef CONFIG_PROVE_LOCKING
	local_irq_save(flags);
	might_lock(&memcg->move_lock);
	local_irq_restore(flags);
#endif

Q
Qiang Huang 已提交
2108
	if (atomic_read(&memcg->moving_account) <= 0)
2109
		return memcg;
2110

2111
	spin_lock_irqsave(&memcg->move_lock, flags);
2112
	if (memcg != head->mem_cgroup) {
2113
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2114 2115
		goto again;
	}
2116 2117 2118 2119

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2120
	 * the task who has the lock for unlock_page_memcg().
2121 2122 2123
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2124

2125
	return memcg;
2126
}
2127
EXPORT_SYMBOL(lock_page_memcg);
2128

2129
/**
2130 2131 2132 2133
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2134
 */
2135
void __unlock_page_memcg(struct mem_cgroup *memcg)
2136
{
2137 2138 2139 2140 2141 2142 2143 2144
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2145

2146
	rcu_read_unlock();
2147
}
2148 2149 2150 2151 2152 2153 2154

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2155 2156 2157
	struct page *head = compound_head(page);

	__unlock_page_memcg(head->mem_cgroup);
2158
}
2159
EXPORT_SYMBOL(unlock_page_memcg);
2160

2161 2162
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2163
	unsigned int nr_pages;
R
Roman Gushchin 已提交
2164 2165 2166 2167 2168 2169

#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
	unsigned int nr_bytes;
#endif

2170
	struct work_struct work;
2171
	unsigned long flags;
2172
#define FLUSHING_CACHED_CHARGE	0
2173 2174
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2175
static DEFINE_MUTEX(percpu_charge_mutex);
2176

R
Roman Gushchin 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
#ifdef CONFIG_MEMCG_KMEM
static void drain_obj_stock(struct memcg_stock_pcp *stock);
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2203
 */
2204
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2205 2206
{
	struct memcg_stock_pcp *stock;
2207
	unsigned long flags;
2208
	bool ret = false;
2209

2210
	if (nr_pages > MEMCG_CHARGE_BATCH)
2211
		return ret;
2212

2213 2214 2215
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2216
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2217
		stock->nr_pages -= nr_pages;
2218 2219
		ret = true;
	}
2220 2221 2222

	local_irq_restore(flags);

2223 2224 2225 2226
	return ret;
}

/*
2227
 * Returns stocks cached in percpu and reset cached information.
2228 2229 2230 2231 2232
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2233 2234 2235
	if (!old)
		return;

2236
	if (stock->nr_pages) {
2237
		page_counter_uncharge(&old->memory, stock->nr_pages);
2238
		if (do_memsw_account())
2239
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2240
		stock->nr_pages = 0;
2241
	}
2242 2243

	css_put(&old->css);
2244 2245 2246 2247 2248
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2249 2250 2251
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2252 2253 2254 2255
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2256 2257 2258
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
R
Roman Gushchin 已提交
2259
	drain_obj_stock(stock);
2260
	drain_stock(stock);
2261
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2262 2263

	local_irq_restore(flags);
2264 2265 2266
}

/*
2267
 * Cache charges(val) to local per_cpu area.
2268
 * This will be consumed by consume_stock() function, later.
2269
 */
2270
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2271
{
2272 2273 2274 2275
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2276

2277
	stock = this_cpu_ptr(&memcg_stock);
2278
	if (stock->cached != memcg) { /* reset if necessary */
2279
		drain_stock(stock);
2280
		css_get(&memcg->css);
2281
		stock->cached = memcg;
2282
	}
2283
	stock->nr_pages += nr_pages;
2284

2285
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2286 2287
		drain_stock(stock);

2288
	local_irq_restore(flags);
2289 2290 2291
}

/*
2292
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2293
 * of the hierarchy under it.
2294
 */
2295
static void drain_all_stock(struct mem_cgroup *root_memcg)
2296
{
2297
	int cpu, curcpu;
2298

2299 2300 2301
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2302 2303 2304 2305 2306 2307
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2308
	curcpu = get_cpu();
2309 2310
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2311
		struct mem_cgroup *memcg;
2312
		bool flush = false;
2313

2314
		rcu_read_lock();
2315
		memcg = stock->cached;
2316 2317 2318
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2319 2320
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2321 2322 2323 2324
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2325 2326 2327 2328 2329
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2330
	}
2331
	put_cpu();
2332
	mutex_unlock(&percpu_charge_mutex);
2333 2334
}

2335
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2336 2337
{
	struct memcg_stock_pcp *stock;
2338
	struct mem_cgroup *memcg, *mi;
2339 2340 2341

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2342 2343 2344 2345 2346 2347 2348 2349

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2350
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2351
			if (x)
2352 2353
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2354 2355 2356 2357 2358 2359 2360 2361 2362

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2363
				if (x)
2364 2365 2366
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2367 2368 2369
			}
		}

2370
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2371 2372
			long x;

2373
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2374
			if (x)
2375 2376
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2377 2378 2379
		}
	}

2380
	return 0;
2381 2382
}

2383 2384 2385
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2386
{
2387 2388
	unsigned long nr_reclaimed = 0;

2389
	do {
2390 2391
		unsigned long pflags;

2392 2393
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2394
			continue;
2395

2396
		memcg_memory_event(memcg, MEMCG_HIGH);
2397 2398

		psi_memstall_enter(&pflags);
2399 2400
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2401
		psi_memstall_leave(&pflags);
2402 2403
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2404 2405

	return nr_reclaimed;
2406 2407 2408 2409 2410 2411 2412
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2413
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2414 2415
}

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2430
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2469
static u64 calculate_overage(unsigned long usage, unsigned long high)
2470
{
2471
	u64 overage;
2472

2473 2474
	if (usage <= high)
		return 0;
2475

2476 2477 2478 2479 2480
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2481

2482 2483 2484 2485
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2486

2487 2488 2489
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2490

2491 2492
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2493
					    READ_ONCE(memcg->memory.high));
2494
		max_overage = max(overage, max_overage);
2495 2496 2497
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2498 2499 2500
	return max_overage;
}

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2527 2528
	if (!max_overage)
		return 0;
2529 2530 2531 2532 2533 2534 2535 2536 2537

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2538 2539 2540
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2541 2542 2543 2544 2545 2546 2547 2548 2549

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2550
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2561
	unsigned long nr_reclaimed;
2562
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2563
	int nr_retries = MAX_RECLAIM_RETRIES;
2564
	struct mem_cgroup *memcg;
2565
	bool in_retry = false;
2566 2567 2568 2569 2570 2571 2572

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2587 2588 2589 2590
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2591 2592
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2593

2594 2595 2596
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2597 2598 2599 2600 2601 2602 2603
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2604 2605 2606 2607 2608 2609 2610 2611 2612
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2634 2635
}

2636 2637
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2638
{
2639
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2640
	int nr_retries = MAX_RECLAIM_RETRIES;
2641
	struct mem_cgroup *mem_over_limit;
2642
	struct page_counter *counter;
2643
	enum oom_status oom_status;
2644
	unsigned long nr_reclaimed;
2645 2646
	bool may_swap = true;
	bool drained = false;
2647
	unsigned long pflags;
2648

2649
	if (mem_cgroup_is_root(memcg))
2650
		return 0;
2651
retry:
2652
	if (consume_stock(memcg, nr_pages))
2653
		return 0;
2654

2655
	if (!do_memsw_account() ||
2656 2657
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2658
			goto done_restock;
2659
		if (do_memsw_account())
2660 2661
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2662
	} else {
2663
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2664
		may_swap = false;
2665
	}
2666

2667 2668 2669 2670
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2671

2672 2673 2674 2675 2676 2677 2678 2679 2680
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2681 2682 2683 2684 2685 2686
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2687
	if (unlikely(should_force_charge()))
2688
		goto force;
2689

2690 2691 2692 2693 2694 2695 2696 2697 2698
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2699 2700 2701
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2702
	if (!gfpflags_allow_blocking(gfp_mask))
2703
		goto nomem;
2704

2705
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2706

2707
	psi_memstall_enter(&pflags);
2708 2709
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2710
	psi_memstall_leave(&pflags);
2711

2712
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2713
		goto retry;
2714

2715
	if (!drained) {
2716
		drain_all_stock(mem_over_limit);
2717 2718 2719 2720
		drained = true;
		goto retry;
	}

2721 2722
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2723 2724 2725 2726 2727 2728 2729 2730 2731
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2732
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2733 2734 2735 2736 2737 2738 2739 2740
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2741 2742 2743
	if (nr_retries--)
		goto retry;

2744
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2745 2746
		goto nomem;

2747
	if (fatal_signal_pending(current))
2748
		goto force;
2749

2750 2751 2752 2753 2754 2755
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2756
		       get_order(nr_pages * PAGE_SIZE));
2757 2758
	switch (oom_status) {
	case OOM_SUCCESS:
2759
		nr_retries = MAX_RECLAIM_RETRIES;
2760 2761 2762 2763 2764 2765
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2766
nomem:
2767
	if (!(gfp_mask & __GFP_NOFAIL))
2768
		return -ENOMEM;
2769 2770 2771 2772 2773 2774 2775
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2776
	if (do_memsw_account())
2777 2778 2779
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2780 2781 2782 2783

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2784

2785
	/*
2786 2787
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2788
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2789 2790 2791 2792
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2793 2794
	 */
	do {
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2805 2806 2807
				schedule_work(&memcg->high_work);
				break;
			}
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2821
			current->memcg_nr_pages_over_high += batch;
2822 2823 2824
			set_notify_resume(current);
			break;
		}
2825
	} while ((memcg = parent_mem_cgroup(memcg)));
2826 2827

	return 0;
2828
}
2829

2830
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2831
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2832
{
2833 2834 2835
	if (mem_cgroup_is_root(memcg))
		return;

2836
	page_counter_uncharge(&memcg->memory, nr_pages);
2837
	if (do_memsw_account())
2838
		page_counter_uncharge(&memcg->memsw, nr_pages);
2839
}
2840
#endif
2841

2842
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2843
{
2844
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2845
	/*
2846
	 * Any of the following ensures page->mem_cgroup stability:
2847
	 *
2848 2849 2850 2851
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2852
	 */
2853
	page->mem_cgroup = memcg;
2854
}
2855

2856
#ifdef CONFIG_MEMCG_KMEM
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
				 gfp_t gfp)
{
	unsigned int objects = objs_per_slab_page(s, page);
	void *vec;

	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

	if (cmpxchg(&page->obj_cgroups, NULL,
		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
		kfree(vec);
	else
		kmemleak_not_leak(vec);

	return 0;
}

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
	/*
	 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
	 * or a pointer to obj_cgroup vector. In the latter case the lowest
	 * bit of the pointer is set.
	 * The page->mem_cgroup pointer can be asynchronously changed
	 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
	 * from a valid memcg pointer to objcg vector or back.
	 */
	if (!page->mem_cgroup)
		return NULL;

2903
	/*
2904 2905 2906
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2907
	 */
2908 2909 2910 2911 2912 2913
	if (page_has_obj_cgroups(page)) {
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
		objcg = page_obj_cgroups(page)[off];
2914 2915 2916 2917
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2918
	}
2919 2920 2921 2922 2923

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

R
Roman Gushchin 已提交
2924 2925 2926 2927 2928
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

2929 2930 2931
	if (memcg_kmem_bypass())
		return NULL;

R
Roman Gushchin 已提交
2932
	rcu_read_lock();
2933 2934
	if (unlikely(active_memcg()))
		memcg = active_memcg();
R
Roman Gushchin 已提交
2935 2936 2937 2938 2939 2940 2941
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
2942
		objcg = NULL;
R
Roman Gushchin 已提交
2943 2944 2945 2946 2947 2948
	}
	rcu_read_unlock();

	return objcg;
}

2949
static int memcg_alloc_cache_id(void)
2950
{
2951 2952 2953
	int id, size;
	int err;

2954
	id = ida_simple_get(&memcg_cache_ida,
2955 2956 2957
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2958

2959
	if (id < memcg_nr_cache_ids)
2960 2961 2962 2963 2964 2965
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2966
	down_write(&memcg_cache_ids_sem);
2967 2968

	size = 2 * (id + 1);
2969 2970 2971 2972 2973
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2974
	err = memcg_update_all_list_lrus(size);
2975 2976 2977 2978 2979
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2980
	if (err) {
2981
		ida_simple_remove(&memcg_cache_ida, id);
2982 2983 2984 2985 2986 2987 2988
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2989
	ida_simple_remove(&memcg_cache_ida, id);
2990 2991
}

2992
/**
2993
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2994
 * @memcg: memory cgroup to charge
2995
 * @gfp: reclaim mode
2996
 * @nr_pages: number of pages to charge
2997 2998 2999
 *
 * Returns 0 on success, an error code on failure.
 */
3000 3001
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
3002
{
3003
	struct page_counter *counter;
3004 3005
	int ret;

3006
	ret = try_charge(memcg, gfp, nr_pages);
3007
	if (ret)
3008
		return ret;
3009 3010 3011

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
3022 3023
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
3024
	}
3025
	return 0;
3026 3027
}

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

3038
	refill_stock(memcg, nr_pages);
3039 3040
}

3041
/**
3042
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3043 3044 3045 3046 3047 3048
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3049
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3050
{
3051
	struct mem_cgroup *memcg;
3052
	int ret = 0;
3053

3054
	memcg = get_mem_cgroup_from_current();
3055
	if (memcg && !mem_cgroup_is_root(memcg)) {
3056
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3057 3058
		if (!ret) {
			page->mem_cgroup = memcg;
3059
			__SetPageKmemcg(page);
3060
			return 0;
3061
		}
3062
		css_put(&memcg->css);
3063
	}
3064
	return ret;
3065
}
3066

3067
/**
3068
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3069 3070 3071
 * @page: page to uncharge
 * @order: allocation order
 */
3072
void __memcg_kmem_uncharge_page(struct page *page, int order)
3073
{
3074
	struct mem_cgroup *memcg = page->mem_cgroup;
3075
	unsigned int nr_pages = 1 << order;
3076 3077 3078 3079

	if (!memcg)
		return;

3080
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3081
	__memcg_kmem_uncharge(memcg, nr_pages);
3082
	page->mem_cgroup = NULL;
3083
	css_put(&memcg->css);
3084 3085 3086 3087

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);
3088
}
R
Roman Gushchin 已提交
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120

static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;
	bool ret = false;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

	local_irq_restore(flags);

	return ret;
}

static void drain_obj_stock(struct memcg_stock_pcp *stock)
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

		if (nr_pages) {
3121 3122
			struct mem_cgroup *memcg;

R
Roman Gushchin 已提交
3123
			rcu_read_lock();
3124 3125 3126 3127
retry:
			memcg = obj_cgroup_memcg(old);
			if (unlikely(!css_tryget(&memcg->css)))
				goto retry;
R
Roman Gushchin 已提交
3128
			rcu_read_unlock();
3129 3130 3131

			__memcg_kmem_uncharge(memcg, nr_pages);
			css_put(&memcg->css);
R
Roman Gushchin 已提交
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
		}

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

	if (stock->cached_objcg) {
		memcg = obj_cgroup_memcg(stock->cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
	}
	stock->nr_bytes += nr_bytes;

	if (stock->nr_bytes > PAGE_SIZE)
		drain_obj_stock(stock);

	local_irq_restore(flags);
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	struct mem_cgroup *memcg;
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
	 * In theory, memcg->nr_charged_bytes can have enough
	 * pre-charged bytes to satisfy the allocation. However,
	 * flushing memcg->nr_charged_bytes requires two atomic
	 * operations, and memcg->nr_charged_bytes can't be big,
	 * so it's better to ignore it and try grab some new pages.
	 * memcg->nr_charged_bytes will be flushed in
	 * refill_obj_stock(), called from this function or
	 * independently later.
	 */
	rcu_read_lock();
3208
retry:
R
Roman Gushchin 已提交
3209
	memcg = obj_cgroup_memcg(objcg);
3210 3211
	if (unlikely(!css_tryget(&memcg->css)))
		goto retry;
R
Roman Gushchin 已提交
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
	rcu_read_unlock();

	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
	if (!ret && nr_bytes)
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);

	css_put(&memcg->css);
	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
	refill_obj_stock(objcg, size);
}

3233
#endif /* CONFIG_MEMCG_KMEM */
3234

3235
/*
3236
 * Because head->mem_cgroup is not set on tails, set it now.
3237
 */
3238
void split_page_memcg(struct page *head, unsigned int nr)
3239
{
3240
	struct mem_cgroup *memcg = head->mem_cgroup;
3241
	int kmemcg = PageKmemcg(head);
3242
	int i;
3243

3244
	if (mem_cgroup_disabled() || !memcg)
3245
		return;
3246

3247
	for (i = 1; i < nr; i++) {
3248
		head[i].mem_cgroup = memcg;
3249 3250 3251
		if (kmemcg)
			__SetPageKmemcg(head + i);
	}
3252
	css_get_many(&memcg->css, nr - 1);
3253 3254
}

A
Andrew Morton 已提交
3255
#ifdef CONFIG_MEMCG_SWAP
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3267
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3268 3269 3270
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3271
				struct mem_cgroup *from, struct mem_cgroup *to)
3272 3273 3274
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3275 3276
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3277 3278

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3279 3280
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3281 3282 3283 3284 3285 3286
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3287
				struct mem_cgroup *from, struct mem_cgroup *to)
3288 3289 3290
{
	return -EINVAL;
}
3291
#endif
K
KAMEZAWA Hiroyuki 已提交
3292

3293
static DEFINE_MUTEX(memcg_max_mutex);
3294

3295 3296
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3297
{
3298
	bool enlarge = false;
3299
	bool drained = false;
3300
	int ret;
3301 3302
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3303

3304
	do {
3305 3306 3307 3308
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3309

3310
		mutex_lock(&memcg_max_mutex);
3311 3312
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3313
		 * break our basic invariant rule memory.max <= memsw.max.
3314
		 */
3315
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3316
					   max <= memcg->memsw.max;
3317
		if (!limits_invariant) {
3318
			mutex_unlock(&memcg_max_mutex);
3319 3320 3321
			ret = -EINVAL;
			break;
		}
3322
		if (max > counter->max)
3323
			enlarge = true;
3324 3325
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3326 3327 3328 3329

		if (!ret)
			break;

3330 3331 3332 3333 3334 3335
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3336 3337 3338 3339 3340 3341
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3342

3343 3344
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3345

3346 3347 3348
	return ret;
}

3349
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3350 3351 3352 3353
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3354
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3355 3356
	unsigned long reclaimed;
	int loop = 0;
3357
	struct mem_cgroup_tree_per_node *mctz;
3358
	unsigned long excess;
3359 3360 3361 3362 3363
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3364
	mctz = soft_limit_tree_node(pgdat->node_id);
3365 3366 3367 3368 3369 3370

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3371
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3372 3373
		return 0;

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3388
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3389 3390 3391
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3392
		spin_lock_irq(&mctz->lock);
3393
		__mem_cgroup_remove_exceeded(mz, mctz);
3394 3395 3396 3397 3398 3399

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3400 3401 3402
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3403
		excess = soft_limit_excess(mz->memcg);
3404 3405 3406 3407 3408 3409 3410 3411 3412
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3413
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3414
		spin_unlock_irq(&mctz->lock);
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3432 3433 3434 3435
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
3436
 * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3437
 */
3438 3439
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3440 3441 3442 3443 3444 3445
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3446 3447
}

3448
/*
3449
 * Reclaims as many pages from the given memcg as possible.
3450 3451 3452 3453 3454
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3455
	int nr_retries = MAX_RECLAIM_RETRIES;
3456

3457 3458
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3459 3460 3461

	drain_all_stock(memcg);

3462
	/* try to free all pages in this cgroup */
3463
	while (nr_retries && page_counter_read(&memcg->memory)) {
3464
		int progress;
3465

3466 3467 3468
		if (signal_pending(current))
			return -EINTR;

3469 3470
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3471
		if (!progress) {
3472
			nr_retries--;
3473
			/* maybe some writeback is necessary */
3474
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3475
		}
3476 3477

	}
3478 3479

	return 0;
3480 3481
}

3482 3483 3484
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3485
{
3486
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3487

3488 3489
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3490
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3491 3492
}

3493 3494
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3495
{
3496
	return mem_cgroup_from_css(css)->use_hierarchy;
3497 3498
}

3499 3500
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3501 3502
{
	int retval = 0;
3503
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3504
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3505

3506
	if (memcg->use_hierarchy == val)
3507
		return 0;
3508

3509
	/*
3510
	 * If parent's use_hierarchy is set, we can't make any modifications
3511 3512 3513 3514 3515 3516
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3517
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3518
				(val == 1 || val == 0)) {
3519
		if (!memcg_has_children(memcg))
3520
			memcg->use_hierarchy = val;
3521 3522 3523 3524
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3525

3526 3527 3528
	return retval;
}

3529
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3530
{
3531
	unsigned long val;
3532

3533
	if (mem_cgroup_is_root(memcg)) {
3534
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3535
			memcg_page_state(memcg, NR_ANON_MAPPED);
3536 3537
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3538
	} else {
3539
		if (!swap)
3540
			val = page_counter_read(&memcg->memory);
3541
		else
3542
			val = page_counter_read(&memcg->memsw);
3543
	}
3544
	return val;
3545 3546
}

3547 3548 3549 3550 3551 3552 3553
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3554

3555
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3556
			       struct cftype *cft)
B
Balbir Singh 已提交
3557
{
3558
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3559
	struct page_counter *counter;
3560

3561
	switch (MEMFILE_TYPE(cft->private)) {
3562
	case _MEM:
3563 3564
		counter = &memcg->memory;
		break;
3565
	case _MEMSWAP:
3566 3567
		counter = &memcg->memsw;
		break;
3568
	case _KMEM:
3569
		counter = &memcg->kmem;
3570
		break;
V
Vladimir Davydov 已提交
3571
	case _TCP:
3572
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3573
		break;
3574 3575 3576
	default:
		BUG();
	}
3577 3578 3579 3580

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3581
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3582
		if (counter == &memcg->memsw)
3583
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3584 3585
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3586
		return (u64)counter->max * PAGE_SIZE;
3587 3588 3589 3590 3591 3592 3593 3594 3595
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3596
}
3597

3598
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3599
{
3600
	unsigned long stat[MEMCG_NR_STAT] = {0};
3601 3602 3603 3604
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3605
		for (i = 0; i < MEMCG_NR_STAT; i++)
3606
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3607 3608

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3609
		for (i = 0; i < MEMCG_NR_STAT; i++)
3610 3611 3612 3613 3614 3615
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3616
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3617 3618 3619
			stat[i] = 0;

		for_each_online_cpu(cpu)
3620
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3621 3622
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3623 3624

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3625
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3626 3627 3628 3629
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3641 3642
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3643 3644 3645 3646 3647 3648

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3649
#ifdef CONFIG_MEMCG_KMEM
3650
static int memcg_online_kmem(struct mem_cgroup *memcg)
3651
{
R
Roman Gushchin 已提交
3652
	struct obj_cgroup *objcg;
3653 3654
	int memcg_id;

3655 3656 3657
	if (cgroup_memory_nokmem)
		return 0;

3658
	BUG_ON(memcg->kmemcg_id >= 0);
3659
	BUG_ON(memcg->kmem_state);
3660

3661
	memcg_id = memcg_alloc_cache_id();
3662 3663
	if (memcg_id < 0)
		return memcg_id;
3664

R
Roman Gushchin 已提交
3665 3666 3667 3668 3669 3670 3671 3672
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3673 3674
	static_branch_enable(&memcg_kmem_enabled_key);

3675
	/*
3676
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3677
	 * kmemcg_id. Setting the id after enabling static branching will
3678 3679 3680
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3681
	memcg->kmemcg_id = memcg_id;
3682
	memcg->kmem_state = KMEM_ONLINE;
3683 3684

	return 0;
3685 3686
}

3687 3688 3689 3690 3691 3692 3693 3694
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3695

3696 3697 3698 3699 3700 3701
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3702
	memcg_reparent_objcgs(memcg, parent);
3703 3704 3705 3706

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3707 3708 3709 3710 3711 3712 3713 3714
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3715
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3716 3717 3718 3719 3720 3721 3722
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3723 3724
	rcu_read_unlock();

3725
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3726 3727 3728 3729 3730 3731

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3732 3733 3734
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3735
}
3736
#else
3737
static int memcg_online_kmem(struct mem_cgroup *memcg)
3738 3739 3740 3741 3742 3743 3744 3745 3746
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3747
#endif /* CONFIG_MEMCG_KMEM */
3748

3749 3750
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3751
{
3752
	int ret;
3753

3754 3755 3756
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3757
	return ret;
3758
}
3759

3760
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3761 3762 3763
{
	int ret;

3764
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3765

3766
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3767 3768 3769
	if (ret)
		goto out;

3770
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3771 3772 3773
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3774 3775 3776
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3777 3778 3779 3780 3781 3782
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3783
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3784 3785 3786 3787
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3788
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3789 3790
	}
out:
3791
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3792 3793 3794
	return ret;
}

3795 3796 3797 3798
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3799 3800
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3801
{
3802
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3803
	unsigned long nr_pages;
3804 3805
	int ret;

3806
	buf = strstrip(buf);
3807
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3808 3809
	if (ret)
		return ret;
3810

3811
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3812
	case RES_LIMIT:
3813 3814 3815 3816
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3817 3818
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3819
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3820
			break;
3821
		case _MEMSWAP:
3822
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3823
			break;
3824
		case _KMEM:
3825 3826 3827
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3828
			ret = memcg_update_kmem_max(memcg, nr_pages);
3829
			break;
V
Vladimir Davydov 已提交
3830
		case _TCP:
3831
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3832
			break;
3833
		}
3834
		break;
3835 3836 3837
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3838 3839
		break;
	}
3840
	return ret ?: nbytes;
B
Balbir Singh 已提交
3841 3842
}

3843 3844
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3845
{
3846
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3847
	struct page_counter *counter;
3848

3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3859
	case _TCP:
3860
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3861
		break;
3862 3863 3864
	default:
		BUG();
	}
3865

3866
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3867
	case RES_MAX_USAGE:
3868
		page_counter_reset_watermark(counter);
3869 3870
		break;
	case RES_FAILCNT:
3871
		counter->failcnt = 0;
3872
		break;
3873 3874
	default:
		BUG();
3875
	}
3876

3877
	return nbytes;
3878 3879
}

3880
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3881 3882
					struct cftype *cft)
{
3883
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3884 3885
}

3886
#ifdef CONFIG_MMU
3887
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3888 3889
					struct cftype *cft, u64 val)
{
3890
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3891

3892
	if (val & ~MOVE_MASK)
3893
		return -EINVAL;
3894

3895
	/*
3896 3897 3898 3899
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3900
	 */
3901
	memcg->move_charge_at_immigrate = val;
3902 3903
	return 0;
}
3904
#else
3905
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3906 3907 3908 3909 3910
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3911

J
Jing Xiangfeng 已提交
3912
#ifdef CONFIG_MEMCG_QOS
3913 3914 3915
int sysctl_memcg_qos_stat = DISABLE_MEMCG_QOS;
DEFINE_STATIC_KEY_FALSE(memcg_qos_stat_key);

3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
static void memcg_hierarchy_qos_set(struct mem_cgroup *memcg, int val)
{
	struct mem_cgroup *iter;
	struct cgroup_subsys_state *css;

	if (!memcg)
		memcg = root_mem_cgroup;

	rcu_read_lock();
	css_for_each_descendant_pre(css, &memcg->css) {
		iter = mem_cgroup_from_css(css);

		iter->memcg_priority = val;
	}
	rcu_read_unlock();
}

J
Jing Xiangfeng 已提交
3933 3934 3935 3936
static void memcg_qos_init(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);

3937 3938 3939
	if (!static_branch_likely(&memcg_qos_stat_key))
		return;

J
Jing Xiangfeng 已提交
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
	if (!parent)
		return;

	if (parent->memcg_priority && parent->use_hierarchy)
		memcg->memcg_priority = parent->memcg_priority;
}

static s64 memcg_qos_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
{
3950 3951 3952
	if (!static_branch_likely(&memcg_qos_stat_key))
		return 0;

J
Jing Xiangfeng 已提交
3953 3954 3955 3956 3957 3958 3959 3960
	return mem_cgroup_from_css(css)->memcg_priority;
}

static int memcg_qos_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, s64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

3961 3962 3963
	if (!static_branch_likely(&memcg_qos_stat_key))
		return -EACCES;

3964 3965 3966 3967 3968 3969 3970 3971 3972
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;

	if (val != 0 && val != -1)
		return -EINVAL;

	memcg->memcg_priority = val;
	if (memcg->use_hierarchy)
		memcg_hierarchy_qos_set(memcg, val);
J
Jing Xiangfeng 已提交
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011

	return 0;
}

static struct mem_cgroup *memcg_find_max_usage(struct mem_cgroup *last)
{
	struct mem_cgroup *iter, *max_memcg = NULL;
	struct cgroup_subsys_state *css;
	unsigned long usage, max_usage = 0;

	rcu_read_lock();
	css_for_each_descendant_pre(css, &root_mem_cgroup->css) {
		iter = mem_cgroup_from_css(css);

		if (!iter->memcg_priority || iter == root_mem_cgroup ||
			iter == last)
			continue;

		usage = mem_cgroup_usage(iter, false);
		if (usage > max_usage) {
			max_usage = usage;
			max_memcg = iter;
		}
	}
	rcu_read_unlock();

	return max_memcg;
}

bool memcg_low_priority_scan_tasks(int (*fn)(struct task_struct *, void *),
				   void *arg)
{
	struct mem_cgroup *max, *last = NULL;
	struct oom_control *oc = arg;
	struct css_task_iter it;
	struct task_struct *task;
	int ret = 0;
	bool retry = true;

4012 4013
	if (!static_branch_likely(&memcg_qos_stat_key))
		return false;
J
Jing Xiangfeng 已提交
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
retry:
	max = memcg_find_max_usage(last);
	if (!max)
		return false;

	css_task_iter_start(&max->css, 0, &it);
	while (!ret && (task = css_task_iter_next(&it))) {
		if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
			pr_info("task %s is dying.\n", task->comm);
			continue;
		}

		ret = fn(task, arg);
	}
	css_task_iter_end(&it);

	if (ret)
		return false;

	if (!oc->chosen && retry) {
		last = max;
		retry = false;
		goto retry;
	}

	if (oc->chosen)
		pr_info("The bad task [%d:%s] is from low-priority memcg.\n",
				oc->chosen->pid, oc->chosen->comm);

	return oc->chosen ? true : false;
}

void memcg_print_bad_task(void *arg, int ret)
{
	struct oom_control *oc = arg;

4050 4051 4052
	if (!static_branch_likely(&memcg_qos_stat_key))
		return;

J
Jing Xiangfeng 已提交
4053 4054 4055 4056 4057 4058 4059 4060 4061
	if (!ret && oc->chosen) {
		struct mem_cgroup *memcg;

		memcg = mem_cgroup_from_task(oc->chosen);
		if (memcg->memcg_priority)
			pr_info("The bad task [%d:%s] is from low-priority memcg.\n",
				oc->chosen->pid, oc->chosen->comm);
	}
}
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076

int sysctl_memcg_qos_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *length, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		return ret;
	if (write) {
		if (sysctl_memcg_qos_stat == ENABLE_MEMCG_QOS) {
			static_branch_enable(&memcg_qos_stat_key);
			pr_info("enable memcg priority.\n");
		} else {
			static_branch_disable(&memcg_qos_stat_key);
4077
			memcg_hierarchy_qos_set(NULL, 0);
4078 4079 4080 4081 4082 4083
			pr_info("disable memcg priority.\n");
		}
	}

	return ret;
}
J
Jing Xiangfeng 已提交
4084 4085
#endif

4086
#ifdef CONFIG_NUMA
4087 4088 4089 4090 4091 4092

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4093
				int nid, unsigned int lru_mask, bool tree)
4094
{
4095
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4096 4097 4098 4099 4100 4101 4102 4103
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
4104 4105 4106 4107
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4108 4109 4110 4111 4112
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4113 4114
					     unsigned int lru_mask,
					     bool tree)
4115 4116 4117 4118 4119 4120 4121
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
4122 4123 4124 4125
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4126 4127 4128 4129
	}
	return nr;
}

4130
static int memcg_numa_stat_show(struct seq_file *m, void *v)
4131
{
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
4144
	int nid;
4145
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4146

4147
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4148 4149 4150 4151 4152 4153 4154
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
4155
		seq_putc(m, '\n');
4156 4157
	}

4158
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4159 4160 4161 4162 4163 4164 4165 4166

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
4167
		seq_putc(m, '\n');
4168 4169 4170 4171 4172 4173
	}

	return 0;
}
#endif /* CONFIG_NUMA */

4174
static const unsigned int memcg1_stats[] = {
4175
	NR_FILE_PAGES,
4176
	NR_ANON_MAPPED,
4177 4178 4179
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
4190
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4191
	"rss_huge",
4192
#endif
4193 4194 4195 4196 4197 4198 4199
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

4200
/* Universal VM events cgroup1 shows, original sort order */
4201
static const unsigned int memcg1_events[] = {
4202 4203 4204 4205 4206 4207
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

4208
static int memcg_stat_show(struct seq_file *m, void *v)
4209
{
4210
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4211
	unsigned long memory, memsw;
4212 4213
	struct mem_cgroup *mi;
	unsigned int i;
4214

4215
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4216

4217
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4218 4219
		unsigned long nr;

4220
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4221
			continue;
4222 4223 4224 4225 4226 4227
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4228
	}
L
Lee Schermerhorn 已提交
4229

4230
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4231
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4232
			   memcg_events_local(memcg, memcg1_events[i]));
4233 4234

	for (i = 0; i < NR_LRU_LISTS; i++)
4235
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4236
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4237
			   PAGE_SIZE);
4238

K
KAMEZAWA Hiroyuki 已提交
4239
	/* Hierarchical information */
4240 4241
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4242 4243
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4244
	}
4245 4246
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4247
	if (do_memsw_account())
4248 4249
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4250

4251
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4252 4253
		unsigned long nr;

4254
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4255
			continue;
4256 4257 4258 4259 4260
		nr = memcg_page_state(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
4261
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4262
						(u64)nr * PAGE_SIZE);
4263 4264
	}

4265
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4266 4267
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4268
			   (u64)memcg_events(memcg, memcg1_events[i]));
4269

4270
	for (i = 0; i < NR_LRU_LISTS; i++)
4271
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4272 4273
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4274

K
KOSAKI Motohiro 已提交
4275 4276
#ifdef CONFIG_DEBUG_VM
	{
4277 4278
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4279 4280
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4281

4282 4283
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
K
KOSAKI Motohiro 已提交
4284

4285 4286
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4287
		}
4288 4289
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4290 4291 4292
	}
#endif

4293 4294 4295
	return 0;
}

4296 4297
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4298
{
4299
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4300

4301
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4302 4303
}

4304 4305
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4306
{
4307
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4308

4309
	if (val > 100)
K
KOSAKI Motohiro 已提交
4310 4311
		return -EINVAL;

4312
	if (css->parent)
4313 4314 4315
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4316

K
KOSAKI Motohiro 已提交
4317 4318 4319
	return 0;
}

4320 4321 4322
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4323
	unsigned long usage;
4324 4325 4326 4327
	int i;

	rcu_read_lock();
	if (!swap)
4328
		t = rcu_dereference(memcg->thresholds.primary);
4329
	else
4330
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4331 4332 4333 4334

	if (!t)
		goto unlock;

4335
	usage = mem_cgroup_usage(memcg, swap);
4336 4337

	/*
4338
	 * current_threshold points to threshold just below or equal to usage.
4339 4340 4341
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4342
	i = t->current_threshold;
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4366
	t->current_threshold = i - 1;
4367 4368 4369 4370 4371 4372
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4373 4374
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4375
		if (do_memsw_account())
4376 4377 4378 4379
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4380 4381 4382 4383 4384 4385 4386
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4387 4388 4389 4390 4391 4392 4393
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4394 4395
}

4396
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4397 4398 4399
{
	struct mem_cgroup_eventfd_list *ev;

4400 4401
	spin_lock(&memcg_oom_lock);

4402
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4403
		eventfd_signal(ev->eventfd, 1);
4404 4405

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4406 4407 4408
	return 0;
}

4409
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4410
{
K
KAMEZAWA Hiroyuki 已提交
4411 4412
	struct mem_cgroup *iter;

4413
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4414
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4415 4416
}

4417
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4418
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4419
{
4420 4421
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4422 4423
	unsigned long threshold;
	unsigned long usage;
4424
	int i, size, ret;
4425

4426
	ret = page_counter_memparse(args, "-1", &threshold);
4427 4428 4429 4430
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4431

4432
	if (type == _MEM) {
4433
		thresholds = &memcg->thresholds;
4434
		usage = mem_cgroup_usage(memcg, false);
4435
	} else if (type == _MEMSWAP) {
4436
		thresholds = &memcg->memsw_thresholds;
4437
		usage = mem_cgroup_usage(memcg, true);
4438
	} else
4439 4440 4441
		BUG();

	/* Check if a threshold crossed before adding a new one */
4442
	if (thresholds->primary)
4443 4444
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4445
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4446 4447

	/* Allocate memory for new array of thresholds */
4448
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4449
	if (!new) {
4450 4451 4452
		ret = -ENOMEM;
		goto unlock;
	}
4453
	new->size = size;
4454 4455

	/* Copy thresholds (if any) to new array */
4456 4457 4458
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4459

4460
	/* Add new threshold */
4461 4462
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4463 4464

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4465
	sort(new->entries, size, sizeof(*new->entries),
4466 4467 4468
			compare_thresholds, NULL);

	/* Find current threshold */
4469
	new->current_threshold = -1;
4470
	for (i = 0; i < size; i++) {
4471
		if (new->entries[i].threshold <= usage) {
4472
			/*
4473 4474
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4475 4476
			 * it here.
			 */
4477
			++new->current_threshold;
4478 4479
		} else
			break;
4480 4481
	}

4482 4483 4484 4485 4486
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4487

4488
	/* To be sure that nobody uses thresholds */
4489 4490 4491 4492 4493 4494 4495 4496
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4497
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4498 4499
	struct eventfd_ctx *eventfd, const char *args)
{
4500
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4501 4502
}

4503
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4504 4505
	struct eventfd_ctx *eventfd, const char *args)
{
4506
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4507 4508
}

4509
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4510
	struct eventfd_ctx *eventfd, enum res_type type)
4511
{
4512 4513
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4514
	unsigned long usage;
4515
	int i, j, size, entries;
4516 4517

	mutex_lock(&memcg->thresholds_lock);
4518 4519

	if (type == _MEM) {
4520
		thresholds = &memcg->thresholds;
4521
		usage = mem_cgroup_usage(memcg, false);
4522
	} else if (type == _MEMSWAP) {
4523
		thresholds = &memcg->memsw_thresholds;
4524
		usage = mem_cgroup_usage(memcg, true);
4525
	} else
4526 4527
		BUG();

4528 4529 4530
	if (!thresholds->primary)
		goto unlock;

4531 4532 4533 4534
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4535
	size = entries = 0;
4536 4537
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4538
			size++;
4539 4540
		else
			entries++;
4541 4542
	}

4543
	new = thresholds->spare;
4544

4545 4546 4547 4548
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4549 4550
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4551 4552
		kfree(new);
		new = NULL;
4553
		goto swap_buffers;
4554 4555
	}

4556
	new->size = size;
4557 4558

	/* Copy thresholds and find current threshold */
4559 4560 4561
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4562 4563
			continue;

4564
		new->entries[j] = thresholds->primary->entries[i];
4565
		if (new->entries[j].threshold <= usage) {
4566
			/*
4567
			 * new->current_threshold will not be used
4568 4569 4570
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4571
			++new->current_threshold;
4572 4573 4574 4575
		}
		j++;
	}

4576
swap_buffers:
4577 4578
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4579

4580
	rcu_assign_pointer(thresholds->primary, new);
4581

4582
	/* To be sure that nobody uses thresholds */
4583
	synchronize_rcu();
4584 4585 4586 4587 4588 4589

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4590
unlock:
4591 4592
	mutex_unlock(&memcg->thresholds_lock);
}
4593

4594
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4595 4596
	struct eventfd_ctx *eventfd)
{
4597
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4598 4599
}

4600
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4601 4602
	struct eventfd_ctx *eventfd)
{
4603
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4604 4605
}

4606
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4607
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4608 4609 4610 4611 4612 4613 4614
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4615
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4616 4617 4618 4619 4620

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4621
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4622
		eventfd_signal(eventfd, 1);
4623
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4624 4625 4626 4627

	return 0;
}

4628
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4629
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4630 4631 4632
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4633
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4634

4635
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4636 4637 4638 4639 4640 4641
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4642
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4643 4644
}

4645
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4646
{
4647
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4648

4649
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4650
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4651 4652
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4653 4654 4655
	return 0;
}

4656
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4657 4658
	struct cftype *cft, u64 val)
{
4659
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4660 4661

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4662
	if (!css->parent || !((val == 0) || (val == 1)))
4663 4664
		return -EINVAL;

4665
	memcg->oom_kill_disable = val;
4666
	if (!val)
4667
		memcg_oom_recover(memcg);
4668

4669 4670 4671
	return 0;
}

4672 4673
#ifdef CONFIG_CGROUP_WRITEBACK

4674 4675
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4686 4687 4688 4689 4690
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4701 4702 4703 4704 4705 4706
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4707
	long x = atomic_long_read(&memcg->vmstats[idx]);
4708 4709 4710
	int cpu;

	for_each_online_cpu(cpu)
4711
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4712 4713 4714 4715 4716
	if (x < 0)
		x = 0;
	return x;
}

4717 4718 4719
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4720 4721
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4722 4723 4724
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4725 4726 4727
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4728
 *
4729 4730 4731 4732 4733
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4734
 */
4735 4736 4737
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4738 4739 4740 4741
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4742
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4743

4744
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4745 4746
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4747
	*pheadroom = PAGE_COUNTER_MAX;
4748 4749

	while ((parent = parent_mem_cgroup(memcg))) {
4750
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4751
					    READ_ONCE(memcg->memory.high));
4752 4753
		unsigned long used = page_counter_read(&memcg->memory);

4754
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4755 4756 4757 4758
		memcg = parent;
	}
}

4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4813 4814
	trace_track_foreign_dirty(page, wb);

4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4875
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4876 4877 4878 4879 4880 4881 4882
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4894 4895 4896 4897
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4898 4899
#endif	/* CONFIG_CGROUP_WRITEBACK */

4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4913 4914 4915 4916 4917
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4918
static void memcg_event_remove(struct work_struct *work)
4919
{
4920 4921
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4922
	struct mem_cgroup *memcg = event->memcg;
4923 4924 4925

	remove_wait_queue(event->wqh, &event->wait);

4926
	event->unregister_event(memcg, event->eventfd);
4927 4928 4929 4930 4931 4932

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4933
	css_put(&memcg->css);
4934 4935 4936
}

/*
4937
 * Gets called on EPOLLHUP on eventfd when user closes it.
4938 4939 4940
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4941
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4942
			    int sync, void *key)
4943
{
4944 4945
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4946
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4947
	__poll_t flags = key_to_poll(key);
4948

4949
	if (flags & EPOLLHUP) {
4950 4951 4952 4953 4954 4955 4956 4957 4958
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4959
		spin_lock(&memcg->event_list_lock);
4960 4961 4962 4963 4964 4965 4966 4967
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4968
		spin_unlock(&memcg->event_list_lock);
4969 4970 4971 4972 4973
	}

	return 0;
}

4974
static void memcg_event_ptable_queue_proc(struct file *file,
4975 4976
		wait_queue_head_t *wqh, poll_table *pt)
{
4977 4978
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4979 4980 4981 4982 4983 4984

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4985 4986
 * DO NOT USE IN NEW FILES.
 *
4987 4988 4989 4990 4991
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4992 4993
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4994
{
4995
	struct cgroup_subsys_state *css = of_css(of);
4996
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4997
	struct mem_cgroup_event *event;
4998 4999 5000 5001
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
5002
	const char *name;
5003 5004 5005
	char *endp;
	int ret;

5006 5007 5008
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
5009 5010
	if (*endp != ' ')
		return -EINVAL;
5011
	buf = endp + 1;
5012

5013
	cfd = simple_strtoul(buf, &endp, 10);
5014 5015
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
5016
	buf = endp + 1;
5017 5018 5019 5020 5021

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5022
	event->memcg = memcg;
5023
	INIT_LIST_HEAD(&event->list);
5024 5025 5026
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

5052 5053 5054 5055 5056
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
5057 5058
	 *
	 * DO NOT ADD NEW FILES.
5059
	 */
A
Al Viro 已提交
5060
	name = cfile.file->f_path.dentry->d_name.name;
5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
5072 5073
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
5074 5075 5076 5077 5078
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

5079
	/*
5080 5081 5082
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
5083
	 */
A
Al Viro 已提交
5084
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
5085
					       &memory_cgrp_subsys);
5086
	ret = -EINVAL;
5087
	if (IS_ERR(cfile_css))
5088
		goto out_put_cfile;
5089 5090
	if (cfile_css != css) {
		css_put(cfile_css);
5091
		goto out_put_cfile;
5092
	}
5093

5094
	ret = event->register_event(memcg, event->eventfd, buf);
5095 5096 5097
	if (ret)
		goto out_put_css;

5098
	vfs_poll(efile.file, &event->pt);
5099

5100 5101 5102
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
5103 5104 5105 5106

	fdput(cfile);
	fdput(efile);

5107
	return nbytes;
5108 5109

out_put_css:
5110
	css_put(css);
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

5123
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
5124
	{
5125
		.name = "usage_in_bytes",
5126
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5127
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5128
	},
5129 5130
	{
		.name = "max_usage_in_bytes",
5131
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5132
		.write = mem_cgroup_reset,
5133
		.read_u64 = mem_cgroup_read_u64,
5134
	},
B
Balbir Singh 已提交
5135
	{
5136
		.name = "limit_in_bytes",
5137
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5138
		.write = mem_cgroup_write,
5139
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5140
	},
5141 5142 5143
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5144
		.write = mem_cgroup_write,
5145
		.read_u64 = mem_cgroup_read_u64,
5146
	},
B
Balbir Singh 已提交
5147 5148
	{
		.name = "failcnt",
5149
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5150
		.write = mem_cgroup_reset,
5151
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5152
	},
5153 5154
	{
		.name = "stat",
5155
		.seq_show = memcg_stat_show,
5156
	},
5157 5158
	{
		.name = "force_empty",
5159
		.write = mem_cgroup_force_empty_write,
5160
	},
5161 5162 5163 5164 5165
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
5166
	{
5167
		.name = "cgroup.event_control",		/* XXX: for compat */
5168
		.write = memcg_write_event_control,
5169
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5170
	},
K
KOSAKI Motohiro 已提交
5171 5172 5173 5174 5175
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5176 5177 5178 5179 5180
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5181 5182
	{
		.name = "oom_control",
5183
		.seq_show = mem_cgroup_oom_control_read,
5184
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5185 5186
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5187 5188 5189
	{
		.name = "pressure_level",
	},
J
Jing Xiangfeng 已提交
5190 5191 5192 5193 5194 5195 5196
#ifdef CONFIG_MEMCG_QOS
	{
		.name = "qos_level",
		.read_s64 = memcg_qos_read,
		.write_s64 = memcg_qos_write,
	},
#endif
5197 5198 5199
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5200
		.seq_show = memcg_numa_stat_show,
5201 5202
	},
#endif
5203 5204 5205
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5206
		.write = mem_cgroup_write,
5207
		.read_u64 = mem_cgroup_read_u64,
5208 5209 5210 5211
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5212
		.read_u64 = mem_cgroup_read_u64,
5213 5214 5215 5216
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5217
		.write = mem_cgroup_reset,
5218
		.read_u64 = mem_cgroup_read_u64,
5219 5220 5221 5222
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5223
		.write = mem_cgroup_reset,
5224
		.read_u64 = mem_cgroup_read_u64,
5225
	},
5226 5227
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5228 5229
	{
		.name = "kmem.slabinfo",
5230
		.seq_show = memcg_slab_show,
5231 5232
	},
#endif
V
Vladimir Davydov 已提交
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5256
	{ },	/* terminate */
5257
};
5258

5259 5260 5261 5262 5263 5264 5265 5266
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5267
 * However, there usually are many references to the offline CSS after
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5285 5286 5287 5288 5289 5290 5291 5292
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5293 5294
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5295
{
5296
	refcount_add(n, &memcg->id.ref);
5297 5298
}

5299
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5300
{
5301
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5302
		mem_cgroup_id_remove(memcg);
5303 5304 5305 5306 5307 5308

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5309 5310 5311 5312 5313
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5326
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5327 5328
{
	struct mem_cgroup_per_node *pn;
5329
	int tmp = node;
5330 5331 5332 5333 5334 5335 5336 5337
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5338 5339
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5340
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5341 5342
	if (!pn)
		return 1;
5343

5344 5345
	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
						 GFP_KERNEL_ACCOUNT);
5346 5347 5348 5349 5350
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5351
	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5352
					       GFP_KERNEL_ACCOUNT);
5353
	if (!pn->lruvec_stat_cpu) {
5354
		free_percpu(pn->lruvec_stat_local);
5355 5356 5357 5358
		kfree(pn);
		return 1;
	}

5359 5360 5361 5362 5363
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5364
	memcg->nodeinfo[node] = pn;
5365 5366 5367
	return 0;
}

5368
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5369
{
5370 5371
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5372 5373 5374
	if (!pn)
		return;

5375
	free_percpu(pn->lruvec_stat_cpu);
5376
	free_percpu(pn->lruvec_stat_local);
5377
	kfree(pn);
5378 5379
}

5380
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5381
{
5382
	int node;
5383

5384
	for_each_node(node)
5385
		free_mem_cgroup_per_node_info(memcg, node);
5386
	free_percpu(memcg->vmstats_percpu);
5387
	free_percpu(memcg->vmstats_local);
5388
	kfree(memcg);
5389
}
5390

5391 5392 5393
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
5394 5395 5396 5397
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
5398
	memcg_flush_percpu_vmstats(memcg);
5399
	memcg_flush_percpu_vmevents(memcg);
5400 5401 5402
	__mem_cgroup_free(memcg);
}

5403
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5404
{
5405
	struct mem_cgroup *memcg;
5406
	unsigned int size;
5407
	int node;
5408
	int __maybe_unused i;
5409
	long error = -ENOMEM;
B
Balbir Singh 已提交
5410

5411 5412 5413 5414
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5415
	if (!memcg)
5416
		return ERR_PTR(error);
5417

5418 5419 5420
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5421 5422
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5423
		goto fail;
5424
	}
5425

5426 5427
	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						GFP_KERNEL_ACCOUNT);
5428 5429 5430
	if (!memcg->vmstats_local)
		goto fail;

5431 5432
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5433
	if (!memcg->vmstats_percpu)
5434
		goto fail;
5435

B
Bob Liu 已提交
5436
	for_each_node(node)
5437
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5438
			goto fail;
5439

5440 5441
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5442

5443
	INIT_WORK(&memcg->high_work, high_work_func);
5444 5445 5446
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5447
	vmpressure_init(&memcg->vmpressure);
5448 5449
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5450
	memcg->socket_pressure = jiffies;
5451
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5452
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5453
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5454
#endif
5455 5456
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5457 5458 5459
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5460 5461 5462 5463 5464
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5465
#endif
5466
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5467 5468
	return memcg;
fail:
5469
	mem_cgroup_id_remove(memcg);
5470
	__mem_cgroup_free(memcg);
5471
	return ERR_PTR(error);
5472 5473
}

5474 5475
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5476
{
5477
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5478
	struct mem_cgroup *memcg, *old_memcg;
5479
	long error = -ENOMEM;
5480

5481
	old_memcg = set_active_memcg(parent);
5482
	memcg = mem_cgroup_alloc();
5483
	set_active_memcg(old_memcg);
5484 5485
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5486

5487
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5488
	memcg->soft_limit = PAGE_COUNTER_MAX;
5489
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5490 5491 5492 5493
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
5494 5495 5496 5497 5498 5499
	if (!parent) {
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->swap, NULL);
		page_counter_init(&memcg->kmem, NULL);
		page_counter_init(&memcg->tcpmem, NULL);
	} else if (parent->use_hierarchy) {
5500
		memcg->use_hierarchy = true;
5501
		page_counter_init(&memcg->memory, &parent->memory);
5502
		page_counter_init(&memcg->swap, &parent->swap);
5503
		page_counter_init(&memcg->kmem, &parent->kmem);
5504
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5505
	} else {
5506 5507 5508 5509
		page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
		page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
		page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
		page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
5510 5511 5512 5513 5514
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5515
		if (parent != root_mem_cgroup)
5516
			memory_cgrp_subsys.broken_hierarchy = true;
5517
	}
5518

5519 5520 5521 5522 5523 5524
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5525
	error = memcg_online_kmem(memcg);
5526 5527
	if (error)
		goto fail;
5528

5529
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5530
		static_branch_inc(&memcg_sockets_enabled_key);
5531

5532 5533
	return &memcg->css;
fail:
5534
	mem_cgroup_id_remove(memcg);
5535
	mem_cgroup_free(memcg);
5536
	return ERR_PTR(error);
5537 5538
}

5539
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5540
{
5541 5542
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5543
	/*
5544
	 * A memcg must be visible for expand_shrinker_info()
5545 5546 5547
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
5548
	if (alloc_shrinker_info(memcg)) {
5549 5550 5551 5552
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

J
Jing Xiangfeng 已提交
5553 5554 5555 5556
#ifdef CONFIG_MEMCG_QOS
	memcg_qos_init(memcg);
#endif

5557
	/* Online state pins memcg ID, memcg ID pins CSS */
5558
	refcount_set(&memcg->id.ref, 1);
5559
	css_get(css);
5560
	return 0;
B
Balbir Singh 已提交
5561 5562
}

5563
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5564
{
5565
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5566
	struct mem_cgroup_event *event, *tmp;
5567 5568 5569 5570 5571 5572

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5573 5574
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5575 5576 5577
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5578
	spin_unlock(&memcg->event_list_lock);
5579

R
Roman Gushchin 已提交
5580
	page_counter_set_min(&memcg->memory, 0);
5581
	page_counter_set_low(&memcg->memory, 0);
5582

5583
	memcg_offline_kmem(memcg);
5584
	wb_memcg_offline(memcg);
5585

5586 5587
	drain_all_stock(memcg);

5588
	mem_cgroup_id_put(memcg);
5589 5590
}

5591 5592 5593 5594 5595 5596 5597
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5598
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5599
{
5600
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5601
	int __maybe_unused i;
5602

5603 5604 5605 5606
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5607
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5608
		static_branch_dec(&memcg_sockets_enabled_key);
5609

5610
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5611
		static_branch_dec(&memcg_sockets_enabled_key);
5612

5613 5614 5615
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5616
	free_shrinker_info(memcg);
5617
	memcg_free_kmem(memcg);
5618
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5619 5620
}

5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5638 5639 5640 5641
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5642
	page_counter_set_min(&memcg->memory, 0);
5643
	page_counter_set_low(&memcg->memory, 0);
5644
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5645
	memcg->soft_limit = PAGE_COUNTER_MAX;
5646
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5647
	memcg_wb_domain_size_changed(memcg);
5648 5649
}

5650
#ifdef CONFIG_MMU
5651
/* Handlers for move charge at task migration. */
5652
static int mem_cgroup_do_precharge(unsigned long count)
5653
{
5654
	int ret;
5655

5656 5657
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5658
	if (!ret) {
5659 5660 5661
		mc.precharge += count;
		return ret;
	}
5662

5663
	/* Try charges one by one with reclaim, but do not retry */
5664
	while (count--) {
5665
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5666 5667
		if (ret)
			return ret;
5668
		mc.precharge++;
5669
		cond_resched();
5670
	}
5671
	return 0;
5672 5673 5674 5675
}

union mc_target {
	struct page	*page;
5676
	swp_entry_t	ent;
5677 5678 5679
};

enum mc_target_type {
5680
	MC_TARGET_NONE = 0,
5681
	MC_TARGET_PAGE,
5682
	MC_TARGET_SWAP,
5683
	MC_TARGET_DEVICE,
5684 5685
};

D
Daisuke Nishimura 已提交
5686 5687
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5688
{
5689
	struct page *page = vm_normal_page(vma, addr, ptent);
5690

D
Daisuke Nishimura 已提交
5691 5692 5693
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5694
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5695
			return NULL;
5696 5697 5698 5699
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5700 5701 5702 5703 5704 5705
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5706
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5707
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5708
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5709 5710 5711 5712
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5713
	if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5714
		return NULL;
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5732 5733 5734
	if (non_swap_entry(ent))
		return NULL;

5735 5736 5737 5738
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5739
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5740
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5741 5742 5743

	return page;
}
5744 5745
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5746
			pte_t ptent, swp_entry_t *entry)
5747 5748 5749 5750
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5751

5752 5753 5754 5755 5756
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5757
	if (!(mc.flags & MOVE_FILE))
5758 5759 5760
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5761
	/* shmem/tmpfs may report page out on swap: account for that too. */
5762 5763
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5764 5765
}

5766 5767 5768
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5769
 * @compound: charge the page as compound or small page
5770 5771 5772
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5773
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5774 5775 5776 5777 5778
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5779
				   bool compound,
5780 5781 5782
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5783 5784
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5785
	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5786 5787 5788 5789
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5790
	VM_BUG_ON(compound && !PageTransHuge(page));
5791 5792

	/*
5793
	 * Prevent mem_cgroup_migrate() from looking at
5794
	 * page->mem_cgroup of its source page while we change it.
5795
	 */
5796
	ret = -EBUSY;
5797 5798 5799 5800 5801 5802 5803
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5804
	pgdat = page_pgdat(page);
5805 5806
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5807

5808
	lock_page_memcg(page);
5809

5810 5811 5812 5813
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5814
			if (PageTransHuge(page)) {
5815 5816
				__dec_lruvec_state(from_vec, NR_ANON_THPS);
				__inc_lruvec_state(to_vec, NR_ANON_THPS);
5817 5818
			}

5819 5820
		}
	} else {
5821 5822 5823 5824 5825 5826 5827 5828
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5829 5830 5831 5832
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5833

5834 5835
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5836

5837
			if (mapping_can_writeback(mapping)) {
5838 5839 5840 5841 5842
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5843 5844 5845
		}
	}

5846
	if (PageWriteback(page)) {
5847 5848
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5849 5850 5851
	}

	/*
5852 5853
	 * All state has been migrated, let's switch to the new memcg.
	 *
5854
	 * It is safe to change page->mem_cgroup here because the page
5855 5856 5857 5858 5859 5860 5861 5862
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
	 * that would rely on a stable page->mem_cgroup.
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
	 * to save space. As soon as we switch page->mem_cgroup to a
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5863
	 */
5864
	smp_mb();
5865

5866 5867 5868 5869
	css_get(&to->css);
	css_put(&from->css);

	page->mem_cgroup = to;
5870

5871
	__unlock_page_memcg(from);
5872 5873 5874 5875

	ret = 0;

	local_irq_disable();
5876
	mem_cgroup_charge_statistics(to, page, nr_pages);
5877
	memcg_check_events(to, page);
5878
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5879 5880 5881 5882 5883 5884 5885 5886
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5902 5903
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5904 5905 5906
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5907 5908
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5909 5910 5911 5912
 *
 * Called with pte lock held.
 */

5913
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5914 5915 5916
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5917
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5918 5919 5920 5921 5922
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5923
		page = mc_handle_swap_pte(vma, ptent, &ent);
5924
	else if (pte_none(ptent))
5925
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5926 5927

	if (!page && !ent.val)
5928
		return ret;
5929 5930
	if (page) {
		/*
5931
		 * Do only loose check w/o serialization.
5932
		 * mem_cgroup_move_account() checks the page is valid or
5933
		 * not under LRU exclusion.
5934
		 */
5935
		if (page->mem_cgroup == mc.from) {
5936
			ret = MC_TARGET_PAGE;
5937
			if (is_device_private_page(page))
5938
				ret = MC_TARGET_DEVICE;
5939 5940 5941 5942 5943 5944
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5945 5946 5947 5948 5949
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5950
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5951 5952 5953
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5954 5955 5956 5957
	}
	return ret;
}

5958 5959
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5960 5961
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5962 5963 5964 5965 5966 5967 5968 5969
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5970 5971 5972 5973 5974
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5975
	page = pmd_page(pmd);
5976
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5977
	if (!(mc.flags & MOVE_ANON))
5978
		return ret;
5979
	if (page->mem_cgroup == mc.from) {
5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5996 5997 5998 5999
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
6000
	struct vm_area_struct *vma = walk->vma;
6001 6002 6003
	pte_t *pte;
	spinlock_t *ptl;

6004 6005
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
6006 6007
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
6008 6009
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
6010
		 */
6011 6012
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
6013
		spin_unlock(ptl);
6014
		return 0;
6015
	}
6016

6017 6018
	if (pmd_trans_unstable(pmd))
		return 0;
6019 6020
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6021
		if (get_mctgt_type(vma, addr, *pte, NULL))
6022 6023 6024 6025
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6026 6027 6028
	return 0;
}

6029 6030 6031 6032
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

6033 6034 6035 6036
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

6037
	mmap_read_lock(mm);
6038
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
6039
	mmap_read_unlock(mm);
6040 6041 6042 6043 6044 6045 6046 6047 6048

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6049 6050 6051 6052 6053
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6054 6055
}

6056 6057
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6058
{
6059 6060 6061
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6062
	/* we must uncharge all the leftover precharges from mc.to */
6063
	if (mc.precharge) {
6064
		cancel_charge(mc.to, mc.precharge);
6065 6066 6067 6068 6069 6070 6071
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
6072
		cancel_charge(mc.from, mc.moved_charge);
6073
		mc.moved_charge = 0;
6074
	}
6075 6076 6077
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
6078
		if (!mem_cgroup_is_root(mc.from))
6079
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6080

6081 6082
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

6083
		/*
6084 6085
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
6086
		 */
6087
		if (!mem_cgroup_is_root(mc.to))
6088 6089
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

6090 6091
		mc.moved_swap = 0;
	}
6092 6093 6094 6095 6096 6097 6098
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
6099 6100
	struct mm_struct *mm = mc.mm;

6101 6102 6103 6104 6105 6106
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6107
	spin_lock(&mc.lock);
6108 6109
	mc.from = NULL;
	mc.to = NULL;
6110
	mc.mm = NULL;
6111
	spin_unlock(&mc.lock);
6112 6113

	mmput(mm);
6114 6115
}

6116
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6117
{
6118
	struct cgroup_subsys_state *css;
6119
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6120
	struct mem_cgroup *from;
6121
	struct task_struct *leader, *p;
6122
	struct mm_struct *mm;
6123
	unsigned long move_flags;
6124
	int ret = 0;
6125

6126 6127
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6128 6129
		return 0;

6130 6131 6132 6133 6134 6135 6136
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
6137
	cgroup_taskset_for_each_leader(leader, css, tset) {
6138 6139
		WARN_ON_ONCE(p);
		p = leader;
6140
		memcg = mem_cgroup_from_css(css);
6141 6142 6143 6144
	}
	if (!p)
		return 0;

6145 6146 6147 6148 6149 6150 6151 6152 6153
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
6170
		mc.mm = mm;
6171 6172 6173 6174 6175 6176 6177 6178 6179
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
6180 6181
	} else {
		mmput(mm);
6182 6183 6184 6185
	}
	return ret;
}

6186
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6187
{
6188 6189
	if (mc.to)
		mem_cgroup_clear_mc();
6190 6191
}

6192 6193 6194
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6195
{
6196
	int ret = 0;
6197
	struct vm_area_struct *vma = walk->vma;
6198 6199
	pte_t *pte;
	spinlock_t *ptl;
6200 6201 6202
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
6203

6204 6205
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
6206
		if (mc.precharge < HPAGE_PMD_NR) {
6207
			spin_unlock(ptl);
6208 6209 6210 6211 6212 6213
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6214
				if (!mem_cgroup_move_account(page, true,
6215
							     mc.from, mc.to)) {
6216 6217 6218 6219 6220 6221
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6222 6223 6224 6225 6226 6227 6228 6229
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6230
		}
6231
		spin_unlock(ptl);
6232
		return 0;
6233 6234
	}

6235 6236
	if (pmd_trans_unstable(pmd))
		return 0;
6237 6238 6239 6240
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6241
		bool device = false;
6242
		swp_entry_t ent;
6243 6244 6245 6246

		if (!mc.precharge)
			break;

6247
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6248 6249
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6250
			fallthrough;
6251 6252
		case MC_TARGET_PAGE:
			page = target.page;
6253 6254 6255 6256 6257 6258 6259 6260
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6261
			if (!device && isolate_lru_page(page))
6262
				goto put;
6263 6264
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6265
				mc.precharge--;
6266 6267
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6268
			}
6269 6270
			if (!device)
				putback_lru_page(page);
6271
put:			/* get_mctgt_type() gets the page */
6272 6273
			put_page(page);
			break;
6274 6275
		case MC_TARGET_SWAP:
			ent = target.ent;
6276
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6277
				mc.precharge--;
6278 6279
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6280 6281
				mc.moved_swap++;
			}
6282
			break;
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6297
		ret = mem_cgroup_do_precharge(1);
6298 6299 6300 6301 6302 6303 6304
		if (!ret)
			goto retry;
	}

	return ret;
}

6305 6306 6307 6308
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6309
static void mem_cgroup_move_charge(void)
6310 6311
{
	lru_add_drain_all();
6312
	/*
6313 6314 6315
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6316 6317 6318
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6319
retry:
6320
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6321
		/*
6322
		 * Someone who are holding the mmap_lock might be waiting in
6323 6324 6325 6326 6327 6328 6329 6330 6331
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6332 6333 6334 6335
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6336 6337
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6338

6339
	mmap_read_unlock(mc.mm);
6340
	atomic_dec(&mc.from->moving_account);
6341 6342
}

6343
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6344
{
6345 6346
	if (mc.to) {
		mem_cgroup_move_charge();
6347
		mem_cgroup_clear_mc();
6348
	}
B
Balbir Singh 已提交
6349
}
6350
#else	/* !CONFIG_MMU */
6351
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6352 6353 6354
{
	return 0;
}
6355
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6356 6357
{
}
6358
static void mem_cgroup_move_task(void)
6359 6360 6361
{
}
#endif
B
Balbir Singh 已提交
6362

6363 6364
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6365 6366
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
6367
 */
6368
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6369 6370
{
	/*
6371
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6372 6373 6374
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6375
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6376 6377 6378
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
6379 6380
}

6381 6382 6383 6384 6385 6386 6387 6388 6389 6390
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6391 6392 6393
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6394 6395 6396
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6397 6398
}

R
Roman Gushchin 已提交
6399 6400
static int memory_min_show(struct seq_file *m, void *v)
{
6401 6402
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6422 6423
static int memory_low_show(struct seq_file *m, void *v)
{
6424 6425
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6426 6427 6428 6429 6430 6431 6432 6433 6434 6435
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6436
	err = page_counter_memparse(buf, "max", &low);
6437 6438 6439
	if (err)
		return err;

6440
	page_counter_set_low(&memcg->memory, low);
6441 6442 6443 6444 6445 6446

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6447 6448
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6449 6450 6451 6452 6453 6454
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6455
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6456
	bool drained = false;
6457 6458 6459 6460
	unsigned long high;
	int err;

	buf = strstrip(buf);
6461
	err = page_counter_memparse(buf, "max", &high);
6462 6463 6464
	if (err)
		return err;

6465 6466
	page_counter_set_high(&memcg->memory, high);

6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6489

6490
	memcg_wb_domain_size_changed(memcg);
6491 6492 6493 6494 6495
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6496 6497
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6498 6499 6500 6501 6502 6503
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6504
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6505
	bool drained = false;
6506 6507 6508 6509
	unsigned long max;
	int err;

	buf = strstrip(buf);
6510
	err = page_counter_memparse(buf, "max", &max);
6511 6512 6513
	if (err)
		return err;

6514
	xchg(&memcg->memory.max, max);
6515 6516 6517 6518 6519 6520 6521

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6522
		if (signal_pending(current))
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6538
		memcg_memory_event(memcg, MEMCG_OOM);
6539 6540 6541
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6542

6543
	memcg_wb_domain_size_changed(memcg);
6544 6545 6546
	return nbytes;
}

6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6557 6558
static int memory_events_show(struct seq_file *m, void *v)
{
6559
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6560

6561 6562 6563 6564 6565 6566 6567
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6568

6569
	__memory_events_show(m, memcg->memory_events_local);
6570 6571 6572
	return 0;
}

6573 6574
static int memory_stat_show(struct seq_file *m, void *v)
{
6575
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6576
	char *buf;
6577

6578 6579 6580 6581 6582
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6583 6584 6585
	return 0;
}

6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
#ifdef CONFIG_NUMA
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
			size = lruvec_page_state(lruvec, memory_stats[i].idx);
			size *= memory_stats[i].ratio;
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6615 6616
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6617
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6646 6647 6648
static struct cftype memory_files[] = {
	{
		.name = "current",
6649
		.flags = CFTYPE_NOT_ON_ROOT,
6650 6651
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6652 6653 6654 6655 6656 6657
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6679
		.file_offset = offsetof(struct mem_cgroup, events_file),
6680 6681
		.seq_show = memory_events_show,
	},
6682 6683 6684 6685 6686 6687
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6688 6689 6690 6691
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6692 6693 6694 6695 6696 6697
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6698 6699 6700 6701 6702 6703
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6704 6705 6706
	{ }	/* terminate */
};

6707
struct cgroup_subsys memory_cgrp_subsys = {
6708
	.css_alloc = mem_cgroup_css_alloc,
6709
	.css_online = mem_cgroup_css_online,
6710
	.css_offline = mem_cgroup_css_offline,
6711
	.css_released = mem_cgroup_css_released,
6712
	.css_free = mem_cgroup_css_free,
6713
	.css_reset = mem_cgroup_css_reset,
6714 6715
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6716
	.post_attach = mem_cgroup_move_task,
6717
	.bind = mem_cgroup_bind,
6718 6719
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6720
	.early_init = 0,
B
Balbir Singh 已提交
6721
};
6722

6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6765 6766
 */
static unsigned long effective_protection(unsigned long usage,
6767
					  unsigned long parent_usage,
6768 6769 6770 6771 6772
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6773
	unsigned long ep;
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6817 6818 6819 6820
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6821 6822 6823
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6824 6825 6826
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6837 6838
}

6839
/**
R
Roman Gushchin 已提交
6840
 * mem_cgroup_protected - check if memory consumption is in the normal range
6841
 * @root: the top ancestor of the sub-tree being checked
6842 6843
 * @memcg: the memory cgroup to check
 *
6844 6845
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6846
 */
6847 6848
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6849
{
6850
	unsigned long usage, parent_usage;
6851 6852
	struct mem_cgroup *parent;

6853
	if (mem_cgroup_disabled())
6854
		return;
6855

6856 6857
	if (!root)
		root = root_mem_cgroup;
6858 6859 6860 6861 6862 6863 6864 6865

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6866
	if (memcg == root)
6867
		return;
6868

6869
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6870
	if (!usage)
6871
		return;
R
Roman Gushchin 已提交
6872 6873

	parent = parent_mem_cgroup(memcg);
6874 6875
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6876
		return;
6877

6878
	if (parent == root) {
6879
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6880
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6881
		return;
R
Roman Gushchin 已提交
6882 6883
	}

6884 6885
	parent_usage = page_counter_read(&parent->memory);

6886
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6887 6888
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6889
			atomic_long_read(&parent->memory.children_min_usage)));
6890

6891
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6892 6893
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6894
			atomic_long_read(&parent->memory.children_low_usage)));
6895 6896
}

6897
/**
6898
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6899 6900 6901 6902 6903 6904 6905
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6906
 * Returns 0 on success. Otherwise, an error code is returned.
6907
 */
6908
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6909
{
6910
	unsigned int nr_pages = thp_nr_pages(page);
6911 6912 6913 6914 6915 6916 6917
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6918 6919 6920
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6921 6922 6923
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6924 6925
		 * already charged pages, too.  page->mem_cgroup is protected
		 * by the page lock, which serializes swap cache removal, which
6926 6927
		 * in turn serializes uncharging.
		 */
6928
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6929
		if (compound_head(page)->mem_cgroup)
6930
			goto out;
6931

6932 6933 6934 6935 6936 6937
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6938 6939 6940 6941 6942 6943
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6944 6945
	if (ret)
		goto out_put;
6946

6947
	css_get(&memcg->css);
6948
	commit_charge(page, memcg);
6949 6950

	local_irq_disable();
6951
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6952 6953
	memcg_check_events(memcg, page);
	local_irq_enable();
6954

6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967
	/*
	 * Cgroup1's unified memory+swap counter has been charged with the
	 * new swapcache page, finish the transfer by uncharging the swap
	 * slot. The swap slot would also get uncharged when it dies, but
	 * it can stick around indefinitely and we'd count the page twice
	 * the entire time.
	 *
	 * Cgroup2 has separate resource counters for memory and swap,
	 * so this is a non-issue here. Memory and swap charge lifetimes
	 * correspond 1:1 to page and swap slot lifetimes: we charge the
	 * page to memory here, and uncharge swap when the slot is freed.
	 */
	if (do_memsw_account() && PageSwapCache(page)) {
6968 6969 6970 6971 6972 6973
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6974
		mem_cgroup_uncharge_swap(entry, nr_pages);
6975 6976
	}

6977 6978 6979 6980
out_put:
	css_put(&memcg->css);
out:
	return ret;
6981 6982
}

6983 6984
struct uncharge_gather {
	struct mem_cgroup *memcg;
6985
	unsigned long nr_pages;
6986 6987 6988 6989 6990 6991
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6992
{
6993 6994 6995 6996 6997
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6998 6999
	unsigned long flags;

7000
	if (!mem_cgroup_is_root(ug->memcg)) {
7001
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7002
		if (do_memsw_account())
7003
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
7004 7005 7006
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
7007
	}
7008 7009

	local_irq_save(flags);
7010
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7011
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
7012
	memcg_check_events(ug->memcg, ug->dummy_page);
7013
	local_irq_restore(flags);
7014 7015 7016

	/* drop reference from uncharge_page */
	css_put(&ug->memcg->css);
7017 7018 7019 7020
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
7021 7022
	unsigned long nr_pages;

7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039
	VM_BUG_ON_PAGE(PageLRU(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
7040 7041 7042

		/* pairs with css_put in uncharge_batch */
		css_get(&ug->memcg->css);
7043 7044
	}

7045 7046
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
7047

7048
	if (!PageKmemcg(page)) {
7049 7050
		ug->pgpgout++;
	} else {
7051
		ug->nr_kmem += nr_pages;
7052 7053 7054 7055 7056
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
7057
	css_put(&ug->memcg->css);
7058 7059 7060 7061
}

static void uncharge_list(struct list_head *page_list)
{
7062
	struct uncharge_gather ug;
7063
	struct list_head *next;
7064 7065

	uncharge_gather_clear(&ug);
7066

7067 7068 7069 7070
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
7071 7072
	next = page_list->next;
	do {
7073 7074
		struct page *page;

7075 7076 7077
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

7078
		uncharge_page(page, &ug);
7079 7080
	} while (next != page_list);

7081 7082
	if (ug.memcg)
		uncharge_batch(&ug);
7083 7084
}

7085 7086 7087 7088
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
7089
 * Uncharge a page previously charged with mem_cgroup_charge().
7090 7091 7092
 */
void mem_cgroup_uncharge(struct page *page)
{
7093 7094
	struct uncharge_gather ug;

7095 7096 7097
	if (mem_cgroup_disabled())
		return;

7098
	/* Don't touch page->lru of any random page, pre-check: */
7099
	if (!page->mem_cgroup)
7100 7101
		return;

7102 7103 7104
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
7105
}
7106

7107 7108 7109 7110 7111
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
7112
 * mem_cgroup_charge().
7113 7114 7115 7116 7117
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
7118

7119 7120
	if (!list_empty(page_list))
		uncharge_list(page_list);
7121 7122 7123
}

/**
7124 7125 7126
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
7127
 *
7128 7129
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
7130 7131 7132
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
7133
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
7134
{
7135
	struct mem_cgroup *memcg;
7136
	unsigned int nr_pages;
7137
	unsigned long flags;
7138 7139 7140 7141

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
7142 7143
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
7144 7145 7146 7147 7148

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
7149
	if (newpage->mem_cgroup)
7150 7151
		return;

7152
	/* Swapcache readahead pages can get replaced before being charged */
7153
	memcg = oldpage->mem_cgroup;
7154
	if (!memcg)
7155 7156
		return;

7157
	/* Force-charge the new page. The old one will be freed soon */
7158
	nr_pages = thp_nr_pages(newpage);
7159 7160 7161 7162

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
7163

7164
	css_get(&memcg->css);
7165
	commit_charge(newpage, memcg);
7166

7167
	local_irq_save(flags);
7168
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7169
	memcg_check_events(memcg, newpage);
7170
	local_irq_restore(flags);
7171 7172
}

7173
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7174 7175
EXPORT_SYMBOL(memcg_sockets_enabled_key);

7176
void mem_cgroup_sk_alloc(struct sock *sk)
7177 7178 7179
{
	struct mem_cgroup *memcg;

7180 7181 7182
	if (!mem_cgroup_sockets_enabled)
		return;

7183 7184 7185 7186
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

7187 7188
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
7189 7190
	if (memcg == root_mem_cgroup)
		goto out;
7191
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7192
		goto out;
S
Shakeel Butt 已提交
7193
	if (css_tryget(&memcg->css))
7194
		sk->sk_memcg = memcg;
7195
out:
7196 7197 7198
	rcu_read_unlock();
}

7199
void mem_cgroup_sk_free(struct sock *sk)
7200
{
7201 7202
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7215
	gfp_t gfp_mask = GFP_KERNEL;
7216

7217
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7218
		struct page_counter *fail;
7219

7220 7221
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
7222 7223
			return true;
		}
7224 7225
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
7226
		return false;
7227
	}
7228

7229 7230 7231 7232
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

7233
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7234

7235 7236 7237 7238
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7239 7240 7241 7242 7243
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
7244 7245
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7246 7247 7248
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7249
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7250
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7251 7252
		return;
	}
7253

7254
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7255

7256
	refill_stock(memcg, nr_pages);
7257 7258
}

7259 7260 7261 7262 7263 7264 7265 7266 7267
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7268 7269
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7270 7271
		else if (!strcmp(token, "kmem"))
			cgroup_memory_nokmem = false;
7272 7273 7274 7275
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7276

7277
/*
7278 7279
 * subsys_initcall() for memory controller.
 *
7280 7281 7282 7283
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7284 7285 7286
 */
static int __init mem_cgroup_init(void)
{
7287 7288
	int cpu, node;

7289 7290 7291 7292 7293 7294 7295 7296
	/*
	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
	 * used for per-memcg-per-cpu caching of per-node statistics. In order
	 * to work fine, we should make sure that the overfill threshold can't
	 * exceed S32_MAX / PAGE_SIZE.
	 */
	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);

7297 7298
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7310
		rtpn->rb_root = RB_ROOT;
7311
		rtpn->rb_rightmost = NULL;
7312
		spin_lock_init(&rtpn->lock);
7313 7314 7315
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7316 7317 7318
	return 0;
}
subsys_initcall(mem_cgroup_init);
7319 7320

#ifdef CONFIG_MEMCG_SWAP
7321 7322
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7323
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7339 7340 7341 7342 7343 7344 7345 7346 7347
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7348
	struct mem_cgroup *memcg, *swap_memcg;
7349
	unsigned int nr_entries;
7350 7351 7352 7353 7354
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7355
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7356 7357 7358 7359 7360 7361 7362 7363
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

7364 7365 7366 7367 7368 7369
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7370
	nr_entries = thp_nr_pages(page);
7371 7372 7373 7374 7375
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7376
	VM_BUG_ON_PAGE(oldid, page);
7377
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7378 7379 7380 7381

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
7382
		page_counter_uncharge(&memcg->memory, nr_entries);
7383

7384
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7385
		if (!mem_cgroup_is_root(swap_memcg))
7386 7387
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7388 7389
	}

7390 7391
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7392
	 * i_pages lock which is taken with interrupts-off. It is
7393
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7394
	 * only synchronisation we have for updating the per-CPU variables.
7395 7396
	 */
	VM_BUG_ON(!irqs_disabled());
7397
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7398
	memcg_check_events(memcg, page);
7399

7400
	css_put(&memcg->css);
7401 7402
}

7403 7404
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7405 7406 7407
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7408
 * Try to charge @page's memcg for the swap space at @entry.
7409 7410 7411 7412 7413
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7414
	unsigned int nr_pages = thp_nr_pages(page);
7415
	struct page_counter *counter;
7416
	struct mem_cgroup *memcg;
7417 7418
	unsigned short oldid;

7419
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7420 7421 7422 7423 7424 7425 7426 7427
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

7428 7429
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7430
		return 0;
7431
	}
7432

7433 7434
	memcg = mem_cgroup_id_get_online(memcg);

7435
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7436
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7437 7438
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7439
		mem_cgroup_id_put(memcg);
7440
		return -ENOMEM;
7441
	}
7442

7443 7444 7445 7446
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7447
	VM_BUG_ON_PAGE(oldid, page);
7448
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7449 7450 7451 7452

	return 0;
}

7453
/**
7454
 * mem_cgroup_uncharge_swap - uncharge swap space
7455
 * @entry: swap entry to uncharge
7456
 * @nr_pages: the amount of swap space to uncharge
7457
 */
7458
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7459 7460 7461 7462
{
	struct mem_cgroup *memcg;
	unsigned short id;

7463
	id = swap_cgroup_record(entry, 0, nr_pages);
7464
	rcu_read_lock();
7465
	memcg = mem_cgroup_from_id(id);
7466
	if (memcg) {
7467
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7468
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7469
				page_counter_uncharge(&memcg->swap, nr_pages);
7470
			else
7471
				page_counter_uncharge(&memcg->memsw, nr_pages);
7472
		}
7473
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7474
		mem_cgroup_id_put_many(memcg, nr_pages);
7475 7476 7477 7478
	}
	rcu_read_unlock();
}

7479 7480 7481 7482
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7483
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7484 7485 7486
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7487
				      READ_ONCE(memcg->swap.max) -
7488 7489 7490 7491
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7492 7493 7494 7495 7496 7497 7498 7499
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7500
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7501 7502 7503 7504 7505 7506
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

7507 7508 7509 7510 7511
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7512
			return true;
7513
	}
7514 7515 7516 7517

	return false;
}

7518
static int __init setup_swap_account(char *s)
7519 7520
{
	if (!strcmp(s, "1"))
7521
		cgroup_memory_noswap = 0;
7522
	else if (!strcmp(s, "0"))
7523
		cgroup_memory_noswap = 1;
7524 7525
	return 1;
}
7526
__setup("swapaccount=", setup_swap_account);
7527

7528 7529 7530 7531 7532 7533 7534 7535
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7559 7560
static int swap_max_show(struct seq_file *m, void *v)
{
7561 7562
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7577
	xchg(&memcg->swap.max, max);
7578 7579 7580 7581

	return nbytes;
}

7582 7583
static int swap_events_show(struct seq_file *m, void *v)
{
7584
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7585

7586 7587
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7588 7589 7590 7591 7592 7593 7594 7595
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7596 7597 7598 7599 7600 7601
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7602 7603 7604 7605 7606 7607
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7608 7609 7610 7611 7612 7613
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7614 7615 7616 7617 7618 7619
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7620 7621 7622
	{ }	/* terminate */
};

7623
static struct cftype memsw_files[] = {
7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7650 7651 7652 7653 7654 7655 7656
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7657 7658
static int __init mem_cgroup_swap_init(void)
{
7659 7660 7661 7662 7663
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7664 7665 7666 7667 7668
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7669 7670
	return 0;
}
7671
core_initcall(mem_cgroup_swap_init);
7672 7673

#endif /* CONFIG_MEMCG_SWAP */