timekeeping.c 54.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
62
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63

64 65 66
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

67 68 69
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

70 71
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
72 73
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
74 75 76 77
		tk->xtime_sec++;
	}
}

78 79 80 81 82
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
83
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
84 85 86
	return ts;
}

87
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
88 89
{
	tk->xtime_sec = ts->tv_sec;
90
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
91 92
}

93
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
94 95
{
	tk->xtime_sec += ts->tv_sec;
96
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
97
	tk_normalize_xtime(tk);
98
}
99

100
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
101
{
102
	struct timespec64 tmp;
103 104 105 106 107

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
108
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
109
					-tk->wall_to_monotonic.tv_nsec);
110
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
111
	tk->wall_to_monotonic = wtm;
112 113
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
114
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
115 116
}

117
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
118
{
119
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
120 121
}

122
#ifdef CONFIG_DEBUG_TIMEKEEPING
123 124 125 126 127 128 129 130 131 132 133 134 135 136
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
/*
 * These simple flag variables are managed
 * without locks, which is racy, but ok since
 * we don't really care about being super
 * precise about how many events were seen,
 * just that a problem was observed.
 */
static int timekeeping_underflow_seen;
static int timekeeping_overflow_seen;

/* last_warning is only modified under the timekeeping lock */
static long timekeeping_last_warning;

137 138 139
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

140 141
	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
	const char *name = tk->tkr_mono.clock->name;
142 143

	if (offset > max_cycles) {
144
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
145
				offset, name, max_cycles);
146
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
147 148 149 150 151 152 153
	} else {
		if (offset > (max_cycles >> 1)) {
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

	if (timekeeping_underflow_seen) {
		if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
			timekeeping_last_warning = jiffies;
		}
		timekeeping_underflow_seen = 0;
	}

	if (timekeeping_overflow_seen) {
		if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
			timekeeping_last_warning = jiffies;
		}
		timekeeping_overflow_seen = 0;
	}
174
}
175 176 177

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
178 179
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
195

196
	delta = clocksource_delta(now, last, mask);
197

198 199 200 201
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
202 203
	if (unlikely((~delta & mask) < (mask >> 3))) {
		timekeeping_underflow_seen = 1;
204
		delta = 0;
205
	}
206

207
	/* Cap delta value to the max_cycles values to avoid mult overflows */
208 209
	if (unlikely(delta > max)) {
		timekeeping_overflow_seen = 1;
210
		delta = tkr->clock->max_cycles;
211
	}
212 213 214

	return delta;
}
215 216 217 218
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
219 220 221 222 223 224 225 226 227 228 229 230
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
231 232
#endif

233
/**
234
 * tk_setup_internals - Set up internals to use clocksource clock.
235
 *
236
 * @tk:		The target timekeeper to setup.
237 238 239 240 241 242 243
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
244
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
245 246
{
	cycle_t interval;
247
	u64 tmp, ntpinterval;
248
	struct clocksource *old_clock;
249

250 251 252 253 254
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
255

P
Peter Zijlstra 已提交
256 257 258 259 260
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

261 262 263
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
264
	ntpinterval = tmp;
265 266
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
267 268 269 270
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
271
	tk->cycle_interval = interval;
272 273

	/* Go back from cycles -> shifted ns */
274 275 276
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
277
		((u64) interval * clock->mult) >> clock->shift;
278

279 280 281 282
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
283
			tk->tkr_mono.xtime_nsec >>= -shift_change;
284
		else
285
			tk->tkr_mono.xtime_nsec <<= shift_change;
286
	}
P
Peter Zijlstra 已提交
287 288
	tk->tkr_raw.xtime_nsec = 0;

289
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
290
	tk->tkr_raw.shift = clock->shift;
291

292 293
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
294
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
295 296 297 298 299 300

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
301
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
302
	tk->tkr_raw.mult = clock->mult;
303
	tk->ntp_err_mult = 0;
304
}
305

306
/* Timekeeper helper functions. */
307 308

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
309 310
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
311
#else
312
static inline u32 arch_gettimeoffset(void) { return 0; }
313 314
#endif

315
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
316
{
317
	cycle_t delta;
318
	s64 nsec;
319

320
	delta = timekeeping_get_delta(tkr);
321

322 323
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
324

325
	/* If arch requires, add in get_arch_timeoffset() */
326
	return nsec + arch_gettimeoffset();
327 328
}

329 330
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
331
 * @tkr: Timekeeping readout base from which we take the update
332 333 334 335 336 337 338 339 340 341 342
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
343
 * update(tkf->base[0], tkr);
344 345 346
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
347
 * update(tkf->base[1], tkr);
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
368
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
369
{
370
	struct tk_read_base *base = tkf->base;
371 372

	/* Force readers off to base[1] */
373
	raw_write_seqcount_latch(&tkf->seq);
374 375

	/* Update base[0] */
376
	memcpy(base, tkr, sizeof(*base));
377 378

	/* Force readers back to base[0] */
379
	raw_write_seqcount_latch(&tkf->seq);
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
417
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
418 419 420 421 422 423
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
424 425
		seq = raw_read_seqcount(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
426
		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
427
	} while (read_seqcount_retry(&tkf->seq, seq));
428 429 430

	return now;
}
431 432 433 434 435

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
436 437
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
438 439 440 441 442 443
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
465
	struct tk_read_base *tkr = &tk->tkr_mono;
466 467 468 469

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
470
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
471 472 473 474 475

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
476 477
}

478 479 480 481
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
482
	struct timespec xt, wm;
483

484
	xt = timespec64_to_timespec(tk_xtime(tk));
485
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
486 487
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
504 505 506
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
	tk->tkr_mono.xtime_nsec -= remainder;
	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
507
	tk->ntp_error += remainder << tk->ntp_error_shift;
508
	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
509 510 511 512 513
}
#else
#define old_vsyscall_fixup(tk)
#endif

514 515
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

516
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
517
{
518
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
519 520 521 522 523 524 525
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
526
	struct timekeeper *tk = &tk_core.timekeeper;
527 528 529
	unsigned long flags;
	int ret;

530
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
531
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
532
	update_pvclock_gtod(tk, true);
533
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
534 535 536 537 538 539 540 541 542 543 544 545 546 547

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

548
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
549
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
550
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
551 552 553 554 555

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

556 557 558 559 560
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
561 562
	u64 seconds;
	u32 nsec;
563 564 565 566 567 568 569 570

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
571 572
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
573
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
574 575

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
576
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
577 578 579 580 581 582

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
583
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
584 585 586
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
587 588
}

589
/* must hold timekeeper_lock */
590
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
591
{
592
	if (action & TK_CLEAR_NTP) {
593
		tk->ntp_error = 0;
594 595
		ntp_clear();
	}
596

597 598
	tk_update_ktime_data(tk);

599 600 601
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

602
	if (action & TK_MIRROR)
603 604
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
605

606
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
607
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
608 609
}

610
/**
611
 * timekeeping_forward_now - update clock to the current time
612
 *
613 614 615
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
616
 */
617
static void timekeeping_forward_now(struct timekeeper *tk)
618
{
619
	struct clocksource *clock = tk->tkr_mono.clock;
620
	cycle_t cycle_now, delta;
621
	s64 nsec;
622

623 624 625
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
626
	tk->tkr_raw.cycle_last  = cycle_now;
627

628
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
629

630
	/* If arch requires, add in get_arch_timeoffset() */
631
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
632

633
	tk_normalize_xtime(tk);
634

P
Peter Zijlstra 已提交
635
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
636
	timespec64_add_ns(&tk->raw_time, nsec);
637 638 639
}

/**
640
 * __getnstimeofday64 - Returns the time of day in a timespec64.
641 642
 * @ts:		pointer to the timespec to be set
 *
643 644
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
645
 */
646
int __getnstimeofday64(struct timespec64 *ts)
647
{
648
	struct timekeeper *tk = &tk_core.timekeeper;
649
	unsigned long seq;
650
	s64 nsecs = 0;
651 652

	do {
653
		seq = read_seqcount_begin(&tk_core.seq);
654

655
		ts->tv_sec = tk->xtime_sec;
656
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
657

658
	} while (read_seqcount_retry(&tk_core.seq, seq));
659

660
	ts->tv_nsec = 0;
661
	timespec64_add_ns(ts, nsecs);
662 663 664 665 666 667 668 669 670

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
671
EXPORT_SYMBOL(__getnstimeofday64);
672 673

/**
674
 * getnstimeofday64 - Returns the time of day in a timespec64.
675
 * @ts:		pointer to the timespec64 to be set
676
 *
677
 * Returns the time of day in a timespec64 (WARN if suspended).
678
 */
679
void getnstimeofday64(struct timespec64 *ts)
680
{
681
	WARN_ON(__getnstimeofday64(ts));
682
}
683
EXPORT_SYMBOL(getnstimeofday64);
684

685 686
ktime_t ktime_get(void)
{
687
	struct timekeeper *tk = &tk_core.timekeeper;
688
	unsigned int seq;
689 690
	ktime_t base;
	s64 nsecs;
691 692 693 694

	WARN_ON(timekeeping_suspended);

	do {
695
		seq = read_seqcount_begin(&tk_core.seq);
696 697
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
698

699
	} while (read_seqcount_retry(&tk_core.seq, seq));
700

701
	return ktime_add_ns(base, nsecs);
702 703 704
}
EXPORT_SYMBOL_GPL(ktime_get);

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
722 723
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
724 725 726 727 728 729 730 731

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

752 753 754 755 756 757 758 759 760 761 762 763
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
764 765
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
766 767 768 769 770 771 772

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

773
/**
774
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
775 776 777 778
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
779
 * in normalized timespec64 format in the variable pointed to by @ts.
780
 */
781
void ktime_get_ts64(struct timespec64 *ts)
782
{
783
	struct timekeeper *tk = &tk_core.timekeeper;
784
	struct timespec64 tomono;
785
	s64 nsec;
786 787 788 789 790
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
791
		seq = read_seqcount_begin(&tk_core.seq);
792
		ts->tv_sec = tk->xtime_sec;
793
		nsec = timekeeping_get_ns(&tk->tkr_mono);
794
		tomono = tk->wall_to_monotonic;
795

796
	} while (read_seqcount_retry(&tk_core.seq, seq));
797

798 799 800
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
801
}
802
EXPORT_SYMBOL_GPL(ktime_get_ts64);
803

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

852 853 854 855 856 857 858 859 860 861 862 863 864
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
865
	struct timekeeper *tk = &tk_core.timekeeper;
866 867 868 869 870 871
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
872
		seq = read_seqcount_begin(&tk_core.seq);
873

874
		*ts_raw = timespec64_to_timespec(tk->raw_time);
875
		ts_real->tv_sec = tk->xtime_sec;
876
		ts_real->tv_nsec = 0;
877

P
Peter Zijlstra 已提交
878
		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
879
		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
880

881
	} while (read_seqcount_retry(&tk_core.seq, seq));
882 883 884 885 886 887 888 889

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

890 891 892 893
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
894
 * NOTE: Users should be converted to using getnstimeofday()
895 896 897
 */
void do_gettimeofday(struct timeval *tv)
{
898
	struct timespec64 now;
899

900
	getnstimeofday64(&now);
901 902 903 904
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
905

906
/**
907 908
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
909 910 911
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
912
int do_settimeofday64(const struct timespec64 *ts)
913
{
914
	struct timekeeper *tk = &tk_core.timekeeper;
915
	struct timespec64 ts_delta, xt;
916
	unsigned long flags;
917

918
	if (!timespec64_valid_strict(ts))
919 920
		return -EINVAL;

921
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
922
	write_seqcount_begin(&tk_core.seq);
923

924
	timekeeping_forward_now(tk);
925

926
	xt = tk_xtime(tk);
927 928
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
929

930
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
931

932
	tk_set_xtime(tk, ts);
933

934
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
935

936
	write_seqcount_end(&tk_core.seq);
937
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
938 939 940 941 942 943

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
944
EXPORT_SYMBOL(do_settimeofday64);
945

946 947 948 949 950 951 952 953
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
954
	struct timekeeper *tk = &tk_core.timekeeper;
955
	unsigned long flags;
956
	struct timespec64 ts64, tmp;
957
	int ret = 0;
958 959 960 961

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

962 963
	ts64 = timespec_to_timespec64(*ts);

964
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
965
	write_seqcount_begin(&tk_core.seq);
966

967
	timekeeping_forward_now(tk);
968

969
	/* Make sure the proposed value is valid */
970 971
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
972 973 974
		ret = -EINVAL;
		goto error;
	}
975

976 977
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
978

979
error: /* even if we error out, we forwarded the time, so call update */
980
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
981

982
	write_seqcount_end(&tk_core.seq);
983
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
984 985 986 987

	/* signal hrtimers about time change */
	clock_was_set();

988
	return ret;
989 990 991
}
EXPORT_SYMBOL(timekeeping_inject_offset);

992 993 994 995 996 997 998

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
999
	struct timekeeper *tk = &tk_core.timekeeper;
1000 1001 1002 1003
	unsigned int seq;
	s32 ret;

	do {
1004
		seq = read_seqcount_begin(&tk_core.seq);
1005
		ret = tk->tai_offset;
1006
	} while (read_seqcount_retry(&tk_core.seq, seq));
1007 1008 1009 1010 1011 1012 1013 1014

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
1015
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1016 1017
{
	tk->tai_offset = tai_offset;
1018
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1019 1020 1021 1022 1023 1024 1025 1026
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
1027
	struct timekeeper *tk = &tk_core.timekeeper;
1028 1029
	unsigned long flags;

1030
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1031
	write_seqcount_begin(&tk_core.seq);
1032
	__timekeeping_set_tai_offset(tk, tai_offset);
1033
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1034
	write_seqcount_end(&tk_core.seq);
1035
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1036
	clock_was_set();
1037 1038
}

1039 1040 1041 1042 1043
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1044
static int change_clocksource(void *data)
1045
{
1046
	struct timekeeper *tk = &tk_core.timekeeper;
1047
	struct clocksource *new, *old;
1048
	unsigned long flags;
1049

1050
	new = (struct clocksource *) data;
1051

1052
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1053
	write_seqcount_begin(&tk_core.seq);
1054

1055
	timekeeping_forward_now(tk);
1056 1057 1058 1059 1060 1061
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1062
			old = tk->tkr_mono.clock;
1063 1064 1065 1066 1067 1068 1069
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1070
	}
1071
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1072

1073
	write_seqcount_end(&tk_core.seq);
1074
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1075

1076 1077
	return 0;
}
1078

1079 1080 1081 1082 1083 1084 1085
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1086
int timekeeping_notify(struct clocksource *clock)
1087
{
1088
	struct timekeeper *tk = &tk_core.timekeeper;
1089

1090
	if (tk->tkr_mono.clock == clock)
1091
		return 0;
1092
	stop_machine(change_clocksource, clock, NULL);
1093
	tick_clock_notify();
1094
	return tk->tkr_mono.clock == clock ? 0 : -1;
1095
}
1096

1097
/**
1098 1099
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1100 1101 1102
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1103
void getrawmonotonic64(struct timespec64 *ts)
1104
{
1105
	struct timekeeper *tk = &tk_core.timekeeper;
1106
	struct timespec64 ts64;
1107 1108 1109 1110
	unsigned long seq;
	s64 nsecs;

	do {
1111
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1112
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1113
		ts64 = tk->raw_time;
1114

1115
	} while (read_seqcount_retry(&tk_core.seq, seq));
1116

1117
	timespec64_add_ns(&ts64, nsecs);
1118
	*ts = ts64;
1119
}
1120 1121
EXPORT_SYMBOL(getrawmonotonic64);

1122

1123
/**
1124
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1125
 */
1126
int timekeeping_valid_for_hres(void)
1127
{
1128
	struct timekeeper *tk = &tk_core.timekeeper;
1129 1130 1131 1132
	unsigned long seq;
	int ret;

	do {
1133
		seq = read_seqcount_begin(&tk_core.seq);
1134

1135
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1136

1137
	} while (read_seqcount_retry(&tk_core.seq, seq));
1138 1139 1140 1141

	return ret;
}

1142 1143 1144 1145 1146
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1147
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1148 1149
	unsigned long seq;
	u64 ret;
1150

J
John Stultz 已提交
1151
	do {
1152
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1153

1154
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1155

1156
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1157 1158

	return ret;
1159 1160
}

1161
/**
1162
 * read_persistent_clock -  Return time from the persistent clock.
1163 1164
 *
 * Weak dummy function for arches that do not yet support it.
1165 1166
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1167 1168 1169
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1170
void __weak read_persistent_clock(struct timespec *ts)
1171
{
1172 1173
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1174 1175
}

1176 1177 1178 1179 1180 1181 1182 1183 1184
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1185
void __weak read_boot_clock(struct timespec *ts)
1186 1187 1188 1189 1190
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1191 1192 1193 1194 1195
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1196
	struct timekeeper *tk = &tk_core.timekeeper;
1197
	struct clocksource *clock;
1198
	unsigned long flags;
1199 1200
	struct timespec64 now, boot, tmp;
	struct timespec ts;
1201

1202 1203 1204
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
1205 1206 1207 1208
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1209 1210
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
1211

1212 1213 1214
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
1215 1216 1217 1218 1219
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1220

1221
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1222
	write_seqcount_begin(&tk_core.seq);
1223 1224
	ntp_init();

1225
	clock = clocksource_default_clock();
1226 1227
	if (clock->enable)
		clock->enable(clock);
1228
	tk_setup_internals(tk, clock);
1229

1230 1231 1232
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1233
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1234
		boot = tk_xtime(tk);
1235

1236
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1237
	tk_set_wall_to_mono(tk, tmp);
1238

1239
	timekeeping_update(tk, TK_MIRROR);
1240

1241
	write_seqcount_end(&tk_core.seq);
1242
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1243 1244 1245
}

/* time in seconds when suspend began */
1246
static struct timespec64 timekeeping_suspend_time;
1247

1248 1249 1250 1251 1252 1253 1254
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1255
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1256
					   struct timespec64 *delta)
1257
{
1258
	if (!timespec64_valid_strict(delta)) {
1259 1260 1261
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1262 1263
		return;
	}
1264
	tk_xtime_add(tk, delta);
1265
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1266
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1267
	tk_debug_account_sleep_time(delta);
1268 1269 1270
}

/**
1271 1272
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1273 1274 1275 1276 1277 1278 1279
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1280
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1281
{
1282
	struct timekeeper *tk = &tk_core.timekeeper;
1283
	unsigned long flags;
1284

1285 1286 1287 1288 1289
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
1290 1291
		return;

1292
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1293
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1294

1295
	timekeeping_forward_now(tk);
1296

1297
	__timekeeping_inject_sleeptime(tk, delta);
1298

1299
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1300

1301
	write_seqcount_end(&tk_core.seq);
1302
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1303 1304 1305 1306 1307

	/* signal hrtimers about time change */
	clock_was_set();
}

1308 1309 1310 1311 1312 1313 1314
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
1315
void timekeeping_resume(void)
1316
{
1317
	struct timekeeper *tk = &tk_core.timekeeper;
1318
	struct clocksource *clock = tk->tkr_mono.clock;
1319
	unsigned long flags;
1320 1321
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
1322 1323
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
1324

1325 1326
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
1327

1328
	clockevents_resume();
1329 1330
	clocksource_resume();

1331
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1332
	write_seqcount_begin(&tk_core.seq);
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1346
	cycle_now = tk->tkr_mono.read(clock);
1347
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1348
		cycle_now > tk->tkr_mono.cycle_last) {
1349 1350 1351 1352 1353
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1354 1355
		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
						tk->tkr_mono.mask);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1370
		ts_delta = ns_to_timespec64(nsec);
1371
		suspendtime_found = true;
1372 1373
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1374
		suspendtime_found = true;
1375
	}
1376 1377 1378 1379 1380

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1381
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1382 1383
	tk->tkr_raw.cycle_last  = cycle_now;

1384
	tk->ntp_error = 0;
1385
	timekeeping_suspended = 0;
1386
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1387
	write_seqcount_end(&tk_core.seq);
1388
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1389 1390 1391

	touch_softlockup_watchdog();

1392
	tick_resume();
1393
	hrtimers_resume();
1394 1395
}

1396
int timekeeping_suspend(void)
1397
{
1398
	struct timekeeper *tk = &tk_core.timekeeper;
1399
	unsigned long flags;
1400 1401 1402
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1403

1404 1405
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1406

1407 1408 1409 1410 1411 1412 1413 1414
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1415
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1416
	write_seqcount_begin(&tk_core.seq);
1417
	timekeeping_forward_now(tk);
1418
	timekeeping_suspended = 1;
1419 1420 1421 1422 1423 1424 1425

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1426 1427
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1428 1429 1430 1431 1432 1433 1434 1435 1436
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1437
			timespec64_add(timekeeping_suspend_time, delta_delta);
1438
	}
1439 1440

	timekeeping_update(tk, TK_MIRROR);
1441
	halt_fast_timekeeper(tk);
1442
	write_seqcount_end(&tk_core.seq);
1443
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1444

1445
	tick_suspend();
M
Magnus Damm 已提交
1446
	clocksource_suspend();
1447
	clockevents_suspend();
1448 1449 1450 1451 1452

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1453
static struct syscore_ops timekeeping_syscore_ops = {
1454 1455 1456 1457
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1458
static int __init timekeeping_init_ops(void)
1459
{
1460 1461
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1462
}
1463
device_initcall(timekeeping_init_ops);
1464 1465

/*
1466
 * Apply a multiplier adjustment to the timekeeper
1467
 */
1468 1469 1470 1471
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1472
{
1473 1474
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1475

1476 1477 1478 1479
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1480
	}
1481 1482 1483
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1484

1485 1486 1487
	/*
	 * So the following can be confusing.
	 *
1488
	 * To keep things simple, lets assume mult_adj == 1 for now.
1489
	 *
1490
	 * When mult_adj != 1, remember that the interval and offset values
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1534
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1535 1536 1537 1538 1539
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1540
	tk->tkr_mono.mult += mult_adj;
1541
	tk->xtime_interval += interval;
1542
	tk->tkr_mono.xtime_nsec -= offset;
1543
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1563 1564
	tk->ntp_tick = ntp_tick_length();

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1604 1605 1606
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1607 1608
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1609 1610
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1611
	}
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1627 1628 1629
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1630
		tk->ntp_error += neg << tk->ntp_error_shift;
1631
	}
1632 1633
}

1634 1635 1636 1637 1638 1639 1640 1641
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1642
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1643
{
1644
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1645
	unsigned int clock_set = 0;
1646

1647
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1648 1649
		int leap;

1650
		tk->tkr_mono.xtime_nsec -= nsecps;
1651 1652 1653 1654
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1655
		if (unlikely(leap)) {
1656
			struct timespec64 ts;
1657 1658

			tk->xtime_sec += leap;
1659

1660 1661 1662
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1663
				timespec64_sub(tk->wall_to_monotonic, ts));
1664

1665 1666
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1667
			clock_set = TK_CLOCK_WAS_SET;
1668
		}
1669
	}
1670
	return clock_set;
1671 1672
}

1673 1674 1675 1676 1677 1678 1679 1680 1681
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1682
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1683 1684
						u32 shift,
						unsigned int *clock_set)
1685
{
T
Thomas Gleixner 已提交
1686
	cycle_t interval = tk->cycle_interval << shift;
1687
	u64 raw_nsecs;
1688

1689
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1690
	if (offset < interval)
1691 1692 1693
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1694
	offset -= interval;
1695
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
1696
	tk->tkr_raw.cycle_last  += interval;
1697

1698
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1699
	*clock_set |= accumulate_nsecs_to_secs(tk);
1700

1701
	/* Accumulate raw time */
1702
	raw_nsecs = (u64)tk->raw_interval << shift;
1703
	raw_nsecs += tk->raw_time.tv_nsec;
1704 1705 1706
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1707
		tk->raw_time.tv_sec += raw_secs;
1708
	}
1709
	tk->raw_time.tv_nsec = raw_nsecs;
1710 1711

	/* Accumulate error between NTP and clock interval */
1712
	tk->ntp_error += tk->ntp_tick << shift;
1713 1714
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1715 1716 1717 1718

	return offset;
}

1719 1720 1721 1722
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1723
void update_wall_time(void)
1724
{
1725
	struct timekeeper *real_tk = &tk_core.timekeeper;
1726
	struct timekeeper *tk = &shadow_timekeeper;
1727
	cycle_t offset;
1728
	int shift = 0, maxshift;
1729
	unsigned int clock_set = 0;
J
John Stultz 已提交
1730 1731
	unsigned long flags;

1732
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1733 1734 1735

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1736
		goto out;
1737

J
John Stultz 已提交
1738
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1739
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1740
#else
1741 1742
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1743 1744
#endif

1745
	/* Check if there's really nothing to do */
1746
	if (offset < real_tk->cycle_interval)
1747 1748
		goto out;

1749 1750 1751
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

1752 1753 1754 1755
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1756
	 * that is smaller than the offset.  We then accumulate that
1757 1758
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1759
	 */
1760
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1761
	shift = max(0, shift);
1762
	/* Bound shift to one less than what overflows tick_length */
1763
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1764
	shift = min(shift, maxshift);
1765
	while (offset >= tk->cycle_interval) {
1766 1767
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1768
		if (offset < tk->cycle_interval<<shift)
1769
			shift--;
1770 1771 1772
	}

	/* correct the clock when NTP error is too big */
1773
	timekeeping_adjust(tk, offset);
1774

J
John Stultz 已提交
1775
	/*
1776 1777 1778 1779
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1780

J
John Stultz 已提交
1781 1782
	/*
	 * Finally, make sure that after the rounding
1783
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1784
	 */
1785
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1786

1787
	write_seqcount_begin(&tk_core.seq);
1788 1789 1790 1791 1792 1793 1794
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1795
	 * memcpy under the tk_core.seq against one before we start
1796 1797 1798
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1799
	timekeeping_update(real_tk, clock_set);
1800
	write_seqcount_end(&tk_core.seq);
1801
out:
1802
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1803
	if (clock_set)
1804 1805
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1806
}
T
Tomas Janousek 已提交
1807 1808

/**
1809 1810
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1811
 *
1812
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1813 1814 1815 1816 1817 1818
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1819
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1820
{
1821
	struct timekeeper *tk = &tk_core.timekeeper;
1822 1823
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1824
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1825
}
1826
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1827

1828 1829
unsigned long get_seconds(void)
{
1830
	struct timekeeper *tk = &tk_core.timekeeper;
1831 1832

	return tk->xtime_sec;
1833 1834 1835
}
EXPORT_SYMBOL(get_seconds);

1836 1837
struct timespec __current_kernel_time(void)
{
1838
	struct timekeeper *tk = &tk_core.timekeeper;
1839

1840
	return timespec64_to_timespec(tk_xtime(tk));
1841
}
1842

1843 1844
struct timespec current_kernel_time(void)
{
1845
	struct timekeeper *tk = &tk_core.timekeeper;
1846
	struct timespec64 now;
1847 1848 1849
	unsigned long seq;

	do {
1850
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1851

1852
		now = tk_xtime(tk);
1853
	} while (read_seqcount_retry(&tk_core.seq, seq));
1854

1855
	return timespec64_to_timespec(now);
1856 1857
}
EXPORT_SYMBOL(current_kernel_time);
1858

1859
struct timespec64 get_monotonic_coarse64(void)
1860
{
1861
	struct timekeeper *tk = &tk_core.timekeeper;
1862
	struct timespec64 now, mono;
1863 1864 1865
	unsigned long seq;

	do {
1866
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1867

1868 1869
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1870
	} while (read_seqcount_retry(&tk_core.seq, seq));
1871

1872
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1873
				now.tv_nsec + mono.tv_nsec);
1874

1875
	return now;
1876
}
1877 1878

/*
1879
 * Must hold jiffies_lock
1880 1881 1882 1883 1884 1885
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1886 1887

/**
1888 1889 1890 1891 1892 1893
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1894
 */
1895 1896
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1897
{
1898
	struct timekeeper *tk = &tk_core.timekeeper;
1899
	unsigned int seq;
1900 1901
	ktime_t base;
	u64 nsecs;
1902 1903

	do {
1904
		seq = read_seqcount_begin(&tk_core.seq);
1905

1906 1907
		base = tk->tkr_mono.base;
		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
1908

1909 1910 1911
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1912
	} while (read_seqcount_retry(&tk_core.seq, seq));
1913

1914
	return ktime_add_ns(base, nsecs);
1915
}
T
Torben Hohn 已提交
1916

1917 1918
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1919
 * ktime_get_update_offsets_now - hrtimer helper
1920 1921
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1922
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1923 1924
 *
 * Returns current monotonic time and updates the offsets
1925
 * Called from hrtimer_interrupt() or retrigger_next_event()
1926
 */
1927
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1928
							ktime_t *offs_tai)
1929
{
1930
	struct timekeeper *tk = &tk_core.timekeeper;
1931
	unsigned int seq;
1932 1933
	ktime_t base;
	u64 nsecs;
1934 1935

	do {
1936
		seq = read_seqcount_begin(&tk_core.seq);
1937

1938 1939
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
1940

1941 1942
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1943
		*offs_tai = tk->offs_tai;
1944
	} while (read_seqcount_retry(&tk_core.seq, seq));
1945

1946
	return ktime_add_ns(base, nsecs);
1947 1948 1949
}
#endif

1950 1951 1952 1953 1954
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1955
	struct timekeeper *tk = &tk_core.timekeeper;
1956
	unsigned long flags;
1957
	struct timespec64 ts;
1958
	s32 orig_tai, tai;
1959 1960 1961 1962 1963 1964 1965
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1977
	getnstimeofday64(&ts);
1978

1979
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1980
	write_seqcount_begin(&tk_core.seq);
1981

1982
	orig_tai = tai = tk->tai_offset;
1983
	ret = __do_adjtimex(txc, &ts, &tai);
1984

1985 1986
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1987
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1988
	}
1989
	write_seqcount_end(&tk_core.seq);
1990 1991
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1992 1993 1994
	if (tai != orig_tai)
		clock_was_set();

1995 1996
	ntp_notify_cmos_timer();

1997 1998
	return ret;
}
1999 2000 2001 2002 2003 2004 2005

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
2006 2007 2008
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2009
	write_seqcount_begin(&tk_core.seq);
2010

2011
	__hardpps(phase_ts, raw_ts);
2012

2013
	write_seqcount_end(&tk_core.seq);
2014
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2015 2016 2017 2018
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2019 2020 2021 2022 2023 2024 2025 2026
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2027
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2028
	do_timer(ticks);
2029
	write_sequnlock(&jiffies_lock);
2030
	update_wall_time();
T
Torben Hohn 已提交
2031
}