timekeeping.c 63.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
62
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63

64 65 66
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

67 68
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
69 70
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 72 73 74
		tk->xtime_sec++;
	}
}

75 76 77 78 79
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
80
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 82 83
	return ts;
}

84
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 86
{
	tk->xtime_sec = ts->tv_sec;
87
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 89
}

90
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 92
{
	tk->xtime_sec += ts->tv_sec;
93
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94
	tk_normalize_xtime(tk);
95
}
96

97
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98
{
99
	struct timespec64 tmp;
100 101 102 103 104

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
105
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106
					-tk->wall_to_monotonic.tv_nsec);
107
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108
	tk->wall_to_monotonic = wtm;
109 110
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
111
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 113
}

114
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115
{
116
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 118
}

119
#ifdef CONFIG_DEBUG_TIMEKEEPING
120 121
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

122 123 124
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

125 126
	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
	const char *name = tk->tkr_mono.clock->name;
127 128

	if (offset > max_cycles) {
129
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130
				offset, name, max_cycles);
131
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 133
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
134
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 136 137 138
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
139

140 141
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 143 144
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
145
			tk->last_warning = jiffies;
146
		}
147
		tk->underflow_seen = 0;
148 149
	}

150 151
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 153 154
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
155
			tk->last_warning = jiffies;
156
		}
157
		tk->overflow_seen = 0;
158
	}
159
}
160 161 162

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
163
	struct timekeeper *tk = &tk_core.timekeeper;
164 165
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
181

182
	delta = clocksource_delta(now, last, mask);
183

184 185 186 187
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
188
	if (unlikely((~delta & mask) < (mask >> 3))) {
189
		tk->underflow_seen = 1;
190
		delta = 0;
191
	}
192

193
	/* Cap delta value to the max_cycles values to avoid mult overflows */
194
	if (unlikely(delta > max)) {
195
		tk->overflow_seen = 1;
196
		delta = tkr->clock->max_cycles;
197
	}
198 199 200

	return delta;
}
201 202 203 204
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
205 206 207 208 209 210 211 212 213 214 215 216
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
217 218
#endif

219
/**
220
 * tk_setup_internals - Set up internals to use clocksource clock.
221
 *
222
 * @tk:		The target timekeeper to setup.
223 224 225 226 227 228 229
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
230
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 232
{
	cycle_t interval;
233
	u64 tmp, ntpinterval;
234
	struct clocksource *old_clock;
235

236
	++tk->cs_was_changed_seq;
237 238 239 240 241
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242

P
Peter Zijlstra 已提交
243 244 245 246 247
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

248 249 250
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
251
	ntpinterval = tmp;
252 253
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
254 255 256 257
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
258
	tk->cycle_interval = interval;
259 260

	/* Go back from cycles -> shifted ns */
261 262 263
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
264
		((u64) interval * clock->mult) >> clock->shift;
265

266 267 268 269
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
270
			tk->tkr_mono.xtime_nsec >>= -shift_change;
271
		else
272
			tk->tkr_mono.xtime_nsec <<= shift_change;
273
	}
P
Peter Zijlstra 已提交
274 275
	tk->tkr_raw.xtime_nsec = 0;

276
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
277
	tk->tkr_raw.shift = clock->shift;
278

279 280
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
281
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
282 283 284 285 286 287

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
288
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
289
	tk->tkr_raw.mult = clock->mult;
290
	tk->ntp_err_mult = 0;
291
}
292

293
/* Timekeeper helper functions. */
294 295

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296 297
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
298
#else
299
static inline u32 arch_gettimeoffset(void) { return 0; }
300 301
#endif

302 303 304 305 306 307 308 309 310 311 312 313
static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
					  cycle_t delta)
{
	s64 nsec;

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

314
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315
{
316
	cycle_t delta;
317

318
	delta = timekeeping_get_delta(tkr);
319 320
	return timekeeping_delta_to_ns(tkr, delta);
}
321

322 323 324 325
static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
					    cycle_t cycles)
{
	cycle_t delta;
326

327 328 329
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
330 331
}

332 333
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334
 * @tkr: Timekeeping readout base from which we take the update
335 336 337 338
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
339
 * Employ the latch technique; see @raw_write_seqcount_latch.
340 341 342 343 344 345
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
346
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347
{
348
	struct tk_read_base *base = tkf->base;
349 350

	/* Force readers off to base[1] */
351
	raw_write_seqcount_latch(&tkf->seq);
352 353

	/* Update base[0] */
354
	memcpy(base, tkr, sizeof(*base));
355 356

	/* Force readers back to base[0] */
357
	raw_write_seqcount_latch(&tkf->seq);
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
395
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396 397 398 399 400 401
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
402
		seq = raw_read_seqcount_latch(&tkf->seq);
403
		tkr = tkf->base + (seq & 0x01);
404
		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
405
	} while (read_seqcount_retry(&tkf->seq, seq));
406 407 408

	return now;
}
409 410 411 412 413

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
414 415
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
416 417 418 419 420 421
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
443
	struct tk_read_base *tkr = &tk->tkr_mono;
444 445 446 447

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
448
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
449 450 451 452 453

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
454 455
}

456 457 458 459
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
460
	struct timespec xt, wm;
461

462
	xt = timespec64_to_timespec(tk_xtime(tk));
463
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
464 465
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
482 483 484
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
	tk->tkr_mono.xtime_nsec -= remainder;
	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
485
	tk->ntp_error += remainder << tk->ntp_error_shift;
486
	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
487 488 489 490 491
}
#else
#define old_vsyscall_fixup(tk)
#endif

492 493
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

494
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
495
{
496
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
497 498 499 500 501 502 503
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
504
	struct timekeeper *tk = &tk_core.timekeeper;
505 506 507
	unsigned long flags;
	int ret;

508
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
509
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
510
	update_pvclock_gtod(tk, true);
511
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
512 513 514 515 516 517 518 519 520 521 522 523 524 525

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

526
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
527
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
528
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
529 530 531 532 533

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

534 535 536 537 538 539 540 541 542 543 544
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

545 546 547 548 549
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
550 551
	u64 seconds;
	u32 nsec;
552 553 554 555 556 557 558 559

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
560 561
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
562
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
563 564

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
565
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
566 567 568 569 570 571

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
572
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
573 574 575
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
576 577
}

578
/* must hold timekeeper_lock */
579
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
580
{
581
	if (action & TK_CLEAR_NTP) {
582
		tk->ntp_error = 0;
583 584
		ntp_clear();
	}
585

586
	tk_update_leap_state(tk);
587 588
	tk_update_ktime_data(tk);

589 590 591
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

592
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
593
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
594 595 596

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
597 598 599 600 601 602 603 604
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
605 606
}

607
/**
608
 * timekeeping_forward_now - update clock to the current time
609
 *
610 611 612
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
613
 */
614
static void timekeeping_forward_now(struct timekeeper *tk)
615
{
616
	struct clocksource *clock = tk->tkr_mono.clock;
617
	cycle_t cycle_now, delta;
618
	s64 nsec;
619

620 621 622
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
623
	tk->tkr_raw.cycle_last  = cycle_now;
624

625
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
626

627
	/* If arch requires, add in get_arch_timeoffset() */
628
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
629

630
	tk_normalize_xtime(tk);
631

P
Peter Zijlstra 已提交
632
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
633
	timespec64_add_ns(&tk->raw_time, nsec);
634 635 636
}

/**
637
 * __getnstimeofday64 - Returns the time of day in a timespec64.
638 639
 * @ts:		pointer to the timespec to be set
 *
640 641
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
642
 */
643
int __getnstimeofday64(struct timespec64 *ts)
644
{
645
	struct timekeeper *tk = &tk_core.timekeeper;
646
	unsigned long seq;
647
	s64 nsecs = 0;
648 649

	do {
650
		seq = read_seqcount_begin(&tk_core.seq);
651

652
		ts->tv_sec = tk->xtime_sec;
653
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
654

655
	} while (read_seqcount_retry(&tk_core.seq, seq));
656

657
	ts->tv_nsec = 0;
658
	timespec64_add_ns(ts, nsecs);
659 660 661 662 663 664 665 666 667

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
668
EXPORT_SYMBOL(__getnstimeofday64);
669 670

/**
671
 * getnstimeofday64 - Returns the time of day in a timespec64.
672
 * @ts:		pointer to the timespec64 to be set
673
 *
674
 * Returns the time of day in a timespec64 (WARN if suspended).
675
 */
676
void getnstimeofday64(struct timespec64 *ts)
677
{
678
	WARN_ON(__getnstimeofday64(ts));
679
}
680
EXPORT_SYMBOL(getnstimeofday64);
681

682 683
ktime_t ktime_get(void)
{
684
	struct timekeeper *tk = &tk_core.timekeeper;
685
	unsigned int seq;
686 687
	ktime_t base;
	s64 nsecs;
688 689 690 691

	WARN_ON(timekeeping_suspended);

	do {
692
		seq = read_seqcount_begin(&tk_core.seq);
693 694
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
695

696
	} while (read_seqcount_retry(&tk_core.seq, seq));
697

698
	return ktime_add_ns(base, nsecs);
699 700 701
}
EXPORT_SYMBOL_GPL(ktime_get);

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
736 737
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
738 739 740 741 742 743 744 745

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

766 767 768 769 770 771 772 773 774 775 776 777
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
778 779
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
780 781 782 783 784 785 786

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

787
/**
788
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
789 790 791 792
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
793
 * in normalized timespec64 format in the variable pointed to by @ts.
794
 */
795
void ktime_get_ts64(struct timespec64 *ts)
796
{
797
	struct timekeeper *tk = &tk_core.timekeeper;
798
	struct timespec64 tomono;
799
	s64 nsec;
800 801 802 803 804
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
805
		seq = read_seqcount_begin(&tk_core.seq);
806
		ts->tv_sec = tk->xtime_sec;
807
		nsec = timekeeping_get_ns(&tk->tkr_mono);
808
		tomono = tk->wall_to_monotonic;
809

810
	} while (read_seqcount_retry(&tk_core.seq, seq));
811

812 813 814
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
815
}
816
EXPORT_SYMBOL_GPL(ktime_get_ts64);
817

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

866 867 868 869 870 871 872 873 874 875 876 877
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

878 879 880 881 882 883 884 885 886 887 888 889 890 891
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
	s64 nsec_raw;
	s64 nsec_real;
	cycle_t now;

892 893
	WARN_ON_ONCE(timekeeping_suspended);

894 895 896 897
	do {
		seq = read_seqcount_begin(&tk_core.seq);

		now = tk->tkr_mono.read(tk->tkr_mono.clock);
898 899
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
900 901 902 903 904 905 906 907 908 909 910 911
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
912

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
					 cycle_t partial_history_cycles,
					 cycle_t total_history_cycles,
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
	interp_forward = partial_history_cycles > total_history_cycles/2 ?
		true : false;
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1023 1024
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1025
 * @get_time_fn:	Callback to get simultaneous device time and
1026
 *	system counter from the device driver
1027 1028 1029
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1030 1031 1032 1033 1034 1035 1036 1037 1038
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1039
				  struct system_time_snapshot *history_begin,
1040 1041 1042 1043
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1044
	cycle_t cycles, now, interval_start;
1045
	unsigned int clock_was_set_seq = 0;
1046 1047
	ktime_t base_real, base_raw;
	s64 nsec_real, nsec_raw;
1048
	u8 cs_was_changed_seq;
1049
	unsigned long seq;
1050
	bool do_interp;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
		now = tk->tkr_mono.read(tk->tkr_mono.clock);
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
		cycle_t partial_history_cycles, total_history_cycles;
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1131 1132 1133 1134
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1135 1136 1137 1138
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1139
 * NOTE: Users should be converted to using getnstimeofday()
1140 1141 1142
 */
void do_gettimeofday(struct timeval *tv)
{
1143
	struct timespec64 now;
1144

1145
	getnstimeofday64(&now);
1146 1147 1148 1149
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1150

1151
/**
1152 1153
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1154 1155 1156
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1157
int do_settimeofday64(const struct timespec64 *ts)
1158
{
1159
	struct timekeeper *tk = &tk_core.timekeeper;
1160
	struct timespec64 ts_delta, xt;
1161
	unsigned long flags;
1162
	int ret = 0;
1163

1164
	if (!timespec64_valid_strict(ts))
1165 1166
		return -EINVAL;

1167
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1168
	write_seqcount_begin(&tk_core.seq);
1169

1170
	timekeeping_forward_now(tk);
1171

1172
	xt = tk_xtime(tk);
1173 1174
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1175

1176 1177 1178 1179 1180
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1181
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1182

1183
	tk_set_xtime(tk, ts);
1184
out:
1185
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1186

1187
	write_seqcount_end(&tk_core.seq);
1188
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1189 1190 1191 1192

	/* signal hrtimers about time change */
	clock_was_set();

1193
	return ret;
1194
}
1195
EXPORT_SYMBOL(do_settimeofday64);
1196

1197 1198 1199 1200 1201 1202 1203 1204
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
1205
	struct timekeeper *tk = &tk_core.timekeeper;
1206
	unsigned long flags;
1207
	struct timespec64 ts64, tmp;
1208
	int ret = 0;
1209

1210
	if (!timespec_inject_offset_valid(ts))
1211 1212
		return -EINVAL;

1213 1214
	ts64 = timespec_to_timespec64(*ts);

1215
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1216
	write_seqcount_begin(&tk_core.seq);
1217

1218
	timekeeping_forward_now(tk);
1219

1220
	/* Make sure the proposed value is valid */
1221
	tmp = timespec64_add(tk_xtime(tk),  ts64);
1222 1223
	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
	    !timespec64_valid_strict(&tmp)) {
1224 1225 1226
		ret = -EINVAL;
		goto error;
	}
1227

1228 1229
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1230

1231
error: /* even if we error out, we forwarded the time, so call update */
1232
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1233

1234
	write_seqcount_end(&tk_core.seq);
1235
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1236 1237 1238 1239

	/* signal hrtimers about time change */
	clock_was_set();

1240
	return ret;
1241 1242 1243
}
EXPORT_SYMBOL(timekeeping_inject_offset);

1244 1245 1246 1247 1248 1249 1250

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
1251
	struct timekeeper *tk = &tk_core.timekeeper;
1252 1253 1254 1255
	unsigned int seq;
	s32 ret;

	do {
1256
		seq = read_seqcount_begin(&tk_core.seq);
1257
		ret = tk->tai_offset;
1258
	} while (read_seqcount_retry(&tk_core.seq, seq));
1259 1260 1261 1262 1263 1264 1265 1266

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
1267
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1268 1269
{
	tk->tai_offset = tai_offset;
1270
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1271 1272 1273 1274 1275 1276 1277 1278
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
1279
	struct timekeeper *tk = &tk_core.timekeeper;
1280 1281
	unsigned long flags;

1282
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1283
	write_seqcount_begin(&tk_core.seq);
1284
	__timekeeping_set_tai_offset(tk, tai_offset);
1285
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1286
	write_seqcount_end(&tk_core.seq);
1287
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1288
	clock_was_set();
1289 1290
}

1291 1292 1293 1294 1295
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1296
static int change_clocksource(void *data)
1297
{
1298
	struct timekeeper *tk = &tk_core.timekeeper;
1299
	struct clocksource *new, *old;
1300
	unsigned long flags;
1301

1302
	new = (struct clocksource *) data;
1303

1304
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1305
	write_seqcount_begin(&tk_core.seq);
1306

1307
	timekeeping_forward_now(tk);
1308 1309 1310 1311 1312 1313
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1314
			old = tk->tkr_mono.clock;
1315 1316 1317 1318 1319 1320 1321
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1322
	}
1323
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1324

1325
	write_seqcount_end(&tk_core.seq);
1326
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1327

1328 1329
	return 0;
}
1330

1331 1332 1333 1334 1335 1336 1337
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1338
int timekeeping_notify(struct clocksource *clock)
1339
{
1340
	struct timekeeper *tk = &tk_core.timekeeper;
1341

1342
	if (tk->tkr_mono.clock == clock)
1343
		return 0;
1344
	stop_machine(change_clocksource, clock, NULL);
1345
	tick_clock_notify();
1346
	return tk->tkr_mono.clock == clock ? 0 : -1;
1347
}
1348

1349
/**
1350 1351
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1352 1353 1354
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1355
void getrawmonotonic64(struct timespec64 *ts)
1356
{
1357
	struct timekeeper *tk = &tk_core.timekeeper;
1358
	struct timespec64 ts64;
1359 1360 1361 1362
	unsigned long seq;
	s64 nsecs;

	do {
1363
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1364
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1365
		ts64 = tk->raw_time;
1366

1367
	} while (read_seqcount_retry(&tk_core.seq, seq));
1368

1369
	timespec64_add_ns(&ts64, nsecs);
1370
	*ts = ts64;
1371
}
1372 1373
EXPORT_SYMBOL(getrawmonotonic64);

1374

1375
/**
1376
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1377
 */
1378
int timekeeping_valid_for_hres(void)
1379
{
1380
	struct timekeeper *tk = &tk_core.timekeeper;
1381 1382 1383 1384
	unsigned long seq;
	int ret;

	do {
1385
		seq = read_seqcount_begin(&tk_core.seq);
1386

1387
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1388

1389
	} while (read_seqcount_retry(&tk_core.seq, seq));
1390 1391 1392 1393

	return ret;
}

1394 1395 1396 1397 1398
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1399
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1400 1401
	unsigned long seq;
	u64 ret;
1402

J
John Stultz 已提交
1403
	do {
1404
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1405

1406
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1407

1408
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1409 1410

	return ret;
1411 1412
}

1413
/**
1414
 * read_persistent_clock -  Return time from the persistent clock.
1415 1416
 *
 * Weak dummy function for arches that do not yet support it.
1417 1418
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1419 1420 1421
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1422
void __weak read_persistent_clock(struct timespec *ts)
1423
{
1424 1425
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1426 1427
}

1428 1429 1430 1431 1432 1433 1434 1435
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1436
/**
X
Xunlei Pang 已提交
1437
 * read_boot_clock64 -  Return time of the system start.
1438 1439 1440
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1441
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1442 1443 1444
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1445
void __weak read_boot_clock64(struct timespec64 *ts)
1446 1447 1448 1449 1450
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1451 1452 1453 1454 1455 1456
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1457 1458 1459 1460 1461
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1462
	struct timekeeper *tk = &tk_core.timekeeper;
1463
	struct clocksource *clock;
1464
	unsigned long flags;
1465
	struct timespec64 now, boot, tmp;
1466

1467
	read_persistent_clock64(&now);
1468
	if (!timespec64_valid_strict(&now)) {
1469 1470 1471 1472
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1473
	} else if (now.tv_sec || now.tv_nsec)
1474
		persistent_clock_exists = true;
1475

1476
	read_boot_clock64(&boot);
1477
	if (!timespec64_valid_strict(&boot)) {
1478 1479 1480 1481 1482
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1483

1484
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1485
	write_seqcount_begin(&tk_core.seq);
1486 1487
	ntp_init();

1488
	clock = clocksource_default_clock();
1489 1490
	if (clock->enable)
		clock->enable(clock);
1491
	tk_setup_internals(tk, clock);
1492

1493 1494 1495
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1496
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1497
		boot = tk_xtime(tk);
1498

1499
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1500
	tk_set_wall_to_mono(tk, tmp);
1501

1502
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1503

1504
	write_seqcount_end(&tk_core.seq);
1505
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1506 1507
}

1508
/* time in seconds when suspend began for persistent clock */
1509
static struct timespec64 timekeeping_suspend_time;
1510

1511 1512 1513 1514 1515 1516 1517
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1518
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1519
					   struct timespec64 *delta)
1520
{
1521
	if (!timespec64_valid_strict(delta)) {
1522 1523 1524
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1525 1526
		return;
	}
1527
	tk_xtime_add(tk, delta);
1528
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1529
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1530
	tk_debug_account_sleep_time(delta);
1531 1532
}

1533
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1569
/**
1570 1571
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1572
 *
1573
 * This hook is for architectures that cannot support read_persistent_clock64
1574
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1575
 * and also don't have an effective nonstop clocksource.
1576 1577 1578 1579
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1580
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1581
{
1582
	struct timekeeper *tk = &tk_core.timekeeper;
1583
	unsigned long flags;
1584

1585
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1586
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1587

1588
	timekeeping_forward_now(tk);
1589

1590
	__timekeeping_inject_sleeptime(tk, delta);
1591

1592
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1593

1594
	write_seqcount_end(&tk_core.seq);
1595
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1596 1597 1598 1599

	/* signal hrtimers about time change */
	clock_was_set();
}
1600
#endif
1601

1602 1603 1604
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1605
void timekeeping_resume(void)
1606
{
1607
	struct timekeeper *tk = &tk_core.timekeeper;
1608
	struct clocksource *clock = tk->tkr_mono.clock;
1609
	unsigned long flags;
1610
	struct timespec64 ts_new, ts_delta;
1611
	cycle_t cycle_now, cycle_delta;
1612

1613
	sleeptime_injected = false;
1614
	read_persistent_clock64(&ts_new);
1615

1616
	clockevents_resume();
1617 1618
	clocksource_resume();

1619
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1620
	write_seqcount_begin(&tk_core.seq);
1621

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1634
	cycle_now = tk->tkr_mono.read(clock);
1635
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1636
		cycle_now > tk->tkr_mono.cycle_last) {
1637 1638 1639 1640 1641
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1642 1643
		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
						tk->tkr_mono.mask);
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1658
		ts_delta = ns_to_timespec64(nsec);
1659
		sleeptime_injected = true;
1660 1661
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1662
		sleeptime_injected = true;
1663
	}
1664

1665
	if (sleeptime_injected)
1666 1667 1668
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1669
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1670 1671
	tk->tkr_raw.cycle_last  = cycle_now;

1672
	tk->ntp_error = 0;
1673
	timekeeping_suspended = 0;
1674
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1675
	write_seqcount_end(&tk_core.seq);
1676
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1677 1678 1679

	touch_softlockup_watchdog();

1680
	tick_resume();
1681
	hrtimers_resume();
1682 1683
}

1684
int timekeeping_suspend(void)
1685
{
1686
	struct timekeeper *tk = &tk_core.timekeeper;
1687
	unsigned long flags;
1688 1689
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1690

1691
	read_persistent_clock64(&timekeeping_suspend_time);
1692

1693 1694 1695 1696 1697 1698
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1699
		persistent_clock_exists = true;
1700

1701
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1702
	write_seqcount_begin(&tk_core.seq);
1703
	timekeeping_forward_now(tk);
1704
	timekeeping_suspended = 1;
1705

1706
	if (persistent_clock_exists) {
1707
		/*
1708 1709 1710 1711
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1712
		 */
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1726
	}
1727 1728

	timekeeping_update(tk, TK_MIRROR);
1729
	halt_fast_timekeeper(tk);
1730
	write_seqcount_end(&tk_core.seq);
1731
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1732

1733
	tick_suspend();
M
Magnus Damm 已提交
1734
	clocksource_suspend();
1735
	clockevents_suspend();
1736 1737 1738 1739 1740

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1741
static struct syscore_ops timekeeping_syscore_ops = {
1742 1743 1744 1745
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1746
static int __init timekeeping_init_ops(void)
1747
{
1748 1749
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1750
}
1751
device_initcall(timekeeping_init_ops);
1752 1753

/*
1754
 * Apply a multiplier adjustment to the timekeeper
1755
 */
1756 1757 1758 1759
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1760
{
1761 1762
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1763

1764 1765 1766 1767
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1768
	}
1769 1770 1771
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1772

1773 1774 1775
	/*
	 * So the following can be confusing.
	 *
1776
	 * To keep things simple, lets assume mult_adj == 1 for now.
1777
	 *
1778
	 * When mult_adj != 1, remember that the interval and offset values
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1822
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1823 1824 1825 1826 1827
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1828
	tk->tkr_mono.mult += mult_adj;
1829
	tk->xtime_interval += interval;
1830
	tk->tkr_mono.xtime_nsec -= offset;
1831
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
1843 1844 1845
	u32 base = tk->tkr_mono.clock->mult;
	u32 max = tk->tkr_mono.clock->maxadj;
	u32 cur_adj = tk->tkr_mono.mult;
1846 1847
	s64 tick_error;
	bool negative;
1848
	u32 adj_scale;
1849 1850 1851 1852 1853

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1854 1855
	tk->ntp_tick = ntp_tick_length();

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	/* If any adjustment would pass the max, just return */
	if (negative && (cur_adj - 1) <= (base - max))
		return;
	if (!negative && (cur_adj + 1) >= (base + max))
		return;
	/*
	 * Sort out the magnitude of the correction, but
	 * avoid making so large a correction that we go
	 * over the max adjustment.
	 */
	adj_scale = 0;
A
Andrew Morton 已提交
1878
	tick_error = abs(tick_error);
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	while (tick_error > interval) {
		u32 adj = 1 << (adj_scale + 1);

		/* Check if adjustment gets us within 1 unit from the max */
		if (negative && (cur_adj - adj) <= (base - max))
			break;
		if (!negative && (cur_adj + adj) >= (base + max))
			break;

		adj_scale++;
1889
		tick_error >>= 1;
1890
	}
1891 1892

	/* scale the corrections */
1893
	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1915 1916 1917
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1918 1919
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1920 1921
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1922
	}
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1938 1939 1940
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1941
		tk->ntp_error += neg << tk->ntp_error_shift;
1942
	}
1943 1944
}

1945 1946 1947
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1948
 * Helper function that accumulates the nsecs greater than a second
1949 1950 1951 1952
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1953
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1954
{
1955
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1956
	unsigned int clock_set = 0;
1957

1958
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1959 1960
		int leap;

1961
		tk->tkr_mono.xtime_nsec -= nsecps;
1962 1963 1964 1965
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1966
		if (unlikely(leap)) {
1967
			struct timespec64 ts;
1968 1969

			tk->xtime_sec += leap;
1970

1971 1972 1973
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1974
				timespec64_sub(tk->wall_to_monotonic, ts));
1975

1976 1977
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1978
			clock_set = TK_CLOCK_WAS_SET;
1979
		}
1980
	}
1981
	return clock_set;
1982 1983
}

1984 1985 1986 1987 1988 1989 1990 1991 1992
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1993
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1994 1995
						u32 shift,
						unsigned int *clock_set)
1996
{
T
Thomas Gleixner 已提交
1997
	cycle_t interval = tk->cycle_interval << shift;
1998
	u64 raw_nsecs;
1999

Z
Zhen Lei 已提交
2000
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
2001
	if (offset < interval)
2002 2003 2004
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2005
	offset -= interval;
2006
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2007
	tk->tkr_raw.cycle_last  += interval;
2008

2009
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2010
	*clock_set |= accumulate_nsecs_to_secs(tk);
2011

2012
	/* Accumulate raw time */
2013
	raw_nsecs = (u64)tk->raw_interval << shift;
2014
	raw_nsecs += tk->raw_time.tv_nsec;
2015 2016 2017
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2018
		tk->raw_time.tv_sec += raw_secs;
2019
	}
2020
	tk->raw_time.tv_nsec = raw_nsecs;
2021 2022

	/* Accumulate error between NTP and clock interval */
2023
	tk->ntp_error += tk->ntp_tick << shift;
2024 2025
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2026 2027 2028 2029

	return offset;
}

2030 2031 2032 2033
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
2034
void update_wall_time(void)
2035
{
2036
	struct timekeeper *real_tk = &tk_core.timekeeper;
2037
	struct timekeeper *tk = &shadow_timekeeper;
2038
	cycle_t offset;
2039
	int shift = 0, maxshift;
2040
	unsigned int clock_set = 0;
J
John Stultz 已提交
2041 2042
	unsigned long flags;

2043
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2044 2045 2046

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2047
		goto out;
2048

J
John Stultz 已提交
2049
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2050
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
2051
#else
2052 2053
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2054 2055
#endif

2056
	/* Check if there's really nothing to do */
2057
	if (offset < real_tk->cycle_interval)
2058 2059
		goto out;

2060 2061 2062
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

2063 2064 2065 2066
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2067
	 * that is smaller than the offset.  We then accumulate that
2068 2069
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2070
	 */
2071
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2072
	shift = max(0, shift);
2073
	/* Bound shift to one less than what overflows tick_length */
2074
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2075
	shift = min(shift, maxshift);
2076
	while (offset >= tk->cycle_interval) {
2077 2078
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2079
		if (offset < tk->cycle_interval<<shift)
2080
			shift--;
2081 2082 2083
	}

	/* correct the clock when NTP error is too big */
2084
	timekeeping_adjust(tk, offset);
2085

J
John Stultz 已提交
2086
	/*
2087 2088 2089 2090
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
2091

J
John Stultz 已提交
2092 2093
	/*
	 * Finally, make sure that after the rounding
2094
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2095
	 */
2096
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2097

2098
	write_seqcount_begin(&tk_core.seq);
2099 2100 2101 2102 2103 2104 2105
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2106
	 * memcpy under the tk_core.seq against one before we start
2107 2108
	 * updating.
	 */
2109
	timekeeping_update(tk, clock_set);
2110
	memcpy(real_tk, tk, sizeof(*tk));
2111
	/* The memcpy must come last. Do not put anything here! */
2112
	write_seqcount_end(&tk_core.seq);
2113
out:
2114
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2115
	if (clock_set)
2116 2117
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2118
}
T
Tomas Janousek 已提交
2119 2120

/**
2121 2122
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2123
 *
2124
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2125 2126 2127 2128 2129 2130
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2131
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2132
{
2133
	struct timekeeper *tk = &tk_core.timekeeper;
2134 2135
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

2136
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2137
}
2138
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2139

2140 2141
unsigned long get_seconds(void)
{
2142
	struct timekeeper *tk = &tk_core.timekeeper;
2143 2144

	return tk->xtime_sec;
2145 2146 2147
}
EXPORT_SYMBOL(get_seconds);

2148 2149
struct timespec __current_kernel_time(void)
{
2150
	struct timekeeper *tk = &tk_core.timekeeper;
2151

2152
	return timespec64_to_timespec(tk_xtime(tk));
2153
}
2154

2155
struct timespec64 current_kernel_time64(void)
2156
{
2157
	struct timekeeper *tk = &tk_core.timekeeper;
2158
	struct timespec64 now;
2159 2160 2161
	unsigned long seq;

	do {
2162
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2163

2164
		now = tk_xtime(tk);
2165
	} while (read_seqcount_retry(&tk_core.seq, seq));
2166

2167
	return now;
2168
}
2169
EXPORT_SYMBOL(current_kernel_time64);
2170

2171
struct timespec64 get_monotonic_coarse64(void)
2172
{
2173
	struct timekeeper *tk = &tk_core.timekeeper;
2174
	struct timespec64 now, mono;
2175 2176 2177
	unsigned long seq;

	do {
2178
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2179

2180 2181
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2182
	} while (read_seqcount_retry(&tk_core.seq, seq));
2183

2184
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2185
				now.tv_nsec + mono.tv_nsec);
2186

2187
	return now;
2188
}
2189 2190

/*
2191
 * Must hold jiffies_lock
2192 2193 2194 2195 2196 2197
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2198

2199
/**
2200
 * ktime_get_update_offsets_now - hrtimer helper
2201
 * @cwsseq:	pointer to check and store the clock was set sequence number
2202 2203
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2204
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2205
 *
2206 2207 2208 2209
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2210
 * Called from hrtimer_interrupt() or retrigger_next_event()
2211
 */
2212 2213
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
2214
{
2215
	struct timekeeper *tk = &tk_core.timekeeper;
2216
	unsigned int seq;
2217 2218
	ktime_t base;
	u64 nsecs;
2219 2220

	do {
2221
		seq = read_seqcount_begin(&tk_core.seq);
2222

2223 2224
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2225 2226
		base = ktime_add_ns(base, nsecs);

2227 2228 2229 2230 2231 2232
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
2233 2234 2235 2236 2237

		/* Handle leapsecond insertion adjustments */
		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2238
	} while (read_seqcount_retry(&tk_core.seq, seq));
2239

2240
	return base;
2241 2242
}

2243 2244 2245 2246 2247
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2248
	struct timekeeper *tk = &tk_core.timekeeper;
2249
	unsigned long flags;
2250
	struct timespec64 ts;
2251
	s32 orig_tai, tai;
2252 2253 2254 2255 2256 2257 2258
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2270
	getnstimeofday64(&ts);
2271

2272
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2273
	write_seqcount_begin(&tk_core.seq);
2274

2275
	orig_tai = tai = tk->tai_offset;
2276
	ret = __do_adjtimex(txc, &ts, &tai);
2277

2278 2279
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2280
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2281
	}
2282 2283
	tk_update_leap_state(tk);

2284
	write_seqcount_end(&tk_core.seq);
2285 2286
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2287 2288 2289
	if (tai != orig_tai)
		clock_was_set();

2290 2291
	ntp_notify_cmos_timer();

2292 2293
	return ret;
}
2294 2295 2296 2297 2298

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2299
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2300
{
2301 2302 2303
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2304
	write_seqcount_begin(&tk_core.seq);
2305

2306
	__hardpps(phase_ts, raw_ts);
2307

2308
	write_seqcount_end(&tk_core.seq);
2309
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2310 2311 2312 2313
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2314 2315 2316 2317 2318 2319 2320 2321
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2322
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2323
	do_timer(ticks);
2324
	write_sequnlock(&jiffies_lock);
2325
	update_wall_time();
T
Torben Hohn 已提交
2326
}