timekeeping.c 63.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
62
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63

64 65 66
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

67 68
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
69 70
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 72 73 74
		tk->xtime_sec++;
	}
}

75 76 77 78 79
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
80
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 82 83
	return ts;
}

84
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 86
{
	tk->xtime_sec = ts->tv_sec;
87
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 89
}

90
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 92
{
	tk->xtime_sec += ts->tv_sec;
93
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94
	tk_normalize_xtime(tk);
95
}
96

97
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98
{
99
	struct timespec64 tmp;
100 101 102 103 104

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
105
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106
					-tk->wall_to_monotonic.tv_nsec);
107
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108
	tk->wall_to_monotonic = wtm;
109 110
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
111
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 113
}

114
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115
{
116
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 118
}

119
#ifdef CONFIG_DEBUG_TIMEKEEPING
120 121
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

122 123 124
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

125 126
	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
	const char *name = tk->tkr_mono.clock->name;
127 128

	if (offset > max_cycles) {
129
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130
				offset, name, max_cycles);
131
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 133
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
134
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 136 137 138
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
139

140 141
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 143 144
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
145
			tk->last_warning = jiffies;
146
		}
147
		tk->underflow_seen = 0;
148 149
	}

150 151
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 153 154
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
155
			tk->last_warning = jiffies;
156
		}
157
		tk->overflow_seen = 0;
158
	}
159
}
160 161 162

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
163
	struct timekeeper *tk = &tk_core.timekeeper;
164 165
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
181

182
	delta = clocksource_delta(now, last, mask);
183

184 185 186 187
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
188
	if (unlikely((~delta & mask) < (mask >> 3))) {
189
		tk->underflow_seen = 1;
190
		delta = 0;
191
	}
192

193
	/* Cap delta value to the max_cycles values to avoid mult overflows */
194
	if (unlikely(delta > max)) {
195
		tk->overflow_seen = 1;
196
		delta = tkr->clock->max_cycles;
197
	}
198 199 200

	return delta;
}
201 202 203 204
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
205 206 207 208 209 210 211 212 213 214 215 216
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
217 218
#endif

219
/**
220
 * tk_setup_internals - Set up internals to use clocksource clock.
221
 *
222
 * @tk:		The target timekeeper to setup.
223 224 225 226 227 228 229
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
230
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 232
{
	cycle_t interval;
233
	u64 tmp, ntpinterval;
234
	struct clocksource *old_clock;
235

236
	++tk->cs_was_changed_seq;
237 238 239 240 241
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242

P
Peter Zijlstra 已提交
243 244 245 246 247
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

248 249 250
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
251
	ntpinterval = tmp;
252 253
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
254 255 256 257
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
258
	tk->cycle_interval = interval;
259 260

	/* Go back from cycles -> shifted ns */
261 262 263
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
264
		((u64) interval * clock->mult) >> clock->shift;
265

266 267 268 269
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
270
			tk->tkr_mono.xtime_nsec >>= -shift_change;
271
		else
272
			tk->tkr_mono.xtime_nsec <<= shift_change;
273
	}
P
Peter Zijlstra 已提交
274 275
	tk->tkr_raw.xtime_nsec = 0;

276
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
277
	tk->tkr_raw.shift = clock->shift;
278

279 280
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
281
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
282 283 284 285 286 287

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
288
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
289
	tk->tkr_raw.mult = clock->mult;
290
	tk->ntp_err_mult = 0;
291
}
292

293
/* Timekeeper helper functions. */
294 295

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296 297
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
298
#else
299
static inline u32 arch_gettimeoffset(void) { return 0; }
300 301
#endif

302 303 304 305 306 307 308 309 310 311 312 313
static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
					  cycle_t delta)
{
	s64 nsec;

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

314
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315
{
316
	cycle_t delta;
317

318
	delta = timekeeping_get_delta(tkr);
319 320
	return timekeeping_delta_to_ns(tkr, delta);
}
321

322 323 324 325
static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
					    cycle_t cycles)
{
	cycle_t delta;
326

327 328 329
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
330 331
}

332 333
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334
 * @tkr: Timekeeping readout base from which we take the update
335 336 337 338
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
339
 * Employ the latch technique; see @raw_write_seqcount_latch.
340 341 342 343 344 345
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
346
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347
{
348
	struct tk_read_base *base = tkf->base;
349 350

	/* Force readers off to base[1] */
351
	raw_write_seqcount_latch(&tkf->seq);
352 353

	/* Update base[0] */
354
	memcpy(base, tkr, sizeof(*base));
355 356

	/* Force readers back to base[0] */
357
	raw_write_seqcount_latch(&tkf->seq);
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
395
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396 397 398 399 400 401
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
402
		seq = raw_read_seqcount_latch(&tkf->seq);
403
		tkr = tkf->base + (seq & 0x01);
404 405
		now = ktime_to_ns(tkr->base);

406 407 408 409 410
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
					tkr->read(tkr->clock),
					tkr->cycle_last,
					tkr->mask));
411
	} while (read_seqcount_retry(&tkf->seq, seq));
412 413 414

	return now;
}
415 416 417 418 419

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
420 421
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
422 423 424 425 426 427
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
449
	struct tk_read_base *tkr = &tk->tkr_mono;
450 451 452 453

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
454
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
455 456 457 458 459

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
460 461
}

462 463 464 465
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
466
	struct timespec xt, wm;
467

468
	xt = timespec64_to_timespec(tk_xtime(tk));
469
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
470 471
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
488
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
489 490 491 492 493 494
	if (remainder != 0) {
		tk->tkr_mono.xtime_nsec -= remainder;
		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
		tk->ntp_error += remainder << tk->ntp_error_shift;
		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
	}
495 496 497 498 499
}
#else
#define old_vsyscall_fixup(tk)
#endif

500 501
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

502
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
503
{
504
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
505 506 507 508 509 510 511
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
512
	struct timekeeper *tk = &tk_core.timekeeper;
513 514 515
	unsigned long flags;
	int ret;

516
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
517
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
518
	update_pvclock_gtod(tk, true);
519
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
520 521 522 523 524 525 526 527 528 529 530 531 532 533

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

534
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
535
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
536
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
537 538 539 540 541

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

542 543 544 545 546 547 548 549 550 551 552
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

553 554 555 556 557
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
558 559
	u64 seconds;
	u32 nsec;
560 561 562 563 564 565 566 567

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
568 569
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
570
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
571 572

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
573
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
574 575 576 577 578 579

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
580
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
581 582 583
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
584 585
}

586
/* must hold timekeeper_lock */
587
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
588
{
589
	if (action & TK_CLEAR_NTP) {
590
		tk->ntp_error = 0;
591 592
		ntp_clear();
	}
593

594
	tk_update_leap_state(tk);
595 596
	tk_update_ktime_data(tk);

597 598 599
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

600
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
601
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
602 603 604

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
605 606 607 608 609 610 611 612
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
613 614
}

615
/**
616
 * timekeeping_forward_now - update clock to the current time
617
 *
618 619 620
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
621
 */
622
static void timekeeping_forward_now(struct timekeeper *tk)
623
{
624
	struct clocksource *clock = tk->tkr_mono.clock;
625
	cycle_t cycle_now, delta;
626
	s64 nsec;
627

628 629 630
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
631
	tk->tkr_raw.cycle_last  = cycle_now;
632

633
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
634

635
	/* If arch requires, add in get_arch_timeoffset() */
636
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
637

638
	tk_normalize_xtime(tk);
639

P
Peter Zijlstra 已提交
640
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
641
	timespec64_add_ns(&tk->raw_time, nsec);
642 643 644
}

/**
645
 * __getnstimeofday64 - Returns the time of day in a timespec64.
646 647
 * @ts:		pointer to the timespec to be set
 *
648 649
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
650
 */
651
int __getnstimeofday64(struct timespec64 *ts)
652
{
653
	struct timekeeper *tk = &tk_core.timekeeper;
654
	unsigned long seq;
655
	s64 nsecs = 0;
656 657

	do {
658
		seq = read_seqcount_begin(&tk_core.seq);
659

660
		ts->tv_sec = tk->xtime_sec;
661
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
662

663
	} while (read_seqcount_retry(&tk_core.seq, seq));
664

665
	ts->tv_nsec = 0;
666
	timespec64_add_ns(ts, nsecs);
667 668 669 670 671 672 673 674 675

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
676
EXPORT_SYMBOL(__getnstimeofday64);
677 678

/**
679
 * getnstimeofday64 - Returns the time of day in a timespec64.
680
 * @ts:		pointer to the timespec64 to be set
681
 *
682
 * Returns the time of day in a timespec64 (WARN if suspended).
683
 */
684
void getnstimeofday64(struct timespec64 *ts)
685
{
686
	WARN_ON(__getnstimeofday64(ts));
687
}
688
EXPORT_SYMBOL(getnstimeofday64);
689

690 691
ktime_t ktime_get(void)
{
692
	struct timekeeper *tk = &tk_core.timekeeper;
693
	unsigned int seq;
694 695
	ktime_t base;
	s64 nsecs;
696 697 698 699

	WARN_ON(timekeeping_suspended);

	do {
700
		seq = read_seqcount_begin(&tk_core.seq);
701 702
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
703

704
	} while (read_seqcount_retry(&tk_core.seq, seq));
705

706
	return ktime_add_ns(base, nsecs);
707 708 709
}
EXPORT_SYMBOL_GPL(ktime_get);

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
744 745
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
746 747 748 749 750 751 752 753

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

774 775 776 777 778 779 780 781 782 783 784 785
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
786 787
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
788 789 790 791 792 793 794

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

795
/**
796
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
797 798 799 800
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
801
 * in normalized timespec64 format in the variable pointed to by @ts.
802
 */
803
void ktime_get_ts64(struct timespec64 *ts)
804
{
805
	struct timekeeper *tk = &tk_core.timekeeper;
806
	struct timespec64 tomono;
807
	s64 nsec;
808 809 810 811 812
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
813
		seq = read_seqcount_begin(&tk_core.seq);
814
		ts->tv_sec = tk->xtime_sec;
815
		nsec = timekeeping_get_ns(&tk->tkr_mono);
816
		tomono = tk->wall_to_monotonic;
817

818
	} while (read_seqcount_retry(&tk_core.seq, seq));
819

820 821 822
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
823
}
824
EXPORT_SYMBOL_GPL(ktime_get_ts64);
825

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

874 875 876 877 878 879 880 881 882 883 884 885
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
	s64 nsec_raw;
	s64 nsec_real;
	cycle_t now;

900 901
	WARN_ON_ONCE(timekeeping_suspended);

902 903 904 905
	do {
		seq = read_seqcount_begin(&tk_core.seq);

		now = tk->tkr_mono.read(tk->tkr_mono.clock);
906 907
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
908 909 910 911 912 913 914 915 916 917 918 919
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
920

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
					 cycle_t partial_history_cycles,
					 cycle_t total_history_cycles,
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
	interp_forward = partial_history_cycles > total_history_cycles/2 ?
		true : false;
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1031 1032
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1033
 * @get_time_fn:	Callback to get simultaneous device time and
1034
 *	system counter from the device driver
1035 1036 1037
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1038 1039 1040 1041 1042 1043 1044 1045 1046
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1047
				  struct system_time_snapshot *history_begin,
1048 1049 1050 1051
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1052
	cycle_t cycles, now, interval_start;
1053
	unsigned int clock_was_set_seq = 0;
1054 1055
	ktime_t base_real, base_raw;
	s64 nsec_real, nsec_raw;
1056
	u8 cs_was_changed_seq;
1057
	unsigned long seq;
1058
	bool do_interp;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
		now = tk->tkr_mono.read(tk->tkr_mono.clock);
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
		cycle_t partial_history_cycles, total_history_cycles;
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1139 1140 1141 1142
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1143 1144 1145 1146
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1147
 * NOTE: Users should be converted to using getnstimeofday()
1148 1149 1150
 */
void do_gettimeofday(struct timeval *tv)
{
1151
	struct timespec64 now;
1152

1153
	getnstimeofday64(&now);
1154 1155 1156 1157
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1158

1159
/**
1160 1161
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1162 1163 1164
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1165
int do_settimeofday64(const struct timespec64 *ts)
1166
{
1167
	struct timekeeper *tk = &tk_core.timekeeper;
1168
	struct timespec64 ts_delta, xt;
1169
	unsigned long flags;
1170
	int ret = 0;
1171

1172
	if (!timespec64_valid_strict(ts))
1173 1174
		return -EINVAL;

1175
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1176
	write_seqcount_begin(&tk_core.seq);
1177

1178
	timekeeping_forward_now(tk);
1179

1180
	xt = tk_xtime(tk);
1181 1182
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1183

1184 1185 1186 1187 1188
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1189
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1190

1191
	tk_set_xtime(tk, ts);
1192
out:
1193
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1194

1195
	write_seqcount_end(&tk_core.seq);
1196
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1197 1198 1199 1200

	/* signal hrtimers about time change */
	clock_was_set();

1201
	return ret;
1202
}
1203
EXPORT_SYMBOL(do_settimeofday64);
1204

1205 1206 1207 1208 1209 1210 1211 1212
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
1213
	struct timekeeper *tk = &tk_core.timekeeper;
1214
	unsigned long flags;
1215
	struct timespec64 ts64, tmp;
1216
	int ret = 0;
1217

1218
	if (!timespec_inject_offset_valid(ts))
1219 1220
		return -EINVAL;

1221 1222
	ts64 = timespec_to_timespec64(*ts);

1223
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1224
	write_seqcount_begin(&tk_core.seq);
1225

1226
	timekeeping_forward_now(tk);
1227

1228
	/* Make sure the proposed value is valid */
1229
	tmp = timespec64_add(tk_xtime(tk),  ts64);
1230 1231
	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
	    !timespec64_valid_strict(&tmp)) {
1232 1233 1234
		ret = -EINVAL;
		goto error;
	}
1235

1236 1237
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1238

1239
error: /* even if we error out, we forwarded the time, so call update */
1240
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1241

1242
	write_seqcount_end(&tk_core.seq);
1243
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1244 1245 1246 1247

	/* signal hrtimers about time change */
	clock_was_set();

1248
	return ret;
1249 1250 1251
}
EXPORT_SYMBOL(timekeeping_inject_offset);

1252 1253 1254 1255 1256 1257 1258

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
1259
	struct timekeeper *tk = &tk_core.timekeeper;
1260 1261 1262 1263
	unsigned int seq;
	s32 ret;

	do {
1264
		seq = read_seqcount_begin(&tk_core.seq);
1265
		ret = tk->tai_offset;
1266
	} while (read_seqcount_retry(&tk_core.seq, seq));
1267 1268 1269 1270 1271 1272 1273 1274

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
1275
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1276 1277
{
	tk->tai_offset = tai_offset;
1278
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1279 1280 1281 1282 1283 1284 1285 1286
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
1287
	struct timekeeper *tk = &tk_core.timekeeper;
1288 1289
	unsigned long flags;

1290
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1291
	write_seqcount_begin(&tk_core.seq);
1292
	__timekeeping_set_tai_offset(tk, tai_offset);
1293
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1294
	write_seqcount_end(&tk_core.seq);
1295
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1296
	clock_was_set();
1297 1298
}

1299 1300 1301 1302 1303
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1304
static int change_clocksource(void *data)
1305
{
1306
	struct timekeeper *tk = &tk_core.timekeeper;
1307
	struct clocksource *new, *old;
1308
	unsigned long flags;
1309

1310
	new = (struct clocksource *) data;
1311

1312
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1313
	write_seqcount_begin(&tk_core.seq);
1314

1315
	timekeeping_forward_now(tk);
1316 1317 1318 1319 1320 1321
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1322
			old = tk->tkr_mono.clock;
1323 1324 1325 1326 1327 1328 1329
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1330
	}
1331
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1332

1333
	write_seqcount_end(&tk_core.seq);
1334
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1335

1336 1337
	return 0;
}
1338

1339 1340 1341 1342 1343 1344 1345
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1346
int timekeeping_notify(struct clocksource *clock)
1347
{
1348
	struct timekeeper *tk = &tk_core.timekeeper;
1349

1350
	if (tk->tkr_mono.clock == clock)
1351
		return 0;
1352
	stop_machine(change_clocksource, clock, NULL);
1353
	tick_clock_notify();
1354
	return tk->tkr_mono.clock == clock ? 0 : -1;
1355
}
1356

1357
/**
1358 1359
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1360 1361 1362
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1363
void getrawmonotonic64(struct timespec64 *ts)
1364
{
1365
	struct timekeeper *tk = &tk_core.timekeeper;
1366
	struct timespec64 ts64;
1367 1368 1369 1370
	unsigned long seq;
	s64 nsecs;

	do {
1371
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1372
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1373
		ts64 = tk->raw_time;
1374

1375
	} while (read_seqcount_retry(&tk_core.seq, seq));
1376

1377
	timespec64_add_ns(&ts64, nsecs);
1378
	*ts = ts64;
1379
}
1380 1381
EXPORT_SYMBOL(getrawmonotonic64);

1382

1383
/**
1384
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1385
 */
1386
int timekeeping_valid_for_hres(void)
1387
{
1388
	struct timekeeper *tk = &tk_core.timekeeper;
1389 1390 1391 1392
	unsigned long seq;
	int ret;

	do {
1393
		seq = read_seqcount_begin(&tk_core.seq);
1394

1395
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1396

1397
	} while (read_seqcount_retry(&tk_core.seq, seq));
1398 1399 1400 1401

	return ret;
}

1402 1403 1404 1405 1406
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1407
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1408 1409
	unsigned long seq;
	u64 ret;
1410

J
John Stultz 已提交
1411
	do {
1412
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1413

1414
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1415

1416
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1417 1418

	return ret;
1419 1420
}

1421
/**
1422
 * read_persistent_clock -  Return time from the persistent clock.
1423 1424
 *
 * Weak dummy function for arches that do not yet support it.
1425 1426
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1427 1428 1429
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1430
void __weak read_persistent_clock(struct timespec *ts)
1431
{
1432 1433
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1434 1435
}

1436 1437 1438 1439 1440 1441 1442 1443
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1444
/**
X
Xunlei Pang 已提交
1445
 * read_boot_clock64 -  Return time of the system start.
1446 1447 1448
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1449
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1450 1451 1452
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1453
void __weak read_boot_clock64(struct timespec64 *ts)
1454 1455 1456 1457 1458
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1459 1460 1461 1462 1463 1464
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1465 1466 1467 1468 1469
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1470
	struct timekeeper *tk = &tk_core.timekeeper;
1471
	struct clocksource *clock;
1472
	unsigned long flags;
1473
	struct timespec64 now, boot, tmp;
1474

1475
	read_persistent_clock64(&now);
1476
	if (!timespec64_valid_strict(&now)) {
1477 1478 1479 1480
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1481
	} else if (now.tv_sec || now.tv_nsec)
1482
		persistent_clock_exists = true;
1483

1484
	read_boot_clock64(&boot);
1485
	if (!timespec64_valid_strict(&boot)) {
1486 1487 1488 1489 1490
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1491

1492
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1493
	write_seqcount_begin(&tk_core.seq);
1494 1495
	ntp_init();

1496
	clock = clocksource_default_clock();
1497 1498
	if (clock->enable)
		clock->enable(clock);
1499
	tk_setup_internals(tk, clock);
1500

1501 1502 1503
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1504
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1505
		boot = tk_xtime(tk);
1506

1507
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1508
	tk_set_wall_to_mono(tk, tmp);
1509

1510
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1511

1512
	write_seqcount_end(&tk_core.seq);
1513
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1514 1515
}

1516
/* time in seconds when suspend began for persistent clock */
1517
static struct timespec64 timekeeping_suspend_time;
1518

1519 1520 1521 1522 1523 1524 1525
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1526
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1527
					   struct timespec64 *delta)
1528
{
1529
	if (!timespec64_valid_strict(delta)) {
1530 1531 1532
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1533 1534
		return;
	}
1535
	tk_xtime_add(tk, delta);
1536
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1537
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1538
	tk_debug_account_sleep_time(delta);
1539 1540
}

1541
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1577
/**
1578 1579
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1580
 *
1581
 * This hook is for architectures that cannot support read_persistent_clock64
1582
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1583
 * and also don't have an effective nonstop clocksource.
1584 1585 1586 1587
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1588
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1589
{
1590
	struct timekeeper *tk = &tk_core.timekeeper;
1591
	unsigned long flags;
1592

1593
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1594
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1595

1596
	timekeeping_forward_now(tk);
1597

1598
	__timekeeping_inject_sleeptime(tk, delta);
1599

1600
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1601

1602
	write_seqcount_end(&tk_core.seq);
1603
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1604 1605 1606 1607

	/* signal hrtimers about time change */
	clock_was_set();
}
1608
#endif
1609

1610 1611 1612
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1613
void timekeeping_resume(void)
1614
{
1615
	struct timekeeper *tk = &tk_core.timekeeper;
1616
	struct clocksource *clock = tk->tkr_mono.clock;
1617
	unsigned long flags;
1618
	struct timespec64 ts_new, ts_delta;
1619
	cycle_t cycle_now, cycle_delta;
1620

1621
	sleeptime_injected = false;
1622
	read_persistent_clock64(&ts_new);
1623

1624
	clockevents_resume();
1625 1626
	clocksource_resume();

1627
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1628
	write_seqcount_begin(&tk_core.seq);
1629

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1642
	cycle_now = tk->tkr_mono.read(clock);
1643
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1644
		cycle_now > tk->tkr_mono.cycle_last) {
1645 1646 1647 1648 1649
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1650 1651
		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
						tk->tkr_mono.mask);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1666
		ts_delta = ns_to_timespec64(nsec);
1667
		sleeptime_injected = true;
1668 1669
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1670
		sleeptime_injected = true;
1671
	}
1672

1673
	if (sleeptime_injected)
1674 1675 1676
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1677
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1678 1679
	tk->tkr_raw.cycle_last  = cycle_now;

1680
	tk->ntp_error = 0;
1681
	timekeeping_suspended = 0;
1682
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1683
	write_seqcount_end(&tk_core.seq);
1684
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1685 1686 1687

	touch_softlockup_watchdog();

1688
	tick_resume();
1689
	hrtimers_resume();
1690 1691
}

1692
int timekeeping_suspend(void)
1693
{
1694
	struct timekeeper *tk = &tk_core.timekeeper;
1695
	unsigned long flags;
1696 1697
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1698

1699
	read_persistent_clock64(&timekeeping_suspend_time);
1700

1701 1702 1703 1704 1705 1706
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1707
		persistent_clock_exists = true;
1708

1709
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1710
	write_seqcount_begin(&tk_core.seq);
1711
	timekeeping_forward_now(tk);
1712
	timekeeping_suspended = 1;
1713

1714
	if (persistent_clock_exists) {
1715
		/*
1716 1717 1718 1719
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1720
		 */
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1734
	}
1735 1736

	timekeeping_update(tk, TK_MIRROR);
1737
	halt_fast_timekeeper(tk);
1738
	write_seqcount_end(&tk_core.seq);
1739
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1740

1741
	tick_suspend();
M
Magnus Damm 已提交
1742
	clocksource_suspend();
1743
	clockevents_suspend();
1744 1745 1746 1747 1748

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1749
static struct syscore_ops timekeeping_syscore_ops = {
1750 1751 1752 1753
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1754
static int __init timekeeping_init_ops(void)
1755
{
1756 1757
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1758
}
1759
device_initcall(timekeeping_init_ops);
1760 1761

/*
1762
 * Apply a multiplier adjustment to the timekeeper
1763
 */
1764 1765 1766 1767
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1768
{
1769 1770
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1771

1772 1773 1774 1775
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1776
	}
1777 1778 1779
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1780

1781 1782 1783
	/*
	 * So the following can be confusing.
	 *
1784
	 * To keep things simple, lets assume mult_adj == 1 for now.
1785
	 *
1786
	 * When mult_adj != 1, remember that the interval and offset values
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1830
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1831 1832 1833 1834 1835
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1836
	tk->tkr_mono.mult += mult_adj;
1837
	tk->xtime_interval += interval;
1838
	tk->tkr_mono.xtime_nsec -= offset;
1839
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
1851 1852 1853
	u32 base = tk->tkr_mono.clock->mult;
	u32 max = tk->tkr_mono.clock->maxadj;
	u32 cur_adj = tk->tkr_mono.mult;
1854 1855
	s64 tick_error;
	bool negative;
1856
	u32 adj_scale;
1857 1858 1859 1860 1861

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1862 1863
	tk->ntp_tick = ntp_tick_length();

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	/* If any adjustment would pass the max, just return */
	if (negative && (cur_adj - 1) <= (base - max))
		return;
	if (!negative && (cur_adj + 1) >= (base + max))
		return;
	/*
	 * Sort out the magnitude of the correction, but
	 * avoid making so large a correction that we go
	 * over the max adjustment.
	 */
	adj_scale = 0;
A
Andrew Morton 已提交
1886
	tick_error = abs(tick_error);
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	while (tick_error > interval) {
		u32 adj = 1 << (adj_scale + 1);

		/* Check if adjustment gets us within 1 unit from the max */
		if (negative && (cur_adj - adj) <= (base - max))
			break;
		if (!negative && (cur_adj + adj) >= (base + max))
			break;

		adj_scale++;
1897
		tick_error >>= 1;
1898
	}
1899 1900

	/* scale the corrections */
1901
	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1923 1924 1925
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1926 1927
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1928 1929
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1930
	}
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1946 1947 1948
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1949
		tk->ntp_error += neg << tk->ntp_error_shift;
1950
	}
1951 1952
}

1953 1954 1955
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1956
 * Helper function that accumulates the nsecs greater than a second
1957 1958 1959 1960
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1961
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1962
{
1963
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1964
	unsigned int clock_set = 0;
1965

1966
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1967 1968
		int leap;

1969
		tk->tkr_mono.xtime_nsec -= nsecps;
1970 1971 1972 1973
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1974
		if (unlikely(leap)) {
1975
			struct timespec64 ts;
1976 1977

			tk->xtime_sec += leap;
1978

1979 1980 1981
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1982
				timespec64_sub(tk->wall_to_monotonic, ts));
1983

1984 1985
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1986
			clock_set = TK_CLOCK_WAS_SET;
1987
		}
1988
	}
1989
	return clock_set;
1990 1991
}

1992 1993 1994 1995 1996 1997 1998 1999 2000
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
2001
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
2002 2003
						u32 shift,
						unsigned int *clock_set)
2004
{
T
Thomas Gleixner 已提交
2005
	cycle_t interval = tk->cycle_interval << shift;
2006
	u64 raw_nsecs;
2007

Z
Zhen Lei 已提交
2008
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
2009
	if (offset < interval)
2010 2011 2012
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2013
	offset -= interval;
2014
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2015
	tk->tkr_raw.cycle_last  += interval;
2016

2017
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2018
	*clock_set |= accumulate_nsecs_to_secs(tk);
2019

2020
	/* Accumulate raw time */
2021
	raw_nsecs = (u64)tk->raw_interval << shift;
2022
	raw_nsecs += tk->raw_time.tv_nsec;
2023 2024 2025
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2026
		tk->raw_time.tv_sec += raw_secs;
2027
	}
2028
	tk->raw_time.tv_nsec = raw_nsecs;
2029 2030

	/* Accumulate error between NTP and clock interval */
2031
	tk->ntp_error += tk->ntp_tick << shift;
2032 2033
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2034 2035 2036 2037

	return offset;
}

2038 2039 2040 2041
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
2042
void update_wall_time(void)
2043
{
2044
	struct timekeeper *real_tk = &tk_core.timekeeper;
2045
	struct timekeeper *tk = &shadow_timekeeper;
2046
	cycle_t offset;
2047
	int shift = 0, maxshift;
2048
	unsigned int clock_set = 0;
J
John Stultz 已提交
2049 2050
	unsigned long flags;

2051
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2052 2053 2054

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2055
		goto out;
2056

J
John Stultz 已提交
2057
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2058
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
2059
#else
2060 2061
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2062 2063
#endif

2064
	/* Check if there's really nothing to do */
2065
	if (offset < real_tk->cycle_interval)
2066 2067
		goto out;

2068 2069 2070
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

2071 2072 2073 2074
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2075
	 * that is smaller than the offset.  We then accumulate that
2076 2077
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2078
	 */
2079
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2080
	shift = max(0, shift);
2081
	/* Bound shift to one less than what overflows tick_length */
2082
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2083
	shift = min(shift, maxshift);
2084
	while (offset >= tk->cycle_interval) {
2085 2086
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2087
		if (offset < tk->cycle_interval<<shift)
2088
			shift--;
2089 2090 2091
	}

	/* correct the clock when NTP error is too big */
2092
	timekeeping_adjust(tk, offset);
2093

J
John Stultz 已提交
2094
	/*
2095 2096 2097 2098
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
2099

J
John Stultz 已提交
2100 2101
	/*
	 * Finally, make sure that after the rounding
2102
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2103
	 */
2104
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2105

2106
	write_seqcount_begin(&tk_core.seq);
2107 2108 2109 2110 2111 2112 2113
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2114
	 * memcpy under the tk_core.seq against one before we start
2115 2116
	 * updating.
	 */
2117
	timekeeping_update(tk, clock_set);
2118
	memcpy(real_tk, tk, sizeof(*tk));
2119
	/* The memcpy must come last. Do not put anything here! */
2120
	write_seqcount_end(&tk_core.seq);
2121
out:
2122
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2123
	if (clock_set)
2124 2125
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2126
}
T
Tomas Janousek 已提交
2127 2128

/**
2129 2130
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2131
 *
2132
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2133 2134 2135 2136 2137 2138
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2139
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2140
{
2141
	struct timekeeper *tk = &tk_core.timekeeper;
2142 2143
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

2144
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2145
}
2146
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2147

2148 2149
unsigned long get_seconds(void)
{
2150
	struct timekeeper *tk = &tk_core.timekeeper;
2151 2152

	return tk->xtime_sec;
2153 2154 2155
}
EXPORT_SYMBOL(get_seconds);

2156 2157
struct timespec __current_kernel_time(void)
{
2158
	struct timekeeper *tk = &tk_core.timekeeper;
2159

2160
	return timespec64_to_timespec(tk_xtime(tk));
2161
}
2162

2163
struct timespec64 current_kernel_time64(void)
2164
{
2165
	struct timekeeper *tk = &tk_core.timekeeper;
2166
	struct timespec64 now;
2167 2168 2169
	unsigned long seq;

	do {
2170
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2171

2172
		now = tk_xtime(tk);
2173
	} while (read_seqcount_retry(&tk_core.seq, seq));
2174

2175
	return now;
2176
}
2177
EXPORT_SYMBOL(current_kernel_time64);
2178

2179
struct timespec64 get_monotonic_coarse64(void)
2180
{
2181
	struct timekeeper *tk = &tk_core.timekeeper;
2182
	struct timespec64 now, mono;
2183 2184 2185
	unsigned long seq;

	do {
2186
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2187

2188 2189
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2190
	} while (read_seqcount_retry(&tk_core.seq, seq));
2191

2192
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2193
				now.tv_nsec + mono.tv_nsec);
2194

2195
	return now;
2196
}
2197
EXPORT_SYMBOL(get_monotonic_coarse64);
2198 2199

/*
2200
 * Must hold jiffies_lock
2201 2202 2203 2204 2205 2206
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2207

2208
/**
2209
 * ktime_get_update_offsets_now - hrtimer helper
2210
 * @cwsseq:	pointer to check and store the clock was set sequence number
2211 2212
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2213
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2214
 *
2215 2216 2217 2218
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2219
 * Called from hrtimer_interrupt() or retrigger_next_event()
2220
 */
2221 2222
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
2223
{
2224
	struct timekeeper *tk = &tk_core.timekeeper;
2225
	unsigned int seq;
2226 2227
	ktime_t base;
	u64 nsecs;
2228 2229

	do {
2230
		seq = read_seqcount_begin(&tk_core.seq);
2231

2232 2233
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2234 2235
		base = ktime_add_ns(base, nsecs);

2236 2237 2238 2239 2240 2241
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
2242 2243 2244 2245 2246

		/* Handle leapsecond insertion adjustments */
		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2247
	} while (read_seqcount_retry(&tk_core.seq, seq));
2248

2249
	return base;
2250 2251
}

2252 2253 2254 2255 2256
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2257
	struct timekeeper *tk = &tk_core.timekeeper;
2258
	unsigned long flags;
2259
	struct timespec64 ts;
2260
	s32 orig_tai, tai;
2261 2262 2263 2264 2265 2266 2267
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2279
	getnstimeofday64(&ts);
2280

2281
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2282
	write_seqcount_begin(&tk_core.seq);
2283

2284
	orig_tai = tai = tk->tai_offset;
2285
	ret = __do_adjtimex(txc, &ts, &tai);
2286

2287 2288
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2289
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2290
	}
2291 2292
	tk_update_leap_state(tk);

2293
	write_seqcount_end(&tk_core.seq);
2294 2295
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2296 2297 2298
	if (tai != orig_tai)
		clock_was_set();

2299 2300
	ntp_notify_cmos_timer();

2301 2302
	return ret;
}
2303 2304 2305 2306 2307

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2308
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2309
{
2310 2311 2312
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2313
	write_seqcount_begin(&tk_core.seq);
2314

2315
	__hardpps(phase_ts, raw_ts);
2316

2317
	write_seqcount_end(&tk_core.seq);
2318
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2319 2320 2321 2322
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2323 2324 2325 2326 2327 2328 2329 2330
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2331
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2332
	do_timer(ticks);
2333
	write_sequnlock(&jiffies_lock);
2334
	update_wall_time();
T
Torben Hohn 已提交
2335
}