timekeeping.c 48.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;

63 64 65
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

66 67 68
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

69 70
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
71 72
	while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
		tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 74 75 76
		tk->xtime_sec++;
	}
}

77 78 79 80 81
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
82
	ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 84 85
	return ts;
}

86
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 88
{
	tk->xtime_sec = ts->tv_sec;
89
	tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 91
}

92
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 94
{
	tk->xtime_sec += ts->tv_sec;
95
	tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96
	tk_normalize_xtime(tk);
97
}
98

99
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100
{
101
	struct timespec64 tmp;
102 103 104 105 106

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
107
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108
					-tk->wall_to_monotonic.tv_nsec);
109
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110
	tk->wall_to_monotonic = wtm;
111 112
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
113
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 115
}

116
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117
{
118
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 120
}

121
/**
122
 * tk_setup_internals - Set up internals to use clocksource clock.
123
 *
124
 * @tk:		The target timekeeper to setup.
125 126 127 128 129 130 131
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
132
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 134
{
	cycle_t interval;
135
	u64 tmp, ntpinterval;
136
	struct clocksource *old_clock;
137

138 139 140 141 142
	old_clock = tk->tkr.clock;
	tk->tkr.clock = clock;
	tk->tkr.read = clock->read;
	tk->tkr.mask = clock->mask;
	tk->tkr.cycle_last = tk->tkr.read(clock);
143 144 145 146

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
147
	ntpinterval = tmp;
148 149
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
150 151 152 153
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
154
	tk->cycle_interval = interval;
155 156

	/* Go back from cycles -> shifted ns */
157 158 159
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
160
		((u64) interval * clock->mult) >> clock->shift;
161

162 163 164 165
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
166
			tk->tkr.xtime_nsec >>= -shift_change;
167
		else
168
			tk->tkr.xtime_nsec <<= shift_change;
169
	}
170
	tk->tkr.shift = clock->shift;
171

172 173
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174 175 176 177 178 179

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
180
	tk->tkr.mult = clock->mult;
181
}
182

183
/* Timekeeper helper functions. */
184 185

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
186 187
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
188
#else
189
static inline u32 arch_gettimeoffset(void) { return 0; }
190 191
#endif

192
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
193
{
194
	cycle_t cycle_now, delta;
195
	s64 nsec;
196 197

	/* read clocksource: */
198
	cycle_now = tkr->read(tkr->clock);
199 200

	/* calculate the delta since the last update_wall_time: */
201
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
202

203 204
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
205

206
	/* If arch requires, add in get_arch_timeoffset() */
207
	return nsec + arch_gettimeoffset();
208 209
}

210
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
211
{
212
	struct clocksource *clock = tk->tkr.clock;
213
	cycle_t cycle_now, delta;
214
	s64 nsec;
215 216

	/* read clocksource: */
217
	cycle_now = tk->tkr.read(clock);
218 219

	/* calculate the delta since the last update_wall_time: */
220
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
221

222
	/* convert delta to nanoseconds. */
223
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
224

225
	/* If arch requires, add in get_arch_timeoffset() */
226
	return nsec + arch_gettimeoffset();
227 228
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 * @tk:		The timekeeper from which we take the update
 * @tkf:	The fast timekeeper to update
 * @tbase:	The time base for the fast timekeeper (mono/raw)
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
 * update(tkf->base[0], tk);
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
 * update(tkf->base[1], tk);
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
static void update_fast_timekeeper(struct timekeeper *tk)
{
	struct tk_read_base *base = tk_fast_mono.base;

	/* Force readers off to base[1] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[0] */
	memcpy(base, &tk->tkr, sizeof(*base));

	/* Force readers back to base[0] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
u64 notrace ktime_get_mono_fast_ns(void)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount(&tk_fast_mono.seq);
		tkr = tk_fast_mono.base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);

	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
	return now;
}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

335 336 337 338 339 340 341
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
	struct timespec xt;

	xt = tk_xtime(tk);
342 343
	update_vsyscall_old(&xt, &tk->wall_to_monotonic, tk->tkr.clock, tk->tkr.mult,
			    tk->tkr.cycle_last);
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
360 361 362
	remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
	tk->tkr.xtime_nsec -= remainder;
	tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
363
	tk->ntp_error += remainder << tk->ntp_error_shift;
364
	tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
365 366 367 368 369
}
#else
#define old_vsyscall_fixup(tk)
#endif

370 371
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

372
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
373
{
374
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
375 376 377 378 379 380 381
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
382
	struct timekeeper *tk = &tk_core.timekeeper;
383 384 385
	unsigned long flags;
	int ret;

386
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
387
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
388
	update_pvclock_gtod(tk, true);
389
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
390 391 392 393 394 395 396 397 398 399 400 401 402 403

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

404
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
405
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
406
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
407 408 409 410 411

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
	s64 nsec;

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
	nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec *= NSEC_PER_SEC;
	nsec += tk->wall_to_monotonic.tv_nsec;
429
	tk->tkr.base_mono = ns_to_ktime(nsec);
430 431 432

	/* Update the monotonic raw base */
	tk->base_raw = timespec64_to_ktime(tk->raw_time);
433 434
}

435
/* must hold timekeeper_lock */
436
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
437
{
438
	if (action & TK_CLEAR_NTP) {
439
		tk->ntp_error = 0;
440 441
		ntp_clear();
	}
442
	update_vsyscall(tk);
443
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
444

445 446
	tk_update_ktime_data(tk);

447
	if (action & TK_MIRROR)
448 449
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
450 451

	update_fast_timekeeper(tk);
452 453
}

454
/**
455
 * timekeeping_forward_now - update clock to the current time
456
 *
457 458 459
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
460
 */
461
static void timekeeping_forward_now(struct timekeeper *tk)
462
{
463
	struct clocksource *clock = tk->tkr.clock;
464
	cycle_t cycle_now, delta;
465
	s64 nsec;
466

467 468 469
	cycle_now = tk->tkr.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
	tk->tkr.cycle_last = cycle_now;
470

471
	tk->tkr.xtime_nsec += delta * tk->tkr.mult;
472

473
	/* If arch requires, add in get_arch_timeoffset() */
474
	tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
475

476
	tk_normalize_xtime(tk);
477

478
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
479
	timespec64_add_ns(&tk->raw_time, nsec);
480 481 482
}

/**
483
 * __getnstimeofday64 - Returns the time of day in a timespec64.
484 485
 * @ts:		pointer to the timespec to be set
 *
486 487
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
488
 */
489
int __getnstimeofday64(struct timespec64 *ts)
490
{
491
	struct timekeeper *tk = &tk_core.timekeeper;
492
	unsigned long seq;
493
	s64 nsecs = 0;
494 495

	do {
496
		seq = read_seqcount_begin(&tk_core.seq);
497

498
		ts->tv_sec = tk->xtime_sec;
499
		nsecs = timekeeping_get_ns(&tk->tkr);
500

501
	} while (read_seqcount_retry(&tk_core.seq, seq));
502

503
	ts->tv_nsec = 0;
504
	timespec64_add_ns(ts, nsecs);
505 506 507 508 509 510 511 512 513

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
514
EXPORT_SYMBOL(__getnstimeofday64);
515 516

/**
517
 * getnstimeofday64 - Returns the time of day in a timespec64.
518 519 520 521
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec (WARN if suspended).
 */
522
void getnstimeofday64(struct timespec64 *ts)
523
{
524
	WARN_ON(__getnstimeofday64(ts));
525
}
526
EXPORT_SYMBOL(getnstimeofday64);
527

528 529
ktime_t ktime_get(void)
{
530
	struct timekeeper *tk = &tk_core.timekeeper;
531
	unsigned int seq;
532 533
	ktime_t base;
	s64 nsecs;
534 535 536 537

	WARN_ON(timekeeping_suspended);

	do {
538
		seq = read_seqcount_begin(&tk_core.seq);
539
		base = tk->tkr.base_mono;
540
		nsecs = timekeeping_get_ns(&tk->tkr);
541

542
	} while (read_seqcount_retry(&tk_core.seq, seq));
543

544
	return ktime_add_ns(base, nsecs);
545 546 547
}
EXPORT_SYMBOL_GPL(ktime_get);

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
565
		base = ktime_add(tk->tkr.base_mono, *offset);
566
		nsecs = timekeeping_get_ns(&tk->tkr);
567 568 569 570 571 572 573 574

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = tk->base_raw;
		nsecs = timekeeping_get_ns_raw(tk);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

616
/**
617
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
618 619 620 621 622 623
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
624
void ktime_get_ts64(struct timespec64 *ts)
625
{
626
	struct timekeeper *tk = &tk_core.timekeeper;
627
	struct timespec64 tomono;
628
	s64 nsec;
629 630 631 632 633
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
634
		seq = read_seqcount_begin(&tk_core.seq);
635
		ts->tv_sec = tk->xtime_sec;
636
		nsec = timekeeping_get_ns(&tk->tkr);
637
		tomono = tk->wall_to_monotonic;
638

639
	} while (read_seqcount_retry(&tk_core.seq, seq));
640

641 642 643
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
644
}
645
EXPORT_SYMBOL_GPL(ktime_get_ts64);
646

647 648 649 650 651 652 653 654 655 656 657 658 659
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
660
	struct timekeeper *tk = &tk_core.timekeeper;
661 662 663 664 665 666
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
667
		seq = read_seqcount_begin(&tk_core.seq);
668

669
		*ts_raw = timespec64_to_timespec(tk->raw_time);
670
		ts_real->tv_sec = tk->xtime_sec;
671
		ts_real->tv_nsec = 0;
672

673
		nsecs_raw = timekeeping_get_ns_raw(tk);
674
		nsecs_real = timekeeping_get_ns(&tk->tkr);
675

676
	} while (read_seqcount_retry(&tk_core.seq, seq));
677 678 679 680 681 682 683 684

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

685 686 687 688
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
689
 * NOTE: Users should be converted to using getnstimeofday()
690 691 692
 */
void do_gettimeofday(struct timeval *tv)
{
693
	struct timespec64 now;
694

695
	getnstimeofday64(&now);
696 697 698 699
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
700

701 702 703 704 705 706
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
707
int do_settimeofday(const struct timespec *tv)
708
{
709
	struct timekeeper *tk = &tk_core.timekeeper;
710
	struct timespec64 ts_delta, xt, tmp;
711
	unsigned long flags;
712

713
	if (!timespec_valid_strict(tv))
714 715
		return -EINVAL;

716
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
717
	write_seqcount_begin(&tk_core.seq);
718

719
	timekeeping_forward_now(tk);
720

721
	xt = tk_xtime(tk);
722 723 724
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

725
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
726

727 728
	tmp = timespec_to_timespec64(*tv);
	tk_set_xtime(tk, &tmp);
729

730
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
731

732
	write_seqcount_end(&tk_core.seq);
733
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
734 735 736 737 738 739 740 741

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

742 743 744 745 746 747 748 749
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
750
	struct timekeeper *tk = &tk_core.timekeeper;
751
	unsigned long flags;
752
	struct timespec64 ts64, tmp;
753
	int ret = 0;
754 755 756 757

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

758 759
	ts64 = timespec_to_timespec64(*ts);

760
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
761
	write_seqcount_begin(&tk_core.seq);
762

763
	timekeeping_forward_now(tk);
764

765
	/* Make sure the proposed value is valid */
766 767
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
768 769 770
		ret = -EINVAL;
		goto error;
	}
771

772 773
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
774

775
error: /* even if we error out, we forwarded the time, so call update */
776
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
777

778
	write_seqcount_end(&tk_core.seq);
779
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
780 781 782 783

	/* signal hrtimers about time change */
	clock_was_set();

784
	return ret;
785 786 787
}
EXPORT_SYMBOL(timekeeping_inject_offset);

788 789 790 791 792 793 794

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
795
	struct timekeeper *tk = &tk_core.timekeeper;
796 797 798 799
	unsigned int seq;
	s32 ret;

	do {
800
		seq = read_seqcount_begin(&tk_core.seq);
801
		ret = tk->tai_offset;
802
	} while (read_seqcount_retry(&tk_core.seq, seq));
803 804 805 806 807 808 809 810

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
811
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
812 813
{
	tk->tai_offset = tai_offset;
814
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
815 816 817 818 819 820 821 822
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
823
	struct timekeeper *tk = &tk_core.timekeeper;
824 825
	unsigned long flags;

826
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
827
	write_seqcount_begin(&tk_core.seq);
828
	__timekeeping_set_tai_offset(tk, tai_offset);
829
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
830
	write_seqcount_end(&tk_core.seq);
831
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
832
	clock_was_set();
833 834
}

835 836 837 838 839
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
840
static int change_clocksource(void *data)
841
{
842
	struct timekeeper *tk = &tk_core.timekeeper;
843
	struct clocksource *new, *old;
844
	unsigned long flags;
845

846
	new = (struct clocksource *) data;
847

848
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
849
	write_seqcount_begin(&tk_core.seq);
850

851
	timekeeping_forward_now(tk);
852 853 854 855 856 857
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
858
			old = tk->tkr.clock;
859 860 861 862 863 864 865
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
866
	}
867
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
868

869
	write_seqcount_end(&tk_core.seq);
870
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
871

872 873
	return 0;
}
874

875 876 877 878 879 880 881
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
882
int timekeeping_notify(struct clocksource *clock)
883
{
884
	struct timekeeper *tk = &tk_core.timekeeper;
885

886
	if (tk->tkr.clock == clock)
887
		return 0;
888
	stop_machine(change_clocksource, clock, NULL);
889
	tick_clock_notify();
890
	return tk->tkr.clock == clock ? 0 : -1;
891
}
892

893 894 895 896 897 898 899 900
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
901
	struct timekeeper *tk = &tk_core.timekeeper;
902
	struct timespec64 ts64;
903 904 905 906
	unsigned long seq;
	s64 nsecs;

	do {
907
		seq = read_seqcount_begin(&tk_core.seq);
908
		nsecs = timekeeping_get_ns_raw(tk);
909
		ts64 = tk->raw_time;
910

911
	} while (read_seqcount_retry(&tk_core.seq, seq));
912

913 914
	timespec64_add_ns(&ts64, nsecs);
	*ts = timespec64_to_timespec(ts64);
915 916 917
}
EXPORT_SYMBOL(getrawmonotonic);

918
/**
919
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
920
 */
921
int timekeeping_valid_for_hres(void)
922
{
923
	struct timekeeper *tk = &tk_core.timekeeper;
924 925 926 927
	unsigned long seq;
	int ret;

	do {
928
		seq = read_seqcount_begin(&tk_core.seq);
929

930
		ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
931

932
	} while (read_seqcount_retry(&tk_core.seq, seq));
933 934 935 936

	return ret;
}

937 938 939 940 941
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
942
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
943 944
	unsigned long seq;
	u64 ret;
945

J
John Stultz 已提交
946
	do {
947
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
948

949
		ret = tk->tkr.clock->max_idle_ns;
J
John Stultz 已提交
950

951
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
952 953

	return ret;
954 955
}

956
/**
957
 * read_persistent_clock -  Return time from the persistent clock.
958 959
 *
 * Weak dummy function for arches that do not yet support it.
960 961
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
962 963 964
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
965
void __weak read_persistent_clock(struct timespec *ts)
966
{
967 968
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
969 970
}

971 972 973 974 975 976 977 978 979
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
980
void __weak read_boot_clock(struct timespec *ts)
981 982 983 984 985
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

986 987 988 989 990
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
991
	struct timekeeper *tk = &tk_core.timekeeper;
992
	struct clocksource *clock;
993
	unsigned long flags;
994 995
	struct timespec64 now, boot, tmp;
	struct timespec ts;
996

997 998 999
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
1000 1001 1002 1003
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1004 1005
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
1006

1007 1008 1009
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
1010 1011 1012 1013 1014
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1015

1016
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1017
	write_seqcount_begin(&tk_core.seq);
1018 1019
	ntp_init();

1020
	clock = clocksource_default_clock();
1021 1022
	if (clock->enable)
		clock->enable(clock);
1023
	tk_setup_internals(tk, clock);
1024

1025 1026 1027
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1028
	tk->base_raw.tv64 = 0;
1029
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1030
		boot = tk_xtime(tk);
1031

1032
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1033
	tk_set_wall_to_mono(tk, tmp);
1034

1035
	timekeeping_update(tk, TK_MIRROR);
1036

1037
	write_seqcount_end(&tk_core.seq);
1038
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1039 1040 1041
}

/* time in seconds when suspend began */
1042
static struct timespec64 timekeeping_suspend_time;
1043

1044 1045 1046 1047 1048 1049 1050
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1051
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1052
					   struct timespec64 *delta)
1053
{
1054
	if (!timespec64_valid_strict(delta)) {
1055 1056 1057
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1058 1059
		return;
	}
1060
	tk_xtime_add(tk, delta);
1061
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1062
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1063
	tk_debug_account_sleep_time(delta);
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
1078
	struct timekeeper *tk = &tk_core.timekeeper;
1079
	struct timespec64 tmp;
1080
	unsigned long flags;
1081

1082 1083 1084 1085 1086
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
1087 1088
		return;

1089
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1090
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1091

1092
	timekeeping_forward_now(tk);
1093

1094 1095
	tmp = timespec_to_timespec64(*delta);
	__timekeeping_inject_sleeptime(tk, &tmp);
1096

1097
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1098

1099
	write_seqcount_end(&tk_core.seq);
1100
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1101 1102 1103 1104 1105

	/* signal hrtimers about time change */
	clock_was_set();
}

1106 1107 1108 1109 1110 1111 1112
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
1113
static void timekeeping_resume(void)
1114
{
1115
	struct timekeeper *tk = &tk_core.timekeeper;
1116
	struct clocksource *clock = tk->tkr.clock;
1117
	unsigned long flags;
1118 1119
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
1120 1121
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
1122

1123 1124
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
1125

1126
	clockevents_resume();
1127 1128
	clocksource_resume();

1129
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1130
	write_seqcount_begin(&tk_core.seq);
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1144
	cycle_now = tk->tkr.read(clock);
1145
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1146
		cycle_now > tk->tkr.cycle_last) {
1147 1148 1149 1150 1151
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1152 1153
		cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
						tk->tkr.mask);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1168
		ts_delta = ns_to_timespec64(nsec);
1169
		suspendtime_found = true;
1170 1171
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1172
		suspendtime_found = true;
1173
	}
1174 1175 1176 1177 1178

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1179
	tk->tkr.cycle_last = cycle_now;
1180
	tk->ntp_error = 0;
1181
	timekeeping_suspended = 0;
1182
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1183
	write_seqcount_end(&tk_core.seq);
1184
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1185 1186 1187 1188 1189 1190

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
1191
	hrtimers_resume();
1192 1193
}

1194
static int timekeeping_suspend(void)
1195
{
1196
	struct timekeeper *tk = &tk_core.timekeeper;
1197
	unsigned long flags;
1198 1199 1200
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1201

1202 1203
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1204

1205 1206 1207 1208 1209 1210 1211 1212
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1213
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1214
	write_seqcount_begin(&tk_core.seq);
1215
	timekeeping_forward_now(tk);
1216
	timekeeping_suspended = 1;
1217 1218 1219 1220 1221 1222 1223

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1224 1225
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1226 1227 1228 1229 1230 1231 1232 1233 1234
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1235
			timespec64_add(timekeeping_suspend_time, delta_delta);
1236
	}
1237 1238

	timekeeping_update(tk, TK_MIRROR);
1239
	write_seqcount_end(&tk_core.seq);
1240
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1241 1242

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1243
	clocksource_suspend();
1244
	clockevents_suspend();
1245 1246 1247 1248 1249

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1250
static struct syscore_ops timekeeping_syscore_ops = {
1251 1252 1253 1254
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1255
static int __init timekeeping_init_ops(void)
1256
{
1257 1258
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1259 1260
}

1261
device_initcall(timekeeping_init_ops);
1262 1263 1264 1265 1266

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
1267 1268
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
1281
	 * here.  This is tuned so that an error of about 1 msec is adjusted
1282 1283
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
1284
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1285 1286 1287 1288 1289 1290 1291 1292
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
1293 1294
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
1319
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1320
{
1321
	s64 error, interval = tk->cycle_interval;
1322 1323
	int adj;

1324
	/*
1325
	 * The point of this is to check if the error is greater than half
1326 1327 1328 1329 1330
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
1331 1332
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
1333
	 * larger than half an interval.
1334
	 *
1335
	 * Note: It does not "save" on aggravation when reading the code.
1336
	 */
1337
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1338
	if (error > interval) {
1339 1340
		/*
		 * We now divide error by 4(via shift), which checks if
1341
		 * the error is greater than twice the interval.
1342 1343 1344
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
1345 1346 1347 1348
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
1365

1366 1367
	if (unlikely(tk->tkr.clock->maxadj &&
		(tk->tkr.mult + adj > tk->tkr.clock->mult + tk->tkr.clock->maxadj))) {
1368
		printk_deferred_once(KERN_WARNING
1369
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1370 1371
			tk->tkr.clock->name, (long)tk->tkr.mult + adj,
			(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1372
	}
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1422
	tk->tkr.mult += adj;
1423
	tk->xtime_interval += interval;
1424
	tk->tkr.xtime_nsec -= offset;
1425
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1426

1427
out_adjust:
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1442 1443 1444
	if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr.xtime_nsec;
		tk->tkr.xtime_nsec = 0;
1445
		tk->ntp_error += neg << tk->ntp_error_shift;
1446 1447
	}

1448 1449
}

1450 1451 1452 1453 1454 1455 1456 1457
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1458
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1459
{
1460
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1461
	unsigned int clock_set = 0;
1462

1463
	while (tk->tkr.xtime_nsec >= nsecps) {
1464 1465
		int leap;

1466
		tk->tkr.xtime_nsec -= nsecps;
1467 1468 1469 1470
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1471
		if (unlikely(leap)) {
1472
			struct timespec64 ts;
1473 1474

			tk->xtime_sec += leap;
1475

1476 1477 1478
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1479
				timespec64_sub(tk->wall_to_monotonic, ts));
1480

1481 1482
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1483
			clock_set = TK_CLOCK_WAS_SET;
1484
		}
1485
	}
1486
	return clock_set;
1487 1488
}

1489 1490 1491 1492 1493 1494 1495 1496 1497
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1498
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1499 1500
						u32 shift,
						unsigned int *clock_set)
1501
{
T
Thomas Gleixner 已提交
1502
	cycle_t interval = tk->cycle_interval << shift;
1503
	u64 raw_nsecs;
1504

1505
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1506
	if (offset < interval)
1507 1508 1509
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1510
	offset -= interval;
1511
	tk->tkr.cycle_last += interval;
1512

1513
	tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1514
	*clock_set |= accumulate_nsecs_to_secs(tk);
1515

1516
	/* Accumulate raw time */
1517
	raw_nsecs = (u64)tk->raw_interval << shift;
1518
	raw_nsecs += tk->raw_time.tv_nsec;
1519 1520 1521
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1522
		tk->raw_time.tv_sec += raw_secs;
1523
	}
1524
	tk->raw_time.tv_nsec = raw_nsecs;
1525 1526

	/* Accumulate error between NTP and clock interval */
1527 1528 1529
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1530 1531 1532 1533

	return offset;
}

1534 1535 1536 1537
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1538
void update_wall_time(void)
1539
{
1540
	struct timekeeper *real_tk = &tk_core.timekeeper;
1541
	struct timekeeper *tk = &shadow_timekeeper;
1542
	cycle_t offset;
1543
	int shift = 0, maxshift;
1544
	unsigned int clock_set = 0;
J
John Stultz 已提交
1545 1546
	unsigned long flags;

1547
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1548 1549 1550

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1551
		goto out;
1552

J
John Stultz 已提交
1553
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1554
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1555
#else
1556 1557
	offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
				   tk->tkr.cycle_last, tk->tkr.mask);
1558 1559
#endif

1560
	/* Check if there's really nothing to do */
1561
	if (offset < real_tk->cycle_interval)
1562 1563
		goto out;

1564 1565 1566 1567
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1568
	 * that is smaller than the offset.  We then accumulate that
1569 1570
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1571
	 */
1572
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1573
	shift = max(0, shift);
1574
	/* Bound shift to one less than what overflows tick_length */
1575
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1576
	shift = min(shift, maxshift);
1577
	while (offset >= tk->cycle_interval) {
1578 1579
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1580
		if (offset < tk->cycle_interval<<shift)
1581
			shift--;
1582 1583 1584
	}

	/* correct the clock when NTP error is too big */
1585
	timekeeping_adjust(tk, offset);
1586

J
John Stultz 已提交
1587
	/*
1588 1589 1590 1591
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1592

J
John Stultz 已提交
1593 1594
	/*
	 * Finally, make sure that after the rounding
1595
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1596
	 */
1597
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1598

1599
	write_seqcount_begin(&tk_core.seq);
1600 1601 1602 1603 1604 1605 1606
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1607
	 * memcpy under the tk_core.seq against one before we start
1608 1609 1610
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1611
	timekeeping_update(real_tk, clock_set);
1612
	write_seqcount_end(&tk_core.seq);
1613
out:
1614
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1615
	if (clock_set)
1616 1617
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1618
}
T
Tomas Janousek 已提交
1619 1620 1621 1622 1623

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1624
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1625 1626 1627 1628 1629 1630 1631 1632
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1633
	struct timekeeper *tk = &tk_core.timekeeper;
1634 1635 1636
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

	*ts = ktime_to_timespec(t);
T
Tomas Janousek 已提交
1637
}
1638
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1639

1640 1641
unsigned long get_seconds(void)
{
1642
	struct timekeeper *tk = &tk_core.timekeeper;
1643 1644

	return tk->xtime_sec;
1645 1646 1647
}
EXPORT_SYMBOL(get_seconds);

1648 1649
struct timespec __current_kernel_time(void)
{
1650
	struct timekeeper *tk = &tk_core.timekeeper;
1651

1652
	return timespec64_to_timespec(tk_xtime(tk));
1653
}
1654

1655 1656
struct timespec current_kernel_time(void)
{
1657
	struct timekeeper *tk = &tk_core.timekeeper;
1658
	struct timespec64 now;
1659 1660 1661
	unsigned long seq;

	do {
1662
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1663

1664
		now = tk_xtime(tk);
1665
	} while (read_seqcount_retry(&tk_core.seq, seq));
1666

1667
	return timespec64_to_timespec(now);
1668 1669
}
EXPORT_SYMBOL(current_kernel_time);
1670 1671 1672

struct timespec get_monotonic_coarse(void)
{
1673
	struct timekeeper *tk = &tk_core.timekeeper;
1674
	struct timespec64 now, mono;
1675 1676 1677
	unsigned long seq;

	do {
1678
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1679

1680 1681
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1682
	} while (read_seqcount_retry(&tk_core.seq, seq));
1683

1684
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1685
				now.tv_nsec + mono.tv_nsec);
1686 1687

	return timespec64_to_timespec(now);
1688
}
1689 1690

/*
1691
 * Must hold jiffies_lock
1692 1693 1694 1695 1696 1697
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1698 1699

/**
1700 1701 1702 1703 1704 1705
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1706
 */
1707 1708
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1709
{
1710
	struct timekeeper *tk = &tk_core.timekeeper;
1711
	unsigned int seq;
1712 1713
	ktime_t base;
	u64 nsecs;
1714 1715

	do {
1716
		seq = read_seqcount_begin(&tk_core.seq);
1717

1718 1719
		base = tk->tkr.base_mono;
		nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1720

1721 1722 1723
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1724
	} while (read_seqcount_retry(&tk_core.seq, seq));
1725

1726
	return ktime_add_ns(base, nsecs);
1727
}
T
Torben Hohn 已提交
1728

1729 1730
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1731
 * ktime_get_update_offsets_now - hrtimer helper
1732 1733
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1734
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1735 1736
 *
 * Returns current monotonic time and updates the offsets
1737
 * Called from hrtimer_interrupt() or retrigger_next_event()
1738
 */
1739
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1740
							ktime_t *offs_tai)
1741
{
1742
	struct timekeeper *tk = &tk_core.timekeeper;
1743
	unsigned int seq;
1744 1745
	ktime_t base;
	u64 nsecs;
1746 1747

	do {
1748
		seq = read_seqcount_begin(&tk_core.seq);
1749

1750
		base = tk->tkr.base_mono;
1751
		nsecs = timekeeping_get_ns(&tk->tkr);
1752

1753 1754
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1755
		*offs_tai = tk->offs_tai;
1756
	} while (read_seqcount_retry(&tk_core.seq, seq));
1757

1758
	return ktime_add_ns(base, nsecs);
1759 1760 1761
}
#endif

1762 1763 1764 1765 1766
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1767
	struct timekeeper *tk = &tk_core.timekeeper;
1768
	unsigned long flags;
1769
	struct timespec64 ts;
1770
	s32 orig_tai, tai;
1771 1772 1773 1774 1775 1776 1777
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1789
	getnstimeofday64(&ts);
1790

1791
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1792
	write_seqcount_begin(&tk_core.seq);
1793

1794
	orig_tai = tai = tk->tai_offset;
1795
	ret = __do_adjtimex(txc, &ts, &tai);
1796

1797 1798
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1799
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1800
	}
1801
	write_seqcount_end(&tk_core.seq);
1802 1803
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1804 1805 1806
	if (tai != orig_tai)
		clock_was_set();

1807 1808
	ntp_notify_cmos_timer();

1809 1810
	return ret;
}
1811 1812 1813 1814 1815 1816 1817

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1818 1819 1820
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1821
	write_seqcount_begin(&tk_core.seq);
1822

1823
	__hardpps(phase_ts, raw_ts);
1824

1825
	write_seqcount_end(&tk_core.seq);
1826
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1827 1828 1829 1830
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1831 1832 1833 1834 1835 1836 1837 1838
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1839
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1840
	do_timer(ticks);
1841
	write_sequnlock(&jiffies_lock);
1842
	update_wall_time();
T
Torben Hohn 已提交
1843
}