sched.c 268.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143 144 145 146 147
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
181 182
	spin_lock_init(&rt_b->rt_runtime_lock);

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219 220 221 222 223 224 225 226 227 228 229
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

236
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
#ifdef CONFIG_CGROUP_SCHED
247 248
	struct cgroup_subsys_state css;
#endif
249

250 251 252 253
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

254
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
255 256 257 258 259
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
275 276
};

D
Dhaval Giani 已提交
277
#ifdef CONFIG_USER_SCHED
278

279 280 281 282 283 284
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

285 286
/*
 * Root task group.
287 288
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
289 290 291
 */
struct task_group root_task_group;

292
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
293 294 295
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
296
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297
#endif /* CONFIG_FAIR_GROUP_SCHED */
298 299 300

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
303
#else /* !CONFIG_USER_SCHED */
304
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
305
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
306

307
/* task_group_lock serializes add/remove of task groups and also changes to
308 309
 * a task group's cpu shares.
 */
310
static DEFINE_SPINLOCK(task_group_lock);
311

312 313
#ifdef CONFIG_FAIR_GROUP_SCHED

314 315 316 317 318 319 320
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

321 322
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
323
#else /* !CONFIG_USER_SCHED */
324
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
325
#endif /* CONFIG_USER_SCHED */
326

327
/*
328 329 330 331
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
332 333 334
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
335
#define MIN_SHARES	2
336
#define MAX_SHARES	(1UL << 18)
337

338 339 340
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
341
/* Default task group.
I
Ingo Molnar 已提交
342
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
343
 */
344
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
345 346

/* return group to which a task belongs */
347
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
348
{
349
	struct task_group *tg;
350

351
#ifdef CONFIG_USER_SCHED
352 353 354
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
355
#elif defined(CONFIG_CGROUP_SCHED)
356 357
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
358
#else
I
Ingo Molnar 已提交
359
	tg = &init_task_group;
360
#endif
361
	return tg;
S
Srivatsa Vaddagiri 已提交
362 363 364
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
365
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
366
{
367
#ifdef CONFIG_FAIR_GROUP_SCHED
368 369
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
370
#endif
P
Peter Zijlstra 已提交
371

372
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
373 374
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
375
#endif
S
Srivatsa Vaddagiri 已提交
376 377 378 379
}

#else

P
Peter Zijlstra 已提交
380
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 382 383 384
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
385

386
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
387

I
Ingo Molnar 已提交
388 389 390 391 392 393
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
394
	u64 min_vruntime;
I
Ingo Molnar 已提交
395 396 397

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
398 399 400 401 402 403

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
404 405
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
406
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
407

P
Peter Zijlstra 已提交
408
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
409

410
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
411 412
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
413 414
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
415 416 417 418 419 420
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
421 422
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
423 424 425

#ifdef CONFIG_SMP
	/*
426
	 * the part of load.weight contributed by tasks
427
	 */
428
	unsigned long task_weight;
429

430 431 432 433 434 435 436
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
437

438 439 440 441
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
442 443 444 445 446

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
447
#endif
I
Ingo Molnar 已提交
448 449
#endif
};
L
Linus Torvalds 已提交
450

I
Ingo Molnar 已提交
451 452 453
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
454
	unsigned long rt_nr_running;
455
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 457
	struct {
		int curr; /* highest queued rt task prio */
458
#ifdef CONFIG_SMP
459
		int next; /* next highest */
460
#endif
461
	} highest_prio;
P
Peter Zijlstra 已提交
462
#endif
P
Peter Zijlstra 已提交
463
#ifdef CONFIG_SMP
464
	unsigned long rt_nr_migratory;
465
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
466
	int overloaded;
467
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
468
#endif
P
Peter Zijlstra 已提交
469
	int rt_throttled;
P
Peter Zijlstra 已提交
470
	u64 rt_time;
P
Peter Zijlstra 已提交
471
	u64 rt_runtime;
I
Ingo Molnar 已提交
472
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
473
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
474

475
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
476 477
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
478 479 480 481 482
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
483 484
};

G
Gregory Haskins 已提交
485 486 487 488
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
489 490
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
491 492 493 494 495 496
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
497 498
	cpumask_var_t span;
	cpumask_var_t online;
499

I
Ingo Molnar 已提交
500
	/*
501 502 503
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
504
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
505
	atomic_t rto_count;
506 507 508
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
509 510
};

511 512 513 514
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
515 516 517 518
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
519 520 521 522 523 524 525
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
526
struct rq {
527 528
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
529 530 531 532 533 534

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
535 536
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 538 539
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
540 541
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
542 543 544 545
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
546 547
	struct rt_rq rt;

I
Ingo Molnar 已提交
548
#ifdef CONFIG_FAIR_GROUP_SCHED
549 550
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
551 552
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
553
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
554 555 556 557 558 559 560 561 562 563
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

564
	struct task_struct *curr, *idle;
565
	unsigned long next_balance;
L
Linus Torvalds 已提交
566
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
567

568
	u64 clock;
I
Ingo Molnar 已提交
569

L
Linus Torvalds 已提交
570 571 572
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
573
	struct root_domain *rd;
L
Linus Torvalds 已提交
574 575
	struct sched_domain *sd;

576
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
577
	/* For active balancing */
578
	int post_schedule;
L
Linus Torvalds 已提交
579 580
	int active_balance;
	int push_cpu;
581 582
	/* cpu of this runqueue: */
	int cpu;
583
	int online;
L
Linus Torvalds 已提交
584

585
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
586

587
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
588
	struct list_head migration_queue;
589 590 591

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
592 593
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
594 595
#endif

596 597 598 599
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
600
#ifdef CONFIG_SCHED_HRTICK
601 602 603 604
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
605 606 607
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
608 609 610
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
611 612
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
613 614

	/* sys_sched_yield() stats */
615
	unsigned int yld_count;
L
Linus Torvalds 已提交
616 617

	/* schedule() stats */
618 619 620
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
621 622

	/* try_to_wake_up() stats */
623 624
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
625 626

	/* BKL stats */
627
	unsigned int bkl_count;
L
Linus Torvalds 已提交
628 629 630
#endif
};

631
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
632

P
Peter Zijlstra 已提交
633 634
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
635
{
P
Peter Zijlstra 已提交
636
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
637 638
}

639 640 641 642 643 644 645 646 647
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
648 649
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
651 652 653 654
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
655 656
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
657 658 659 660 661

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
662
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
663

I
Ingo Molnar 已提交
664
inline void update_rq_clock(struct rq *rq)
665 666 667 668
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
669 670 671 672 673 674 675 676 677
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
678 679
/**
 * runqueue_is_locked
680
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
681 682 683 684 685
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
686
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
687
{
688
	return spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
689 690
}

I
Ingo Molnar 已提交
691 692 693
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
694 695 696 697

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
698
enum {
P
Peter Zijlstra 已提交
699
#include "sched_features.h"
I
Ingo Molnar 已提交
700 701
};

P
Peter Zijlstra 已提交
702 703 704 705 706
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
707
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
708 709 710 711 712 713 714 715 716
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

717
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
718 719 720 721 722 723
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
724
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
725 726 727 728
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
729 730 731
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
732
	}
L
Li Zefan 已提交
733
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
734

L
Li Zefan 已提交
735
	return 0;
P
Peter Zijlstra 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
755
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

775
	*ppos += cnt;
P
Peter Zijlstra 已提交
776 777 778 779

	return cnt;
}

L
Li Zefan 已提交
780 781 782 783 784
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

785
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
786 787 788 789 790
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
805

806 807 808 809 810 811
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
812 813
/*
 * ratelimit for updating the group shares.
814
 * default: 0.25ms
P
Peter Zijlstra 已提交
815
 */
816
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
817

818 819 820 821 822 823 824
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

825 826 827 828 829 830 831 832
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
833
/*
P
Peter Zijlstra 已提交
834
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
835 836
 * default: 1s
 */
P
Peter Zijlstra 已提交
837
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
838

839 840
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
841 842 843 844 845
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
846

847 848 849 850 851 852 853
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
854
	if (sysctl_sched_rt_runtime < 0)
855 856 857 858
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
859

L
Linus Torvalds 已提交
860
#ifndef prepare_arch_switch
861 862 863 864 865 866
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

867 868 869 870 871
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

872
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
873
static inline int task_running(struct rq *rq, struct task_struct *p)
874
{
875
	return task_current(rq, p);
876 877
}

878
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
879 880 881
{
}

882
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
883
{
884 885 886 887
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
888 889 890 891 892 893 894
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

895 896 897 898
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
899
static inline int task_running(struct rq *rq, struct task_struct *p)
900 901 902 903
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
904
	return task_current(rq, p);
905 906 907
#endif
}

908
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

925
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
926 927 928 929 930 931 932 933 934 935 936 937
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
938
#endif
939 940
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
941

942 943 944 945
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
946
static inline struct rq *__task_rq_lock(struct task_struct *p)
947 948
	__acquires(rq->lock)
{
949 950 951 952 953
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
954 955 956 957
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
958 959
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
960
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
961 962
 * explicitly disabling preemption.
 */
963
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
964 965
	__acquires(rq->lock)
{
966
	struct rq *rq;
L
Linus Torvalds 已提交
967

968 969 970 971 972 973
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
974 975 976 977
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

978 979 980 981 982 983 984 985
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
986
static void __task_rq_unlock(struct rq *rq)
987 988 989 990 991
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

992
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
993 994 995 996 997 998
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
999
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1000
 */
A
Alexey Dobriyan 已提交
1001
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1002 1003
	__acquires(rq->lock)
{
1004
	struct rq *rq;
L
Linus Torvalds 已提交
1005 1006 1007 1008 1009 1010 1011 1012

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1034
	if (!cpu_active(cpu_of(rq)))
1035
		return 0;
P
Peter Zijlstra 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1056
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1057 1058 1059 1060 1061 1062
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1063
#ifdef CONFIG_SMP
1064 1065 1066 1067
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1068
{
1069
	struct rq *rq = arg;
1070

1071 1072 1073 1074
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1075 1076
}

1077 1078 1079 1080 1081 1082
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1083
{
1084 1085
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1086

1087
	hrtimer_set_expires(timer, time);
1088 1089 1090 1091

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1092
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1093 1094
		rq->hrtick_csd_pending = 1;
	}
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1109
		hrtick_clear(cpu_rq(cpu));
1110 1111 1112 1113 1114 1115
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1116
static __init void init_hrtick(void)
1117 1118 1119
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1120 1121 1122 1123 1124 1125 1126 1127
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1128
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1129
			HRTIMER_MODE_REL_PINNED, 0);
1130
}
1131

A
Andrew Morton 已提交
1132
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1133 1134
{
}
1135
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1136

1137
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1138
{
1139 1140
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1141

1142 1143 1144 1145
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1146

1147 1148
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1149
}
A
Andrew Morton 已提交
1150
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1151 1152 1153 1154 1155 1156 1157 1158
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1159 1160 1161
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1162
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1163

I
Ingo Molnar 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1177
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1178 1179 1180 1181 1182
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1183
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1184 1185
		return;

1186
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1242
	set_tsk_need_resched(rq->idle);
1243 1244 1245 1246 1247 1248

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1249
#endif /* CONFIG_NO_HZ */
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1272
#else /* !CONFIG_SMP */
1273
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1274 1275
{
	assert_spin_locked(&task_rq(p)->lock);
1276
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1277
}
1278 1279 1280 1281

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1282
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1283

1284 1285 1286 1287 1288 1289 1290 1291
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1292 1293 1294
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1295
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1296

1297 1298 1299
/*
 * delta *= weight / lw
 */
1300
static unsigned long
1301 1302 1303 1304 1305
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1306 1307 1308 1309 1310 1311 1312
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1313 1314 1315 1316 1317

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1318
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1319
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1320 1321
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1322
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1323

1324
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1325 1326
}

1327
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1328 1329
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1330
	lw->inv_weight = 0;
1331 1332
}

1333
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1334 1335
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1336
	lw->inv_weight = 0;
1337 1338
}

1339 1340 1341 1342
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1343
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1344 1345 1346 1347
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1348 1349
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1359 1360 1361
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1362 1363
 */
static const int prio_to_weight[40] = {
1364 1365 1366 1367 1368 1369 1370 1371
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1372 1373
};

1374 1375 1376 1377 1378 1379 1380
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1381
static const u32 prio_to_wmult[40] = {
1382 1383 1384 1385 1386 1387 1388 1389
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1390
};
1391

I
Ingo Molnar 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1417

1418 1419 1420 1421 1422 1423 1424 1425
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1426 1427
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1428 1429
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1430 1431
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1432 1433
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1434 1435
#endif

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1446
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1447
typedef int (*tg_visitor)(struct task_group *, void *);
1448 1449 1450 1451 1452

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1453
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1454 1455
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1456
	int ret;
1457 1458 1459 1460

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1461 1462 1463
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1464 1465 1466 1467 1468 1469 1470
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1471 1472 1473
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1474 1475 1476 1477 1478

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1479
out_unlock:
1480
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1481 1482

	return ret;
1483 1484
}

P
Peter Zijlstra 已提交
1485 1486 1487
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1488
}
P
Peter Zijlstra 已提交
1489 1490 1491
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1551 1552 1553 1554 1555
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1556
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1557

1558 1559
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1560 1561
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1562 1563 1564 1565 1566

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1567

1568
static __read_mostly unsigned long *update_shares_data;
1569

1570 1571 1572 1573 1574
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1575 1576 1577
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1578
				    unsigned long *usd_rq_weight)
1579
{
1580
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1581
	int boost = 0;
1582

1583
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1584 1585 1586 1587
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1588

1589
	/*
P
Peter Zijlstra 已提交
1590 1591 1592
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1593
	 */
1594
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1595
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1596

1597 1598 1599 1600
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1601

1602
		spin_lock_irqsave(&rq->lock, flags);
1603
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1604
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1605 1606 1607
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1608
}
1609 1610

/*
1611 1612 1613
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1614
 */
P
Peter Zijlstra 已提交
1615
static int tg_shares_up(struct task_group *tg, void *data)
1616
{
1617
	unsigned long weight, rq_weight = 0, shares = 0;
1618
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1619
	struct sched_domain *sd = data;
1620
	unsigned long flags;
1621
	int i;
1622

1623 1624 1625 1626
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1627
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1628

1629
	for_each_cpu(i, sched_domain_span(sd)) {
1630
		weight = tg->cfs_rq[i]->load.weight;
1631
		usd_rq_weight[i] = weight;
1632

1633 1634 1635 1636 1637 1638 1639 1640 1641
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

		rq_weight += weight;
1642
		shares += tg->cfs_rq[i]->shares;
1643 1644
	}

1645 1646 1647 1648 1649
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1650

1651
	for_each_cpu(i, sched_domain_span(sd))
1652
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1653 1654

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1655 1656

	return 0;
1657 1658 1659
}

/*
1660 1661 1662
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1663
 */
P
Peter Zijlstra 已提交
1664
static int tg_load_down(struct task_group *tg, void *data)
1665
{
1666
	unsigned long load;
P
Peter Zijlstra 已提交
1667
	long cpu = (long)data;
1668

1669 1670 1671 1672 1673 1674 1675
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1676

1677
	tg->cfs_rq[cpu]->h_load = load;
1678

P
Peter Zijlstra 已提交
1679
	return 0;
1680 1681
}

1682
static void update_shares(struct sched_domain *sd)
1683
{
1684 1685 1686 1687 1688 1689 1690 1691
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1692 1693 1694

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1695
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1696
	}
1697 1698
}

1699 1700
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1701 1702 1703
	if (root_task_group_empty())
		return;

1704 1705 1706 1707 1708
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1709
static void update_h_load(long cpu)
1710
{
1711 1712 1713
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1714
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1715 1716 1717 1718
}

#else

1719
static inline void update_shares(struct sched_domain *sd)
1720 1721 1722
{
}

1723 1724 1725 1726
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1727 1728
#endif

1729 1730
#ifdef CONFIG_PREEMPT

1731 1732
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1733
/*
1734 1735 1736 1737 1738 1739
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1740
 */
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1795 1796 1797 1798 1799 1800
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1801 1802
#endif

V
Vegard Nossum 已提交
1803
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1804 1805
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1806
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1807 1808 1809
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1810
#endif
1811

1812 1813
static void calc_load_account_active(struct rq *this_rq);

P
Peter Zijlstra 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}

I
Ingo Molnar 已提交
1828 1829
#include "sched_stats.h"
#include "sched_idletask.c"
1830 1831
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1832 1833 1834 1835 1836
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1837 1838
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1839

1840
static void inc_nr_running(struct rq *rq)
1841 1842 1843 1844
{
	rq->nr_running++;
}

1845
static void dec_nr_running(struct rq *rq)
1846 1847 1848 1849
{
	rq->nr_running--;
}

1850 1851 1852
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1853 1854 1855 1856
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1857

I
Ingo Molnar 已提交
1858 1859 1860 1861 1862 1863 1864 1865
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1866

I
Ingo Molnar 已提交
1867 1868
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1869 1870
}

1871 1872 1873 1874 1875 1876
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1877
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1878
{
P
Peter Zijlstra 已提交
1879 1880 1881
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1882
	sched_info_queued(p);
1883
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1884
	p->se.on_rq = 1;
1885 1886
}

1887
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1888
{
P
Peter Zijlstra 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1898 1899
	}

1900
	sched_info_dequeued(p);
1901
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1902
	p->se.on_rq = 0;
1903 1904
}

1905
/*
I
Ingo Molnar 已提交
1906
 * __normal_prio - return the priority that is based on the static prio
1907 1908 1909
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1910
	return p->static_prio;
1911 1912
}

1913 1914 1915 1916 1917 1918 1919
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1920
static inline int normal_prio(struct task_struct *p)
1921 1922 1923
{
	int prio;

1924
	if (task_has_rt_policy(p))
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1938
static int effective_prio(struct task_struct *p)
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1951
/*
I
Ingo Molnar 已提交
1952
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1953
 */
I
Ingo Molnar 已提交
1954
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1955
{
1956
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1957
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1958

1959
	enqueue_task(rq, p, wakeup);
1960
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1961 1962 1963 1964 1965
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1966
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1967
{
1968
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1969 1970
		rq->nr_uninterruptible++;

1971
	dequeue_task(rq, p, sleep);
1972
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1973 1974 1975 1976 1977 1978
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1979
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1980 1981 1982 1983
{
	return cpu_curr(task_cpu(p)) == p;
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

1996 1997
/**
 * kthread_bind - bind a just-created kthread to a cpu.
1998
 * @p: thread created by kthread_create().
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
 * @cpu: cpu (might not be online, must be possible) for @k to run on.
 *
 * Description: This function is equivalent to set_cpus_allowed(),
 * except that @cpu doesn't need to be online, and the thread must be
 * stopped (i.e., just returned from kthread_create()).
 *
 * Function lives here instead of kthread.c because it messes with
 * scheduler internals which require locking.
 */
void kthread_bind(struct task_struct *p, unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/* Must have done schedule() in kthread() before we set_task_cpu */
	if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
		WARN_ON(1);
		return;
	}

	spin_lock_irqsave(&rq->lock, flags);
2020
	update_rq_clock(rq);
2021 2022 2023 2024 2025 2026 2027 2028
	set_task_cpu(p, cpu);
	p->cpus_allowed = cpumask_of_cpu(cpu);
	p->rt.nr_cpus_allowed = 1;
	p->flags |= PF_THREAD_BOUND;
	spin_unlock_irqrestore(&rq->lock, flags);
}
EXPORT_SYMBOL(kthread_bind);

L
Linus Torvalds 已提交
2029
#ifdef CONFIG_SMP
2030 2031 2032
/*
 * Is this task likely cache-hot:
 */
2033
static int
2034 2035 2036 2037
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2038 2039 2040
	/*
	 * Buddy candidates are cache hot:
	 */
2041
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2042 2043
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2044 2045
		return 1;

2046 2047 2048
	if (p->sched_class != &fair_sched_class)
		return 0;

2049 2050 2051 2052 2053
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2054 2055 2056 2057 2058 2059
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2060
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2061
{
I
Ingo Molnar 已提交
2062
	int old_cpu = task_cpu(p);
2063
	struct rq *old_rq = cpu_rq(old_cpu);
2064 2065
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
I
Ingo Molnar 已提交
2066

2067
	trace_sched_migrate_task(p, new_cpu);
2068

2069
	if (old_cpu != new_cpu) {
2070 2071
		p->se.nr_migrations++;
#ifdef CONFIG_SCHEDSTATS
2072 2073
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2074
#endif
2075
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2076
				     1, 1, NULL, 0);
2077
	}
2078 2079
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2080 2081

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2082 2083
}

2084
struct migration_req {
L
Linus Torvalds 已提交
2085 2086
	struct list_head list;

2087
	struct task_struct *task;
L
Linus Torvalds 已提交
2088 2089 2090
	int dest_cpu;

	struct completion done;
2091
};
L
Linus Torvalds 已提交
2092 2093 2094 2095 2096

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2097
static int
2098
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2099
{
2100
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2101 2102 2103 2104 2105

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2106
	if (!p->se.on_rq && !task_running(rq, p)) {
2107
		update_rq_clock(rq);
L
Linus Torvalds 已提交
2108 2109 2110 2111 2112 2113 2114 2115
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2116

L
Linus Torvalds 已提交
2117 2118 2119
	return 1;
}

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2163 2164 2165
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2166 2167 2168 2169 2170 2171 2172
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2173 2174 2175 2176 2177 2178
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2179
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2180 2181
{
	unsigned long flags;
I
Ingo Molnar 已提交
2182
	int running, on_rq;
R
Roland McGrath 已提交
2183
	unsigned long ncsw;
2184
	struct rq *rq;
L
Linus Torvalds 已提交
2185

2186 2187 2188 2189 2190 2191 2192 2193
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2194

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2206 2207 2208
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2209
			cpu_relax();
R
Roland McGrath 已提交
2210
		}
2211

2212 2213 2214 2215 2216 2217
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2218
		trace_sched_wait_task(rq, p);
2219 2220
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2221
		ncsw = 0;
2222
		if (!match_state || p->state == match_state)
2223
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2224
		task_rq_unlock(rq, &flags);
2225

R
Roland McGrath 已提交
2226 2227 2228 2229 2230 2231
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2242

2243 2244 2245 2246 2247
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2248
		 * So if it was still runnable (but just not actively
2249 2250 2251 2252 2253 2254 2255
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2256

2257 2258 2259 2260 2261 2262 2263
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2264 2265

	return ncsw;
L
Linus Torvalds 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2281
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2291
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2292
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2293

T
Thomas Gleixner 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2315 2316 2317 2318 2319 2320 2321 2322
#ifdef CONFIG_SMP
static inline
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
{
	return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
}
#endif

L
Linus Torvalds 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2337 2338
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2339
{
2340
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2341
	unsigned long flags;
2342
	struct rq *rq, *orig_rq;
L
Linus Torvalds 已提交
2343

2344
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2345
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2346

P
Peter Zijlstra 已提交
2347
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2348

2349
	smp_wmb();
2350
	rq = orig_rq = task_rq_lock(p, &flags);
2351
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2352
	if (!(p->state & state))
L
Linus Torvalds 已提交
2353 2354
		goto out;

I
Ingo Molnar 已提交
2355
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2356 2357 2358
		goto out_running;

	cpu = task_cpu(p);
2359
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2360 2361 2362 2363 2364

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2365 2366 2367
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2368 2369
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2370
	 */
2371 2372
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2373
	p->state = TASK_WAKING;
P
Peter Zijlstra 已提交
2374
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2375

2376
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
P
Peter Zijlstra 已提交
2377
	if (cpu != orig_cpu)
2378
		set_task_cpu(p, cpu);
P
Peter Zijlstra 已提交
2379 2380 2381

	rq = __task_rq_lock(p);
	update_rq_clock(rq);
2382

P
Peter Zijlstra 已提交
2383 2384
	WARN_ON(p->state != TASK_WAKING);
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
2385

2386 2387 2388 2389 2390 2391 2392
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2393
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2394 2395 2396 2397 2398
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2399
#endif /* CONFIG_SCHEDSTATS */
2400

L
Linus Torvalds 已提交
2401 2402
out_activate:
#endif /* CONFIG_SMP */
2403
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2404
	if (wake_flags & WF_SYNC)
2405 2406 2407 2408 2409 2410 2411
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2412
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2413 2414
	success = 1;

P
Peter Zijlstra 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2431
out_running:
2432
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2433
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2434

L
Linus Torvalds 已提交
2435
	p->state = TASK_RUNNING;
2436 2437 2438
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2450
#endif
L
Linus Torvalds 已提交
2451 2452
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2453
	put_cpu();
L
Linus Torvalds 已提交
2454 2455 2456 2457

	return success;
}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2469
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2470
{
2471
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2472 2473 2474
}
EXPORT_SYMBOL(wake_up_process);

2475
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2476 2477 2478 2479 2480 2481 2482
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2483 2484 2485 2486 2487 2488 2489
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2490
	p->se.prev_sum_exec_runtime	= 0;
2491
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2492 2493
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2494 2495
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
2496
	p->se.avg_running		= 0;
I
Ingo Molnar 已提交
2497 2498

#ifdef CONFIG_SCHEDSTATS
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2530
#endif
N
Nick Piggin 已提交
2531

P
Peter Zijlstra 已提交
2532
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2533
	p->se.on_rq = 0;
2534
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2535

2536 2537 2538 2539
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2540 2541 2542 2543 2544 2545 2546
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

2558 2559 2560 2561
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2562
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2563
			p->policy = SCHED_NORMAL;
2564 2565
			p->normal_prio = p->static_prio;
		}
2566

2567 2568
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2569
			p->normal_prio = p->static_prio;
2570 2571 2572
			set_load_weight(p);
		}

2573 2574 2575 2576 2577 2578
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2579

2580 2581 2582 2583 2584
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2585 2586
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2587

P
Peter Zijlstra 已提交
2588 2589 2590
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2591
#ifdef CONFIG_SMP
2592
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2593 2594 2595
#endif
	set_task_cpu(p, cpu);

2596
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2597
	if (likely(sched_info_on()))
2598
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2599
#endif
2600
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2601 2602
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2603
#ifdef CONFIG_PREEMPT
2604
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2605
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2606
#endif
2607 2608
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2609
	put_cpu();
L
Linus Torvalds 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2619
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2620 2621
{
	unsigned long flags;
I
Ingo Molnar 已提交
2622
	struct rq *rq;
L
Linus Torvalds 已提交
2623 2624

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2625
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2626
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2627
	activate_task(rq, p, 0);
2628
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2629
	check_preempt_curr(rq, p, WF_FORK);
2630 2631 2632 2633
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2634
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2635 2636
}

2637 2638 2639
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2640
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2641
 * @notifier: notifier struct to register
2642 2643 2644 2645 2646 2647 2648 2649 2650
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2651
 * @notifier: notifier struct to unregister
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2681
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2693
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2694

2695 2696 2697
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2698
 * @prev: the current task that is being switched out
2699 2700 2701 2702 2703 2704 2705 2706 2707
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2708 2709 2710
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2711
{
2712
	fire_sched_out_preempt_notifiers(prev, next);
2713 2714 2715 2716
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2717 2718
/**
 * finish_task_switch - clean up after a task-switch
2719
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2720 2721
 * @prev: the thread we just switched away from.
 *
2722 2723 2724 2725
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2726 2727
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2728
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2729 2730 2731
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2732
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2733 2734 2735
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2736
	long prev_state;
L
Linus Torvalds 已提交
2737 2738 2739 2740 2741

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2742
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2743 2744
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2745
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2746 2747 2748 2749 2750
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2751
	prev_state = prev->state;
2752
	finish_arch_switch(prev);
2753
	perf_event_task_sched_in(current, cpu_of(rq));
2754
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2755

2756
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2757 2758
	if (mm)
		mmdrop(mm);
2759
	if (unlikely(prev_state == TASK_DEAD)) {
2760 2761 2762
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2763
		 */
2764
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2765
		put_task_struct(prev);
2766
	}
L
Linus Torvalds 已提交
2767 2768
}

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2794

2795 2796 2797 2798 2799 2800
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2801 2802
}

2803 2804
#endif

L
Linus Torvalds 已提交
2805 2806 2807 2808
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2809
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2810 2811
	__releases(rq->lock)
{
2812 2813
	struct rq *rq = this_rq();

2814
	finish_task_switch(rq, prev);
2815

2816 2817 2818 2819 2820
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2821

2822 2823 2824 2825
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2826
	if (current->set_child_tid)
2827
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2828 2829 2830 2831 2832 2833
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2834
static inline void
2835
context_switch(struct rq *rq, struct task_struct *prev,
2836
	       struct task_struct *next)
L
Linus Torvalds 已提交
2837
{
I
Ingo Molnar 已提交
2838
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2839

2840
	prepare_task_switch(rq, prev, next);
2841
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2842 2843
	mm = next->mm;
	oldmm = prev->active_mm;
2844 2845 2846 2847 2848
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2849
	arch_start_context_switch(prev);
2850

2851
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2852 2853 2854 2855 2856 2857
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2858
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2859 2860 2861
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2862 2863 2864 2865 2866 2867 2868
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2869
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2870
#endif
L
Linus Torvalds 已提交
2871 2872 2873 2874

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2875 2876 2877 2878 2879 2880 2881
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2905
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2920 2921
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2922

2923
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2933
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2934 2935 2936 2937 2938
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}

unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}


2952 2953 2954 2955 2956 2957
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2973 2974
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2975
{
2976 2977 2978 2979
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2980

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
2992

2993 2994
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2995

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3018 3019
}

3020
/*
I
Ingo Molnar 已提交
3021 3022
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3023
 */
I
Ingo Molnar 已提交
3024
static void update_cpu_load(struct rq *this_rq)
3025
{
3026
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3039 3040 3041 3042 3043 3044 3045
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3046 3047
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3048 3049 3050 3051 3052

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3053 3054
}

I
Ingo Molnar 已提交
3055 3056
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3057 3058 3059 3060 3061 3062
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3063
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3064 3065 3066
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3067
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3068 3069 3070 3071
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3072
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3073
			spin_lock(&rq1->lock);
3074
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3075 3076
		} else {
			spin_lock(&rq2->lock);
3077
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3078 3079
		}
	}
3080 3081
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3082 3083 3084 3085 3086 3087 3088 3089
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3090
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3104
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3105 3106
 * the cpu_allowed mask is restored.
 */
3107
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3108
{
3109
	struct migration_req req;
L
Linus Torvalds 已提交
3110
	unsigned long flags;
3111
	struct rq *rq;
L
Linus Torvalds 已提交
3112 3113

	rq = task_rq_lock(p, &flags);
3114
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3115
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3116 3117 3118 3119 3120 3121
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3122

L
Linus Torvalds 已提交
3123 3124 3125 3126 3127
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3128

L
Linus Torvalds 已提交
3129 3130 3131 3132 3133 3134 3135
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3136 3137
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3138 3139 3140 3141
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
3142
	new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
L
Linus Torvalds 已提交
3143
	put_cpu();
N
Nick Piggin 已提交
3144 3145
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3146 3147 3148 3149 3150 3151
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3152 3153
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3154
{
3155
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3156
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3157
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3158 3159 3160 3161
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3162
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3163 3164 3165 3166 3167
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3168
static
3169
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3170
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3171
		     int *all_pinned)
L
Linus Torvalds 已提交
3172
{
3173
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3174 3175 3176 3177 3178 3179
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3180
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3181
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3182
		return 0;
3183
	}
3184 3185
	*all_pinned = 0;

3186 3187
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3188
		return 0;
3189
	}
L
Linus Torvalds 已提交
3190

3191 3192 3193 3194 3195 3196
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3197 3198 3199
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3200
#ifdef CONFIG_SCHEDSTATS
3201
		if (tsk_cache_hot) {
3202
			schedstat_inc(sd, lb_hot_gained[idle]);
3203 3204
			schedstat_inc(p, se.nr_forced_migrations);
		}
3205 3206 3207 3208
#endif
		return 1;
	}

3209
	if (tsk_cache_hot) {
3210
		schedstat_inc(p, se.nr_failed_migrations_hot);
3211
		return 0;
3212
	}
L
Linus Torvalds 已提交
3213 3214 3215
	return 1;
}

3216 3217 3218 3219 3220
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3221
{
3222
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3223 3224
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3225

3226
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3227 3228
		goto out;

3229 3230
	pinned = 1;

L
Linus Torvalds 已提交
3231
	/*
I
Ingo Molnar 已提交
3232
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3233
	 */
I
Ingo Molnar 已提交
3234 3235
	p = iterator->start(iterator->arg);
next:
3236
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3237
		goto out;
3238 3239

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3240 3241 3242
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3243 3244
	}

I
Ingo Molnar 已提交
3245
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3246
	pulled++;
I
Ingo Molnar 已提交
3247
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3248

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3259
	/*
3260
	 * We only want to steal up to the prescribed amount of weighted load.
3261
	 */
3262
	if (rem_load_move > 0) {
3263 3264
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3265 3266
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3267 3268 3269
	}
out:
	/*
3270
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3271 3272 3273 3274
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3275 3276 3277

	if (all_pinned)
		*all_pinned = pinned;
3278 3279

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3280 3281
}

I
Ingo Molnar 已提交
3282
/*
P
Peter Williams 已提交
3283 3284 3285
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3286 3287 3288 3289
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3290
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3291 3292 3293
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3294
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3295
	unsigned long total_load_moved = 0;
3296
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3297 3298

	do {
P
Peter Williams 已提交
3299 3300
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3301
				max_load_move - total_load_moved,
3302
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3303
		class = class->next;
3304

3305 3306 3307 3308 3309 3310
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3311 3312
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3313
#endif
P
Peter Williams 已提交
3314
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3315

P
Peter Williams 已提交
3316 3317 3318
	return total_load_moved > 0;
}

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3355
	const struct sched_class *class;
P
Peter Williams 已提交
3356

3357
	for_each_class(class) {
3358
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3359
			return 1;
3360
	}
P
Peter Williams 已提交
3361 3362

	return 0;
I
Ingo Molnar 已提交
3363
}
3364
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3365
/*
3366 3367
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3368
 */
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3387
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3388 3389 3390 3391 3392 3393
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3394
#endif
3395
};
L
Linus Torvalds 已提交
3396

3397
/*
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3408

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3430
		load_idx = sd->busy_idx;
3431 3432 3433
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3434
		load_idx = sd->newidle_idx;
3435 3436
		break;
	default:
N
Nick Piggin 已提交
3437
		load_idx = sd->idle_idx;
3438 3439
		break;
	}
L
Linus Torvalds 已提交
3440

3441 3442
	return load_idx;
}
L
Linus Torvalds 已提交
3443 3444


3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3469

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3483

3484 3485
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3486

3487 3488 3489 3490 3491 3492 3493
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3494

3495 3496 3497 3498 3499 3500 3501 3502
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3503

3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3517

3518 3519 3520 3521 3522
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3523
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3524
		return;
L
Linus Torvalds 已提交
3525

3526 3527 3528 3529 3530 3531 3532
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3533

3534
/**
3535
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3536 3537 3538 3539 3540
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3541 3542 3543 3544 3545
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3546 3547 3548 3549 3550 3551 3552 3553
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3554

3555 3556 3557
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3558

3559 3560
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3561

3562
	return 1;
L
Linus Torvalds 已提交
3563

3564 3565 3566 3567 3568 3569 3570
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3571

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3597 3598 3599 3600 3601 3602 3603 3604 3605
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3606 3607 3608 3609 3610
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3629 3630 3631 3632 3633 3634
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

3635 3636 3637 3638 3639
	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3640
	power >>= SCHED_LOAD_SHIFT;
3641 3642

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3643 3644 3645 3646 3647
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3648 3649 3650
		power >>= SCHED_LOAD_SHIFT;
	}

3651 3652 3653 3654 3655
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3656

3657
	sdg->cpu_power = power;
3658 3659 3660
}

static void update_group_power(struct sched_domain *sd, int cpu)
3661 3662 3663
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
3664
	unsigned long power;
3665 3666

	if (!child) {
3667
		update_cpu_power(sd, cpu);
3668 3669 3670
		return;
	}

3671
	power = 0;
3672 3673 3674

	group = child->groups;
	do {
3675
		power += group->cpu_power;
3676 3677
		group = group->next;
	} while (group != child->groups);
3678 3679

	sdg->cpu_power = power;
3680
}
3681

3682 3683
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3684
 * @sd: The sched_domain whose statistics are to be updated.
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3695 3696
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3707
	if (local_group) {
3708
		balance_cpu = group_first_cpu(group);
3709
		if (balance_cpu == this_cpu)
3710
			update_group_power(sd, this_cpu);
3711
	}
3712 3713 3714 3715 3716

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3717

3718 3719
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3720

3721 3722
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3723

3724
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3725
		if (local_group) {
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3738
		}
3739

3740 3741 3742
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3743

3744 3745
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3746

3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3758

3759
	/* Adjust by relative CPU power of the group */
3760
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3761

3762 3763 3764 3765 3766 3767 3768 3769 3770 3771

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3772 3773
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3774 3775 3776 3777

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3778
	sgs->group_capacity =
3779
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3780
}
I
Ingo Molnar 已提交
3781

3782 3783 3784 3785 3786 3787 3788 3789 3790
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3791
 */
3792 3793 3794 3795
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3796
{
P
Peter Zijlstra 已提交
3797
	struct sched_domain *child = sd->child;
3798
	struct sched_group *group = sd->groups;
3799
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3800 3801 3802 3803
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3804

3805
	init_sd_power_savings_stats(sd, sds, idle);
3806
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3807 3808 3809 3810

	do {
		int local_group;

3811 3812
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3813
		memset(&sgs, 0, sizeof(sgs));
3814
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3815
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3816

3817 3818
		if (local_group && balance && !(*balance))
			return;
3819

3820
		sds->total_load += sgs.group_load;
3821
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3822

P
Peter Zijlstra 已提交
3823 3824 3825 3826 3827 3828
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3829
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
L
Linus Torvalds 已提交
3830 3831

		if (local_group) {
3832 3833 3834 3835 3836
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3837 3838
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3839 3840 3841 3842 3843
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3844
		}
3845

3846
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3847 3848
		group = group->next;
	} while (group != sd->groups);
3849
}
L
Linus Torvalds 已提交
3850

3851 3852
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3853 3854
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3873

3874 3875 3876 3877 3878
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3879

L
Linus Torvalds 已提交
3880
	/*
3881 3882 3883
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3884
	 */
3885

3886
	pwr_now += sds->busiest->cpu_power *
3887
			min(sds->busiest_load_per_task, sds->max_load);
3888
	pwr_now += sds->this->cpu_power *
3889 3890 3891 3892
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3893 3894
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3895
	if (sds->max_load > tmp)
3896
		pwr_move += sds->busiest->cpu_power *
3897 3898 3899
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3900
	if (sds->max_load * sds->busiest->cpu_power <
3901
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3902 3903
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
3904
	else
3905 3906 3907
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
3908 3909 3910 3911 3912 3913 3914
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3927 3928 3929 3930 3931
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3932
	if (sds->max_load < sds->avg_load) {
3933
		*imbalance = 0;
3934
		return fix_small_imbalance(sds, this_cpu, imbalance);
3935
	}
3936 3937

	/* Don't want to pull so many tasks that a group would go idle */
3938 3939
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3940

L
Linus Torvalds 已提交
3941
	/* How much load to actually move to equalise the imbalance */
3942 3943
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
3944 3945
			/ SCHED_LOAD_SCALE;

3946 3947 3948 3949 3950 3951
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3952 3953
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3954

3955
}
3956
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3957

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3982 3983 3984 3985 3986 3987 3988
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3989

3990
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3991

3992 3993 3994 3995 3996 3997 3998
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
4009 4010
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
4011

4012 4013
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
4014

4015
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
4016 4017
		goto out_balanced;

4018
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
4019

4020 4021 4022 4023
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
4024 4025
		goto out_balanced;

4026 4027 4028 4029
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4030

L
Linus Torvalds 已提交
4031 4032 4033 4034 4035 4036 4037 4038
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4039
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4040 4041
	 * appear as very large values with unsigned longs.
	 */
4042
	if (sds.max_load <= sds.busiest_load_per_task)
4043 4044
		goto out_balanced;

4045 4046
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4047
	return sds.busiest;
L
Linus Torvalds 已提交
4048 4049

out_balanced:
4050 4051 4052 4053 4054 4055
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4056
ret:
L
Linus Torvalds 已提交
4057 4058 4059 4060 4061 4062 4063
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4064
static struct rq *
I
Ingo Molnar 已提交
4065
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4066
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4067
{
4068
	struct rq *busiest = NULL, *rq;
4069
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4070 4071
	int i;

4072
	for_each_cpu(i, sched_group_cpus(group)) {
4073 4074
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4075
		unsigned long wl;
4076

4077
		if (!cpumask_test_cpu(i, cpus))
4078 4079
			continue;

4080
		rq = cpu_rq(i);
4081 4082
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4083

4084
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4085
			continue;
L
Linus Torvalds 已提交
4086

I
Ingo Molnar 已提交
4087 4088
		if (wl > max_load) {
			max_load = wl;
4089
			busiest = rq;
L
Linus Torvalds 已提交
4090 4091 4092 4093 4094 4095
		}
	}

	return busiest;
}

4096 4097 4098 4099 4100 4101
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4102 4103 4104
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4105 4106 4107 4108
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4109
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4110
			struct sched_domain *sd, enum cpu_idle_type idle,
4111
			int *balance)
L
Linus Torvalds 已提交
4112
{
P
Peter Williams 已提交
4113
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4114 4115
	struct sched_group *group;
	unsigned long imbalance;
4116
	struct rq *busiest;
4117
	unsigned long flags;
4118
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4119

4120
	cpumask_copy(cpus, cpu_active_mask);
4121

4122 4123 4124
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4125
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4126
	 * portraying it as CPU_NOT_IDLE.
4127
	 */
I
Ingo Molnar 已提交
4128
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4129
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4130
		sd_idle = 1;
L
Linus Torvalds 已提交
4131

4132
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4133

4134
redo:
4135
	update_shares(sd);
4136
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4137
				   cpus, balance);
4138

4139
	if (*balance == 0)
4140 4141
		goto out_balanced;

L
Linus Torvalds 已提交
4142 4143 4144 4145 4146
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4147
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4148 4149 4150 4151 4152
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4153
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4154 4155 4156

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4157
	ld_moved = 0;
L
Linus Torvalds 已提交
4158 4159 4160 4161
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4162
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4163 4164
		 * correctly treated as an imbalance.
		 */
4165
		local_irq_save(flags);
N
Nick Piggin 已提交
4166
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4167
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4168
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4169
		double_rq_unlock(this_rq, busiest);
4170
		local_irq_restore(flags);
4171

4172 4173 4174
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4175
		if (ld_moved && this_cpu != smp_processor_id())
4176 4177
			resched_cpu(this_cpu);

4178
		/* All tasks on this runqueue were pinned by CPU affinity */
4179
		if (unlikely(all_pinned)) {
4180 4181
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4182
				goto redo;
4183
			goto out_balanced;
4184
		}
L
Linus Torvalds 已提交
4185
	}
4186

P
Peter Williams 已提交
4187
	if (!ld_moved) {
L
Linus Torvalds 已提交
4188 4189 4190 4191 4192
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4193
			spin_lock_irqsave(&busiest->lock, flags);
4194 4195 4196 4197

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4198 4199
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4200
				spin_unlock_irqrestore(&busiest->lock, flags);
4201 4202 4203 4204
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4205 4206 4207
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4208
				active_balance = 1;
L
Linus Torvalds 已提交
4209
			}
4210
			spin_unlock_irqrestore(&busiest->lock, flags);
4211
			if (active_balance)
L
Linus Torvalds 已提交
4212 4213 4214 4215 4216 4217
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4218
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4219
		}
4220
	} else
L
Linus Torvalds 已提交
4221 4222
		sd->nr_balance_failed = 0;

4223
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4224 4225
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4226 4227 4228 4229 4230 4231 4232 4233 4234
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4235 4236
	}

P
Peter Williams 已提交
4237
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4238
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4239 4240 4241
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4242 4243 4244 4245

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4246
	sd->nr_balance_failed = 0;
4247 4248

out_one_pinned:
L
Linus Torvalds 已提交
4249
	/* tune up the balancing interval */
4250 4251
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4252 4253
		sd->balance_interval *= 2;

4254
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4255
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4256 4257 4258 4259
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4260 4261
	if (ld_moved)
		update_shares(sd);
4262
	return ld_moved;
L
Linus Torvalds 已提交
4263 4264 4265 4266 4267 4268
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4269
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4270 4271
 * this_rq is locked.
 */
4272
static int
4273
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4274 4275
{
	struct sched_group *group;
4276
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4277
	unsigned long imbalance;
P
Peter Williams 已提交
4278
	int ld_moved = 0;
N
Nick Piggin 已提交
4279
	int sd_idle = 0;
4280
	int all_pinned = 0;
4281
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4282

4283
	cpumask_copy(cpus, cpu_active_mask);
N
Nick Piggin 已提交
4284

4285 4286 4287 4288
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4289
	 * portraying it as CPU_NOT_IDLE.
4290 4291 4292
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4293
		sd_idle = 1;
L
Linus Torvalds 已提交
4294

4295
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4296
redo:
4297
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4298
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4299
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4300
	if (!group) {
I
Ingo Molnar 已提交
4301
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4302
		goto out_balanced;
L
Linus Torvalds 已提交
4303 4304
	}

4305
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4306
	if (!busiest) {
I
Ingo Molnar 已提交
4307
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4308
		goto out_balanced;
L
Linus Torvalds 已提交
4309 4310
	}

N
Nick Piggin 已提交
4311 4312
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4313
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4314

P
Peter Williams 已提交
4315
	ld_moved = 0;
4316 4317 4318
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4319 4320
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4321
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4322 4323
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4324
		double_unlock_balance(this_rq, busiest);
4325

4326
		if (unlikely(all_pinned)) {
4327 4328
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4329 4330
				goto redo;
		}
4331 4332
	}

P
Peter Williams 已提交
4333
	if (!ld_moved) {
4334
		int active_balance = 0;
4335

I
Ingo Molnar 已提交
4336
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4337 4338
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4339
			return -1;
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4376
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4389 4390 4391 4392
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4393 4394
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4395
		spin_lock(&this_rq->lock);
4396

N
Nick Piggin 已提交
4397
	} else
4398
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4399

4400
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4401
	return ld_moved;
4402 4403

out_balanced:
I
Ingo Molnar 已提交
4404
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4405
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4406
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4407
		return -1;
4408
	sd->nr_balance_failed = 0;
4409

4410
	return 0;
L
Linus Torvalds 已提交
4411 4412 4413 4414 4415 4416
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4417
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4418 4419
{
	struct sched_domain *sd;
4420
	int pulled_task = 0;
I
Ingo Molnar 已提交
4421
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4422

M
Mike Galbraith 已提交
4423 4424 4425 4426 4427
	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

L
Linus Torvalds 已提交
4428
	for_each_domain(this_cpu, sd) {
4429 4430 4431 4432 4433 4434
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4435
			/* If we've pulled tasks over stop searching: */
4436
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4437
							   sd);
4438 4439 4440 4441

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
M
Mike Galbraith 已提交
4442 4443
		if (pulled_task) {
			this_rq->idle_stamp = 0;
4444
			break;
M
Mike Galbraith 已提交
4445
		}
L
Linus Torvalds 已提交
4446
	}
I
Ingo Molnar 已提交
4447
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4448 4449 4450 4451 4452
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4453
	}
L
Linus Torvalds 已提交
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4464
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4465
{
4466
	int target_cpu = busiest_rq->push_cpu;
4467 4468
	struct sched_domain *sd;
	struct rq *target_rq;
4469

4470
	/* Is there any task to move? */
4471 4472 4473 4474
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4475 4476

	/*
4477
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4478
	 * we need to fix it. Originally reported by
4479
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4480
	 */
4481
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4482

4483 4484
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4485 4486
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4487 4488

	/* Search for an sd spanning us and the target CPU. */
4489
	for_each_domain(target_cpu, sd) {
4490
		if ((sd->flags & SD_LOAD_BALANCE) &&
4491
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4492
				break;
4493
	}
4494

4495
	if (likely(sd)) {
4496
		schedstat_inc(sd, alb_count);
4497

P
Peter Williams 已提交
4498 4499
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4500 4501 4502 4503
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4504
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4505 4506
}

4507 4508 4509
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4510
	cpumask_var_t cpu_mask;
4511
	cpumask_var_t ilb_grp_nohz_mask;
4512 4513 4514 4515
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4516 4517 4518 4519 4520
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4632
	return cpumask_first(nohz.cpu_mask);
4633 4634 4635
}
#endif

4636
/*
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4647
 *
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4663 4664 4665 4666 4667 4668 4669 4670
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4671 4672
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4673

4674 4675 4676
			return 0;
		}

4677 4678
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4679
		/* time for ilb owner also to sleep */
4680
		if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4681 4682 4683 4684 4685 4686 4687 4688 4689
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4706
			return 1;
4707
		}
4708
	} else {
4709
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4710 4711
			return 0;

4712
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4725 4726 4727 4728 4729
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4730
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4731
{
4732 4733
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4734 4735
	unsigned long interval;
	struct sched_domain *sd;
4736
	/* Earliest time when we have to do rebalance again */
4737
	unsigned long next_balance = jiffies + 60*HZ;
4738
	int update_next_balance = 0;
4739
	int need_serialize;
L
Linus Torvalds 已提交
4740

4741
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4742 4743 4744 4745
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4746
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4747 4748 4749 4750 4751 4752
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4753 4754 4755
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4756
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4757

4758
		if (need_serialize) {
4759 4760 4761 4762
			if (!spin_trylock(&balancing))
				goto out;
		}

4763
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4764
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4765 4766
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4767 4768 4769
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4770
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4771
			}
4772
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4773
		}
4774
		if (need_serialize)
4775 4776
			spin_unlock(&balancing);
out:
4777
		if (time_after(next_balance, sd->last_balance + interval)) {
4778
			next_balance = sd->last_balance + interval;
4779 4780
			update_next_balance = 1;
		}
4781 4782 4783 4784 4785 4786 4787 4788

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4789
	}
4790 4791 4792 4793 4794 4795 4796 4797

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4798 4799 4800 4801 4802 4803 4804 4805 4806
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4807 4808 4809 4810
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4811

I
Ingo Molnar 已提交
4812
	rebalance_domains(this_cpu, idle);
4813 4814 4815 4816 4817 4818 4819

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4820 4821
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4822 4823 4824
		struct rq *rq;
		int balance_cpu;

4825 4826 4827 4828
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4829 4830 4831 4832 4833 4834 4835 4836
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4837
			rebalance_domains(balance_cpu, CPU_IDLE);
4838 4839

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4840 4841
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4842 4843 4844 4845 4846
		}
	}
#endif
}

4847 4848 4849 4850 4851
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4852 4853 4854 4855 4856 4857 4858
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4859
static inline void trigger_load_balance(struct rq *rq, int cpu)
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4871
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4872 4873 4874 4875
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4876
			int ilb = find_new_ilb(cpu);
4877

4878
			if (ilb < nr_cpu_ids)
4879 4880 4881 4882 4883 4884 4885 4886 4887
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4888
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4889 4890 4891 4892 4893 4894 4895 4896 4897
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4898
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4899 4900
		return;
#endif
4901 4902 4903
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4904
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4905
}
I
Ingo Molnar 已提交
4906 4907 4908

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4909 4910 4911
/*
 * on UP we do not need to balance between CPUs:
 */
4912
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4913 4914
{
}
I
Ingo Molnar 已提交
4915

L
Linus Torvalds 已提交
4916 4917 4918 4919 4920 4921 4922
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4923
 * Return any ns on the sched_clock that have not yet been accounted in
4924
 * @p in case that task is currently running.
4925 4926
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4927
 */
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4942
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4943 4944
{
	unsigned long flags;
4945
	struct rq *rq;
4946
	u64 ns = 0;
4947

4948
	rq = task_rq_lock(p, &flags);
4949 4950
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4951

4952 4953
	return ns;
}
4954

4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4972

4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4992
	task_rq_unlock(rq, &flags);
4993

L
Linus Torvalds 已提交
4994 4995 4996 4997 4998 4999 5000
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
5001
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5002
 */
5003 5004
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5005 5006 5007 5008
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5009
	/* Add user time to process. */
L
Linus Torvalds 已提交
5010
	p->utime = cputime_add(p->utime, cputime);
5011
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5012
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
5013 5014 5015 5016 5017 5018 5019

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
5020 5021

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5022 5023
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
5024 5025
}

5026 5027 5028 5029
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
5030
 * @cputime_scaled: cputime scaled by cpu frequency
5031
 */
5032 5033
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5034 5035 5036 5037 5038 5039
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5040
	/* Add guest time to process. */
5041
	p->utime = cputime_add(p->utime, cputime);
5042
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5043
	account_group_user_time(p, cputime);
5044 5045
	p->gtime = cputime_add(p->gtime, cputime);

5046
	/* Add guest time to cpustat. */
5047 5048 5049 5050 5051 5052 5053
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
5054 5055
}

L
Linus Torvalds 已提交
5056 5057 5058 5059 5060
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5061
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5062 5063
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5064
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5065 5066 5067 5068
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5069
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5070
		account_guest_time(p, cputime, cputime_scaled);
5071 5072
		return;
	}
5073

5074
	/* Add system time to process. */
L
Linus Torvalds 已提交
5075
	p->stime = cputime_add(p->stime, cputime);
5076
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5077
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5078 5079 5080 5081 5082 5083 5084 5085

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5086 5087
		cpustat->system = cputime64_add(cpustat->system, tmp);

5088 5089
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5090 5091 5092 5093
	/* Account for system time used */
	acct_update_integrals(p);
}

5094
/*
L
Linus Torvalds 已提交
5095 5096
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5097
 */
5098
void account_steal_time(cputime_t cputime)
5099
{
5100 5101 5102 5103
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5104 5105
}

L
Linus Torvalds 已提交
5106
/*
5107 5108
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5109
 */
5110
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5111 5112
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5113
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5114
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5115

5116 5117 5118 5119
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5120 5121
}

5122 5123 5124 5125 5126 5127 5128 5129 5130
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
5131
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5132 5133 5134
	struct rq *rq = this_rq();

	if (user_tick)
5135
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5136
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5137
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5138 5139
				    one_jiffy_scaled);
	else
5140
		account_idle_time(cputime_one_jiffy);
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5160 5161
}

5162 5163
#endif

5164 5165 5166 5167
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5168
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5169
{
5170 5171
	*ut = p->utime;
	*st = p->stime;
5172 5173
}

5174
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5175
{
5176 5177 5178 5179 5180 5181
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
5182 5183
}
#else
5184 5185

#ifndef nsecs_to_cputime
5186
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
5187 5188
#endif

5189
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5190
{
5191
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5192 5193 5194 5195

	/*
	 * Use CFS's precise accounting:
	 */
5196
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5197 5198

	if (total) {
5199 5200 5201
		u64 temp;

		temp = (u64)(rtime * utime);
5202
		do_div(temp, total);
5203 5204 5205
		utime = (cputime_t)temp;
	} else
		utime = rtime;
5206

5207 5208 5209
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
5210
	p->prev_utime = max(p->prev_utime, utime);
5211
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5212

5213 5214
	*ut = p->prev_utime;
	*st = p->prev_stime;
5215 5216
}

5217 5218 5219 5220
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5221
{
5222 5223 5224
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
5225

5226
	thread_group_cputime(p, &cputime);
5227

5228 5229
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5230

5231 5232
	if (total) {
		u64 temp;
5233

5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
5246 5247 5248
}
#endif

5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5260
	struct task_struct *curr = rq->curr;
5261 5262

	sched_clock_tick();
I
Ingo Molnar 已提交
5263 5264

	spin_lock(&rq->lock);
5265
	update_rq_clock(rq);
5266
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5267
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5268
	spin_unlock(&rq->lock);
5269

5270
	perf_event_task_tick(curr, cpu);
5271

5272
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5273 5274
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5275
#endif
L
Linus Torvalds 已提交
5276 5277
}

5278
notrace unsigned long get_parent_ip(unsigned long addr)
5279 5280 5281 5282 5283 5284 5285 5286
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5287

5288 5289 5290
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5291
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5292
{
5293
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5294 5295 5296
	/*
	 * Underflow?
	 */
5297 5298
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5299
#endif
L
Linus Torvalds 已提交
5300
	preempt_count() += val;
5301
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5302 5303 5304
	/*
	 * Spinlock count overflowing soon?
	 */
5305 5306
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5307 5308 5309
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5310 5311 5312
}
EXPORT_SYMBOL(add_preempt_count);

5313
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5314
{
5315
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5316 5317 5318
	/*
	 * Underflow?
	 */
5319
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5320
		return;
L
Linus Torvalds 已提交
5321 5322 5323
	/*
	 * Is the spinlock portion underflowing?
	 */
5324 5325 5326
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5327
#endif
5328

5329 5330
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5331 5332 5333 5334 5335 5336 5337
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5338
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5339
 */
I
Ingo Molnar 已提交
5340
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5341
{
5342 5343 5344 5345 5346
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5347
	debug_show_held_locks(prev);
5348
	print_modules();
I
Ingo Molnar 已提交
5349 5350
	if (irqs_disabled())
		print_irqtrace_events(prev);
5351 5352 5353 5354 5355

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5356
}
L
Linus Torvalds 已提交
5357

I
Ingo Molnar 已提交
5358 5359 5360 5361 5362
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5363
	/*
I
Ingo Molnar 已提交
5364
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5365 5366 5367
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5368
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5369 5370
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5371 5372
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5373
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5374 5375
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5376 5377
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5378 5379
	}
#endif
I
Ingo Molnar 已提交
5380 5381
}

5382
static void put_prev_task(struct rq *rq, struct task_struct *p)
M
Mike Galbraith 已提交
5383
{
5384
	u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
M
Mike Galbraith 已提交
5385

5386
	update_avg(&p->se.avg_running, runtime);
M
Mike Galbraith 已提交
5387

5388
	if (p->state == TASK_RUNNING) {
M
Mike Galbraith 已提交
5389 5390 5391 5392 5393 5394 5395 5396 5397
		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
5398 5399 5400 5401
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
		update_avg(&p->se.avg_overlap, runtime);
	} else {
		update_avg(&p->se.avg_running, 0);
M
Mike Galbraith 已提交
5402
	}
5403
	p->sched_class->put_prev_task(rq, p);
M
Mike Galbraith 已提交
5404 5405
}

I
Ingo Molnar 已提交
5406 5407 5408 5409
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5410
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5411
{
5412
	const struct sched_class *class;
I
Ingo Molnar 已提交
5413
	struct task_struct *p;
L
Linus Torvalds 已提交
5414 5415

	/*
I
Ingo Molnar 已提交
5416 5417
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5418
	 */
I
Ingo Molnar 已提交
5419
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5420
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5421 5422
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5423 5424
	}

I
Ingo Molnar 已提交
5425 5426
	class = sched_class_highest;
	for ( ; ; ) {
5427
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5428 5429 5430 5431 5432 5433 5434 5435 5436
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5437

I
Ingo Molnar 已提交
5438 5439 5440
/*
 * schedule() is the main scheduler function.
 */
5441
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5442 5443
{
	struct task_struct *prev, *next;
5444
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5445
	struct rq *rq;
5446
	int cpu;
I
Ingo Molnar 已提交
5447

5448 5449
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5450 5451
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
5452
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
5453 5454 5455 5456 5457 5458 5459
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5460

5461
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5462
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5463

5464
	spin_lock_irq(&rq->lock);
5465
	update_rq_clock(rq);
5466
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5467 5468

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5469
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5470
			prev->state = TASK_RUNNING;
5471
		else
5472
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5473
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5474 5475
	}

5476
	pre_schedule(rq, prev);
5477

I
Ingo Molnar 已提交
5478
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5479 5480
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5481
	put_prev_task(rq, prev);
5482
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5483 5484

	if (likely(prev != next)) {
5485
		sched_info_switch(prev, next);
5486
		perf_event_task_sched_out(prev, next, cpu);
5487

L
Linus Torvalds 已提交
5488 5489 5490 5491
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5492
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5493 5494 5495 5496 5497 5498
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5499 5500 5501
	} else
		spin_unlock_irq(&rq->lock);

5502
	post_schedule(rq);
L
Linus Torvalds 已提交
5503

P
Peter Zijlstra 已提交
5504
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5505
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5506

L
Linus Torvalds 已提交
5507
	preempt_enable_no_resched();
5508
	if (need_resched())
L
Linus Torvalds 已提交
5509 5510 5511 5512
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5513
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5574 5575
#ifdef CONFIG_PREEMPT
/*
5576
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5577
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5578 5579 5580 5581 5582
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5583

L
Linus Torvalds 已提交
5584 5585
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5586
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5587
	 */
N
Nick Piggin 已提交
5588
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5589 5590
		return;

5591 5592 5593 5594
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5595

5596 5597 5598 5599 5600
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5601
	} while (need_resched());
L
Linus Torvalds 已提交
5602 5603 5604 5605
}
EXPORT_SYMBOL(preempt_schedule);

/*
5606
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5607 5608 5609 5610 5611 5612 5613
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5614

5615
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5616 5617
	BUG_ON(ti->preempt_count || !irqs_disabled());

5618 5619 5620 5621 5622 5623
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5624

5625 5626 5627 5628 5629
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5630
	} while (need_resched());
L
Linus Torvalds 已提交
5631 5632 5633 5634
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
5635
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
5636
			  void *key)
L
Linus Torvalds 已提交
5637
{
P
Peter Zijlstra 已提交
5638
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
5639 5640 5641 5642
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5643 5644
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5645 5646 5647
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5648
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5649 5650
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5651
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
5652
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
5653
{
5654
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5655

5656
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5657 5658
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
5659
		if (curr->func(curr, mode, wake_flags, key) &&
5660
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5661 5662 5663 5664 5665 5666 5667 5668 5669
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5670
 * @key: is directly passed to the wakeup function
5671 5672 5673
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5674
 */
5675
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5676
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5689
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5690 5691 5692 5693
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5694 5695 5696 5697 5698
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5699
/**
5700
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5701 5702 5703
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5704
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5705 5706 5707 5708 5709 5710 5711
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5712 5713 5714
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5715
 */
5716 5717
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5718 5719
{
	unsigned long flags;
P
Peter Zijlstra 已提交
5720
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
5721 5722 5723 5724 5725

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
5726
		wake_flags = 0;
L
Linus Torvalds 已提交
5727 5728

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
5729
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
5730 5731
	spin_unlock_irqrestore(&q->lock, flags);
}
5732 5733 5734 5735 5736 5737 5738 5739 5740
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5741 5742
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5743 5744 5745 5746 5747 5748 5749 5750
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5751 5752 5753
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5754
 */
5755
void complete(struct completion *x)
L
Linus Torvalds 已提交
5756 5757 5758 5759 5760
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5761
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5762 5763 5764 5765
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5766 5767 5768 5769 5770
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5771 5772 5773
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5774
 */
5775
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5776 5777 5778 5779 5780
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5781
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5782 5783 5784 5785
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5786 5787
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5788 5789 5790 5791 5792 5793 5794
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5795
			if (signal_pending_state(state, current)) {
5796 5797
				timeout = -ERESTARTSYS;
				break;
5798 5799
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5800 5801 5802
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5803
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5804
		__remove_wait_queue(&x->wait, &wait);
5805 5806
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5807 5808
	}
	x->done--;
5809
	return timeout ?: 1;
L
Linus Torvalds 已提交
5810 5811
}

5812 5813
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5814 5815 5816 5817
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5818
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5819
	spin_unlock_irq(&x->wait.lock);
5820 5821
	return timeout;
}
L
Linus Torvalds 已提交
5822

5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5833
void __sched wait_for_completion(struct completion *x)
5834 5835
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5836
}
5837
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5838

5839 5840 5841 5842 5843 5844 5845 5846 5847
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5848
unsigned long __sched
5849
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5850
{
5851
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5852
}
5853
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5854

5855 5856 5857 5858 5859 5860 5861
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5862
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5863
{
5864 5865 5866 5867
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5868
}
5869
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5870

5871 5872 5873 5874 5875 5876 5877 5878
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5879
unsigned long __sched
5880 5881
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5882
{
5883
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5884
}
5885
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5886

5887 5888 5889 5890 5891 5892 5893
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5894 5895 5896 5897 5898 5899 5900 5901 5902
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5949 5950
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5951
{
I
Ingo Molnar 已提交
5952 5953 5954 5955
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5956

5957
	__set_current_state(state);
L
Linus Torvalds 已提交
5958

5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5973 5974 5975
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5976
long __sched
I
Ingo Molnar 已提交
5977
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5978
{
5979
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5980 5981 5982
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5983
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5984
{
5985
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5986 5987 5988
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5989
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5990
{
5991
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5992 5993 5994
}
EXPORT_SYMBOL(sleep_on_timeout);

5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
6007
void rt_mutex_setprio(struct task_struct *p, int prio)
6008 6009
{
	unsigned long flags;
6010
	int oldprio, on_rq, running;
6011
	struct rq *rq;
6012
	const struct sched_class *prev_class = p->sched_class;
6013 6014 6015 6016

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6017
	update_rq_clock(rq);
6018

6019
	oldprio = p->prio;
I
Ingo Molnar 已提交
6020
	on_rq = p->se.on_rq;
6021
	running = task_current(rq, p);
6022
	if (on_rq)
6023
		dequeue_task(rq, p, 0);
6024 6025
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
6026 6027 6028 6029 6030 6031

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

6032 6033
	p->prio = prio;

6034 6035
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6036
	if (on_rq) {
6037
		enqueue_task(rq, p, 0);
6038 6039

		check_class_changed(rq, p, prev_class, oldprio, running);
6040 6041 6042 6043 6044 6045
	}
	task_rq_unlock(rq, &flags);
}

#endif

6046
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
6047
{
I
Ingo Molnar 已提交
6048
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
6049
	unsigned long flags;
6050
	struct rq *rq;
L
Linus Torvalds 已提交
6051 6052 6053 6054 6055 6056 6057 6058

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6059
	update_rq_clock(rq);
L
Linus Torvalds 已提交
6060 6061 6062 6063
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6064
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6065
	 */
6066
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6067 6068 6069
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6070
	on_rq = p->se.on_rq;
6071
	if (on_rq)
6072
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6073 6074

	p->static_prio = NICE_TO_PRIO(nice);
6075
	set_load_weight(p);
6076 6077 6078
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6079

I
Ingo Molnar 已提交
6080
	if (on_rq) {
6081
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6082
		/*
6083 6084
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6085
		 */
6086
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6087 6088 6089 6090 6091 6092 6093
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6094 6095 6096 6097 6098
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6099
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6100
{
6101 6102
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6103

M
Matt Mackall 已提交
6104 6105 6106 6107
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6108 6109 6110 6111 6112 6113 6114 6115 6116
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6117
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6118
{
6119
	long nice, retval;
L
Linus Torvalds 已提交
6120 6121 6122 6123 6124 6125

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6126 6127
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6128 6129 6130
	if (increment > 40)
		increment = 40;

6131
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6132 6133 6134 6135 6136
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6137 6138 6139
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6158
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6159 6160 6161 6162 6163 6164 6165 6166
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6167
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6168 6169 6170
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6171
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6186
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6187 6188 6189 6190 6191 6192 6193 6194
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6195
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6196
{
6197
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6198 6199 6200
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6201 6202
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6203
{
I
Ingo Molnar 已提交
6204
	BUG_ON(p->se.on_rq);
6205

L
Linus Torvalds 已提交
6206 6207
	p->policy = policy;
	p->rt_priority = prio;
6208 6209 6210
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6211 6212 6213 6214
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
6215
	set_load_weight(p);
L
Linus Torvalds 已提交
6216 6217
}

6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6234 6235
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6236
{
6237
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6238
	unsigned long flags;
6239
	const struct sched_class *prev_class = p->sched_class;
6240
	struct rq *rq;
6241
	int reset_on_fork;
L
Linus Torvalds 已提交
6242

6243 6244
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6245 6246
recheck:
	/* double check policy once rq lock held */
6247 6248
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6249
		policy = oldpolicy = p->policy;
6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6260 6261
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6262 6263
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6264 6265
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6266
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6267
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6268
		return -EINVAL;
6269
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6270 6271
		return -EINVAL;

6272 6273 6274
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6275
	if (user && !capable(CAP_SYS_NICE)) {
6276
		if (rt_policy(policy)) {
6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6293 6294 6295 6296 6297 6298
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6299

6300
		/* can't change other user's priorities */
6301
		if (!check_same_owner(p))
6302
			return -EPERM;
6303 6304 6305 6306

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6307
	}
L
Linus Torvalds 已提交
6308

6309
	if (user) {
6310
#ifdef CONFIG_RT_GROUP_SCHED
6311 6312 6313 6314
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6315 6316
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6317
			return -EPERM;
6318 6319
#endif

6320 6321 6322 6323 6324
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6325 6326 6327 6328 6329
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6330 6331 6332 6333
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6334
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6335 6336 6337
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6338 6339
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6340 6341
		goto recheck;
	}
I
Ingo Molnar 已提交
6342
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6343
	on_rq = p->se.on_rq;
6344
	running = task_current(rq, p);
6345
	if (on_rq)
6346
		deactivate_task(rq, p, 0);
6347 6348
	if (running)
		p->sched_class->put_prev_task(rq, p);
6349

6350 6351
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6352
	oldprio = p->prio;
I
Ingo Molnar 已提交
6353
	__setscheduler(rq, p, policy, param->sched_priority);
6354

6355 6356
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6357 6358
	if (on_rq) {
		activate_task(rq, p, 0);
6359 6360

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6361
	}
6362 6363 6364
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6365 6366
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6367 6368
	return 0;
}
6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6383 6384
EXPORT_SYMBOL_GPL(sched_setscheduler);

6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6402 6403
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6404 6405 6406
{
	struct sched_param lparam;
	struct task_struct *p;
6407
	int retval;
L
Linus Torvalds 已提交
6408 6409 6410 6411 6412

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6413 6414 6415

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6416
	p = find_process_by_pid(pid);
6417 6418 6419
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6420

L
Linus Torvalds 已提交
6421 6422 6423 6424 6425 6426 6427 6428 6429
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6430 6431
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6432
{
6433 6434 6435 6436
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6437 6438 6439 6440 6441 6442 6443 6444
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6445
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6446 6447 6448 6449 6450 6451 6452 6453
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6454
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6455
{
6456
	struct task_struct *p;
6457
	int retval;
L
Linus Torvalds 已提交
6458 6459

	if (pid < 0)
6460
		return -EINVAL;
L
Linus Torvalds 已提交
6461 6462 6463 6464 6465 6466 6467

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6468 6469
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6470 6471 6472 6473 6474 6475
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6476
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6477 6478 6479
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6480
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6481 6482
{
	struct sched_param lp;
6483
	struct task_struct *p;
6484
	int retval;
L
Linus Torvalds 已提交
6485 6486

	if (!param || pid < 0)
6487
		return -EINVAL;
L
Linus Torvalds 已提交
6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6514
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6515
{
6516
	cpumask_var_t cpus_allowed, new_mask;
6517 6518
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6519

6520
	get_online_cpus();
L
Linus Torvalds 已提交
6521 6522 6523 6524 6525
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6526
		put_online_cpus();
L
Linus Torvalds 已提交
6527 6528 6529 6530 6531
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6532
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6533 6534 6535 6536 6537
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6538 6539 6540 6541 6542 6543 6544 6545
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6546
	retval = -EPERM;
6547
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6548 6549
		goto out_unlock;

6550 6551 6552 6553
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6554 6555
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6556
 again:
6557
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6558

P
Paul Menage 已提交
6559
	if (!retval) {
6560 6561
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6562 6563 6564 6565 6566
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6567
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6568 6569 6570
			goto again;
		}
	}
L
Linus Torvalds 已提交
6571
out_unlock:
6572 6573 6574 6575
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6576
	put_task_struct(p);
6577
	put_online_cpus();
L
Linus Torvalds 已提交
6578 6579 6580 6581
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6582
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6583
{
6584 6585 6586 6587 6588
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6589 6590 6591 6592 6593 6594 6595 6596 6597
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6598 6599
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6600
{
6601
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6602 6603
	int retval;

6604 6605
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6606

6607 6608 6609 6610 6611
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6612 6613
}

6614
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6615
{
6616
	struct task_struct *p;
6617 6618
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
6619 6620
	int retval;

6621
	get_online_cpus();
L
Linus Torvalds 已提交
6622 6623 6624 6625 6626 6627 6628
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6629 6630 6631 6632
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6633
	rq = task_rq_lock(p, &flags);
6634
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6635
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6636 6637 6638

out_unlock:
	read_unlock(&tasklist_lock);
6639
	put_online_cpus();
L
Linus Torvalds 已提交
6640

6641
	return retval;
L
Linus Torvalds 已提交
6642 6643 6644 6645 6646 6647 6648 6649
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6650 6651
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6652 6653
{
	int ret;
6654
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6655

6656
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6657 6658
		return -EINVAL;

6659 6660
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6661

6662 6663 6664 6665 6666 6667 6668 6669
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6670

6671
	return ret;
L
Linus Torvalds 已提交
6672 6673 6674 6675 6676
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6677 6678
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6679
 */
6680
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6681
{
6682
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6683

6684
	schedstat_inc(rq, yld_count);
6685
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6686 6687 6688 6689 6690 6691

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6692
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6693 6694 6695 6696 6697 6698 6699 6700
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6701 6702 6703 6704 6705
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6706
static void __cond_resched(void)
L
Linus Torvalds 已提交
6707
{
6708 6709 6710
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6711 6712
}

6713
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6714
{
P
Peter Zijlstra 已提交
6715
	if (should_resched()) {
L
Linus Torvalds 已提交
6716 6717 6718 6719 6720
		__cond_resched();
		return 1;
	}
	return 0;
}
6721
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6722 6723

/*
6724
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6725 6726
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6727
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6728 6729 6730
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6731
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6732
{
P
Peter Zijlstra 已提交
6733
	int resched = should_resched();
J
Jan Kara 已提交
6734 6735
	int ret = 0;

6736 6737
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
6738
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6739
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6740
		if (resched)
N
Nick Piggin 已提交
6741 6742 6743
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6744
		ret = 1;
L
Linus Torvalds 已提交
6745 6746
		spin_lock(lock);
	}
J
Jan Kara 已提交
6747
	return ret;
L
Linus Torvalds 已提交
6748
}
6749
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6750

6751
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6752 6753 6754
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6755
	if (should_resched()) {
6756
		local_bh_enable();
L
Linus Torvalds 已提交
6757 6758 6759 6760 6761 6762
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6763
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6764 6765 6766 6767

/**
 * yield - yield the current processor to other threads.
 *
6768
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6779
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6780 6781 6782 6783
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
6784
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6785

6786
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6787
	atomic_inc(&rq->nr_iowait);
6788
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6789
	schedule();
6790
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6791
	atomic_dec(&rq->nr_iowait);
6792
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6793 6794 6795 6796 6797
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6798
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6799 6800
	long ret;

6801
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6802
	atomic_inc(&rq->nr_iowait);
6803
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6804
	ret = schedule_timeout(timeout);
6805
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6806
	atomic_dec(&rq->nr_iowait);
6807
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6818
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6819 6820 6821 6822 6823 6824 6825 6826 6827
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6828
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6829
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6843
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6844 6845 6846 6847 6848 6849 6850 6851 6852
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6853
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6854
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6868
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6869
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6870
{
6871
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6872
	unsigned int time_slice;
6873 6874
	unsigned long flags;
	struct rq *rq;
6875
	int retval;
L
Linus Torvalds 已提交
6876 6877 6878
	struct timespec t;

	if (pid < 0)
6879
		return -EINVAL;
L
Linus Torvalds 已提交
6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6891 6892 6893
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
6894

L
Linus Torvalds 已提交
6895
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6896
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6897 6898
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6899

L
Linus Torvalds 已提交
6900 6901 6902 6903 6904
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6905
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6906

6907
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6908 6909
{
	unsigned long free = 0;
6910
	unsigned state;
L
Linus Torvalds 已提交
6911 6912

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6913
	printk(KERN_INFO "%-13.13s %c", p->comm,
6914
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6915
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6916
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6917
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6918
	else
I
Ingo Molnar 已提交
6919
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6920 6921
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6922
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6923
	else
I
Ingo Molnar 已提交
6924
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6925 6926
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6927
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6928
#endif
6929 6930 6931
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6932

6933
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6934 6935
}

I
Ingo Molnar 已提交
6936
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6937
{
6938
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6939

6940 6941 6942
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6943
#else
6944 6945
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6946 6947 6948 6949 6950 6951 6952 6953
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6954
		if (!state_filter || (p->state & state_filter))
6955
			sched_show_task(p);
L
Linus Torvalds 已提交
6956 6957
	} while_each_thread(g, p);

6958 6959
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6960 6961 6962
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6963
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6964 6965 6966
	/*
	 * Only show locks if all tasks are dumped:
	 */
6967
	if (!state_filter)
I
Ingo Molnar 已提交
6968
		debug_show_all_locks();
L
Linus Torvalds 已提交
6969 6970
}

I
Ingo Molnar 已提交
6971 6972
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6973
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6974 6975
}

6976 6977 6978 6979 6980 6981 6982 6983
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6984
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6985
{
6986
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6987 6988
	unsigned long flags;

6989 6990
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6991 6992 6993
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6994
	idle->prio = idle->normal_prio = MAX_PRIO;
6995
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6996
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6997 6998

	rq->curr = rq->idle = idle;
6999 7000 7001
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
7002 7003 7004
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
7005 7006 7007
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
7008
	task_thread_info(idle)->preempt_count = 0;
7009
#endif
I
Ingo Molnar 已提交
7010 7011 7012 7013
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
7014
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
7015 7016 7017 7018 7019 7020 7021
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
7022
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
7023
 */
7024
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
7025

I
Ingo Molnar 已提交
7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
7049 7050

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
7051 7052
}

L
Linus Torvalds 已提交
7053 7054 7055 7056
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7057
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7076
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7077 7078
 * call is not atomic; no spinlocks may be held.
 */
7079
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7080
{
7081
	struct migration_req req;
L
Linus Torvalds 已提交
7082
	unsigned long flags;
7083
	struct rq *rq;
7084
	int ret = 0;
L
Linus Torvalds 已提交
7085 7086

	rq = task_rq_lock(p, &flags);
7087
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
7088 7089 7090 7091
		ret = -EINVAL;
		goto out;
	}

7092
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7093
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7094 7095 7096 7097
		ret = -EINVAL;
		goto out;
	}

7098
	if (p->sched_class->set_cpus_allowed)
7099
		p->sched_class->set_cpus_allowed(p, new_mask);
7100
	else {
7101 7102
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7103 7104
	}

L
Linus Torvalds 已提交
7105
	/* Can the task run on the task's current CPU? If so, we're done */
7106
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7107 7108
		goto out;

7109
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7110
		/* Need help from migration thread: drop lock and wait. */
7111 7112 7113
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7114 7115
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7116
		put_task_struct(mt);
L
Linus Torvalds 已提交
7117 7118 7119 7120 7121 7122
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7123

L
Linus Torvalds 已提交
7124 7125
	return ret;
}
7126
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7127 7128

/*
I
Ingo Molnar 已提交
7129
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7130 7131 7132 7133 7134 7135
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7136 7137
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7138
 */
7139
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7140
{
7141
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7142
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7143

7144
	if (unlikely(!cpu_active(dest_cpu)))
7145
		return ret;
L
Linus Torvalds 已提交
7146 7147 7148 7149 7150 7151 7152

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7153
		goto done;
L
Linus Torvalds 已提交
7154
	/* Affinity changed (again). */
7155
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7156
		goto fail;
L
Linus Torvalds 已提交
7157

I
Ingo Molnar 已提交
7158
	on_rq = p->se.on_rq;
7159
	if (on_rq)
7160
		deactivate_task(rq_src, p, 0);
7161

L
Linus Torvalds 已提交
7162
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7163 7164
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7165
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7166
	}
L
Linus Torvalds 已提交
7167
done:
7168
	ret = 1;
L
Linus Torvalds 已提交
7169
fail:
L
Linus Torvalds 已提交
7170
	double_rq_unlock(rq_src, rq_dest);
7171
	return ret;
L
Linus Torvalds 已提交
7172 7173
}

7174 7175 7176 7177 7178
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
7179 7180 7181 7182 7183
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7184
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7185
{
7186
	int badcpu;
L
Linus Torvalds 已提交
7187
	int cpu = (long)data;
7188
	struct rq *rq;
L
Linus Torvalds 已提交
7189 7190 7191 7192 7193 7194

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7195
		struct migration_req *req;
L
Linus Torvalds 已提交
7196 7197 7198 7199 7200 7201
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7202
			break;
L
Linus Torvalds 已提交
7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7218
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7219 7220
		list_del_init(head->next);

7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231
		if (req->task != NULL) {
			spin_unlock(&rq->lock);
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
			spin_unlock(&rq->lock);
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
			spin_unlock(&rq->lock);
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
7232
		local_irq_enable();
L
Linus Torvalds 已提交
7233 7234 7235 7236 7237 7238 7239 7240 7241

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7253
/*
7254
 * Figure out where task on dead CPU should go, use force if necessary.
7255
 */
7256
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7257
{
7258
	int dest_cpu;
7259
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7260 7261 7262

again:
	/* Look for allowed, online CPU in same node. */
7263
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7264 7265 7266 7267
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
7268
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7269 7270 7271 7272 7273 7274
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7275
		dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7276

7277 7278 7279 7280 7281 7282 7283 7284 7285
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7286
		}
7287 7288 7289 7290 7291 7292
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7293 7294 7295 7296 7297 7298 7299 7300 7301
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7302
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7303
{
7304
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7318
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7319

7320
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7321

7322 7323
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7324 7325
			continue;

7326 7327 7328
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7329

7330
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7331 7332
}

I
Ingo Molnar 已提交
7333 7334
/*
 * Schedules idle task to be the next runnable task on current CPU.
7335 7336
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7337 7338 7339
 */
void sched_idle_next(void)
{
7340
	int this_cpu = smp_processor_id();
7341
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7342 7343 7344 7345
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7346
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7347

7348 7349 7350
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7351 7352 7353
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7354
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7355

7356 7357
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7358 7359 7360 7361

	spin_unlock_irqrestore(&rq->lock, flags);
}

7362 7363
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7377
/* called under rq->lock with disabled interrupts */
7378
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7379
{
7380
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7381 7382

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7383
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7384 7385

	/* Cannot have done final schedule yet: would have vanished. */
7386
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7387

7388
	get_task_struct(p);
L
Linus Torvalds 已提交
7389 7390 7391

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7392
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7393 7394
	 * fine.
	 */
7395
	spin_unlock_irq(&rq->lock);
7396
	move_task_off_dead_cpu(dead_cpu, p);
7397
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7398

7399
	put_task_struct(p);
L
Linus Torvalds 已提交
7400 7401 7402 7403 7404
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7405
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7406
	struct task_struct *next;
7407

I
Ingo Molnar 已提交
7408 7409 7410
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7411
		update_rq_clock(rq);
7412
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7413 7414
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7415
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7416
		migrate_dead(dead_cpu, next);
7417

L
Linus Torvalds 已提交
7418 7419
	}
}
7420 7421 7422 7423 7424 7425 7426

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7427
	rq->calc_load_active = 0;
7428
}
L
Linus Torvalds 已提交
7429 7430
#endif /* CONFIG_HOTPLUG_CPU */

7431 7432 7433
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7434 7435
	{
		.procname	= "sched_domain",
7436
		.mode		= 0555,
7437
	},
I
Ingo Molnar 已提交
7438
	{0, },
7439 7440 7441
};

static struct ctl_table sd_ctl_root[] = {
7442
	{
7443
		.ctl_name	= CTL_KERN,
7444
		.procname	= "kernel",
7445
		.mode		= 0555,
7446 7447
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7448
	{0, },
7449 7450 7451 7452 7453
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7454
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7455 7456 7457 7458

	return entry;
}

7459 7460
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7461
	struct ctl_table *entry;
7462

7463 7464 7465
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7466
	 * will always be set. In the lowest directory the names are
7467 7468 7469
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7470 7471
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7472 7473 7474
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7475 7476 7477 7478 7479

	kfree(*tablep);
	*tablep = NULL;
}

7480
static void
7481
set_table_entry(struct ctl_table *entry,
7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7495
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7496

7497 7498 7499
	if (table == NULL)
		return NULL;

7500
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7501
		sizeof(long), 0644, proc_doulongvec_minmax);
7502
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7503
		sizeof(long), 0644, proc_doulongvec_minmax);
7504
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7505
		sizeof(int), 0644, proc_dointvec_minmax);
7506
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7507
		sizeof(int), 0644, proc_dointvec_minmax);
7508
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7509
		sizeof(int), 0644, proc_dointvec_minmax);
7510
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7511
		sizeof(int), 0644, proc_dointvec_minmax);
7512
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7513
		sizeof(int), 0644, proc_dointvec_minmax);
7514
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7515
		sizeof(int), 0644, proc_dointvec_minmax);
7516
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7517
		sizeof(int), 0644, proc_dointvec_minmax);
7518
	set_table_entry(&table[9], "cache_nice_tries",
7519 7520
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7521
	set_table_entry(&table[10], "flags", &sd->flags,
7522
		sizeof(int), 0644, proc_dointvec_minmax);
7523 7524 7525
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7526 7527 7528 7529

	return table;
}

7530
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7531 7532 7533 7534 7535 7536 7537 7538 7539
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7540 7541
	if (table == NULL)
		return NULL;
7542 7543 7544 7545 7546

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7547
		entry->mode = 0555;
7548 7549 7550 7551 7552 7553 7554 7555
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7556
static void register_sched_domain_sysctl(void)
7557
{
7558
	int i, cpu_num = num_possible_cpus();
7559 7560 7561
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7562 7563 7564
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7565 7566 7567
	if (entry == NULL)
		return;

7568
	for_each_possible_cpu(i) {
7569 7570
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7571
		entry->mode = 0555;
7572
		entry->child = sd_alloc_ctl_cpu_table(i);
7573
		entry++;
7574
	}
7575 7576

	WARN_ON(sd_sysctl_header);
7577 7578
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7579

7580
/* may be called multiple times per register */
7581 7582
static void unregister_sched_domain_sysctl(void)
{
7583 7584
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7585
	sd_sysctl_header = NULL;
7586 7587
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7588
}
7589
#else
7590 7591 7592 7593
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7594 7595 7596 7597
{
}
#endif

7598 7599 7600 7601 7602
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7603
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7623
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7624 7625 7626 7627
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7628 7629 7630 7631
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7632 7633
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7634 7635
{
	struct task_struct *p;
7636
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7637
	unsigned long flags;
7638
	struct rq *rq;
L
Linus Torvalds 已提交
7639 7640

	switch (action) {
7641

L
Linus Torvalds 已提交
7642
	case CPU_UP_PREPARE:
7643
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7644
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7645 7646 7647 7648 7649
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7650
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7651
		task_rq_unlock(rq, &flags);
7652
		get_task_struct(p);
L
Linus Torvalds 已提交
7653
		cpu_rq(cpu)->migration_thread = p;
7654
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7655
		break;
7656

L
Linus Torvalds 已提交
7657
	case CPU_ONLINE:
7658
	case CPU_ONLINE_FROZEN:
7659
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7660
		wake_up_process(cpu_rq(cpu)->migration_thread);
7661 7662 7663 7664 7665

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7666
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7667 7668

			set_rq_online(rq);
7669 7670
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7671
		break;
7672

L
Linus Torvalds 已提交
7673 7674
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7675
	case CPU_UP_CANCELED_FROZEN:
7676 7677
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7678
		/* Unbind it from offline cpu so it can run. Fall thru. */
7679
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7680
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7681
		kthread_stop(cpu_rq(cpu)->migration_thread);
7682
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7683 7684
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7685

L
Linus Torvalds 已提交
7686
	case CPU_DEAD:
7687
	case CPU_DEAD_FROZEN:
7688
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7689 7690 7691
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7692
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7693 7694
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7695
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7696
		update_rq_clock(rq);
7697
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7698
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7699 7700
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7701
		migrate_dead_tasks(cpu);
7702
		spin_unlock_irq(&rq->lock);
7703
		cpuset_unlock();
L
Linus Torvalds 已提交
7704 7705
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7706
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7707 7708 7709 7710 7711
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7712 7713
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7714 7715
			struct migration_req *req;

L
Linus Torvalds 已提交
7716
			req = list_entry(rq->migration_queue.next,
7717
					 struct migration_req, list);
L
Linus Torvalds 已提交
7718
			list_del_init(&req->list);
B
Brian King 已提交
7719
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7720
			complete(&req->done);
B
Brian King 已提交
7721
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7722 7723 7724
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7725

7726 7727
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7728 7729 7730 7731
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7732
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7733
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7734 7735 7736
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7737 7738 7739 7740 7741
#endif
	}
	return NOTIFY_OK;
}

7742 7743 7744
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
7745
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
7746
 */
7747
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7748 7749 7750 7751
	.notifier_call = migration_call,
	.priority = 10
};

7752
static int __init migration_init(void)
L
Linus Torvalds 已提交
7753 7754
{
	void *cpu = (void *)(long)smp_processor_id();
7755
	int err;
7756 7757

	/* Start one for the boot CPU: */
7758 7759
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7760 7761
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7762

7763
	return 0;
L
Linus Torvalds 已提交
7764
}
7765
early_initcall(migration_init);
L
Linus Torvalds 已提交
7766 7767 7768
#endif

#ifdef CONFIG_SMP
7769

7770
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7771

7772 7773 7774 7775 7776 7777 7778 7779 7780 7781
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

7782
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7783
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7784
{
I
Ingo Molnar 已提交
7785
	struct sched_group *group = sd->groups;
7786
	char str[256];
L
Linus Torvalds 已提交
7787

R
Rusty Russell 已提交
7788
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7789
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7790 7791 7792 7793 7794 7795 7796 7797 7798

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7799 7800
	}

7801
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7802

7803
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7804 7805 7806
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7807
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7808 7809 7810
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7811

I
Ingo Molnar 已提交
7812
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7813
	do {
I
Ingo Molnar 已提交
7814 7815 7816
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7817 7818 7819
			break;
		}

7820
		if (!group->cpu_power) {
I
Ingo Molnar 已提交
7821 7822 7823 7824 7825
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7826

7827
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7828 7829 7830 7831
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7832

7833
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7834 7835 7836 7837
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7838

7839
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7840

R
Rusty Russell 已提交
7841
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7842 7843

		printk(KERN_CONT " %s", str);
7844 7845 7846
		if (group->cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
7847
		}
L
Linus Torvalds 已提交
7848

I
Ingo Molnar 已提交
7849 7850 7851
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7852

7853
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7854
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7855

7856 7857
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7858 7859 7860 7861
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7862

I
Ingo Molnar 已提交
7863 7864
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7865
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7866
	int level = 0;
L
Linus Torvalds 已提交
7867

7868 7869 7870
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
7871 7872 7873 7874
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7875

I
Ingo Molnar 已提交
7876 7877
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7878
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7879 7880 7881 7882
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7883
	for (;;) {
7884
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7885
			break;
L
Linus Torvalds 已提交
7886 7887
		level++;
		sd = sd->parent;
7888
		if (!sd)
I
Ingo Molnar 已提交
7889 7890
			break;
	}
7891
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7892
}
7893
#else /* !CONFIG_SCHED_DEBUG */
7894
# define sched_domain_debug(sd, cpu) do { } while (0)
7895
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7896

7897
static int sd_degenerate(struct sched_domain *sd)
7898
{
7899
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7900 7901 7902 7903 7904 7905
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7906 7907 7908
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7909 7910 7911 7912 7913
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
7914
	if (sd->flags & (SD_WAKE_AFFINE))
7915 7916 7917 7918 7919
		return 0;

	return 1;
}

7920 7921
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7922 7923 7924 7925 7926 7927
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7928
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7929 7930 7931 7932 7933 7934 7935
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7936 7937 7938
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7939 7940
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7941 7942 7943 7944 7945 7946 7947
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7948 7949
static void free_rootdomain(struct root_domain *rd)
{
7950 7951
	synchronize_sched();

7952 7953
	cpupri_cleanup(&rd->cpupri);

7954 7955 7956 7957 7958 7959
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7960 7961
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7962
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7963 7964 7965 7966 7967
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7968
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7969

7970
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7971
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7972

7973
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7974

I
Ingo Molnar 已提交
7975 7976 7977 7978 7979 7980 7981
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7982 7983 7984 7985 7986
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7987
	cpumask_set_cpu(rq->cpu, rd->span);
7988
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7989
		set_rq_online(rq);
G
Gregory Haskins 已提交
7990 7991

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7992 7993 7994

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7995 7996
}

L
Li Zefan 已提交
7997
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7998
{
7999 8000
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
8001 8002
	memset(rd, 0, sizeof(*rd));

8003 8004
	if (bootmem)
		gfp = GFP_NOWAIT;
8005

8006
	if (!alloc_cpumask_var(&rd->span, gfp))
8007
		goto out;
8008
	if (!alloc_cpumask_var(&rd->online, gfp))
8009
		goto free_span;
8010
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8011
		goto free_online;
8012

P
Pekka Enberg 已提交
8013
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
8014
		goto free_rto_mask;
8015
	return 0;
8016

8017 8018
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
8019 8020 8021 8022
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
8023
out:
8024
	return -ENOMEM;
G
Gregory Haskins 已提交
8025 8026 8027 8028
}

static void init_defrootdomain(void)
{
8029 8030
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
8031 8032 8033
	atomic_set(&def_root_domain.refcount, 1);
}

8034
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
8035 8036 8037 8038 8039 8040 8041
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

8042 8043 8044 8045
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
8046 8047 8048 8049

	return rd;
}

L
Linus Torvalds 已提交
8050
/*
I
Ingo Molnar 已提交
8051
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
8052 8053
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
8054 8055
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
8056
{
8057
	struct rq *rq = cpu_rq(cpu);
8058 8059 8060
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
8061
	for (tmp = sd; tmp; ) {
8062 8063 8064
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8065

8066
		if (sd_parent_degenerate(tmp, parent)) {
8067
			tmp->parent = parent->parent;
8068 8069
			if (parent->parent)
				parent->parent->child = tmp;
8070 8071
		} else
			tmp = tmp->parent;
8072 8073
	}

8074
	if (sd && sd_degenerate(sd)) {
8075
		sd = sd->parent;
8076 8077 8078
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8079 8080 8081

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8082
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8083
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8084 8085 8086
}

/* cpus with isolated domains */
8087
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8088 8089 8090 8091

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8092
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
8093
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8094 8095 8096
	return 1;
}

I
Ingo Molnar 已提交
8097
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8098 8099

/*
8100 8101
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8102 8103
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8104 8105 8106 8107 8108
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8109
static void
8110 8111 8112
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8113
					struct sched_group **sg,
8114 8115
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8116 8117 8118 8119
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8120
	cpumask_clear(covered);
8121

8122
	for_each_cpu(i, span) {
8123
		struct sched_group *sg;
8124
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8125 8126
		int j;

8127
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8128 8129
			continue;

8130
		cpumask_clear(sched_group_cpus(sg));
8131
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8132

8133
		for_each_cpu(j, span) {
8134
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8135 8136
				continue;

8137
			cpumask_set_cpu(j, covered);
8138
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8139 8140 8141 8142 8143 8144 8145 8146 8147 8148
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8149
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8150

8151
#ifdef CONFIG_NUMA
8152

8153 8154 8155 8156 8157
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8158
 * Find the next node to include in a given scheduling domain. Simply
8159 8160 8161 8162
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8163
static int find_next_best_node(int node, nodemask_t *used_nodes)
8164 8165 8166 8167 8168
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8169
	for (i = 0; i < nr_node_ids; i++) {
8170
		/* Start at @node */
8171
		n = (node + i) % nr_node_ids;
8172 8173 8174 8175 8176

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8177
		if (node_isset(n, *used_nodes))
8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8189
	node_set(best_node, *used_nodes);
8190 8191 8192 8193 8194 8195
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8196
 * @span: resulting cpumask
8197
 *
I
Ingo Molnar 已提交
8198
 * Given a node, construct a good cpumask for its sched_domain to span. It
8199 8200 8201
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8202
static void sched_domain_node_span(int node, struct cpumask *span)
8203
{
8204
	nodemask_t used_nodes;
8205
	int i;
8206

8207
	cpumask_clear(span);
8208
	nodes_clear(used_nodes);
8209

8210
	cpumask_or(span, span, cpumask_of_node(node));
8211
	node_set(node, used_nodes);
8212 8213

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8214
		int next_node = find_next_best_node(node, &used_nodes);
8215

8216
		cpumask_or(span, span, cpumask_of_node(next_node));
8217 8218
	}
}
8219
#endif /* CONFIG_NUMA */
8220

8221
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8222

8223 8224
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8225 8226 8227
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8272
/*
8273
 * SMT sched-domains:
8274
 */
L
Linus Torvalds 已提交
8275
#ifdef CONFIG_SCHED_SMT
8276 8277
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8278

I
Ingo Molnar 已提交
8279
static int
8280 8281
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8282
{
8283
	if (sg)
8284
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8285 8286
	return cpu;
}
8287
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8288

8289 8290 8291
/*
 * multi-core sched-domains:
 */
8292
#ifdef CONFIG_SCHED_MC
8293 8294
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8295
#endif /* CONFIG_SCHED_MC */
8296 8297

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8298
static int
8299 8300
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8301
{
8302
	int group;
8303

8304
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8305
	group = cpumask_first(mask);
8306
	if (sg)
8307
		*sg = &per_cpu(sched_group_core, group).sg;
8308
	return group;
8309 8310
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8311
static int
8312 8313
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8314
{
8315
	if (sg)
8316
		*sg = &per_cpu(sched_group_core, cpu).sg;
8317 8318 8319 8320
	return cpu;
}
#endif

8321 8322
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8323

I
Ingo Molnar 已提交
8324
static int
8325 8326
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8327
{
8328
	int group;
8329
#ifdef CONFIG_SCHED_MC
8330
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8331
	group = cpumask_first(mask);
8332
#elif defined(CONFIG_SCHED_SMT)
8333
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8334
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8335
#else
8336
	group = cpu;
L
Linus Torvalds 已提交
8337
#endif
8338
	if (sg)
8339
		*sg = &per_cpu(sched_group_phys, group).sg;
8340
	return group;
L
Linus Torvalds 已提交
8341 8342 8343 8344
}

#ifdef CONFIG_NUMA
/*
8345 8346 8347
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8348
 */
8349
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8350
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8351

8352
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8353
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8354

8355 8356 8357
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8358
{
8359 8360
	int group;

8361
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8362
	group = cpumask_first(nodemask);
8363 8364

	if (sg)
8365
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8366
	return group;
L
Linus Torvalds 已提交
8367
}
8368

8369 8370 8371 8372 8373 8374 8375
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8376
	do {
8377
		for_each_cpu(j, sched_group_cpus(sg)) {
8378
			struct sched_domain *sd;
8379

8380
			sd = &per_cpu(phys_domains, j).sd;
8381
			if (j != group_first_cpu(sd->groups)) {
8382 8383 8384 8385 8386 8387
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8388

8389
			sg->cpu_power += sd->groups->cpu_power;
8390 8391 8392
		}
		sg = sg->next;
	} while (sg != group_head);
8393
}
8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8426
	sg->cpu_power = 0;
8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
8449
		sg->cpu_power = 0;
8450 8451 8452 8453 8454 8455 8456 8457 8458
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8459
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8460

8461
#ifdef CONFIG_NUMA
8462
/* Free memory allocated for various sched_group structures */
8463 8464
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8465
{
8466
	int cpu, i;
8467

8468
	for_each_cpu(cpu, cpu_map) {
8469 8470 8471 8472 8473 8474
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8475
		for (i = 0; i < nr_node_ids; i++) {
8476 8477
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8478
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8479
			if (cpumask_empty(nodemask))
8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8496
#else /* !CONFIG_NUMA */
8497 8498
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8499 8500
{
}
8501
#endif /* CONFIG_NUMA */
8502

8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8517 8518
	long power;
	int weight;
8519 8520 8521

	WARN_ON(!sd || !sd->groups);

8522
	if (cpu != group_first_cpu(sd->groups))
8523 8524 8525 8526
		return;

	child = sd->child;

8527
	sd->groups->cpu_power = 0;
8528

8529 8530 8531 8532 8533
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8534 8535 8536
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8537
		 */
P
Peter Zijlstra 已提交
8538 8539
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8540
			power /= weight;
P
Peter Zijlstra 已提交
8541 8542
			power >>= SCHED_LOAD_SHIFT;
		}
8543
		sd->groups->cpu_power += power;
8544 8545 8546 8547
		return;
	}

	/*
8548
	 * Add cpu_power of each child group to this groups cpu_power.
8549 8550 8551
	 */
	group = child->groups;
	do {
8552
		sd->groups->cpu_power += group->cpu_power;
8553 8554 8555 8556
		group = group->next;
	} while (group != child->groups);
}

8557 8558 8559 8560 8561
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8562 8563 8564 8565 8566 8567
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8568
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8569

8570 8571 8572 8573 8574
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8575
	sd->level = SD_LV_##type;				\
8576
	SD_INIT_NAME(sd, type);					\
8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8591 8592 8593 8594
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8595 8596 8597 8598 8599 8600
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
8619
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8620 8621
	} else {
		/* turn on idle balance on this domain */
8622
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8623 8624 8625
	}
}

8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8646
#ifdef CONFIG_NUMA
8647 8648 8649 8650 8651 8652 8653
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8654
#endif
8655 8656 8657 8658
	case sa_none:
		break;
	}
}
8659

8660 8661 8662
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8663
#ifdef CONFIG_NUMA
8664 8665 8666 8667 8668 8669 8670 8671 8672 8673
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
8674
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8675
		return sa_notcovered;
8676
	}
8677
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8678
#endif
8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
G
Gregory Haskins 已提交
8691
		printk(KERN_WARNING "Cannot alloc root domain\n");
8692
		return sa_tmpmask;
G
Gregory Haskins 已提交
8693
	}
8694 8695
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8696

8697 8698 8699 8700
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8701
#ifdef CONFIG_NUMA
8702
	struct sched_domain *parent;
L
Linus Torvalds 已提交
8703

8704 8705 8706 8707 8708
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8709
		set_domain_attribute(sd, attr);
8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8724
#endif
8725 8726
	return sd;
}
L
Linus Torvalds 已提交
8727

8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8743

8744 8745 8746 8747 8748
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8749
#ifdef CONFIG_SCHED_MC
8750 8751 8752 8753 8754 8755 8756
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8757
#endif
8758 8759
	return sd;
}
8760

8761 8762 8763 8764 8765
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8766
#ifdef CONFIG_SCHED_SMT
8767 8768 8769 8770 8771 8772 8773
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8774
#endif
8775 8776
	return sd;
}
L
Linus Torvalds 已提交
8777

8778 8779 8780 8781
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8782
#ifdef CONFIG_SCHED_SMT
8783 8784 8785 8786 8787 8788 8789 8790
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8791
#endif
8792
#ifdef CONFIG_SCHED_MC
8793 8794 8795 8796 8797 8798 8799
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8800
#endif
8801 8802 8803 8804 8805 8806 8807
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8808
#ifdef CONFIG_NUMA
8809 8810 8811 8812 8813
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8814 8815
	default:
		break;
8816
	}
8817
}
8818

8819 8820 8821 8822 8823 8824 8825 8826 8827
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8828
	struct sched_domain *sd;
8829
	int i;
8830
#ifdef CONFIG_NUMA
8831
	d.sd_allnodes = 0;
8832
#endif
8833

8834 8835 8836 8837
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8838

L
Linus Torvalds 已提交
8839
	/*
8840
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8841
	 */
8842
	for_each_cpu(i, cpu_map) {
8843 8844
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8845

8846
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8847
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8848
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8849
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8850
	}
8851

8852
	for_each_cpu(i, cpu_map) {
8853
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8854
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8855
	}
8856

L
Linus Torvalds 已提交
8857
	/* Set up physical groups */
8858 8859
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8860

L
Linus Torvalds 已提交
8861 8862
#ifdef CONFIG_NUMA
	/* Set up node groups */
8863 8864
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8865

8866 8867
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8868
			goto error;
L
Linus Torvalds 已提交
8869 8870 8871
#endif

	/* Calculate CPU power for physical packages and nodes */
8872
#ifdef CONFIG_SCHED_SMT
8873
	for_each_cpu(i, cpu_map) {
8874
		sd = &per_cpu(cpu_domains, i).sd;
8875
		init_sched_groups_power(i, sd);
8876
	}
L
Linus Torvalds 已提交
8877
#endif
8878
#ifdef CONFIG_SCHED_MC
8879
	for_each_cpu(i, cpu_map) {
8880
		sd = &per_cpu(core_domains, i).sd;
8881
		init_sched_groups_power(i, sd);
8882 8883
	}
#endif
8884

8885
	for_each_cpu(i, cpu_map) {
8886
		sd = &per_cpu(phys_domains, i).sd;
8887
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8888 8889
	}

8890
#ifdef CONFIG_NUMA
8891
	for (i = 0; i < nr_node_ids; i++)
8892
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8893

8894
	if (d.sd_allnodes) {
8895
		struct sched_group *sg;
8896

8897
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8898
								d.tmpmask);
8899 8900
		init_numa_sched_groups_power(sg);
	}
8901 8902
#endif

L
Linus Torvalds 已提交
8903
	/* Attach the domains */
8904
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8905
#ifdef CONFIG_SCHED_SMT
8906
		sd = &per_cpu(cpu_domains, i).sd;
8907
#elif defined(CONFIG_SCHED_MC)
8908
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8909
#else
8910
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8911
#endif
8912
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8913
	}
8914

8915 8916 8917
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8918 8919

error:
8920 8921
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8922
}
P
Paul Jackson 已提交
8923

8924
static int build_sched_domains(const struct cpumask *cpu_map)
8925 8926 8927 8928
{
	return __build_sched_domains(cpu_map, NULL);
}

8929
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8930
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8931 8932
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8933 8934 8935

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8936 8937
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8938
 */
8939
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8940

8941 8942 8943 8944 8945 8946
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8947
{
8948
	return 0;
8949 8950
}

8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

8976
/*
I
Ingo Molnar 已提交
8977
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8978 8979
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8980
 */
8981
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8982
{
8983 8984
	int err;

8985
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8986
	ndoms_cur = 1;
8987
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
8988
	if (!doms_cur)
8989 8990
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
8991
	dattr_cur = NULL;
8992
	err = build_sched_domains(doms_cur[0]);
8993
	register_sched_domain_sysctl();
8994 8995

	return err;
8996 8997
}

8998 8999
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
9000
{
9001
	free_sched_groups(cpu_map, tmpmask);
9002
}
L
Linus Torvalds 已提交
9003

9004 9005 9006 9007
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
9008
static void detach_destroy_domains(const struct cpumask *cpu_map)
9009
{
9010 9011
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9012 9013
	int i;

9014
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
9015
		cpu_attach_domain(NULL, &def_root_domain, i);
9016
	synchronize_sched();
9017
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9018 9019
}

9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
9036 9037
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
9038
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
9039 9040 9041
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
9042
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
9043 9044 9045
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
9046 9047 9048
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
9049 9050 9051 9052 9053 9054
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
9055
 *
9056
 * If doms_new == NULL it will be replaced with cpu_online_mask.
9057 9058
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
9059
 *
P
Paul Jackson 已提交
9060 9061
 * Call with hotplug lock held
 */
9062
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9063
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
9064
{
9065
	int i, j, n;
9066
	int new_topology;
P
Paul Jackson 已提交
9067

9068
	mutex_lock(&sched_domains_mutex);
9069

9070 9071 9072
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

9073 9074 9075
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

9076
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
9077 9078 9079

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
9080
		for (j = 0; j < n && !new_topology; j++) {
9081
			if (cpumask_equal(doms_cur[i], doms_new[j])
9082
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
9083 9084 9085
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
9086
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
9087 9088 9089 9090
match1:
		;
	}

9091 9092
	if (doms_new == NULL) {
		ndoms_cur = 0;
9093
		doms_new = &fallback_doms;
9094
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9095
		WARN_ON_ONCE(dattr_new);
9096 9097
	}

P
Paul Jackson 已提交
9098 9099
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9100
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9101
			if (cpumask_equal(doms_new[i], doms_cur[j])
9102
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9103 9104 9105
				goto match2;
		}
		/* no match - add a new doms_new */
9106
		__build_sched_domains(doms_new[i],
9107
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9108 9109 9110 9111 9112
match2:
		;
	}

	/* Remember the new sched domains */
9113 9114
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
9115
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9116
	doms_cur = doms_new;
9117
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9118
	ndoms_cur = ndoms_new;
9119 9120

	register_sched_domain_sysctl();
9121

9122
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9123 9124
}

9125
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9126
static void arch_reinit_sched_domains(void)
9127
{
9128
	get_online_cpus();
9129 9130 9131 9132

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9133
	rebuild_sched_domains();
9134
	put_online_cpus();
9135 9136 9137 9138
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9139
	unsigned int level = 0;
9140

9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9152 9153 9154
		return -EINVAL;

	if (smt)
9155
		sched_smt_power_savings = level;
9156
	else
9157
		sched_mc_power_savings = level;
9158

9159
	arch_reinit_sched_domains();
9160

9161
	return count;
9162 9163 9164
}

#ifdef CONFIG_SCHED_MC
9165 9166
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9167 9168 9169
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9170
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9171
					    const char *buf, size_t count)
9172 9173 9174
{
	return sched_power_savings_store(buf, count, 0);
}
9175 9176 9177
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9178 9179 9180
#endif

#ifdef CONFIG_SCHED_SMT
9181 9182
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9183 9184 9185
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9186
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9187
					     const char *buf, size_t count)
9188 9189 9190
{
	return sched_power_savings_store(buf, count, 1);
}
9191 9192
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9193 9194 9195
		   sched_smt_power_savings_store);
#endif

9196
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9212
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9213

9214
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9215
/*
9216 9217
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9218 9219 9220
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9221 9222 9223 9224
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
9225 9226 9227 9228
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
9229
		partition_sched_domains(1, NULL, NULL);
9230 9231 9232 9233 9234 9235 9236 9237 9238 9239
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9240
{
P
Peter Zijlstra 已提交
9241 9242
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9243 9244
	switch (action) {
	case CPU_DOWN_PREPARE:
9245
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9246
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9247 9248 9249
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9250
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9251
	case CPU_ONLINE:
9252
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9253
		enable_runtime(cpu_rq(cpu));
9254 9255
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9256 9257 9258 9259 9260 9261 9262
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9263 9264 9265
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9266
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9267

9268 9269 9270 9271 9272
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9273
	get_online_cpus();
9274
	mutex_lock(&sched_domains_mutex);
9275
	arch_init_sched_domains(cpu_active_mask);
9276 9277 9278
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9279
	mutex_unlock(&sched_domains_mutex);
9280
	put_online_cpus();
9281 9282

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9283 9284
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9285 9286 9287 9288 9289
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9290
	init_hrtick();
9291 9292

	/* Move init over to a non-isolated CPU */
9293
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9294
		BUG();
I
Ingo Molnar 已提交
9295
	sched_init_granularity();
9296
	free_cpumask_var(non_isolated_cpus);
9297

9298
	init_sched_rt_class();
L
Linus Torvalds 已提交
9299 9300 9301 9302
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9303
	sched_init_granularity();
L
Linus Torvalds 已提交
9304 9305 9306
}
#endif /* CONFIG_SMP */

9307 9308
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9309 9310 9311 9312 9313 9314 9315
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9316
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9317 9318
{
	cfs_rq->tasks_timeline = RB_ROOT;
9319
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9320 9321 9322
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9323
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9324 9325
}

P
Peter Zijlstra 已提交
9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9339
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9340
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9341
#ifdef CONFIG_SMP
9342
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9343 9344
#endif
#endif
P
Peter Zijlstra 已提交
9345 9346 9347
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9348
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9349 9350 9351 9352
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9353 9354
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9355

9356
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9357
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9358 9359
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9360 9361
}

P
Peter Zijlstra 已提交
9362
#ifdef CONFIG_FAIR_GROUP_SCHED
9363 9364 9365
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9366
{
9367
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9368 9369 9370 9371 9372 9373 9374
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9375 9376 9377 9378
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9379 9380 9381 9382 9383
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9384 9385
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9386
	se->load.inv_weight = 0;
9387
	se->parent = parent;
P
Peter Zijlstra 已提交
9388
}
9389
#endif
P
Peter Zijlstra 已提交
9390

9391
#ifdef CONFIG_RT_GROUP_SCHED
9392 9393 9394
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9395
{
9396 9397
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9398 9399 9400 9401
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9402
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9403 9404 9405 9406
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9407 9408 9409
	if (!rt_se)
		return;

9410 9411 9412 9413 9414
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9415
	rt_se->my_q = rt_rq;
9416
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9417 9418 9419 9420
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9421 9422
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9423
	int i, j;
9424 9425 9426 9427 9428 9429 9430
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9431 9432 9433
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9434 9435
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9436
	alloc_size += num_possible_cpus() * cpumask_size();
9437 9438
#endif
	if (alloc_size) {
9439
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9440 9441 9442 9443 9444 9445 9446

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9447 9448 9449 9450 9451 9452 9453

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9454 9455
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9456 9457 9458 9459 9460
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9461 9462 9463 9464 9465 9466 9467 9468
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9469 9470
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9471 9472 9473 9474 9475 9476
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9477
	}
I
Ingo Molnar 已提交
9478

G
Gregory Haskins 已提交
9479 9480 9481 9482
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9483 9484 9485 9486 9487 9488
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9489 9490 9491
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9492 9493
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9494

9495
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9496
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9497 9498 9499 9500 9501 9502
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9503 9504
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9505

9506 9507 9508 9509
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
9510
	for_each_possible_cpu(i) {
9511
		struct rq *rq;
L
Linus Torvalds 已提交
9512 9513 9514

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9515
		rq->nr_running = 0;
9516 9517
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9518
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9519
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9520
#ifdef CONFIG_FAIR_GROUP_SCHED
9521
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9522
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9538
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9539 9540 9541 9542
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9543
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9544
#elif defined CONFIG_USER_SCHED
9545 9546
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9547 9548 9549 9550 9551 9552 9553 9554
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9555
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9556 9557
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9558
		init_tg_cfs_entry(&init_task_group,
9559
				&per_cpu(init_tg_cfs_rq, i),
9560 9561
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9562

9563
#endif
D
Dhaval Giani 已提交
9564 9565 9566
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9567
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9568
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9569
#ifdef CONFIG_CGROUP_SCHED
9570
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9571
#elif defined CONFIG_USER_SCHED
9572
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9573
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9574
				&per_cpu(init_rt_rq, i),
9575 9576
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9577
#endif
I
Ingo Molnar 已提交
9578
#endif
L
Linus Torvalds 已提交
9579

I
Ingo Molnar 已提交
9580 9581
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9582
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9583
		rq->sd = NULL;
G
Gregory Haskins 已提交
9584
		rq->rd = NULL;
9585
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9586
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9587
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9588
		rq->push_cpu = 0;
9589
		rq->cpu = i;
9590
		rq->online = 0;
L
Linus Torvalds 已提交
9591
		rq->migration_thread = NULL;
9592 9593
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
9594
		INIT_LIST_HEAD(&rq->migration_queue);
9595
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9596
#endif
P
Peter Zijlstra 已提交
9597
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9598 9599 9600
		atomic_set(&rq->nr_iowait, 0);
	}

9601
	set_load_weight(&init_task);
9602

9603 9604 9605 9606
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9607
#ifdef CONFIG_SMP
9608
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9609 9610
#endif

9611 9612 9613 9614
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9628 9629 9630

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9631 9632 9633 9634
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9635

9636
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9637
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9638
#ifdef CONFIG_SMP
9639
#ifdef CONFIG_NO_HZ
9640
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9641
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9642
#endif
R
Rusty Russell 已提交
9643 9644 9645
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9646
#endif /* SMP */
9647

9648
	perf_event_init();
9649

9650
	scheduler_running = 1;
L
Linus Torvalds 已提交
9651 9652 9653
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9654 9655 9656 9657 9658 9659 9660 9661
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9662
{
9663
#ifdef in_atomic
L
Linus Torvalds 已提交
9664 9665
	static unsigned long prev_jiffy;	/* ratelimiting */

9666 9667
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9685 9686 9687 9688 9689 9690
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9691 9692 9693
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9694

9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9706 9707
void normalize_rt_tasks(void)
{
9708
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9709
	unsigned long flags;
9710
	struct rq *rq;
L
Linus Torvalds 已提交
9711

9712
	read_lock_irqsave(&tasklist_lock, flags);
9713
	do_each_thread(g, p) {
9714 9715 9716 9717 9718 9719
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9720 9721
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9722 9723 9724
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9725
#endif
I
Ingo Molnar 已提交
9726 9727 9728 9729 9730 9731 9732 9733

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9734
			continue;
I
Ingo Molnar 已提交
9735
		}
L
Linus Torvalds 已提交
9736

9737
		spin_lock(&p->pi_lock);
9738
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9739

9740
		normalize_task(rq, p);
9741

9742
		__task_rq_unlock(rq);
9743
		spin_unlock(&p->pi_lock);
9744 9745
	} while_each_thread(g, p);

9746
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9747 9748 9749
}

#endif /* CONFIG_MAGIC_SYSRQ */
9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9768
struct task_struct *curr_task(int cpu)
9769 9770 9771 9772 9773 9774 9775 9776 9777 9778
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9779 9780
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9781 9782 9783 9784 9785 9786 9787
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9788
void set_curr_task(int cpu, struct task_struct *p)
9789 9790 9791 9792 9793
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9794

9795 9796
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9811 9812
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9813 9814
{
	struct cfs_rq *cfs_rq;
9815
	struct sched_entity *se;
9816
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9817 9818
	int i;

9819
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9820 9821
	if (!tg->cfs_rq)
		goto err;
9822
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9823 9824
	if (!tg->se)
		goto err;
9825 9826

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9827 9828

	for_each_possible_cpu(i) {
9829
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9830

9831 9832
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9833 9834 9835
		if (!cfs_rq)
			goto err;

9836 9837
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9838 9839 9840
		if (!se)
			goto err;

9841
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9860
#else /* !CONFG_FAIR_GROUP_SCHED */
9861 9862 9863 9864
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9865 9866
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9878
#endif /* CONFIG_FAIR_GROUP_SCHED */
9879 9880

#ifdef CONFIG_RT_GROUP_SCHED
9881 9882 9883 9884
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9885 9886
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9898 9899
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9900 9901
{
	struct rt_rq *rt_rq;
9902
	struct sched_rt_entity *rt_se;
9903 9904 9905
	struct rq *rq;
	int i;

9906
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9907 9908
	if (!tg->rt_rq)
		goto err;
9909
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9910 9911 9912
	if (!tg->rt_se)
		goto err;

9913 9914
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9915 9916 9917 9918

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9919 9920
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9921 9922
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9923

9924 9925
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9926 9927
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9928

9929
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9930 9931
	}

9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9948
#else /* !CONFIG_RT_GROUP_SCHED */
9949 9950 9951 9952
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9953 9954
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9966
#endif /* CONFIG_RT_GROUP_SCHED */
9967

9968
#ifdef CONFIG_GROUP_SCHED
9969 9970 9971 9972 9973 9974 9975 9976
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9977
struct task_group *sched_create_group(struct task_group *parent)
9978 9979 9980 9981 9982 9983 9984 9985 9986
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9987
	if (!alloc_fair_sched_group(tg, parent))
9988 9989
		goto err;

9990
	if (!alloc_rt_sched_group(tg, parent))
9991 9992
		goto err;

9993
	spin_lock_irqsave(&task_group_lock, flags);
9994
	for_each_possible_cpu(i) {
9995 9996
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9997
	}
P
Peter Zijlstra 已提交
9998
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9999 10000 10001 10002 10003

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
10004
	list_add_rcu(&tg->siblings, &parent->children);
10005
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
10006

10007
	return tg;
S
Srivatsa Vaddagiri 已提交
10008 10009

err:
P
Peter Zijlstra 已提交
10010
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
10011 10012 10013
	return ERR_PTR(-ENOMEM);
}

10014
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
10015
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
10016 10017
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
10018
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
10019 10020
}

10021
/* Destroy runqueue etc associated with a task group */
10022
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
10023
{
10024
	unsigned long flags;
10025
	int i;
S
Srivatsa Vaddagiri 已提交
10026

10027
	spin_lock_irqsave(&task_group_lock, flags);
10028
	for_each_possible_cpu(i) {
10029 10030
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
10031
	}
P
Peter Zijlstra 已提交
10032
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
10033
	list_del_rcu(&tg->siblings);
10034
	spin_unlock_irqrestore(&task_group_lock, flags);
10035 10036

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
10037
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
10038 10039
}

10040
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
10041 10042 10043
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
10044 10045
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
10046 10047 10048 10049 10050 10051 10052 10053 10054
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

10055
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10056 10057
	on_rq = tsk->se.on_rq;

10058
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10059
		dequeue_task(rq, tsk, 0);
10060 10061
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10062

P
Peter Zijlstra 已提交
10063
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
10064

P
Peter Zijlstra 已提交
10065 10066 10067 10068 10069
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

10070 10071 10072
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
10073
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
10074 10075 10076

	task_rq_unlock(rq, &flags);
}
10077
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
10078

10079
#ifdef CONFIG_FAIR_GROUP_SCHED
10080
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10081 10082 10083 10084 10085
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
10086
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10087 10088 10089
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
10090
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
10091

10092
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10093
		enqueue_entity(cfs_rq, se, 0);
10094
}
10095

10096 10097 10098 10099 10100 10101 10102 10103 10104
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10105 10106
}

10107 10108
static DEFINE_MUTEX(shares_mutex);

10109
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10110 10111
{
	int i;
10112
	unsigned long flags;
10113

10114 10115 10116 10117 10118 10119
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10120 10121
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10122 10123
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10124

10125
	mutex_lock(&shares_mutex);
10126
	if (tg->shares == shares)
10127
		goto done;
S
Srivatsa Vaddagiri 已提交
10128

10129
	spin_lock_irqsave(&task_group_lock, flags);
10130 10131
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10132
	list_del_rcu(&tg->siblings);
10133
	spin_unlock_irqrestore(&task_group_lock, flags);
10134 10135 10136 10137 10138 10139 10140 10141

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10142
	tg->shares = shares;
10143 10144 10145 10146 10147
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10148
		set_se_shares(tg->se[i], shares);
10149
	}
S
Srivatsa Vaddagiri 已提交
10150

10151 10152 10153 10154
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10155
	spin_lock_irqsave(&task_group_lock, flags);
10156 10157
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10158
	list_add_rcu(&tg->siblings, &tg->parent->children);
10159
	spin_unlock_irqrestore(&task_group_lock, flags);
10160
done:
10161
	mutex_unlock(&shares_mutex);
10162
	return 0;
S
Srivatsa Vaddagiri 已提交
10163 10164
}

10165 10166 10167 10168
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10169
#endif
10170

10171
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10172
/*
P
Peter Zijlstra 已提交
10173
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10174
 */
P
Peter Zijlstra 已提交
10175 10176 10177 10178 10179
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10180
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10181

P
Peter Zijlstra 已提交
10182
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10183 10184
}

P
Peter Zijlstra 已提交
10185 10186
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10187
{
P
Peter Zijlstra 已提交
10188
	struct task_struct *g, *p;
10189

P
Peter Zijlstra 已提交
10190 10191 10192 10193
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10194

P
Peter Zijlstra 已提交
10195 10196
	return 0;
}
10197

P
Peter Zijlstra 已提交
10198 10199 10200 10201 10202
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10203

P
Peter Zijlstra 已提交
10204 10205 10206 10207 10208 10209
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10210

P
Peter Zijlstra 已提交
10211 10212
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10213

P
Peter Zijlstra 已提交
10214 10215 10216
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10217 10218
	}

10219 10220 10221 10222 10223 10224 10225
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10226 10227 10228 10229 10230
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10231

10232 10233 10234
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10235 10236
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10237

P
Peter Zijlstra 已提交
10238
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10239

10240 10241 10242 10243 10244
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10245

10246 10247 10248
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10249 10250 10251
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10252

P
Peter Zijlstra 已提交
10253 10254 10255 10256
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10257

P
Peter Zijlstra 已提交
10258
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10259
	}
P
Peter Zijlstra 已提交
10260

P
Peter Zijlstra 已提交
10261 10262 10263 10264
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10265 10266
}

P
Peter Zijlstra 已提交
10267
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10268
{
P
Peter Zijlstra 已提交
10269 10270 10271 10272 10273 10274 10275
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10276 10277
}

10278 10279
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10280
{
P
Peter Zijlstra 已提交
10281
	int i, err = 0;
P
Peter Zijlstra 已提交
10282 10283

	mutex_lock(&rt_constraints_mutex);
10284
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10285 10286
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10287
		goto unlock;
P
Peter Zijlstra 已提交
10288 10289

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10290 10291
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10292 10293 10294 10295 10296 10297 10298 10299 10300

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10301
 unlock:
10302
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10303 10304 10305
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10306 10307
}

10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10320 10321 10322 10323
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10324
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10325 10326
		return -1;

10327
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10328 10329 10330
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10331 10332 10333 10334 10335 10336 10337 10338

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10339 10340 10341
	if (rt_period == 0)
		return -EINVAL;

10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10356
	u64 runtime, period;
10357 10358
	int ret = 0;

10359 10360 10361
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10362 10363 10364 10365 10366 10367 10368 10369
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10370

10371
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10372
	read_lock(&tasklist_lock);
10373
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10374
	read_unlock(&tasklist_lock);
10375 10376 10377 10378
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10379 10380 10381 10382 10383 10384 10385 10386 10387 10388

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10389
#else /* !CONFIG_RT_GROUP_SCHED */
10390 10391
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10392 10393 10394
	unsigned long flags;
	int i;

10395 10396 10397
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10398 10399 10400 10401 10402 10403 10404
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10405 10406 10407 10408 10409 10410 10411 10412 10413 10414
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10415 10416
	return 0;
}
10417
#endif /* CONFIG_RT_GROUP_SCHED */
10418 10419

int sched_rt_handler(struct ctl_table *table, int write,
10420
		void __user *buffer, size_t *lenp,
10421 10422 10423 10424 10425 10426 10427 10428 10429 10430
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

10431
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10448

10449
#ifdef CONFIG_CGROUP_SCHED
10450 10451

/* return corresponding task_group object of a cgroup */
10452
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10453
{
10454 10455
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10456 10457 10458
}

static struct cgroup_subsys_state *
10459
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10460
{
10461
	struct task_group *tg, *parent;
10462

10463
	if (!cgrp->parent) {
10464 10465 10466 10467
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10468 10469
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10470 10471 10472 10473 10474 10475
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10476 10477
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10478
{
10479
	struct task_group *tg = cgroup_tg(cgrp);
10480 10481 10482 10483

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10484
static int
10485
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10486
{
10487
#ifdef CONFIG_RT_GROUP_SCHED
10488
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10489 10490
		return -EINVAL;
#else
10491 10492 10493
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10494
#endif
10495 10496
	return 0;
}
10497

10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
10517 10518 10519 10520
	return 0;
}

static void
10521
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10522 10523
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
10524 10525
{
	sched_move_task(tsk);
10526 10527 10528 10529 10530 10531 10532 10533
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
10534 10535
}

10536
#ifdef CONFIG_FAIR_GROUP_SCHED
10537
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10538
				u64 shareval)
10539
{
10540
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10541 10542
}

10543
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10544
{
10545
	struct task_group *tg = cgroup_tg(cgrp);
10546 10547 10548

	return (u64) tg->shares;
}
10549
#endif /* CONFIG_FAIR_GROUP_SCHED */
10550

10551
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10552
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10553
				s64 val)
P
Peter Zijlstra 已提交
10554
{
10555
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10556 10557
}

10558
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10559
{
10560
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10561
}
10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10573
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10574

10575
static struct cftype cpu_files[] = {
10576
#ifdef CONFIG_FAIR_GROUP_SCHED
10577 10578
	{
		.name = "shares",
10579 10580
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10581
	},
10582 10583
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10584
	{
P
Peter Zijlstra 已提交
10585
		.name = "rt_runtime_us",
10586 10587
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10588
	},
10589 10590
	{
		.name = "rt_period_us",
10591 10592
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10593
	},
10594
#endif
10595 10596 10597 10598
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10599
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10600 10601 10602
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10603 10604 10605 10606 10607 10608 10609
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10610 10611 10612
	.early_init	= 1,
};

10613
#endif	/* CONFIG_CGROUP_SCHED */
10614 10615 10616 10617 10618 10619 10620 10621 10622 10623

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10624
/* track cpu usage of a group of tasks and its child groups */
10625 10626 10627 10628
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10629
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10630
	struct cpuacct *parent;
10631 10632 10633 10634 10635
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10636
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10637
{
10638
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10651
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10652 10653
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10654
	int i;
10655 10656

	if (!ca)
10657
		goto out;
10658 10659

	ca->cpuusage = alloc_percpu(u64);
10660 10661 10662 10663 10664 10665
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10666

10667 10668 10669
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10670
	return &ca->css;
10671 10672 10673 10674 10675 10676 10677 10678 10679

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10680 10681 10682
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10683
static void
10684
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10685
{
10686
	struct cpuacct *ca = cgroup_ca(cgrp);
10687
	int i;
10688

10689 10690
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10691 10692 10693 10694
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10695 10696
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10697
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10716
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10730
/* return total cpu usage (in nanoseconds) of a group */
10731
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10732
{
10733
	struct cpuacct *ca = cgroup_ca(cgrp);
10734 10735 10736
	u64 totalcpuusage = 0;
	int i;

10737 10738
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10739 10740 10741 10742

	return totalcpuusage;
}

10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10755 10756
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10757 10758 10759 10760 10761

out:
	return err;
}

10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10796 10797 10798
static struct cftype files[] = {
	{
		.name = "usage",
10799 10800
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10801
	},
10802 10803 10804 10805
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10806 10807 10808 10809
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10810 10811
};

10812
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10813
{
10814
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10815 10816 10817 10818 10819 10820 10821 10822 10823 10824
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10825
	int cpu;
10826

L
Li Zefan 已提交
10827
	if (unlikely(!cpuacct_subsys.active))
10828 10829
		return;

10830
	cpu = task_cpu(tsk);
10831 10832 10833

	rcu_read_lock();

10834 10835
	ca = task_ca(tsk);

10836
	for (; ca; ca = ca->parent) {
10837
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10838 10839
		*cpuusage += cputime;
	}
10840 10841

	rcu_read_unlock();
10842 10843
}

10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10865 10866 10867 10868 10869 10870 10871 10872
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
		spin_lock_irqsave(&rq->lock, flags);
		list_add(&req->list, &rq->migration_queue);
		spin_unlock_irqrestore(&rq->lock, flags);
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
		spin_lock_irqsave(&rq->lock, flags);
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
		spin_unlock_irqrestore(&rq->lock, flags);
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10975
	synchronize_sched_expedited_count++;
10976 10977 10978 10979 10980 10981 10982 10983
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */