sched.c 197.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
L
Linus Torvalds 已提交
70

71
#include <asm/tlb.h>
72
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
73

74 75 76 77 78 79 80
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
81
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
82 83
}

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

139 140 141 142 143 144 145 146 147 148 149 150
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
151
/*
I
Ingo Molnar 已提交
152
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
153
 */
I
Ingo Molnar 已提交
154 155 156 157 158
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

159
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
160

161 162
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
163 164
struct cfs_rq;

P
Peter Zijlstra 已提交
165 166
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
167
/* task group related information */
168
struct task_group {
169
#ifdef CONFIG_CGROUP_SCHED
170 171
	struct cgroup_subsys_state css;
#endif
172 173

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
174 175 176 177 178
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
179 180 181 182 183 184 185 186
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

	u64 rt_runtime;
#endif
187

188
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
189
	struct list_head list;
S
Srivatsa Vaddagiri 已提交
190 191
};

192
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
193 194 195 196 197
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

198 199
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
200 201 202 203 204
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
S
Srivatsa Vaddagiri 已提交
205

P
Peter Zijlstra 已提交
206 207
static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
static struct rt_rq *init_rt_rq_p[NR_CPUS];
208
#endif
P
Peter Zijlstra 已提交
209

210
/* task_group_lock serializes add/remove of task groups and also changes to
211 212
 * a task group's cpu shares.
 */
213
static DEFINE_SPINLOCK(task_group_lock);
214

215 216 217
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

218 219 220 221 222 223 224 225 226 227
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
228
/* Default task group.
I
Ingo Molnar 已提交
229
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
230
 */
231
struct task_group init_task_group = {
232
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
233
	.se	= init_sched_entity_p,
I
Ingo Molnar 已提交
234
	.cfs_rq = init_cfs_rq_p,
235
#endif
P
Peter Zijlstra 已提交
236

237
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
238 239
	.rt_se	= init_sched_rt_entity_p,
	.rt_rq	= init_rt_rq_p,
240
#endif
241
};
S
Srivatsa Vaddagiri 已提交
242 243

/* return group to which a task belongs */
244
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
245
{
246
	struct task_group *tg;
247

248
#ifdef CONFIG_USER_SCHED
249
	tg = p->user->tg;
250
#elif defined(CONFIG_CGROUP_SCHED)
251 252
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
253
#else
I
Ingo Molnar 已提交
254
	tg = &init_task_group;
255
#endif
256
	return tg;
S
Srivatsa Vaddagiri 已提交
257 258 259
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
260
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
261
{
262
#ifdef CONFIG_FAIR_GROUP_SCHED
263 264
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
265
#endif
P
Peter Zijlstra 已提交
266

267
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
268 269
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
270
#endif
S
Srivatsa Vaddagiri 已提交
271 272
}

273 274 275 276 277 278 279 280 281 282
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
283 284
#else

P
Peter Zijlstra 已提交
285
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
286 287
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
288

289
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
290

I
Ingo Molnar 已提交
291 292 293 294 295 296
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
297
	u64 min_vruntime;
I
Ingo Molnar 已提交
298 299 300 301 302 303 304

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
305
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
306 307 308

	unsigned long nr_spread_over;

309
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
310 311
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
312 313
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
314 315 316 317 318 319
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
320 321
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
322 323
#endif
};
L
Linus Torvalds 已提交
324

I
Ingo Molnar 已提交
325 326 327
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
328
	unsigned long rt_nr_running;
329
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
330 331
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
332
#ifdef CONFIG_SMP
333
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
334
	int overloaded;
P
Peter Zijlstra 已提交
335
#endif
P
Peter Zijlstra 已提交
336
	int rt_throttled;
P
Peter Zijlstra 已提交
337
	u64 rt_time;
P
Peter Zijlstra 已提交
338

339
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
340 341
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
342 343 344 345 346
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
347 348
};

G
Gregory Haskins 已提交
349 350 351 352
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
353 354
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
355 356 357 358 359 360 361 362
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
363

I
Ingo Molnar 已提交
364
	/*
365 366 367 368
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
369
	atomic_t rto_count;
G
Gregory Haskins 已提交
370 371
};

372 373 374 375
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
376 377 378 379
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
380 381 382 383 384 385 386
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
387
struct rq {
388 389
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
390 391 392 393 394 395

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
396 397
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
398
	unsigned char idle_at_tick;
399
#ifdef CONFIG_NO_HZ
400
	unsigned long last_tick_seen;
401 402
	unsigned char in_nohz_recently;
#endif
403 404
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
405 406 407 408
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
409 410
	struct rt_rq rt;
	u64 rt_period_expire;
P
Peter Zijlstra 已提交
411
	int rt_throttled;
P
Peter Zijlstra 已提交
412

I
Ingo Molnar 已提交
413
#ifdef CONFIG_FAIR_GROUP_SCHED
414 415
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
416 417
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
418
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
419 420 421 422 423 424 425 426 427 428
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

429
	struct task_struct *curr, *idle;
430
	unsigned long next_balance;
L
Linus Torvalds 已提交
431
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
432 433 434 435

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

436
	unsigned int clock_warps, clock_overflows, clock_underflows;
437 438
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
439
	u64 tick_timestamp;
I
Ingo Molnar 已提交
440

L
Linus Torvalds 已提交
441 442 443
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
444
	struct root_domain *rd;
L
Linus Torvalds 已提交
445 446 447 448 449
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
450 451
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
452

453
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
454 455 456
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
457 458 459 460 461 462
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
463 464 465 466 467
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
468 469 470 471
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
472 473

	/* schedule() stats */
474 475 476
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
477 478

	/* try_to_wake_up() stats */
479 480
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
481 482

	/* BKL stats */
483
	unsigned int bkl_count;
L
Linus Torvalds 已提交
484
#endif
485
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
486 487
};

488
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
489

I
Ingo Molnar 已提交
490 491 492 493 494
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

495 496 497 498 499 500 501 502 503
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
#ifdef CONFIG_NO_HZ
static inline bool nohz_on(int cpu)
{
	return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
}

static inline u64 max_skipped_ticks(struct rq *rq)
{
	return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
	rq->last_tick_seen = jiffies;
}
#else
static inline u64 max_skipped_ticks(struct rq *rq)
{
	return 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
}
#endif

I
Ingo Molnar 已提交
530
/*
I
Ingo Molnar 已提交
531 532
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
533
 */
I
Ingo Molnar 已提交
534
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
535 536 537 538 539 540
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
541 542 543
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
544 545 546 547 548 549 550 551 552 553
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
554 555 556 557 558 559
		u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
		u64 max_time = rq->tick_timestamp + max_jump;

		if (unlikely(clock + delta > max_time)) {
			if (clock < max_time)
				clock = max_time;
560 561
			else
				clock++;
I
Ingo Molnar 已提交
562 563 564 565 566 567 568 569 570 571
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
572
}
I
Ingo Molnar 已提交
573

I
Ingo Molnar 已提交
574 575 576 577
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
578 579
}

N
Nick Piggin 已提交
580 581
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
582
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
583 584 585 586
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
587 588
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
589 590 591 592 593 594

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

P
Peter Zijlstra 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
unsigned long rt_needs_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 delta;

	if (!rq->rt_throttled)
		return 0;

	if (rq->clock > rq->rt_period_expire)
		return 1;

	delta = rq->rt_period_expire - rq->clock;
	do_div(delta, NSEC_PER_SEC / HZ);

	return (unsigned long)delta;
}

I
Ingo Molnar 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
625
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
626 627
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
628 629
	SCHED_FEAT_HRTICK		= 8,
	SCHED_FEAT_DOUBLE_TICK		= 16,
I
Ingo Molnar 已提交
630 631 632
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
633
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
634
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
635
		SCHED_FEAT_START_DEBIT		* 1 |
P
Peter Zijlstra 已提交
636 637
		SCHED_FEAT_HRTICK		* 1 |
		SCHED_FEAT_DOUBLE_TICK		* 0;
I
Ingo Molnar 已提交
638 639 640

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

641 642 643 644 645 646
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
647
/*
P
Peter Zijlstra 已提交
648
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
649 650
 * default: 1s
 */
P
Peter Zijlstra 已提交
651
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
652

653 654
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
655 656 657 658 659
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
660 661

/*
P
Peter Zijlstra 已提交
662
 * single value that denotes runtime == period, ie unlimited time.
P
Peter Zijlstra 已提交
663
 */
P
Peter Zijlstra 已提交
664
#define RUNTIME_INF	((u64)~0ULL)
P
Peter Zijlstra 已提交
665

666 667 668 669 670
static const unsigned long long time_sync_thresh = 100000;

static DEFINE_PER_CPU(unsigned long long, time_offset);
static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);

671
/*
672 673 674 675
 * Global lock which we take every now and then to synchronize
 * the CPUs time. This method is not warp-safe, but it's good
 * enough to synchronize slowly diverging time sources and thus
 * it's good enough for tracing:
676
 */
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
static DEFINE_SPINLOCK(time_sync_lock);
static unsigned long long prev_global_time;

static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
{
	unsigned long flags;

	spin_lock_irqsave(&time_sync_lock, flags);

	if (time < prev_global_time) {
		per_cpu(time_offset, cpu) += prev_global_time - time;
		time = prev_global_time;
	} else {
		prev_global_time = time;
	}

	spin_unlock_irqrestore(&time_sync_lock, flags);

	return time;
}

static unsigned long long __cpu_clock(int cpu)
699 700 701
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
702
	struct rq *rq;
703

704 705 706 707
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
708 709 710 711 712 713
	if (unlikely(!scheduler_running))
		return 0;

	local_irq_save(flags);
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
I
Ingo Molnar 已提交
714
	now = rq->clock;
715
	local_irq_restore(flags);
716 717 718

	return now;
}
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736

/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long prev_cpu_time, time, delta_time;

	prev_cpu_time = per_cpu(prev_cpu_time, cpu);
	time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
	delta_time = time-prev_cpu_time;

	if (unlikely(delta_time > time_sync_thresh))
		time = __sync_cpu_clock(time, cpu);

	return time;
}
P
Paul E. McKenney 已提交
737
EXPORT_SYMBOL_GPL(cpu_clock);
738

L
Linus Torvalds 已提交
739
#ifndef prepare_arch_switch
740 741 742 743 744 745
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

746 747 748 749 750
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

751
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
752
static inline int task_running(struct rq *rq, struct task_struct *p)
753
{
754
	return task_current(rq, p);
755 756
}

757
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
758 759 760
{
}

761
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
762
{
763 764 765 766
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
767 768 769 770 771 772 773
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

774 775 776 777
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
778
static inline int task_running(struct rq *rq, struct task_struct *p)
779 780 781 782
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
783
	return task_current(rq, p);
784 785 786
#endif
}

787
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

804
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
805 806 807 808 809 810 811 812 813 814 815 816
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
817
#endif
818 819
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
820

821 822 823 824
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
825
static inline struct rq *__task_rq_lock(struct task_struct *p)
826 827
	__acquires(rq->lock)
{
828 829 830 831 832
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
833 834 835 836
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
837 838
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
839
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
840 841
 * explicitly disabling preemption.
 */
842
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
843 844
	__acquires(rq->lock)
{
845
	struct rq *rq;
L
Linus Torvalds 已提交
846

847 848 849 850 851 852
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
853 854 855 856
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
857
static void __task_rq_unlock(struct rq *rq)
858 859 860 861 862
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

863
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
864 865 866 867 868 869
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
870
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
871
 */
A
Alexey Dobriyan 已提交
872
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
873 874
	__acquires(rq->lock)
{
875
	struct rq *rq;
L
Linus Torvalds 已提交
876 877 878 879 880 881 882 883

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

884
/*
885
 * We are going deep-idle (irqs are disabled):
886
 */
887
void sched_clock_idle_sleep_event(void)
888
{
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
905

906 907 908 909 910 911 912 913 914 915 916
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
917
	touch_softlockup_watchdog();
918
}
919
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
920

P
Peter Zijlstra 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

static inline void init_rq_hrtick(struct rq *rq)
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
#endif

I
Ingo Molnar 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1101
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1102 1103 1104 1105 1106
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1107
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1108 1109
		return;

P
Peter Zijlstra 已提交
1110
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
#endif

I
Ingo Molnar 已提交
1175
#else
P
Peter Zijlstra 已提交
1176
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1177 1178
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1179
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1180 1181 1182
}
#endif

1183 1184 1185 1186 1187 1188 1189 1190
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1191 1192 1193
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1194
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1195

1196
static unsigned long
1197 1198 1199 1200 1201 1202
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
1203
		lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1204 1205 1206 1207 1208

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1209
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1210
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1211 1212
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1213
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1214

1215
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1216 1217 1218 1219 1220 1221 1222 1223
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1224
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1225 1226
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1227
	lw->inv_weight = 0;
1228 1229
}

1230
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1231 1232
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1233
	lw->inv_weight = 0;
1234 1235
}

1236 1237 1238 1239
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1240
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1241 1242 1243 1244
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1256 1257 1258
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1259 1260
 */
static const int prio_to_weight[40] = {
1261 1262 1263 1264 1265 1266 1267 1268
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1269 1270
};

1271 1272 1273 1274 1275 1276 1277
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1278
static const u32 prio_to_wmult[40] = {
1279 1280 1281 1282 1283 1284 1285 1286
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1287
};
1288

I
Ingo Molnar 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1314

1315 1316 1317 1318 1319 1320
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1321 1322 1323 1324 1325 1326 1327
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1328 1329
#include "sched_stats.h"
#include "sched_idletask.c"
1330 1331
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1332 1333 1334 1335 1336 1337
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
static inline void inc_load(struct rq *rq, const struct task_struct *p)
{
	update_load_add(&rq->load, p->se.load.weight);
}

static inline void dec_load(struct rq *rq, const struct task_struct *p)
{
	update_load_sub(&rq->load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq)
1349 1350
{
	rq->nr_running++;
1351
	inc_load(rq, p);
1352 1353
}

1354
static void dec_nr_running(struct task_struct *p, struct rq *rq)
1355 1356
{
	rq->nr_running--;
1357
	dec_load(rq, p);
1358 1359
}

1360 1361 1362
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1363 1364 1365 1366
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1367

I
Ingo Molnar 已提交
1368 1369 1370 1371 1372 1373 1374 1375
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1376

I
Ingo Molnar 已提交
1377 1378
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1379 1380
}

1381
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1382
{
I
Ingo Molnar 已提交
1383
	sched_info_queued(p);
1384
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1385
	p->se.on_rq = 1;
1386 1387
}

1388
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1389
{
1390
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1391
	p->se.on_rq = 0;
1392 1393
}

1394
/*
I
Ingo Molnar 已提交
1395
 * __normal_prio - return the priority that is based on the static prio
1396 1397 1398
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1399
	return p->static_prio;
1400 1401
}

1402 1403 1404 1405 1406 1407 1408
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1409
static inline int normal_prio(struct task_struct *p)
1410 1411 1412
{
	int prio;

1413
	if (task_has_rt_policy(p))
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1427
static int effective_prio(struct task_struct *p)
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1440
/*
I
Ingo Molnar 已提交
1441
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1442
 */
I
Ingo Molnar 已提交
1443
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1444
{
1445
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1446
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1447

1448
	enqueue_task(rq, p, wakeup);
1449
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1450 1451 1452 1453 1454
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1455
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1456
{
1457
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1458 1459
		rq->nr_uninterruptible++;

1460
	dequeue_task(rq, p, sleep);
1461
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1462 1463 1464 1465 1466 1467
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1468
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1469 1470 1471 1472
{
	return cpu_curr(task_cpu(p)) == p;
}

1473 1474 1475
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1476
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1477 1478 1479 1480
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1481
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1482
#ifdef CONFIG_SMP
1483 1484 1485 1486 1487 1488
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1489 1490
	task_thread_info(p)->cpu = cpu;
#endif
1491 1492
}

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1505
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1506

1507 1508 1509
/*
 * Is this task likely cache-hot:
 */
1510
static int
1511 1512 1513 1514
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1515 1516 1517 1518 1519 1520
	/*
	 * Buddy candidates are cache hot:
	 */
	if (&p->se == cfs_rq_of(&p->se)->next)
		return 1;

1521 1522 1523
	if (p->sched_class != &fair_sched_class)
		return 0;

1524 1525 1526 1527 1528
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1529 1530 1531 1532 1533 1534
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1535
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1536
{
I
Ingo Molnar 已提交
1537 1538
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1539 1540
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1541
	u64 clock_offset;
I
Ingo Molnar 已提交
1542 1543

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1544 1545 1546 1547

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1548 1549 1550 1551
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1552 1553 1554 1555 1556
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1557
#endif
1558 1559
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1560 1561

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1562 1563
}

1564
struct migration_req {
L
Linus Torvalds 已提交
1565 1566
	struct list_head list;

1567
	struct task_struct *task;
L
Linus Torvalds 已提交
1568 1569 1570
	int dest_cpu;

	struct completion done;
1571
};
L
Linus Torvalds 已提交
1572 1573 1574 1575 1576

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1577
static int
1578
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1579
{
1580
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1581 1582 1583 1584 1585

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1586
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592 1593 1594
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1595

L
Linus Torvalds 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1608
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1609 1610
{
	unsigned long flags;
I
Ingo Molnar 已提交
1611
	int running, on_rq;
1612
	struct rq *rq;
L
Linus Torvalds 已提交
1613

1614 1615 1616 1617 1618 1619 1620 1621
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1622

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1646

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1657

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1671

1672 1673 1674 1675 1676 1677 1678
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1694
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1706 1707
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1708 1709 1710 1711
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1712
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1713
{
1714
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1715
	unsigned long total = weighted_cpuload(cpu);
1716

1717
	if (type == 0)
I
Ingo Molnar 已提交
1718
		return total;
1719

I
Ingo Molnar 已提交
1720
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1721 1722 1723
}

/*
1724 1725
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1726
 */
A
Alexey Dobriyan 已提交
1727
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1728
{
1729
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1730
	unsigned long total = weighted_cpuload(cpu);
1731

N
Nick Piggin 已提交
1732
	if (type == 0)
I
Ingo Molnar 已提交
1733
		return total;
1734

I
Ingo Molnar 已提交
1735
	return max(rq->cpu_load[type-1], total);
1736 1737 1738 1739 1740
}

/*
 * Return the average load per task on the cpu's run queue
 */
1741
static unsigned long cpu_avg_load_per_task(int cpu)
1742
{
1743
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1744
	unsigned long total = weighted_cpuload(cpu);
1745 1746
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1747
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1748 1749
}

N
Nick Piggin 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1767 1768
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1769
			continue;
1770

N
Nick Piggin 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1787 1788
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1789 1790 1791 1792 1793 1794 1795 1796

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1797
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1798 1799 1800 1801 1802 1803 1804

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1805
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1806
 */
I
Ingo Molnar 已提交
1807 1808
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1809
{
1810
	cpumask_t tmp;
N
Nick Piggin 已提交
1811 1812 1813 1814
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1815 1816 1817 1818
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1819
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1845

1846
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1847 1848 1849
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1850 1851
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1852 1853
		if (tmp->flags & flag)
			sd = tmp;
1854
	}
N
Nick Piggin 已提交
1855 1856 1857 1858

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1859 1860 1861 1862 1863 1864
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1865 1866 1867

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1868 1869 1870 1871
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1872

1873
		new_cpu = find_idlest_cpu(group, t, cpu);
1874 1875 1876 1877 1878
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1879

1880
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1912
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1913
{
1914
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1915 1916
	unsigned long flags;
	long old_state;
1917
	struct rq *rq;
L
Linus Torvalds 已提交
1918

1919
	smp_wmb();
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1925
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1926 1927 1928
		goto out_running;

	cpu = task_cpu(p);
1929
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1930 1931 1932 1933 1934 1935
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

1936 1937 1938
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
1939 1940 1941 1942 1943 1944
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1945
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1946 1947 1948 1949 1950 1951
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
1967 1968
out_activate:
#endif /* CONFIG_SMP */
1969 1970 1971 1972 1973 1974 1975 1976 1977
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1978
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1979
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1980 1981 1982
	success = 1;

out_running:
I
Ingo Molnar 已提交
1983 1984
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
1985
	p->state = TASK_RUNNING;
1986 1987 1988 1989
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
1990 1991 1992 1993 1994 1995
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1996
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1997
{
1998
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1999 2000 2001
}
EXPORT_SYMBOL(wake_up_process);

2002
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2003 2004 2005 2006 2007 2008 2009
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2010 2011 2012 2013 2014 2015 2016
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2017
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2018 2019
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2020 2021 2022

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2023 2024 2025 2026 2027 2028
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2029
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2030
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2031
#endif
N
Nick Piggin 已提交
2032

P
Peter Zijlstra 已提交
2033
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2034
	p->se.on_rq = 0;
N
Nick Piggin 已提交
2035

2036 2037 2038 2039
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2040 2041 2042 2043 2044 2045 2046
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2061
	set_task_cpu(p, cpu);
2062 2063 2064 2065 2066

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2067 2068
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2069

2070
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2071
	if (likely(sched_info_on()))
2072
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2073
#endif
2074
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2075 2076
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2077
#ifdef CONFIG_PREEMPT
2078
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2079
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2080
#endif
N
Nick Piggin 已提交
2081
	put_cpu();
L
Linus Torvalds 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2091
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2092 2093
{
	unsigned long flags;
I
Ingo Molnar 已提交
2094
	struct rq *rq;
L
Linus Torvalds 已提交
2095 2096

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2097
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2098
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2099 2100 2101

	p->prio = effective_prio(p);

2102
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2103
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2104 2105
	} else {
		/*
I
Ingo Molnar 已提交
2106 2107
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2108
		 */
2109
		p->sched_class->task_new(rq, p);
2110
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
2111
	}
I
Ingo Molnar 已提交
2112
	check_preempt_curr(rq, p);
2113 2114 2115 2116
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2117
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2118 2119
}

2120 2121 2122
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2123 2124
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2125 2126 2127 2128 2129 2130 2131 2132 2133
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2134
 * @notifier: notifier struct to unregister
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2178 2179 2180
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2181
 * @prev: the current task that is being switched out
2182 2183 2184 2185 2186 2187 2188 2189 2190
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2191 2192 2193
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2194
{
2195
	fire_sched_out_preempt_notifiers(prev, next);
2196 2197 2198 2199
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2200 2201
/**
 * finish_task_switch - clean up after a task-switch
2202
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2203 2204
 * @prev: the thread we just switched away from.
 *
2205 2206 2207 2208
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2209 2210
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2211
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2212 2213 2214
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2215
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2216 2217 2218
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2219
	long prev_state;
L
Linus Torvalds 已提交
2220 2221 2222 2223 2224

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2225
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2226 2227
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2228
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2229 2230 2231 2232 2233
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2234
	prev_state = prev->state;
2235 2236
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2237 2238 2239 2240
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2241

2242
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2243 2244
	if (mm)
		mmdrop(mm);
2245
	if (unlikely(prev_state == TASK_DEAD)) {
2246 2247 2248
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2249
		 */
2250
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2251
		put_task_struct(prev);
2252
	}
L
Linus Torvalds 已提交
2253 2254 2255 2256 2257 2258
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2259
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2260 2261
	__releases(rq->lock)
{
2262 2263
	struct rq *rq = this_rq();

2264 2265 2266 2267 2268
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2269
	if (current->set_child_tid)
2270
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2271 2272 2273 2274 2275 2276
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2277
static inline void
2278
context_switch(struct rq *rq, struct task_struct *prev,
2279
	       struct task_struct *next)
L
Linus Torvalds 已提交
2280
{
I
Ingo Molnar 已提交
2281
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2282

2283
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2284 2285
	mm = next->mm;
	oldmm = prev->active_mm;
2286 2287 2288 2289 2290 2291 2292
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2293
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2294 2295 2296 2297 2298 2299
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2300
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2301 2302 2303
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2304 2305 2306 2307 2308 2309 2310
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2311
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2312
#endif
L
Linus Torvalds 已提交
2313 2314 2315 2316

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2317 2318 2319 2320 2321 2322 2323
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2347
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2362 2363
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2364

2365
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2375
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2376 2377 2378 2379 2380
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2396
/*
I
Ingo Molnar 已提交
2397 2398
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2399
 */
I
Ingo Molnar 已提交
2400
static void update_cpu_load(struct rq *this_rq)
2401
{
2402
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2415 2416 2417 2418 2419 2420 2421
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2422 2423
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2424 2425
}

I
Ingo Molnar 已提交
2426 2427
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2428 2429 2430 2431 2432 2433
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2434
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2435 2436 2437
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2438
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2439 2440 2441 2442
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2443
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2444 2445 2446 2447 2448 2449 2450
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2451 2452
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2453 2454 2455 2456 2457 2458 2459 2460
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2461
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2475
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2476 2477 2478 2479
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2480 2481
	int ret = 0;

2482 2483 2484 2485 2486
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2487
	if (unlikely(!spin_trylock(&busiest->lock))) {
2488
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2489 2490 2491
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2492
			ret = 1;
L
Linus Torvalds 已提交
2493 2494 2495
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2496
	return ret;
L
Linus Torvalds 已提交
2497 2498 2499 2500 2501
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2502
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2503 2504
 * the cpu_allowed mask is restored.
 */
2505
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2506
{
2507
	struct migration_req req;
L
Linus Torvalds 已提交
2508
	unsigned long flags;
2509
	struct rq *rq;
L
Linus Torvalds 已提交
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2520

L
Linus Torvalds 已提交
2521 2522 2523 2524 2525
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2526

L
Linus Torvalds 已提交
2527 2528 2529 2530 2531 2532 2533
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2534 2535
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2536 2537 2538 2539
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2540
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2541
	put_cpu();
N
Nick Piggin 已提交
2542 2543
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2544 2545 2546 2547 2548 2549
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2550 2551
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2552
{
2553
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2554
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2555
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2556 2557 2558 2559
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2560
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2561 2562 2563 2564 2565
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2566
static
2567
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2568
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2569
		     int *all_pinned)
L
Linus Torvalds 已提交
2570 2571 2572 2573 2574 2575 2576
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2577 2578
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2579
		return 0;
2580
	}
2581 2582
	*all_pinned = 0;

2583 2584
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2585
		return 0;
2586
	}
L
Linus Torvalds 已提交
2587

2588 2589 2590 2591 2592 2593
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2594 2595
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2596
#ifdef CONFIG_SCHEDSTATS
2597
		if (task_hot(p, rq->clock, sd)) {
2598
			schedstat_inc(sd, lb_hot_gained[idle]);
2599 2600
			schedstat_inc(p, se.nr_forced_migrations);
		}
2601 2602 2603 2604
#endif
		return 1;
	}

2605 2606
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2607
		return 0;
2608
	}
L
Linus Torvalds 已提交
2609 2610 2611
	return 1;
}

2612 2613 2614 2615 2616
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2617
{
2618
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2619 2620
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2621

2622
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2623 2624
		goto out;

2625 2626
	pinned = 1;

L
Linus Torvalds 已提交
2627
	/*
I
Ingo Molnar 已提交
2628
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2629
	 */
I
Ingo Molnar 已提交
2630 2631
	p = iterator->start(iterator->arg);
next:
2632
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2633
		goto out;
2634
	/*
2635
	 * To help distribute high priority tasks across CPUs we don't
2636 2637 2638
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2639 2640
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2641
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2642 2643 2644
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2645 2646
	}

I
Ingo Molnar 已提交
2647
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2648
	pulled++;
I
Ingo Molnar 已提交
2649
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2650

2651
	/*
2652
	 * We only want to steal up to the prescribed amount of weighted load.
2653
	 */
2654
	if (rem_load_move > 0) {
2655 2656
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2657 2658
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2659 2660 2661
	}
out:
	/*
2662
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2663 2664 2665 2666
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2667 2668 2669

	if (all_pinned)
		*all_pinned = pinned;
2670 2671

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2672 2673
}

I
Ingo Molnar 已提交
2674
/*
P
Peter Williams 已提交
2675 2676 2677
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2678 2679 2680 2681
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2682
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2683 2684 2685
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2686
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2687
	unsigned long total_load_moved = 0;
2688
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2689 2690

	do {
P
Peter Williams 已提交
2691 2692
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2693
				max_load_move - total_load_moved,
2694
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2695
		class = class->next;
P
Peter Williams 已提交
2696
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2697

P
Peter Williams 已提交
2698 2699 2700
	return total_load_moved > 0;
}

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2737
	const struct sched_class *class;
P
Peter Williams 已提交
2738 2739

	for (class = sched_class_highest; class; class = class->next)
2740
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2741 2742 2743
			return 1;

	return 0;
I
Ingo Molnar 已提交
2744 2745
}

L
Linus Torvalds 已提交
2746 2747
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2748 2749
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2750 2751 2752
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2753 2754
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2755 2756 2757
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2758
	unsigned long max_pull;
2759 2760
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2761
	int load_idx, group_imb = 0;
2762 2763 2764 2765 2766 2767
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2768 2769

	max_load = this_load = total_load = total_pwr = 0;
2770 2771
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2772
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2773
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2774
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2775 2776 2777
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2778 2779

	do {
2780
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2781 2782
		int local_group;
		int i;
2783
		int __group_imb = 0;
2784
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2785
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2786 2787 2788

		local_group = cpu_isset(this_cpu, group->cpumask);

2789 2790 2791
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2792
		/* Tally up the load of all CPUs in the group */
2793
		sum_weighted_load = sum_nr_running = avg_load = 0;
2794 2795
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2796 2797

		for_each_cpu_mask(i, group->cpumask) {
2798 2799 2800 2801 2802 2803
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2804

2805
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2806 2807
				*sd_idle = 0;

L
Linus Torvalds 已提交
2808
			/* Bias balancing toward cpus of our domain */
2809 2810 2811 2812 2813 2814
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2815
				load = target_load(i, load_idx);
2816
			} else {
N
Nick Piggin 已提交
2817
				load = source_load(i, load_idx);
2818 2819 2820 2821 2822
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2823 2824

			avg_load += load;
2825
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2826
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2827 2828
		}

2829 2830 2831
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2832 2833
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2834
		 */
2835 2836
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2837 2838 2839 2840
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2841
		total_load += avg_load;
2842
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2843 2844

		/* Adjust by relative CPU power of the group */
2845 2846
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2847

2848 2849 2850
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2851
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2852

L
Linus Torvalds 已提交
2853 2854 2855
		if (local_group) {
			this_load = avg_load;
			this = group;
2856 2857 2858
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2859
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2860 2861
			max_load = avg_load;
			busiest = group;
2862 2863
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2864
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2865
		}
2866 2867 2868 2869 2870 2871

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2872 2873 2874
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2875 2876 2877 2878 2879 2880 2881 2882 2883

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2884
		/*
2885 2886
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2887 2888
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2889
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2890
			goto group_next;
2891

I
Ingo Molnar 已提交
2892
		/*
2893
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2894 2895 2896 2897 2898
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2899 2900
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2901 2902
			group_min = group;
			min_nr_running = sum_nr_running;
2903 2904
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2905
		}
2906

I
Ingo Molnar 已提交
2907
		/*
2908
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2920
		}
2921 2922
group_next:
#endif
L
Linus Torvalds 已提交
2923 2924 2925
		group = group->next;
	} while (group != sd->groups);

2926
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2927 2928 2929 2930 2931 2932 2933 2934
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2935
	busiest_load_per_task /= busiest_nr_running;
2936 2937 2938
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2939 2940 2941 2942 2943 2944 2945 2946
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2947
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2948 2949
	 * appear as very large values with unsigned longs.
	 */
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2962 2963

	/* Don't want to pull so many tasks that a group would go idle */
2964
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2965

L
Linus Torvalds 已提交
2966
	/* How much load to actually move to equalise the imbalance */
2967 2968
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2969 2970
			/ SCHED_LOAD_SCALE;

2971 2972 2973 2974 2975 2976
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2977
	if (*imbalance < busiest_load_per_task) {
2978
		unsigned long tmp, pwr_now, pwr_move;
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2990

I
Ingo Molnar 已提交
2991 2992
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2993
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3003 3004 3005 3006
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3007 3008 3009
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3010 3011
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3012
		if (max_load > tmp)
3013
			pwr_move += busiest->__cpu_power *
3014
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3015 3016

		/* Amount of load we'd add */
3017
		if (max_load * busiest->__cpu_power <
3018
				busiest_load_per_task * SCHED_LOAD_SCALE)
3019 3020
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3021
		else
3022 3023 3024 3025
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3026 3027 3028
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3029 3030
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3031 3032 3033 3034 3035
	}

	return busiest;

out_balanced:
3036
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3037
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3038
		goto ret;
L
Linus Torvalds 已提交
3039

3040 3041 3042 3043 3044
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3045
ret:
L
Linus Torvalds 已提交
3046 3047 3048 3049 3050 3051 3052
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3053
static struct rq *
I
Ingo Molnar 已提交
3054
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3055
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3056
{
3057
	struct rq *busiest = NULL, *rq;
3058
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3059 3060 3061
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3062
		unsigned long wl;
3063 3064 3065 3066

		if (!cpu_isset(i, *cpus))
			continue;

3067
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3068
		wl = weighted_cpuload(i);
3069

I
Ingo Molnar 已提交
3070
		if (rq->nr_running == 1 && wl > imbalance)
3071
			continue;
L
Linus Torvalds 已提交
3072

I
Ingo Molnar 已提交
3073 3074
		if (wl > max_load) {
			max_load = wl;
3075
			busiest = rq;
L
Linus Torvalds 已提交
3076 3077 3078 3079 3080 3081
		}
	}

	return busiest;
}

3082 3083 3084 3085 3086 3087
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3088 3089 3090 3091
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3092
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3093
			struct sched_domain *sd, enum cpu_idle_type idle,
3094
			int *balance)
L
Linus Torvalds 已提交
3095
{
P
Peter Williams 已提交
3096
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3097 3098
	struct sched_group *group;
	unsigned long imbalance;
3099
	struct rq *busiest;
3100
	cpumask_t cpus = CPU_MASK_ALL;
3101
	unsigned long flags;
N
Nick Piggin 已提交
3102

3103 3104 3105
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3106
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3107
	 * portraying it as CPU_NOT_IDLE.
3108
	 */
I
Ingo Molnar 已提交
3109
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3110
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3111
		sd_idle = 1;
L
Linus Torvalds 已提交
3112

3113
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3114

3115 3116
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3117 3118
				   &cpus, balance);

3119
	if (*balance == 0)
3120 3121
		goto out_balanced;

L
Linus Torvalds 已提交
3122 3123 3124 3125 3126
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3127
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
3128 3129 3130 3131 3132
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3133
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3134 3135 3136

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3137
	ld_moved = 0;
L
Linus Torvalds 已提交
3138 3139 3140 3141
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3142
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3143 3144
		 * correctly treated as an imbalance.
		 */
3145
		local_irq_save(flags);
N
Nick Piggin 已提交
3146
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3147
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3148
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3149
		double_rq_unlock(this_rq, busiest);
3150
		local_irq_restore(flags);
3151

3152 3153 3154
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3155
		if (ld_moved && this_cpu != smp_processor_id())
3156 3157
			resched_cpu(this_cpu);

3158
		/* All tasks on this runqueue were pinned by CPU affinity */
3159 3160 3161 3162
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
3163
			goto out_balanced;
3164
		}
L
Linus Torvalds 已提交
3165
	}
3166

P
Peter Williams 已提交
3167
	if (!ld_moved) {
L
Linus Torvalds 已提交
3168 3169 3170 3171 3172
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3173
			spin_lock_irqsave(&busiest->lock, flags);
3174 3175 3176 3177 3178

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3179
				spin_unlock_irqrestore(&busiest->lock, flags);
3180 3181 3182 3183
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3184 3185 3186
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3187
				active_balance = 1;
L
Linus Torvalds 已提交
3188
			}
3189
			spin_unlock_irqrestore(&busiest->lock, flags);
3190
			if (active_balance)
L
Linus Torvalds 已提交
3191 3192 3193 3194 3195 3196
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3197
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3198
		}
3199
	} else
L
Linus Torvalds 已提交
3200 3201
		sd->nr_balance_failed = 0;

3202
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3203 3204
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3205 3206 3207 3208 3209 3210 3211 3212 3213
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3214 3215
	}

P
Peter Williams 已提交
3216
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3217
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3218
		return -1;
P
Peter Williams 已提交
3219
	return ld_moved;
L
Linus Torvalds 已提交
3220 3221 3222 3223

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3224
	sd->nr_balance_failed = 0;
3225 3226

out_one_pinned:
L
Linus Torvalds 已提交
3227
	/* tune up the balancing interval */
3228 3229
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3230 3231
		sd->balance_interval *= 2;

3232
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3233
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3234
		return -1;
L
Linus Torvalds 已提交
3235 3236 3237 3238 3239 3240 3241
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3242
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3243 3244
 * this_rq is locked.
 */
3245
static int
3246
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
3247 3248
{
	struct sched_group *group;
3249
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3250
	unsigned long imbalance;
P
Peter Williams 已提交
3251
	int ld_moved = 0;
N
Nick Piggin 已提交
3252
	int sd_idle = 0;
3253
	int all_pinned = 0;
3254
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
3255

3256 3257 3258 3259
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3260
	 * portraying it as CPU_NOT_IDLE.
3261 3262 3263
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3264
		sd_idle = 1;
L
Linus Torvalds 已提交
3265

3266
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3267
redo:
I
Ingo Molnar 已提交
3268
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3269
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
3270
	if (!group) {
I
Ingo Molnar 已提交
3271
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3272
		goto out_balanced;
L
Linus Torvalds 已提交
3273 3274
	}

I
Ingo Molnar 已提交
3275
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3276
				&cpus);
N
Nick Piggin 已提交
3277
	if (!busiest) {
I
Ingo Molnar 已提交
3278
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3279
		goto out_balanced;
L
Linus Torvalds 已提交
3280 3281
	}

N
Nick Piggin 已提交
3282 3283
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3284
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3285

P
Peter Williams 已提交
3286
	ld_moved = 0;
3287 3288 3289
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3290 3291
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3292
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3293 3294
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3295
		spin_unlock(&busiest->lock);
3296

3297
		if (unlikely(all_pinned)) {
3298 3299 3300 3301
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
3302 3303
	}

P
Peter Williams 已提交
3304
	if (!ld_moved) {
I
Ingo Molnar 已提交
3305
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3306 3307
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3308 3309
			return -1;
	} else
3310
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3311

P
Peter Williams 已提交
3312
	return ld_moved;
3313 3314

out_balanced:
I
Ingo Molnar 已提交
3315
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3316
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3317
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3318
		return -1;
3319
	sd->nr_balance_failed = 0;
3320

3321
	return 0;
L
Linus Torvalds 已提交
3322 3323 3324 3325 3326 3327
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3328
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3329 3330
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3331 3332
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
3333 3334

	for_each_domain(this_cpu, sd) {
3335 3336 3337 3338 3339 3340
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3341
			/* If we've pulled tasks over stop searching: */
3342
			pulled_task = load_balance_newidle(this_cpu,
3343 3344 3345 3346 3347 3348 3349
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3350
	}
I
Ingo Molnar 已提交
3351
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3352 3353 3354 3355 3356
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3357
	}
L
Linus Torvalds 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3368
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3369
{
3370
	int target_cpu = busiest_rq->push_cpu;
3371 3372
	struct sched_domain *sd;
	struct rq *target_rq;
3373

3374
	/* Is there any task to move? */
3375 3376 3377 3378
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3379 3380

	/*
3381
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3382
	 * we need to fix it. Originally reported by
3383
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3384
	 */
3385
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3386

3387 3388
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3389 3390
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3391 3392

	/* Search for an sd spanning us and the target CPU. */
3393
	for_each_domain(target_cpu, sd) {
3394
		if ((sd->flags & SD_LOAD_BALANCE) &&
3395
		    cpu_isset(busiest_cpu, sd->span))
3396
				break;
3397
	}
3398

3399
	if (likely(sd)) {
3400
		schedstat_inc(sd, alb_count);
3401

P
Peter Williams 已提交
3402 3403
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3404 3405 3406 3407
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3408
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3409 3410
}

3411 3412 3413
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3414
	cpumask_t cpu_mask;
3415 3416 3417 3418 3419
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3420
/*
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3431
 *
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3488 3489 3490 3491 3492
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3493
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3494
{
3495 3496
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3497 3498
	unsigned long interval;
	struct sched_domain *sd;
3499
	/* Earliest time when we have to do rebalance again */
3500
	unsigned long next_balance = jiffies + 60*HZ;
3501
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3502

3503
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3504 3505 3506 3507
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3508
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3509 3510 3511 3512 3513 3514
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3515 3516 3517
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3518

3519 3520 3521 3522 3523
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3524
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3525
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3526 3527
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3528 3529 3530
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3531
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3532
			}
3533
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3534
		}
3535 3536 3537
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3538
		if (time_after(next_balance, sd->last_balance + interval)) {
3539
			next_balance = sd->last_balance + interval;
3540 3541
			update_next_balance = 1;
		}
3542 3543 3544 3545 3546 3547 3548 3549

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3550
	}
3551 3552 3553 3554 3555 3556 3557 3558

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3559 3560 3561 3562 3563 3564 3565 3566 3567
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3568 3569 3570 3571
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3572

I
Ingo Molnar 已提交
3573
	rebalance_domains(this_cpu, idle);
3574 3575 3576 3577 3578 3579 3580

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3581 3582
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3583 3584 3585 3586
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3587
		cpu_clear(this_cpu, cpus);
3588 3589 3590 3591 3592 3593 3594 3595 3596
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3597
			rebalance_domains(balance_cpu, CPU_IDLE);
3598 3599

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3600 3601
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3614
static inline void trigger_load_balance(struct rq *rq, int cpu)
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3666
}
I
Ingo Molnar 已提交
3667 3668 3669

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3670 3671 3672
/*
 * on UP we do not need to balance between CPUs:
 */
3673
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3674 3675
{
}
I
Ingo Molnar 已提交
3676

L
Linus Torvalds 已提交
3677 3678 3679 3680 3681 3682 3683
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3684 3685
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3686
 */
3687
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3688 3689
{
	unsigned long flags;
3690 3691
	u64 ns, delta_exec;
	struct rq *rq;
3692

3693 3694
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3695
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3696 3697
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3698 3699 3700 3701
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3702

L
Linus Torvalds 已提交
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3726 3727 3728 3729 3730
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3731
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3765
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3766 3767
	cputime64_t tmp;

3768 3769
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3770

L
Linus Torvalds 已提交
3771 3772 3773 3774 3775 3776 3777 3778
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3779
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3780
		cpustat->system = cputime64_add(cpustat->system, tmp);
3781
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3782 3783 3784 3785 3786 3787 3788
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3800 3801 3802 3803 3804 3805 3806 3807 3808
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3809
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3810 3811 3812 3813 3814 3815 3816

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3817
	} else
L
Linus Torvalds 已提交
3818 3819 3820
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3832
	struct task_struct *curr = rq->curr;
3833
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3834 3835

	spin_lock(&rq->lock);
3836
	__update_rq_clock(rq);
3837 3838 3839
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
3840
	if (unlikely(rq->clock < next_tick)) {
3841
		rq->clock = next_tick;
3842 3843
		rq->clock_underflows++;
	}
3844
	rq->tick_timestamp = rq->clock;
3845
	update_last_tick_seen(rq);
3846
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3847 3848
	curr->sched_class->task_tick(rq, curr, 0);
	update_sched_rt_period(rq);
I
Ingo Molnar 已提交
3849
	spin_unlock(&rq->lock);
3850

3851
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3852 3853
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3854
#endif
L
Linus Torvalds 已提交
3855 3856 3857 3858
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

3859
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3860 3861 3862 3863
{
	/*
	 * Underflow?
	 */
3864 3865
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3866 3867 3868 3869
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3870 3871
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3872 3873 3874
}
EXPORT_SYMBOL(add_preempt_count);

3875
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3876 3877 3878 3879
{
	/*
	 * Underflow?
	 */
3880 3881
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3882 3883 3884
	/*
	 * Is the spinlock portion underflowing?
	 */
3885 3886 3887 3888
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3889 3890 3891 3892 3893 3894 3895
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3896
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3897
 */
I
Ingo Molnar 已提交
3898
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3899
{
3900 3901 3902 3903 3904
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3905 3906 3907
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3908 3909 3910 3911 3912

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3913
}
L
Linus Torvalds 已提交
3914

I
Ingo Molnar 已提交
3915 3916 3917 3918 3919
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3920
	/*
I
Ingo Molnar 已提交
3921
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3922 3923 3924
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3925 3926 3927
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3928 3929
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3930
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3931 3932
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3933 3934
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3935 3936
	}
#endif
I
Ingo Molnar 已提交
3937 3938 3939 3940 3941 3942
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3943
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3944
{
3945
	const struct sched_class *class;
I
Ingo Molnar 已提交
3946
	struct task_struct *p;
L
Linus Torvalds 已提交
3947 3948

	/*
I
Ingo Molnar 已提交
3949 3950
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3951
	 */
I
Ingo Molnar 已提交
3952
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3953
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3954 3955
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3956 3957
	}

I
Ingo Molnar 已提交
3958 3959
	class = sched_class_highest;
	for ( ; ; ) {
3960
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3961 3962 3963 3964 3965 3966 3967 3968 3969
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3970

I
Ingo Molnar 已提交
3971 3972 3973 3974 3975 3976
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
3977
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3993

P
Peter Zijlstra 已提交
3994 3995
	hrtick_clear(rq);

3996 3997 3998 3999
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
4000
	__update_rq_clock(rq);
4001 4002
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4003 4004 4005

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4006
				signal_pending(prev))) {
L
Linus Torvalds 已提交
4007
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4008
		} else {
4009
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
4010
		}
I
Ingo Molnar 已提交
4011
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4012 4013
	}

4014 4015 4016 4017
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4018

I
Ingo Molnar 已提交
4019
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4020 4021
		idle_balance(cpu, rq);

4022
	prev->sched_class->put_prev_task(rq, prev);
4023
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4024 4025

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
4026

L
Linus Torvalds 已提交
4027 4028 4029 4030 4031
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4032
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4033 4034 4035 4036 4037 4038
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4039 4040 4041
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4042 4043 4044
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4045
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4046

L
Linus Torvalds 已提交
4047 4048 4049 4050 4051 4052 4053 4054
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4055
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4056
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4057 4058 4059 4060 4061 4062 4063
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4064

L
Linus Torvalds 已提交
4065 4066
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4067
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4068
	 */
N
Nick Piggin 已提交
4069
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4070 4071
		return;

4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		schedule();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4085

4086 4087 4088 4089 4090 4091
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4092 4093 4094 4095
}
EXPORT_SYMBOL(preempt_schedule);

/*
4096
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4097 4098 4099 4100 4101 4102 4103 4104 4105
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4106

4107
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4108 4109
	BUG_ON(ti->preempt_count || !irqs_disabled());

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		local_irq_enable();
		schedule();
		local_irq_disable();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4125

4126 4127 4128 4129 4130 4131
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4132 4133 4134 4135
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4136 4137
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4138
{
4139
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4140 4141 4142 4143
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4144 4145
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4146 4147 4148
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4149
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4150 4151 4152 4153 4154
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4155
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4156

4157
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4158 4159
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4160
		if (curr->func(curr, mode, sync, key) &&
4161
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4162 4163 4164 4165 4166 4167 4168 4169 4170
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4171
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4172
 */
4173
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4174
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4187
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4188 4189 4190 4191 4192
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4193
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4205
void
I
Ingo Molnar 已提交
4206
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4223
void complete(struct completion *x)
L
Linus Torvalds 已提交
4224 4225 4226 4227 4228
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4229
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4230 4231 4232 4233
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4234
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4235 4236 4237 4238 4239
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4240
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4241 4242 4243 4244
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4245 4246
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4247 4248 4249 4250 4251 4252 4253
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4254 4255 4256 4257
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4258 4259 4260 4261
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4262 4263 4264 4265 4266
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4267
				return timeout;
L
Linus Torvalds 已提交
4268 4269 4270 4271 4272 4273 4274 4275
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4276 4277
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4278 4279 4280 4281
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4282
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4283
	spin_unlock_irq(&x->wait.lock);
4284 4285
	return timeout;
}
L
Linus Torvalds 已提交
4286

4287
void __sched wait_for_completion(struct completion *x)
4288 4289
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4290
}
4291
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4292

4293
unsigned long __sched
4294
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4295
{
4296
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4297
}
4298
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4299

4300
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4301
{
4302 4303 4304 4305
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4306
}
4307
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4308

4309
unsigned long __sched
4310 4311
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4312
{
4313
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4314
}
4315
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4316

M
Matthew Wilcox 已提交
4317 4318 4319 4320 4321 4322 4323 4324 4325
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4326 4327
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4328
{
I
Ingo Molnar 已提交
4329 4330 4331 4332
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4333

4334
	__set_current_state(state);
L
Linus Torvalds 已提交
4335

4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4350 4351 4352
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4353
long __sched
I
Ingo Molnar 已提交
4354
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4355
{
4356
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4357 4358 4359
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4360
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4361
{
4362
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4363 4364 4365
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4366
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4367
{
4368
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4369 4370 4371
}
EXPORT_SYMBOL(sleep_on_timeout);

4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4384
void rt_mutex_setprio(struct task_struct *p, int prio)
4385 4386
{
	unsigned long flags;
4387
	int oldprio, on_rq, running;
4388
	struct rq *rq;
4389
	const struct sched_class *prev_class = p->sched_class;
4390 4391 4392 4393

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4394
	update_rq_clock(rq);
4395

4396
	oldprio = p->prio;
I
Ingo Molnar 已提交
4397
	on_rq = p->se.on_rq;
4398
	running = task_current(rq, p);
4399
	if (on_rq)
4400
		dequeue_task(rq, p, 0);
4401 4402
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4403 4404 4405 4406 4407 4408

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4409 4410
	p->prio = prio;

4411 4412
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4413
	if (on_rq) {
4414
		enqueue_task(rq, p, 0);
4415 4416

		check_class_changed(rq, p, prev_class, oldprio, running);
4417 4418 4419 4420 4421 4422
	}
	task_rq_unlock(rq, &flags);
}

#endif

4423
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4424
{
I
Ingo Molnar 已提交
4425
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4426
	unsigned long flags;
4427
	struct rq *rq;
L
Linus Torvalds 已提交
4428 4429 4430 4431 4432 4433 4434 4435

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4436
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4437 4438 4439 4440
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4441
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4442
	 */
4443
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4444 4445 4446
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4447
	on_rq = p->se.on_rq;
4448
	if (on_rq) {
4449
		dequeue_task(rq, p, 0);
4450 4451
		dec_load(rq, p);
	}
L
Linus Torvalds 已提交
4452 4453

	p->static_prio = NICE_TO_PRIO(nice);
4454
	set_load_weight(p);
4455 4456 4457
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4458

I
Ingo Molnar 已提交
4459
	if (on_rq) {
4460
		enqueue_task(rq, p, 0);
4461
		inc_load(rq, p);
L
Linus Torvalds 已提交
4462
		/*
4463 4464
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4465
		 */
4466
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4467 4468 4469 4470 4471 4472 4473
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4474 4475 4476 4477 4478
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4479
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4480
{
4481 4482
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4483

M
Matt Mackall 已提交
4484 4485 4486 4487
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4499
	long nice, retval;
L
Linus Torvalds 已提交
4500 4501 4502 4503 4504 4505

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4506 4507
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4508 4509 4510 4511 4512 4513 4514 4515 4516
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4517 4518 4519
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4538
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4539 4540 4541 4542 4543 4544 4545 4546
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4547
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4548 4549 4550
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4551
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4566
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4567 4568 4569 4570 4571 4572 4573 4574
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4575
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4576
{
4577
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4578 4579 4580
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4581 4582
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4583
{
I
Ingo Molnar 已提交
4584
	BUG_ON(p->se.on_rq);
4585

L
Linus Torvalds 已提交
4586
	p->policy = policy;
I
Ingo Molnar 已提交
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4599
	p->rt_priority = prio;
4600 4601 4602
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4603
	set_load_weight(p);
L
Linus Torvalds 已提交
4604 4605 4606
}

/**
4607
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4608 4609 4610
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4611
 *
4612
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4613
 */
I
Ingo Molnar 已提交
4614 4615
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4616
{
4617
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4618
	unsigned long flags;
4619
	const struct sched_class *prev_class = p->sched_class;
4620
	struct rq *rq;
L
Linus Torvalds 已提交
4621

4622 4623
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4624 4625 4626 4627 4628
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4629 4630
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4631
		return -EINVAL;
L
Linus Torvalds 已提交
4632 4633
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4634 4635
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4636 4637
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4638
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4639
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4640
		return -EINVAL;
4641
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4642 4643
		return -EINVAL;

4644 4645 4646 4647
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4648
		if (rt_policy(policy)) {
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4665 4666 4667 4668 4669 4670
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4671

4672 4673 4674 4675 4676
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4677

4678 4679 4680 4681 4682 4683 4684 4685 4686
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
	if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4687 4688 4689
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4690 4691 4692 4693 4694
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4695 4696 4697 4698
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4699
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4700 4701 4702
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4703 4704
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4705 4706
		goto recheck;
	}
I
Ingo Molnar 已提交
4707
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4708
	on_rq = p->se.on_rq;
4709
	running = task_current(rq, p);
4710
	if (on_rq)
4711
		deactivate_task(rq, p, 0);
4712 4713
	if (running)
		p->sched_class->put_prev_task(rq, p);
4714

L
Linus Torvalds 已提交
4715
	oldprio = p->prio;
I
Ingo Molnar 已提交
4716
	__setscheduler(rq, p, policy, param->sched_priority);
4717

4718 4719
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4720 4721
	if (on_rq) {
		activate_task(rq, p, 0);
4722 4723

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4724
	}
4725 4726 4727
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4728 4729
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4730 4731 4732 4733
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4734 4735
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4736 4737 4738
{
	struct sched_param lparam;
	struct task_struct *p;
4739
	int retval;
L
Linus Torvalds 已提交
4740 4741 4742 4743 4744

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4745 4746 4747

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4748
	p = find_process_by_pid(pid);
4749 4750 4751
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4752

L
Linus Torvalds 已提交
4753 4754 4755 4756 4757 4758 4759 4760 4761
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4762 4763
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4764
{
4765 4766 4767 4768
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4788
	struct task_struct *p;
4789
	int retval;
L
Linus Torvalds 已提交
4790 4791

	if (pid < 0)
4792
		return -EINVAL;
L
Linus Torvalds 已提交
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4814
	struct task_struct *p;
4815
	int retval;
L
Linus Torvalds 已提交
4816 4817

	if (!param || pid < 0)
4818
		return -EINVAL;
L
Linus Torvalds 已提交
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4848 4849
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4850

4851
	get_online_cpus();
L
Linus Torvalds 已提交
4852 4853 4854 4855 4856
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4857
		put_online_cpus();
L
Linus Torvalds 已提交
4858 4859 4860 4861 4862
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4863
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4874 4875 4876 4877
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4878 4879
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4880
 again:
L
Linus Torvalds 已提交
4881 4882
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4895 4896
out_unlock:
	put_task_struct(p);
4897
	put_online_cpus();
L
Linus Torvalds 已提交
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4938
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4939 4940 4941
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4942
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4943 4944
EXPORT_SYMBOL(cpu_online_map);

4945
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4946
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4947 4948 4949 4950
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4951
	struct task_struct *p;
L
Linus Torvalds 已提交
4952 4953
	int retval;

4954
	get_online_cpus();
L
Linus Torvalds 已提交
4955 4956 4957 4958 4959 4960 4961
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4962 4963 4964 4965
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4966
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4967 4968 4969

out_unlock:
	read_unlock(&tasklist_lock);
4970
	put_online_cpus();
L
Linus Torvalds 已提交
4971

4972
	return retval;
L
Linus Torvalds 已提交
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5003 5004
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5005 5006 5007
 */
asmlinkage long sys_sched_yield(void)
{
5008
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5009

5010
	schedstat_inc(rq, yld_count);
5011
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5012 5013 5014 5015 5016 5017

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5018
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5019 5020 5021 5022 5023 5024 5025 5026
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5027
static void __cond_resched(void)
L
Linus Torvalds 已提交
5028
{
5029 5030 5031
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5032 5033 5034 5035 5036
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5037 5038 5039 5040 5041 5042 5043
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5044 5045
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5046
{
5047 5048
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5049 5050 5051 5052 5053
		__cond_resched();
		return 1;
	}
	return 0;
}
5054 5055
EXPORT_SYMBOL(_cond_resched);
#endif
L
Linus Torvalds 已提交
5056 5057 5058 5059 5060

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5061
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5062 5063 5064
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5065
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5066
{
N
Nick Piggin 已提交
5067
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5068 5069
	int ret = 0;

N
Nick Piggin 已提交
5070
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5071
		spin_unlock(lock);
N
Nick Piggin 已提交
5072 5073 5074 5075
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5076
		ret = 1;
L
Linus Torvalds 已提交
5077 5078
		spin_lock(lock);
	}
J
Jan Kara 已提交
5079
	return ret;
L
Linus Torvalds 已提交
5080 5081 5082 5083 5084 5085 5086
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5087
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5088
		local_bh_enable();
L
Linus Torvalds 已提交
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5100
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5111
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5112 5113 5114 5115 5116 5117 5118
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5119
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5120

5121
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5122 5123 5124
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5125
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5126 5127 5128 5129 5130
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5131
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5132 5133
	long ret;

5134
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5135 5136 5137
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5138
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5159
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5160
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5184
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5185
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5202
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5203
	unsigned int time_slice;
5204
	int retval;
L
Linus Torvalds 已提交
5205 5206 5207
	struct timespec t;

	if (pid < 0)
5208
		return -EINVAL;
L
Linus Torvalds 已提交
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5220 5221 5222 5223 5224 5225
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5226
		time_slice = DEF_TIMESLICE;
5227
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5228 5229 5230 5231 5232
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5233 5234
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5235 5236
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5237
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5238
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5239 5240
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5241

L
Linus Torvalds 已提交
5242 5243 5244 5245 5246
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5247
static const char stat_nam[] = "RSDTtZX";
5248

5249
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5250 5251
{
	unsigned long free = 0;
5252
	unsigned state;
L
Linus Torvalds 已提交
5253 5254

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5255
	printk(KERN_INFO "%-13.13s %c", p->comm,
5256
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5257
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5258
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5259
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5260
	else
I
Ingo Molnar 已提交
5261
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5262 5263
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5264
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5265
	else
I
Ingo Molnar 已提交
5266
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5267 5268 5269
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5270
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5271 5272
		while (!*n)
			n++;
5273
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5274 5275
	}
#endif
5276
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5277
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5278

5279
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5280 5281
}

I
Ingo Molnar 已提交
5282
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5283
{
5284
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5285

5286 5287 5288
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5289
#else
5290 5291
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5292 5293 5294 5295 5296 5297 5298 5299
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5300
		if (!state_filter || (p->state & state_filter))
5301
			sched_show_task(p);
L
Linus Torvalds 已提交
5302 5303
	} while_each_thread(g, p);

5304 5305
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5306 5307 5308
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5309
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5310 5311 5312 5313 5314
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5315 5316
}

I
Ingo Molnar 已提交
5317 5318
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5319
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5320 5321
}

5322 5323 5324 5325 5326 5327 5328 5329
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5330
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5331
{
5332
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5333 5334
	unsigned long flags;

I
Ingo Molnar 已提交
5335 5336 5337
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5338
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5339
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5340
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5341 5342 5343

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5344 5345 5346
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5347 5348 5349
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5350
	task_thread_info(idle)->preempt_count = 0;
5351

I
Ingo Molnar 已提交
5352 5353 5354 5355
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5393 5394 5395 5396
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5397
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5416
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5417 5418
 * call is not atomic; no spinlocks may be held.
 */
5419
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5420
{
5421
	struct migration_req req;
L
Linus Torvalds 已提交
5422
	unsigned long flags;
5423
	struct rq *rq;
5424
	int ret = 0;
L
Linus Torvalds 已提交
5425 5426 5427 5428 5429 5430 5431

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

5432 5433 5434
	if (p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, &new_mask);
	else {
I
Ingo Molnar 已提交
5435
		p->cpus_allowed = new_mask;
P
Peter Zijlstra 已提交
5436
		p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5437 5438
	}

L
Linus Torvalds 已提交
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5453

L
Linus Torvalds 已提交
5454 5455 5456 5457 5458
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5459
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5460 5461 5462 5463 5464 5465
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5466 5467
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5468
 */
5469
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5470
{
5471
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5472
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5473 5474

	if (unlikely(cpu_is_offline(dest_cpu)))
5475
		return ret;
L
Linus Torvalds 已提交
5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5488
	on_rq = p->se.on_rq;
5489
	if (on_rq)
5490
		deactivate_task(rq_src, p, 0);
5491

L
Linus Torvalds 已提交
5492
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5493 5494 5495
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5496
	}
5497
	ret = 1;
L
Linus Torvalds 已提交
5498 5499
out:
	double_rq_unlock(rq_src, rq_dest);
5500
	return ret;
L
Linus Torvalds 已提交
5501 5502 5503 5504 5505 5506 5507
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5508
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5509 5510
{
	int cpu = (long)data;
5511
	struct rq *rq;
L
Linus Torvalds 已提交
5512 5513 5514 5515 5516 5517

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5518
		struct migration_req *req;
L
Linus Torvalds 已提交
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5541
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5542 5543
		list_del_init(head->next);

N
Nick Piggin 已提交
5544 5545 5546
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5576
/*
5577
 * Figure out where task on dead CPU should go, use force if necessary.
5578 5579
 * NOTE: interrupts should be disabled by the caller
 */
5580
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5581
{
5582
	unsigned long flags;
L
Linus Torvalds 已提交
5583
	cpumask_t mask;
5584 5585
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5586

5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5599 5600 5601 5602 5603
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5604
			 * cpuset_cpus_allowed() will not block. It must be
5605 5606
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5607
			rq = task_rq_lock(p, &flags);
5608
			p->cpus_allowed = cpus_allowed;
5609 5610
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5611

5612 5613 5614 5615 5616
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5617
			if (p->mm && printk_ratelimit()) {
5618 5619
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5620 5621
					task_pid_nr(p), p->comm, dead_cpu);
			}
5622
		}
5623
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5624 5625 5626 5627 5628 5629 5630 5631 5632
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5633
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5634
{
5635
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5649
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5650

5651
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5652

5653 5654
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5655 5656
			continue;

5657 5658 5659
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5660

5661
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5662 5663
}

I
Ingo Molnar 已提交
5664 5665
/*
 * Schedules idle task to be the next runnable task on current CPU.
5666 5667
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5668 5669 5670
 */
void sched_idle_next(void)
{
5671
	int this_cpu = smp_processor_id();
5672
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5673 5674 5675 5676
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5677
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5678

5679 5680 5681
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5682 5683 5684
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5685
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5686

5687 5688
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5689 5690 5691 5692

	spin_unlock_irqrestore(&rq->lock, flags);
}

5693 5694
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5708
/* called under rq->lock with disabled interrupts */
5709
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5710
{
5711
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5712 5713

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5714
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5715 5716

	/* Cannot have done final schedule yet: would have vanished. */
5717
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5718

5719
	get_task_struct(p);
L
Linus Torvalds 已提交
5720 5721 5722

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5723
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5724 5725
	 * fine.
	 */
5726
	spin_unlock_irq(&rq->lock);
5727
	move_task_off_dead_cpu(dead_cpu, p);
5728
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5729

5730
	put_task_struct(p);
L
Linus Torvalds 已提交
5731 5732 5733 5734 5735
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5736
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5737
	struct task_struct *next;
5738

I
Ingo Molnar 已提交
5739 5740 5741
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5742
		update_rq_clock(rq);
5743
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5744 5745 5746
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5747

L
Linus Torvalds 已提交
5748 5749 5750 5751
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5752 5753 5754
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5755 5756
	{
		.procname	= "sched_domain",
5757
		.mode		= 0555,
5758
	},
I
Ingo Molnar 已提交
5759
	{0, },
5760 5761 5762
};

static struct ctl_table sd_ctl_root[] = {
5763
	{
5764
		.ctl_name	= CTL_KERN,
5765
		.procname	= "kernel",
5766
		.mode		= 0555,
5767 5768
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5769
	{0, },
5770 5771 5772 5773 5774
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5775
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5776 5777 5778 5779

	return entry;
}

5780 5781
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5782
	struct ctl_table *entry;
5783

5784 5785 5786
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5787
	 * will always be set. In the lowest directory the names are
5788 5789 5790
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5791 5792
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5793 5794 5795
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5796 5797 5798 5799 5800

	kfree(*tablep);
	*tablep = NULL;
}

5801
static void
5802
set_table_entry(struct ctl_table *entry,
5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5816
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5817

5818 5819 5820
	if (table == NULL)
		return NULL;

5821
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5822
		sizeof(long), 0644, proc_doulongvec_minmax);
5823
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5824
		sizeof(long), 0644, proc_doulongvec_minmax);
5825
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5826
		sizeof(int), 0644, proc_dointvec_minmax);
5827
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5828
		sizeof(int), 0644, proc_dointvec_minmax);
5829
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5830
		sizeof(int), 0644, proc_dointvec_minmax);
5831
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5832
		sizeof(int), 0644, proc_dointvec_minmax);
5833
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5834
		sizeof(int), 0644, proc_dointvec_minmax);
5835
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5836
		sizeof(int), 0644, proc_dointvec_minmax);
5837
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5838
		sizeof(int), 0644, proc_dointvec_minmax);
5839
	set_table_entry(&table[9], "cache_nice_tries",
5840 5841
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5842
	set_table_entry(&table[10], "flags", &sd->flags,
5843
		sizeof(int), 0644, proc_dointvec_minmax);
5844
	/* &table[11] is terminator */
5845 5846 5847 5848

	return table;
}

5849
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5850 5851 5852 5853 5854 5855 5856 5857 5858
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5859 5860
	if (table == NULL)
		return NULL;
5861 5862 5863 5864 5865

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5866
		entry->mode = 0555;
5867 5868 5869 5870 5871 5872 5873 5874
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5875
static void register_sched_domain_sysctl(void)
5876 5877 5878 5879 5880
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5881 5882 5883
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5884 5885 5886
	if (entry == NULL)
		return;

5887
	for_each_online_cpu(i) {
5888 5889
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5890
		entry->mode = 0555;
5891
		entry->child = sd_alloc_ctl_cpu_table(i);
5892
		entry++;
5893
	}
5894 5895

	WARN_ON(sd_sysctl_header);
5896 5897
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5898

5899
/* may be called multiple times per register */
5900 5901
static void unregister_sched_domain_sysctl(void)
{
5902 5903
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5904
	sd_sysctl_header = NULL;
5905 5906
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5907
}
5908
#else
5909 5910 5911 5912
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5913 5914 5915 5916
{
}
#endif

L
Linus Torvalds 已提交
5917 5918 5919 5920
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5921 5922
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5923 5924
{
	struct task_struct *p;
5925
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5926
	unsigned long flags;
5927
	struct rq *rq;
L
Linus Torvalds 已提交
5928 5929

	switch (action) {
5930

L
Linus Torvalds 已提交
5931
	case CPU_UP_PREPARE:
5932
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5933
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5934 5935 5936 5937 5938
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5939
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5940 5941 5942
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5943

L
Linus Torvalds 已提交
5944
	case CPU_ONLINE:
5945
	case CPU_ONLINE_FROZEN:
5946
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5947
		wake_up_process(cpu_rq(cpu)->migration_thread);
5948 5949 5950 5951 5952 5953 5954 5955 5956

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5957
		break;
5958

L
Linus Torvalds 已提交
5959 5960
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5961
	case CPU_UP_CANCELED_FROZEN:
5962 5963
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5964
		/* Unbind it from offline cpu so it can run. Fall thru. */
5965 5966
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5967 5968 5969
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5970

L
Linus Torvalds 已提交
5971
	case CPU_DEAD:
5972
	case CPU_DEAD_FROZEN:
5973
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5974 5975 5976 5977 5978
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5979
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5980
		update_rq_clock(rq);
5981
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5982
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5983 5984
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5985
		migrate_dead_tasks(cpu);
5986
		spin_unlock_irq(&rq->lock);
5987
		cpuset_unlock();
L
Linus Torvalds 已提交
5988 5989 5990
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5991 5992 5993 5994 5995
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5996 5997
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5998 5999
			struct migration_req *req;

L
Linus Torvalds 已提交
6000
			req = list_entry(rq->migration_queue.next,
6001
					 struct migration_req, list);
L
Linus Torvalds 已提交
6002 6003 6004 6005 6006
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6007

6008 6009
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6010 6011 6012 6013 6014 6015 6016 6017 6018
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6019 6020 6021 6022 6023 6024 6025 6026
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6027
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6028 6029 6030 6031
	.notifier_call = migration_call,
	.priority = 10
};

6032
void __init migration_init(void)
L
Linus Torvalds 已提交
6033 6034
{
	void *cpu = (void *)(long)smp_processor_id();
6035
	int err;
6036 6037

	/* Start one for the boot CPU: */
6038 6039
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6040 6041 6042 6043 6044 6045
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6046 6047 6048 6049 6050

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

6051
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6052 6053

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
6054
{
I
Ingo Molnar 已提交
6055 6056 6057
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
6058

I
Ingo Molnar 已提交
6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6070 6071
	}

I
Ingo Molnar 已提交
6072 6073 6074 6075 6076 6077 6078 6079 6080 6081
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6082

I
Ingo Molnar 已提交
6083
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6084
	do {
I
Ingo Molnar 已提交
6085 6086 6087
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6088 6089 6090
			break;
		}

I
Ingo Molnar 已提交
6091 6092 6093 6094 6095 6096
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6097

I
Ingo Molnar 已提交
6098 6099 6100 6101 6102
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6103

I
Ingo Molnar 已提交
6104 6105 6106 6107 6108
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6109

I
Ingo Molnar 已提交
6110
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
6111

I
Ingo Molnar 已提交
6112 6113
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6114

I
Ingo Molnar 已提交
6115 6116 6117
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6118

I
Ingo Molnar 已提交
6119 6120
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6121

I
Ingo Molnar 已提交
6122 6123 6124 6125 6126
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6127

I
Ingo Molnar 已提交
6128 6129 6130
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
6131

I
Ingo Molnar 已提交
6132 6133 6134 6135
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6136

I
Ingo Molnar 已提交
6137 6138 6139 6140 6141
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
6142 6143
		level++;
		sd = sd->parent;
6144
		if (!sd)
I
Ingo Molnar 已提交
6145 6146
			break;
	}
L
Linus Torvalds 已提交
6147 6148
}
#else
6149
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6150 6151
#endif

6152
static int sd_degenerate(struct sched_domain *sd)
6153 6154 6155 6156 6157 6158 6159 6160
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6161 6162 6163
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6177 6178
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6197 6198 6199
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6200 6201 6202 6203 6204 6205 6206
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6217
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6218 6219
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6220
		}
G
Gregory Haskins 已提交
6221

6222 6223 6224
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6225 6226 6227 6228 6229 6230 6231
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6232
	cpu_set(rq->cpu, rd->span);
6233 6234
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);
6235

I
Ingo Molnar 已提交
6236
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6237 6238
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6239
	}
G
Gregory Haskins 已提交
6240 6241 6242 6243

	spin_unlock_irqrestore(&rq->lock, flags);
}

6244
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6245 6246 6247
{
	memset(rd, 0, sizeof(*rd));

6248 6249
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6250 6251 6252 6253
}

static void init_defrootdomain(void)
{
6254
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6255 6256 6257
	atomic_set(&def_root_domain.refcount, 1);
}

6258
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6259 6260 6261 6262 6263 6264 6265
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6266
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6267 6268 6269 6270

	return rd;
}

L
Linus Torvalds 已提交
6271
/*
I
Ingo Molnar 已提交
6272
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6273 6274
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6275 6276
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6277
{
6278
	struct rq *rq = cpu_rq(cpu);
6279 6280 6281 6282 6283 6284 6285
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6286
		if (sd_parent_degenerate(tmp, parent)) {
6287
			tmp->parent = parent->parent;
6288 6289 6290
			if (parent->parent)
				parent->parent->child = tmp;
		}
6291 6292
	}

6293
	if (sd && sd_degenerate(sd)) {
6294
		sd = sd->parent;
6295 6296 6297
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6298 6299 6300

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6301
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6302
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6303 6304 6305
}

/* cpus with isolated domains */
6306
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6321
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6322 6323

/*
6324 6325 6326 6327
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6328 6329 6330 6331 6332
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6333
static void
6334 6335 6336
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
6337 6338 6339 6340 6341 6342
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
6343 6344
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
6345 6346 6347 6348 6349 6350
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
6351
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6352 6353

		for_each_cpu_mask(j, span) {
6354
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6369
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6370

6371
#ifdef CONFIG_NUMA
6372

6373 6374 6375 6376 6377
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6378
 * Find the next node to include in a given scheduling domain. Simply
6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
6418
 * Given a node, construct a good cpumask for its sched_domain to span. It
6419 6420 6421 6422 6423 6424
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6425 6426
	cpumask_t span, nodemask;
	int i;
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6437

6438 6439 6440 6441 6442 6443 6444 6445
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6446
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6447

6448
/*
6449
 * SMT sched-domains:
6450
 */
L
Linus Torvalds 已提交
6451 6452
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6453
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6454

I
Ingo Molnar 已提交
6455 6456
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6457
{
6458 6459
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6460 6461 6462 6463
	return cpu;
}
#endif

6464 6465 6466
/*
 * multi-core sched-domains:
 */
6467 6468
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6469
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6470 6471 6472
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6473 6474
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6475
{
6476
	int group;
6477
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6478
	cpus_and(mask, mask, *cpu_map);
6479 6480 6481 6482
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6483 6484
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6485 6486
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6487
{
6488 6489
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6490 6491 6492 6493
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6494
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6495
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6496

I
Ingo Molnar 已提交
6497 6498
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6499
{
6500
	int group;
6501
#ifdef CONFIG_SCHED_MC
6502
	cpumask_t mask = cpu_coregroup_map(cpu);
6503
	cpus_and(mask, mask, *cpu_map);
6504
	group = first_cpu(mask);
6505
#elif defined(CONFIG_SCHED_SMT)
6506
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6507
	cpus_and(mask, mask, *cpu_map);
6508
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6509
#else
6510
	group = cpu;
L
Linus Torvalds 已提交
6511
#endif
6512 6513 6514
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6515 6516 6517 6518
}

#ifdef CONFIG_NUMA
/*
6519 6520 6521
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6522
 */
6523
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6524
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6525

6526
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6527
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6528

6529 6530
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6531
{
6532 6533 6534 6535 6536 6537 6538 6539 6540
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6541
}
6542

6543 6544 6545 6546 6547 6548 6549
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6550 6551 6552
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6553

6554 6555 6556 6557 6558 6559 6560 6561
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6562

6563 6564 6565 6566
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6567
}
L
Linus Torvalds 已提交
6568 6569
#endif

6570
#ifdef CONFIG_NUMA
6571 6572 6573
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6574
	int cpu, i;
6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6605 6606 6607 6608 6609
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6610

6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6637 6638
	sd->groups->__cpu_power = 0;

6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6649
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6650 6651 6652 6653 6654 6655 6656 6657
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6658
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6659 6660 6661 6662
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6663
/*
6664 6665
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6666
 */
6667
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6668 6669
{
	int i;
G
Gregory Haskins 已提交
6670
	struct root_domain *rd;
6671 6672
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6673
	int sd_allnodes = 0;
6674 6675 6676 6677

	/*
	 * Allocate the per-node list of sched groups
	 */
6678
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6679
				    GFP_KERNEL);
6680 6681
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6682
		return -ENOMEM;
6683 6684 6685
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6686

6687
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6688 6689 6690 6691 6692
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
		return -ENOMEM;
	}

L
Linus Torvalds 已提交
6693
	/*
6694
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6695
	 */
6696
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6697 6698 6699
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6700
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6701 6702

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6703 6704
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6705 6706 6707
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6708
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6709
			p = sd;
6710
			sd_allnodes = 1;
6711 6712 6713
		} else
			p = NULL;

L
Linus Torvalds 已提交
6714 6715
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6716 6717
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6718 6719
		if (p)
			p->child = sd;
6720
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6721 6722 6723 6724 6725 6726 6727
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6728 6729
		if (p)
			p->child = sd;
6730
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6731

6732 6733 6734 6735 6736 6737 6738
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6739
		p->child = sd;
6740
		cpu_to_core_group(i, cpu_map, &sd->groups);
6741 6742
#endif

L
Linus Torvalds 已提交
6743 6744 6745 6746
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6747
		sd->span = per_cpu(cpu_sibling_map, i);
6748
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6749
		sd->parent = p;
6750
		p->child = sd;
6751
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6752 6753 6754 6755 6756
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6757
	for_each_cpu_mask(i, *cpu_map) {
6758
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6759
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6760 6761 6762
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6763 6764
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6765 6766 6767
	}
#endif

6768 6769 6770 6771 6772 6773 6774
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6775 6776
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6777 6778 6779
	}
#endif

L
Linus Torvalds 已提交
6780 6781 6782 6783
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6784
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6785 6786 6787
		if (cpus_empty(nodemask))
			continue;

6788
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6789 6790 6791 6792
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6793
	if (sd_allnodes)
I
Ingo Molnar 已提交
6794 6795
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6806 6807
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6808
			continue;
6809
		}
6810 6811 6812 6813

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6814
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6815 6816 6817 6818 6819
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6820 6821 6822
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6823

6824 6825 6826
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6827
		sg->__cpu_power = 0;
6828
		sg->cpumask = nodemask;
6829
		sg->next = sg;
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6848 6849
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6850 6851 6852
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6853
				goto error;
6854
			}
6855
			sg->__cpu_power = 0;
6856
			sg->cpumask = tmp;
6857
			sg->next = prev->next;
6858 6859 6860 6861 6862
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6863 6864 6865
#endif

	/* Calculate CPU power for physical packages and nodes */
6866
#ifdef CONFIG_SCHED_SMT
6867
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6868 6869
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6870
		init_sched_groups_power(i, sd);
6871
	}
L
Linus Torvalds 已提交
6872
#endif
6873
#ifdef CONFIG_SCHED_MC
6874
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6875 6876
		struct sched_domain *sd = &per_cpu(core_domains, i);

6877
		init_sched_groups_power(i, sd);
6878 6879
	}
#endif
6880

6881
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6882 6883
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6884
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6885 6886
	}

6887
#ifdef CONFIG_NUMA
6888 6889
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6890

6891 6892
	if (sd_allnodes) {
		struct sched_group *sg;
6893

6894
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6895 6896
		init_numa_sched_groups_power(sg);
	}
6897 6898
#endif

L
Linus Torvalds 已提交
6899
	/* Attach the domains */
6900
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6901 6902 6903
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6904 6905
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6906 6907 6908
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
6909
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
6910
	}
6911 6912 6913

	return 0;

6914
#ifdef CONFIG_NUMA
6915 6916 6917
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6918
#endif
L
Linus Torvalds 已提交
6919
}
P
Paul Jackson 已提交
6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6931 6932 6933 6934
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

6935
/*
I
Ingo Molnar 已提交
6936
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6937 6938
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6939
 */
6940
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6941
{
6942 6943
	int err;

6944
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6945 6946 6947 6948 6949
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6950
	err = build_sched_domains(doms_cur);
6951
	register_sched_domain_sysctl();
6952 6953

	return err;
6954 6955 6956
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6957
{
6958
	free_sched_groups(cpu_map);
6959
}
L
Linus Torvalds 已提交
6960

6961 6962 6963 6964
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6965
static void detach_destroy_domains(const cpumask_t *cpu_map)
6966 6967 6968
{
	int i;

6969 6970
	unregister_sched_domain_sysctl();

6971
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
6972
		cpu_attach_domain(NULL, &def_root_domain, i);
6973 6974 6975 6976
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6977 6978
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6979
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6980 6981 6982 6983
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6984 6985 6986
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6987 6988 6989
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6990 6991
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6992 6993 6994 6995 6996 6997 6998 6999 7000 7001
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

7002 7003
	lock_doms_cur();

7004 7005 7006
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
7042 7043

	register_sched_domain_sysctl();
7044 7045

	unlock_doms_cur();
P
Paul Jackson 已提交
7046 7047
}

7048
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7049
int arch_reinit_sched_domains(void)
7050 7051 7052
{
	int err;

7053
	get_online_cpus();
7054 7055
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
7056
	put_online_cpus();
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7083 7084
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7085 7086 7087
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7088 7089
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7090 7091 7092 7093 7094 7095 7096
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7097 7098
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7099 7100 7101
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7122 7123
#endif

L
Linus Torvalds 已提交
7124
/*
I
Ingo Molnar 已提交
7125
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7126
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7127
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7128 7129 7130 7131 7132 7133 7134
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7135
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7136
	case CPU_DOWN_PREPARE:
7137
	case CPU_DOWN_PREPARE_FROZEN:
7138
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7139 7140 7141
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7142
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7143
	case CPU_DOWN_FAILED:
7144
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7145
	case CPU_ONLINE:
7146
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7147
	case CPU_DEAD:
7148
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7149 7150 7151 7152 7153 7154 7155 7156 7157
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7158
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7159 7160 7161 7162 7163 7164

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7165 7166
	cpumask_t non_isolated_cpus;

7167
	get_online_cpus();
7168
	arch_init_sched_domains(&cpu_online_map);
7169
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7170 7171
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7172
	put_online_cpus();
L
Linus Torvalds 已提交
7173 7174
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7175 7176 7177 7178

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
7179
	sched_init_granularity();
L
Linus Torvalds 已提交
7180 7181 7182 7183
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7184
	sched_init_granularity();
L
Linus Torvalds 已提交
7185 7186 7187 7188 7189 7190 7191 7192 7193 7194
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7195
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7196 7197 7198 7199 7200
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7201
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7202 7203
}

P
Peter Zijlstra 已提交
7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7217
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7218 7219
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7220 7221 7222 7223 7224 7225 7226
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7227

7228
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7229
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7230 7231
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7232 7233
}

P
Peter Zijlstra 已提交
7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251
#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
		struct cfs_rq *cfs_rq, struct sched_entity *se,
		int cpu, int add)
{
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
	se->cfs_rq = &rq->cfs;
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
	se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
	se->parent = NULL;
}
7252
#endif
P
Peter Zijlstra 已提交
7253

7254
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273
static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
		struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
		int cpu, int add)
{
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
	rt_se->parent = NULL;
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7274 7275
void __init sched_init(void)
{
7276
	int highest_cpu = 0;
I
Ingo Molnar 已提交
7277 7278
	int i, j;

G
Gregory Haskins 已提交
7279 7280 7281 7282
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7283
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7284 7285 7286
	list_add(&init_task_group.list, &task_groups);
#endif

7287
	for_each_possible_cpu(i) {
7288
		struct rq *rq;
L
Linus Torvalds 已提交
7289 7290 7291

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7292
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7293
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7294
		rq->clock = 1;
7295
		update_last_tick_seen(rq);
I
Ingo Molnar 已提交
7296
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7297
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7298
#ifdef CONFIG_FAIR_GROUP_SCHED
7299
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7300 7301 7302 7303 7304
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		init_tg_cfs_entry(rq, &init_task_group,
				&per_cpu(init_cfs_rq, i),
				&per_cpu(init_sched_entity, i), i, 1);

7305 7306
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7307 7308
		init_task_group.rt_runtime =
			sysctl_sched_rt_runtime * NSEC_PER_USEC;
P
Peter Zijlstra 已提交
7309 7310 7311 7312
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
		init_tg_rt_entry(rq, &init_task_group,
				&per_cpu(init_rt_rq, i),
				&per_cpu(init_sched_rt_entity, i), i, 1);
I
Ingo Molnar 已提交
7313
#endif
P
Peter Zijlstra 已提交
7314
		rq->rt_period_expire = 0;
P
Peter Zijlstra 已提交
7315
		rq->rt_throttled = 0;
L
Linus Torvalds 已提交
7316

I
Ingo Molnar 已提交
7317 7318
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7319
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7320
		rq->sd = NULL;
G
Gregory Haskins 已提交
7321
		rq->rd = NULL;
L
Linus Torvalds 已提交
7322
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7323
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7324
		rq->push_cpu = 0;
7325
		rq->cpu = i;
L
Linus Torvalds 已提交
7326 7327
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7328
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7329
#endif
P
Peter Zijlstra 已提交
7330
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7331
		atomic_set(&rq->nr_iowait, 0);
7332
		highest_cpu = i;
L
Linus Torvalds 已提交
7333 7334
	}

7335
	set_load_weight(&init_task);
7336

7337 7338 7339 7340
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7341
#ifdef CONFIG_SMP
7342
	nr_cpu_ids = highest_cpu + 1;
7343 7344 7345
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7346 7347 7348 7349
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
7363 7364 7365 7366
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7367 7368

	scheduler_running = 1;
L
Linus Torvalds 已提交
7369 7370 7371 7372 7373
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7374
#ifdef in_atomic
L
Linus Torvalds 已提交
7375 7376 7377 7378 7379 7380 7381
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7382
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7383 7384 7385
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7386
		debug_show_held_locks(current);
7387 7388
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7389 7390 7391 7392 7393 7394 7395 7396
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7411 7412
void normalize_rt_tasks(void)
{
7413
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7414
	unsigned long flags;
7415
	struct rq *rq;
L
Linus Torvalds 已提交
7416

7417
	read_lock_irqsave(&tasklist_lock, flags);
7418
	do_each_thread(g, p) {
7419 7420 7421 7422 7423 7424
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7425 7426
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7427 7428 7429
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7430
#endif
I
Ingo Molnar 已提交
7431 7432 7433 7434 7435 7436 7437 7438 7439
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7440
			continue;
I
Ingo Molnar 已提交
7441
		}
L
Linus Torvalds 已提交
7442

7443
		spin_lock(&p->pi_lock);
7444
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7445

7446
		normalize_task(rq, p);
7447

7448
		__task_rq_unlock(rq);
7449
		spin_unlock(&p->pi_lock);
7450 7451
	} while_each_thread(g, p);

7452
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7453 7454 7455
}

#endif /* CONFIG_MAGIC_SYSRQ */
7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7474
struct task_struct *curr_task(int cpu)
7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7485 7486
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7487 7488 7489 7490 7491 7492 7493
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7494
void set_curr_task(int cpu, struct task_struct *p)
7495 7496 7497 7498 7499
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7500

7501
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
7502

7503 7504
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7519
static int alloc_fair_sched_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7520 7521 7522
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
7523
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7524 7525
	int i;

7526
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7527 7528
	if (!tg->cfs_rq)
		goto err;
7529
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7530 7531
	if (!tg->se)
		goto err;
7532 7533

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7534 7535

	for_each_possible_cpu(i) {
7536
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7537

P
Peter Zijlstra 已提交
7538 7539
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7540 7541 7542
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
7543 7544
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7545 7546 7547
		if (!se)
			goto err;

7548
		init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

static inline int alloc_fair_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7584 7585 7586
#endif

#ifdef CONFIG_RT_GROUP_SCHED
7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

static int alloc_rt_sched_group(struct task_group *tg)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	struct rq *rq;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	tg->rt_runtime = 0;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
7621 7622 7623 7624
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
7625

P
Peter Zijlstra 已提交
7626 7627 7628 7629
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
7630

P
Peter Zijlstra 已提交
7631
		init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
S
Srivatsa Vaddagiri 已提交
7632 7633
	}

7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

static inline int alloc_rt_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
struct task_group *sched_create_group(void)
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

	if (!alloc_fair_sched_group(tg))
		goto err;

	if (!alloc_rt_sched_group(tg))
		goto err;

7693
	spin_lock_irqsave(&task_group_lock, flags);
7694
	for_each_possible_cpu(i) {
7695 7696
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
7697
	}
P
Peter Zijlstra 已提交
7698
	list_add_rcu(&tg->list, &task_groups);
7699
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7700

7701
	return tg;
S
Srivatsa Vaddagiri 已提交
7702 7703

err:
P
Peter Zijlstra 已提交
7704
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7705 7706 7707
	return ERR_PTR(-ENOMEM);
}

7708
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7709
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7710 7711
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7712
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7713 7714
}

7715
/* Destroy runqueue etc associated with a task group */
7716
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7717
{
7718
	unsigned long flags;
7719
	int i;
S
Srivatsa Vaddagiri 已提交
7720

7721
	spin_lock_irqsave(&task_group_lock, flags);
7722
	for_each_possible_cpu(i) {
7723 7724
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
7725
	}
P
Peter Zijlstra 已提交
7726
	list_del_rcu(&tg->list);
7727
	spin_unlock_irqrestore(&task_group_lock, flags);
7728 7729

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7730
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7731 7732
}

7733
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7734 7735 7736
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7737 7738
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7739 7740 7741 7742 7743 7744 7745 7746 7747
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

7748
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7749 7750
	on_rq = tsk->se.on_rq;

7751
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7752
		dequeue_task(rq, tsk, 0);
7753 7754
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7755

P
Peter Zijlstra 已提交
7756
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7757

P
Peter Zijlstra 已提交
7758 7759 7760 7761 7762
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

7763 7764 7765
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7766
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7767 7768 7769 7770

	task_rq_unlock(rq, &flags);
}

7771
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
7772 7773 7774 7775 7776 7777
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7778
	spin_lock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
7779 7780

	on_rq = se->on_rq;
7781
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7782 7783 7784 7785 7786
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7787
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7788
		enqueue_entity(cfs_rq, se, 0);
7789 7790

	spin_unlock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
7791 7792
}

7793 7794
static DEFINE_MUTEX(shares_mutex);

7795
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7796 7797
{
	int i;
7798
	unsigned long flags;
7799

7800 7801 7802 7803 7804 7805 7806 7807
	/*
	 * A weight of 0 or 1 can cause arithmetics problems.
	 * (The default weight is 1024 - so there's no practical
	 *  limitation from this.)
	 */
	if (shares < 2)
		shares = 2;

7808
	mutex_lock(&shares_mutex);
7809
	if (tg->shares == shares)
7810
		goto done;
S
Srivatsa Vaddagiri 已提交
7811

7812
	spin_lock_irqsave(&task_group_lock, flags);
7813 7814
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
7815
	spin_unlock_irqrestore(&task_group_lock, flags);
7816 7817 7818 7819 7820 7821 7822 7823

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7824
	tg->shares = shares;
7825
	for_each_possible_cpu(i)
7826
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7827

7828 7829 7830 7831
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
7832
	spin_lock_irqsave(&task_group_lock, flags);
7833 7834
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
7835
	spin_unlock_irqrestore(&task_group_lock, flags);
7836
done:
7837
	mutex_unlock(&shares_mutex);
7838
	return 0;
S
Srivatsa Vaddagiri 已提交
7839 7840
}

7841 7842 7843 7844
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
7845
#endif
7846

7847
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7848
/*
P
Peter Zijlstra 已提交
7849
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
7850
 */
P
Peter Zijlstra 已提交
7851 7852 7853 7854 7855 7856 7857
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

7858
	return div64_64(runtime << 16, period);
P
Peter Zijlstra 已提交
7859 7860 7861
}

static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
7862 7863 7864
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
7865 7866 7867 7868
	unsigned long global_ratio =
		to_ratio(sysctl_sched_rt_period,
			 sysctl_sched_rt_runtime < 0 ?
				RUNTIME_INF : sysctl_sched_rt_runtime);
P
Peter Zijlstra 已提交
7869 7870

	rcu_read_lock();
P
Peter Zijlstra 已提交
7871 7872 7873
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
7874

P
Peter Zijlstra 已提交
7875 7876 7877
		total += to_ratio(period, tgi->rt_runtime);
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
7878

P
Peter Zijlstra 已提交
7879
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
7880 7881
}

7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

P
Peter Zijlstra 已提交
7893
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
P
Peter Zijlstra 已提交
7894
{
P
Peter Zijlstra 已提交
7895 7896 7897
	u64 rt_runtime, rt_period;
	int err = 0;

7898
	rt_period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
P
Peter Zijlstra 已提交
7899 7900
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us == -1)
7901
		rt_runtime = RUNTIME_INF;
P
Peter Zijlstra 已提交
7902 7903

	mutex_lock(&rt_constraints_mutex);
7904 7905 7906 7907 7908
	read_lock(&tasklist_lock);
	if (rt_runtime_us == 0 && tg_has_rt_tasks(tg)) {
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
7909 7910 7911 7912 7913 7914
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
	tg->rt_runtime = rt_runtime;
 unlock:
7915
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7916 7917 7918
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7919 7920
}

P
Peter Zijlstra 已提交
7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

	if (tg->rt_runtime == RUNTIME_INF)
		return -1;

	rt_runtime_us = tg->rt_runtime;
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7932 7933
#endif
#endif	/* CONFIG_GROUP_SCHED */
7934

7935
#ifdef CONFIG_CGROUP_SCHED
7936 7937

/* return corresponding task_group object of a cgroup */
7938
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7939
{
7940 7941
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7942 7943 7944
}

static struct cgroup_subsys_state *
7945
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7946 7947 7948
{
	struct task_group *tg;

7949
	if (!cgrp->parent) {
7950
		/* This is early initialization for the top cgroup */
7951
		init_task_group.css.cgroup = cgrp;
7952 7953 7954 7955
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7956
	if (cgrp->parent->parent)
7957 7958 7959 7960 7961 7962 7963
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7964
	tg->css.cgroup = cgrp;
7965 7966 7967 7968

	return &tg->css;
}

I
Ingo Molnar 已提交
7969 7970
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7971
{
7972
	struct task_group *tg = cgroup_tg(cgrp);
7973 7974 7975 7976

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7977 7978 7979
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
7980
{
7981 7982 7983 7984 7985
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
		return -EINVAL;
#else
7986 7987 7988
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
7989
#endif
7990 7991 7992 7993 7994

	return 0;
}

static void
7995
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7996 7997 7998 7999 8000
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8001
#ifdef CONFIG_FAIR_GROUP_SCHED
8002 8003
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
8004
{
8005
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8006 8007
}

8008
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
8009
{
8010
	struct task_group *tg = cgroup_tg(cgrp);
8011 8012 8013

	return (u64) tg->shares;
}
8014
#endif
8015

8016
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8017 8018 8019 8020
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
P
Peter Zijlstra 已提交
8021
{
P
Peter Zijlstra 已提交
8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047
	char buffer[64];
	int retval = 0;
	s64 val;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */

	/* strip newline if necessary */
	if (nbytes && (buffer[nbytes-1] == '\n'))
		buffer[nbytes-1] = 0;
	val = simple_strtoll(buffer, &end, 0);
	if (*end)
		return -EINVAL;

	/* Pass to subsystem */
	retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
	if (!retval)
		retval = nbytes;
	return retval;
P
Peter Zijlstra 已提交
8048 8049
}

P
Peter Zijlstra 已提交
8050 8051 8052 8053
static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   char __user *buf, size_t nbytes,
				   loff_t *ppos)
P
Peter Zijlstra 已提交
8054
{
P
Peter Zijlstra 已提交
8055 8056 8057
	char tmp[64];
	long val = sched_group_rt_runtime(cgroup_tg(cgrp));
	int len = sprintf(tmp, "%ld\n", val);
P
Peter Zijlstra 已提交
8058

P
Peter Zijlstra 已提交
8059
	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
P
Peter Zijlstra 已提交
8060
}
8061
#endif
P
Peter Zijlstra 已提交
8062

8063
static struct cftype cpu_files[] = {
8064
#ifdef CONFIG_FAIR_GROUP_SCHED
8065 8066 8067 8068 8069
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
8070 8071
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8072
	{
P
Peter Zijlstra 已提交
8073 8074 8075
		.name = "rt_runtime_us",
		.read = cpu_rt_runtime_read,
		.write = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8076
	},
8077
#endif
8078 8079 8080 8081
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8082
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8083 8084 8085
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8086 8087 8088 8089 8090 8091 8092
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8093 8094 8095
	.early_init	= 1,
};

8096
#endif	/* CONFIG_CGROUP_SCHED */
8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8149 8150
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */