sched.c 220.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
96
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
97
 */
98
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
99

I
Ingo Molnar 已提交
100 101 102
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
103 104 105
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
106
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
107 108 109
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
110

111 112 113 114 115
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

137 138 139 140 141 142 143 144 145 146 147 148
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
149
/*
I
Ingo Molnar 已提交
150
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
151
 */
I
Ingo Molnar 已提交
152 153 154 155 156
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

157
struct rt_bandwidth {
I
Ingo Molnar 已提交
158 159 160 161 162
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
196 197
	spin_lock_init(&rt_b->rt_runtime_lock);

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

235 236 237 238 239 240
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

241
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
242

243 244
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
245 246
struct cfs_rq;

P
Peter Zijlstra 已提交
247 248
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
249
/* task group related information */
250
struct task_group {
251
#ifdef CONFIG_CGROUP_SCHED
252 253
	struct cgroup_subsys_state css;
#endif
254 255

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
256 257 258 259 260
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
261 262 263 264 265 266
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

267
	struct rt_bandwidth rt_bandwidth;
268
#endif
269

270
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
271
	struct list_head list;
P
Peter Zijlstra 已提交
272 273 274 275

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
276 277
};

D
Dhaval Giani 已提交
278
#ifdef CONFIG_USER_SCHED
279 280 281 282 283 284 285 286

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

287
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
288 289 290 291
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
292 293 294 295 296 297
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
#endif
298 299
#else
#define root_task_group init_task_group
D
Dhaval Giani 已提交
300
#endif
P
Peter Zijlstra 已提交
301

302
/* task_group_lock serializes add/remove of task groups and also changes to
303 304
 * a task group's cpu shares.
 */
305
static DEFINE_SPINLOCK(task_group_lock);
306

307 308 309 310 311 312 313
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

314 315 316 317 318
/*
 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
319
#define MIN_SHARES	2
320
#define MAX_SHARES	(ULONG_MAX - 1)
321

322 323 324
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
325
/* Default task group.
I
Ingo Molnar 已提交
326
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
327
 */
328
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
329 330

/* return group to which a task belongs */
331
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
332
{
333
	struct task_group *tg;
334

335
#ifdef CONFIG_USER_SCHED
336
	tg = p->user->tg;
337
#elif defined(CONFIG_CGROUP_SCHED)
338 339
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
340
#else
I
Ingo Molnar 已提交
341
	tg = &init_task_group;
342
#endif
343
	return tg;
S
Srivatsa Vaddagiri 已提交
344 345 346
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
347
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
348
{
349
#ifdef CONFIG_FAIR_GROUP_SCHED
350 351
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
352
#endif
P
Peter Zijlstra 已提交
353

354
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
355 356
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
357
#endif
S
Srivatsa Vaddagiri 已提交
358 359 360 361
}

#else

P
Peter Zijlstra 已提交
362
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
363

364
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
365

I
Ingo Molnar 已提交
366 367 368 369 370 371
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
372
	u64 min_vruntime;
I
Ingo Molnar 已提交
373 374 375

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
376 377 378 379 380 381

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
382 383
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
384
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
385 386 387

	unsigned long nr_spread_over;

388
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
389 390
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
391 392
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
393 394 395 396 397 398
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
399 400
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

#ifdef CONFIG_SMP
	unsigned long task_weight;
	unsigned long shares;
	/*
	 * We need space to build a sched_domain wide view of the full task
	 * group tree, in order to avoid depending on dynamic memory allocation
	 * during the load balancing we place this in the per cpu task group
	 * hierarchy. This limits the load balancing to one instance per cpu,
	 * but more should not be needed anyway.
	 */
	struct aggregate_struct {
		/*
		 *   load = weight(cpus) * f(tg)
		 *
		 * Where f(tg) is the recursive weight fraction assigned to
		 * this group.
		 */
		unsigned long load;

		/*
		 * part of the group weight distributed to this span.
		 */
		unsigned long shares;

		/*
		 * The sum of all runqueue weights within this span.
		 */
		unsigned long rq_weight;

		/*
		 * Weight contributed by tasks; this is the part we can
		 * influence by moving tasks around.
		 */
		unsigned long task_weight;
	} aggregate;
#endif
I
Ingo Molnar 已提交
438 439
#endif
};
L
Linus Torvalds 已提交
440

I
Ingo Molnar 已提交
441 442 443
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
444
	unsigned long rt_nr_running;
445
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
446 447
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
448
#ifdef CONFIG_SMP
449
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
450
	int overloaded;
P
Peter Zijlstra 已提交
451
#endif
P
Peter Zijlstra 已提交
452
	int rt_throttled;
P
Peter Zijlstra 已提交
453
	u64 rt_time;
P
Peter Zijlstra 已提交
454
	u64 rt_runtime;
I
Ingo Molnar 已提交
455
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
456
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
457

458
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
459 460
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
461 462 463 464 465
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
466 467
};

G
Gregory Haskins 已提交
468 469 470 471
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
472 473
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
474 475 476 477 478 479 480 481
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
482

I
Ingo Molnar 已提交
483
	/*
484 485 486 487
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
488
	atomic_t rto_count;
G
Gregory Haskins 已提交
489 490
};

491 492 493 494
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
495 496 497 498
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
499 500 501 502 503 504 505
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
506
struct rq {
507 508
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
509 510 511 512 513 514

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
515 516
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
517
	unsigned char idle_at_tick;
518
#ifdef CONFIG_NO_HZ
519
	unsigned long last_tick_seen;
520 521
	unsigned char in_nohz_recently;
#endif
522 523
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
524 525 526 527
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
528 529
	struct rt_rq rt;

I
Ingo Molnar 已提交
530
#ifdef CONFIG_FAIR_GROUP_SCHED
531 532
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
533 534
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
535
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
536 537 538 539 540 541 542 543 544 545
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

546
	struct task_struct *curr, *idle;
547
	unsigned long next_balance;
L
Linus Torvalds 已提交
548
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
549

550
	u64 clock;
I
Ingo Molnar 已提交
551

L
Linus Torvalds 已提交
552 553 554
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
555
	struct root_domain *rd;
L
Linus Torvalds 已提交
556 557 558 559 560
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
561 562
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
563

564
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
565 566 567
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
568 569 570 571 572 573
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
574 575 576 577 578
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
579 580 581 582
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
583 584

	/* schedule() stats */
585 586 587
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
588 589

	/* try_to_wake_up() stats */
590 591
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
592 593

	/* BKL stats */
594
	unsigned int bkl_count;
L
Linus Torvalds 已提交
595
#endif
596
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
597 598
};

599
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
600

I
Ingo Molnar 已提交
601 602 603 604 605
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

606 607 608 609 610 611 612 613 614
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
615 616
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
617
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
618 619 620 621
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
622 623
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
624 625 626 627 628 629

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

630 631 632 633 634
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
635 636 637 638 639 640 641 642 643 644 645 646
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
647 648 649 650

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
651
enum {
P
Peter Zijlstra 已提交
652
#include "sched_features.h"
I
Ingo Molnar 已提交
653 654
};

P
Peter Zijlstra 已提交
655 656 657 658 659
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
660
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
661 662 663 664 665 666 667 668 669
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

670
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
671 672 673 674 675 676
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

677
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
705
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
735
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
778

779 780 781 782 783 784
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
785
/*
P
Peter Zijlstra 已提交
786
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
787 788
 * default: 1s
 */
P
Peter Zijlstra 已提交
789
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
790

791 792
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
793 794 795 796 797
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
798

799 800 801 802 803 804 805 806 807 808 809 810
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
811

812
unsigned long long time_sync_thresh = 100000;
813 814 815 816

static DEFINE_PER_CPU(unsigned long long, time_offset);
static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);

817
/*
818 819 820 821
 * Global lock which we take every now and then to synchronize
 * the CPUs time. This method is not warp-safe, but it's good
 * enough to synchronize slowly diverging time sources and thus
 * it's good enough for tracing:
822
 */
823 824 825
static DEFINE_SPINLOCK(time_sync_lock);
static unsigned long long prev_global_time;

I
Ingo Molnar 已提交
826
static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
827
{
I
Ingo Molnar 已提交
828 829 830 831 832 833
	/*
	 * We want this inlined, to not get tracer function calls
	 * in this critical section:
	 */
	spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
	__raw_spin_lock(&time_sync_lock.raw_lock);
834 835 836 837 838 839 840 841

	if (time < prev_global_time) {
		per_cpu(time_offset, cpu) += prev_global_time - time;
		time = prev_global_time;
	} else {
		prev_global_time = time;
	}

I
Ingo Molnar 已提交
842 843
	__raw_spin_unlock(&time_sync_lock.raw_lock);
	spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
844 845 846 847 848

	return time;
}

static unsigned long long __cpu_clock(int cpu)
849 850 851
{
	unsigned long long now;

852 853 854 855
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
856 857 858
	if (unlikely(!scheduler_running))
		return 0;

859
	now = sched_clock_cpu(cpu);
860 861 862

	return now;
}
863 864 865 866 867 868 869 870

/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long prev_cpu_time, time, delta_time;
I
Ingo Molnar 已提交
871
	unsigned long flags;
872

I
Ingo Molnar 已提交
873
	local_irq_save(flags);
874 875 876 877
	prev_cpu_time = per_cpu(prev_cpu_time, cpu);
	time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
	delta_time = time-prev_cpu_time;

I
Ingo Molnar 已提交
878
	if (unlikely(delta_time > time_sync_thresh)) {
879
		time = __sync_cpu_clock(time, cpu);
I
Ingo Molnar 已提交
880 881 882
		per_cpu(prev_cpu_time, cpu) = time;
	}
	local_irq_restore(flags);
883 884 885

	return time;
}
P
Paul E. McKenney 已提交
886
EXPORT_SYMBOL_GPL(cpu_clock);
887

L
Linus Torvalds 已提交
888
#ifndef prepare_arch_switch
889 890 891 892 893 894
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

895 896 897 898 899
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

900
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
901
static inline int task_running(struct rq *rq, struct task_struct *p)
902
{
903
	return task_current(rq, p);
904 905
}

906
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 908 909
{
}

910
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
911
{
912 913 914 915
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
916 917 918 919 920 921 922
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

923 924 925 926
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
927
static inline int task_running(struct rq *rq, struct task_struct *p)
928 929 930 931
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
932
	return task_current(rq, p);
933 934 935
#endif
}

936
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

953
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
954 955 956 957 958 959 960 961 962 963 964 965
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
966
#endif
967 968
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
969

970 971 972 973
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
974
static inline struct rq *__task_rq_lock(struct task_struct *p)
975 976
	__acquires(rq->lock)
{
977 978 979 980 981
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
982 983 984 985
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
986 987
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
988
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
989 990
 * explicitly disabling preemption.
 */
991
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
992 993
	__acquires(rq->lock)
{
994
	struct rq *rq;
L
Linus Torvalds 已提交
995

996 997 998 999 1000 1001
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1002 1003 1004 1005
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
1006
static void __task_rq_unlock(struct rq *rq)
1007 1008 1009 1010 1011
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1012
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1013 1014 1015 1016 1017 1018
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1019
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1020
 */
A
Alexey Dobriyan 已提交
1021
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1022 1023
	__acquires(rq->lock)
{
1024
	struct rq *rq;
L
Linus Torvalds 已提交
1025 1026 1027 1028 1029 1030 1031 1032

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
1068
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1080 1081
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1157
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1158 1159 1160 1161 1162 1163
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1257 1258 1259 1260

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1261 1262
#endif

I
Ingo Molnar 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1276
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1277 1278 1279 1280 1281
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1282
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1283 1284
		return;

P
Peter Zijlstra 已提交
1285
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
#endif

I
Ingo Molnar 已提交
1350
#else
P
Peter Zijlstra 已提交
1351
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1352 1353
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1354
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1355 1356 1357
}
#endif

1358 1359 1360 1361 1362 1363 1364 1365
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1366 1367 1368
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1369
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1370

1371 1372 1373
/*
 * delta *= weight / lw
 */
1374
static unsigned long
1375 1376 1377 1378 1379
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1380 1381
	if (!lw->inv_weight)
		lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
1382 1383 1384 1385 1386

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1387
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1388
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1389 1390
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1391
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1392

1393
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1394 1395
}

1396
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1397 1398
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1399
	lw->inv_weight = 0;
1400 1401
}

1402
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1403 1404
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1405
	lw->inv_weight = 0;
1406 1407
}

1408 1409 1410 1411
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1412
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1413 1414 1415 1416
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1428 1429 1430
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1431 1432
 */
static const int prio_to_weight[40] = {
1433 1434 1435 1436 1437 1438 1439 1440
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1441 1442
};

1443 1444 1445 1446 1447 1448 1449
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1450
static const u32 prio_to_wmult[40] = {
1451 1452 1453 1454 1455 1456 1457 1458
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1459
};
1460

I
Ingo Molnar 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1486

1487 1488 1489 1490 1491 1492
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1503 1504 1505 1506 1507
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

#ifdef CONFIG_FAIR_GROUP_SCHED

/*
 * Group load balancing.
 *
 * We calculate a few balance domain wide aggregate numbers; load and weight.
 * Given the pictures below, and assuming each item has equal weight:
 *
 *         root          1 - thread
 *         / | \         A - group
 *        A  1  B
 *       /|\   / \
 *      C 2 D 3   4
 *      |   |
 *      5   6
 *
 * load:
 *    A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
 *    which equals 1/9-th of the total load.
 *
 * shares:
 *    The weight of this group on the selected cpus.
 *
 * rq_weight:
 *    Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
 *    B would get 2.
 *
 * task_weight:
 *    Part of the rq_weight contributed by tasks; all groups except B would
 *    get 1, B gets 2.
 */

static inline struct aggregate_struct *
aggregate(struct task_group *tg, struct sched_domain *sd)
{
	return &tg->cfs_rq[sd->first_cpu]->aggregate;
}

typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
static
void aggregate_walk_tree(aggregate_func down, aggregate_func up,
			 struct sched_domain *sd)
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
	(*down)(parent, sd);
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
	(*up)(parent, sd);

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

/*
 * Calculate the aggregate runqueue weight.
 */
static
void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long rq_weight = 0;
	unsigned long task_weight = 0;
	int i;

	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		task_weight += tg->cfs_rq[i]->task_weight;
	}

	aggregate(tg, sd)->rq_weight = rq_weight;
	aggregate(tg, sd)->task_weight = task_weight;
}

/*
 * Compute the weight of this group on the given cpus.
 */
static
void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long shares = 0;
	int i;

	for_each_cpu_mask(i, sd->span)
		shares += tg->cfs_rq[i]->shares;

1610 1611
	if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
		shares = tg->shares;
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689

	aggregate(tg, sd)->shares = shares;
}

/*
 * Compute the load fraction assigned to this group, relies on the aggregate
 * weight and this group's parent's load, i.e. top-down.
 */
static
void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long load;

	if (!tg->parent) {
		int i;

		load = 0;
		for_each_cpu_mask(i, sd->span)
			load += cpu_rq(i)->load.weight;

	} else {
		load = aggregate(tg->parent, sd)->load;

		/*
		 * shares is our weight in the parent's rq so
		 * shares/parent->rq_weight gives our fraction of the load
		 */
		load *= aggregate(tg, sd)->shares;
		load /= aggregate(tg->parent, sd)->rq_weight + 1;
	}

	aggregate(tg, sd)->load = load;
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
__update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
			  int tcpu)
{
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

	if (!tg->se[tcpu])
		return;

	rq_weight = tg->cfs_rq[tcpu]->load.weight;

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
	shares = aggregate(tg, sd)->shares * rq_weight;
	shares /= aggregate(tg, sd)->rq_weight + 1;

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
	tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
1690 1691
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835

	__set_se_shares(tg->se[tcpu], shares);
}

/*
 * Re-adjust the weights on the cpu the task came from and on the cpu the
 * task went to.
 */
static void
__move_group_shares(struct task_group *tg, struct sched_domain *sd,
		    int scpu, int dcpu)
{
	unsigned long shares;

	shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;

	__update_group_shares_cpu(tg, sd, scpu);
	__update_group_shares_cpu(tg, sd, dcpu);

	/*
	 * ensure we never loose shares due to rounding errors in the
	 * above redistribution.
	 */
	shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
	if (shares)
		tg->cfs_rq[dcpu]->shares += shares;
}

/*
 * Because changing a group's shares changes the weight of the super-group
 * we need to walk up the tree and change all shares until we hit the root.
 */
static void
move_group_shares(struct task_group *tg, struct sched_domain *sd,
		  int scpu, int dcpu)
{
	while (tg) {
		__move_group_shares(tg, sd, scpu, dcpu);
		tg = tg->parent;
	}
}

static
void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long shares = aggregate(tg, sd)->shares;
	int i;

	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		__update_group_shares_cpu(tg, sd, i);
		spin_unlock_irqrestore(&rq->lock, flags);
	}

	aggregate_group_shares(tg, sd);

	/*
	 * ensure we never loose shares due to rounding errors in the
	 * above redistribution.
	 */
	shares -= aggregate(tg, sd)->shares;
	if (shares) {
		tg->cfs_rq[sd->first_cpu]->shares += shares;
		aggregate(tg, sd)->shares += shares;
	}
}

/*
 * Calculate the accumulative weight and recursive load of each task group
 * while walking down the tree.
 */
static
void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
{
	aggregate_group_weight(tg, sd);
	aggregate_group_shares(tg, sd);
	aggregate_group_load(tg, sd);
}

/*
 * Rebalance the cpu shares while walking back up the tree.
 */
static
void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
{
	aggregate_group_set_shares(tg, sd);
}

static DEFINE_PER_CPU(spinlock_t, aggregate_lock);

static void __init init_aggregate(void)
{
	int i;

	for_each_possible_cpu(i)
		spin_lock_init(&per_cpu(aggregate_lock, i));
}

static int get_aggregate(struct sched_domain *sd)
{
	if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
		return 0;

	aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
	return 1;
}

static void put_aggregate(struct sched_domain *sd)
{
	spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
}

static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
	cfs_rq->shares = shares;
}

#else

static inline void init_aggregate(void)
{
}

static inline int get_aggregate(struct sched_domain *sd)
{
	return 0;
}

static inline void put_aggregate(struct sched_domain *sd)
{
}
#endif

#else /* CONFIG_SMP */

#ifdef CONFIG_FAIR_GROUP_SCHED
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
}
#endif

1836 1837
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1838 1839
#include "sched_stats.h"
#include "sched_idletask.c"
1840 1841
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1842 1843 1844 1845 1846 1847
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1848
static void inc_nr_running(struct rq *rq)
1849 1850 1851 1852
{
	rq->nr_running++;
}

1853
static void dec_nr_running(struct rq *rq)
1854 1855 1856 1857
{
	rq->nr_running--;
}

1858 1859 1860
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1861 1862 1863 1864
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1865

I
Ingo Molnar 已提交
1866 1867 1868 1869 1870 1871 1872 1873
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1874

I
Ingo Molnar 已提交
1875 1876
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1877 1878
}

1879
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1880
{
I
Ingo Molnar 已提交
1881
	sched_info_queued(p);
1882
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1883
	p->se.on_rq = 1;
1884 1885
}

1886
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1887
{
1888
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1889
	p->se.on_rq = 0;
1890 1891
}

1892
/*
I
Ingo Molnar 已提交
1893
 * __normal_prio - return the priority that is based on the static prio
1894 1895 1896
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1897
	return p->static_prio;
1898 1899
}

1900 1901 1902 1903 1904 1905 1906
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1907
static inline int normal_prio(struct task_struct *p)
1908 1909 1910
{
	int prio;

1911
	if (task_has_rt_policy(p))
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1925
static int effective_prio(struct task_struct *p)
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1938
/*
I
Ingo Molnar 已提交
1939
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1940
 */
I
Ingo Molnar 已提交
1941
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1942
{
1943
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1944
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1945

1946
	enqueue_task(rq, p, wakeup);
1947
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1948 1949 1950 1951 1952
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1953
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1954
{
1955
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1956 1957
		rq->nr_uninterruptible++;

1958
	dequeue_task(rq, p, sleep);
1959
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1960 1961 1962 1963 1964 1965
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1966
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1967 1968 1969 1970
{
	return cpu_curr(task_cpu(p)) == p;
}

1971 1972 1973
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1974
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1975 1976 1977 1978
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1979
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1980
#ifdef CONFIG_SMP
1981 1982 1983 1984 1985 1986
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1987 1988
	task_thread_info(p)->cpu = cpu;
#endif
1989 1990
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2003
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
2004

2005 2006 2007
/*
 * Is this task likely cache-hot:
 */
2008
static int
2009 2010 2011 2012
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2013 2014 2015
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
2016
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
2017 2018
		return 1;

2019 2020 2021
	if (p->sched_class != &fair_sched_class)
		return 0;

2022 2023 2024 2025 2026
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2027 2028 2029 2030 2031 2032
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2033
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2034
{
I
Ingo Molnar 已提交
2035 2036
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2037 2038
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2039
	u64 clock_offset;
I
Ingo Molnar 已提交
2040 2041

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2042 2043 2044 2045

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2046 2047 2048 2049
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2050 2051 2052 2053 2054
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
2055
#endif
2056 2057
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2058 2059

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2060 2061
}

2062
struct migration_req {
L
Linus Torvalds 已提交
2063 2064
	struct list_head list;

2065
	struct task_struct *task;
L
Linus Torvalds 已提交
2066 2067 2068
	int dest_cpu;

	struct completion done;
2069
};
L
Linus Torvalds 已提交
2070 2071 2072 2073 2074

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2075
static int
2076
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2077
{
2078
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2079 2080 2081 2082 2083

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2084
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2085 2086 2087 2088 2089 2090 2091 2092
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2093

L
Linus Torvalds 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
2106
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
2107 2108
{
	unsigned long flags;
I
Ingo Molnar 已提交
2109
	int running, on_rq;
2110
	struct rq *rq;
L
Linus Torvalds 已提交
2111

2112 2113 2114 2115 2116 2117 2118 2119
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2120

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
2134

2135 2136 2137 2138 2139 2140 2141 2142 2143
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
2144

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2155

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2169

2170 2171 2172 2173 2174 2175 2176
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2192
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2204 2205
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2206 2207 2208 2209
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2210
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2211
{
2212
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2213
	unsigned long total = weighted_cpuload(cpu);
2214

2215
	if (type == 0)
I
Ingo Molnar 已提交
2216
		return total;
2217

I
Ingo Molnar 已提交
2218
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2219 2220 2221
}

/*
2222 2223
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2224
 */
A
Alexey Dobriyan 已提交
2225
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2226
{
2227
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2228
	unsigned long total = weighted_cpuload(cpu);
2229

N
Nick Piggin 已提交
2230
	if (type == 0)
I
Ingo Molnar 已提交
2231
		return total;
2232

I
Ingo Molnar 已提交
2233
	return max(rq->cpu_load[type-1], total);
2234 2235 2236 2237 2238
}

/*
 * Return the average load per task on the cpu's run queue
 */
2239
static unsigned long cpu_avg_load_per_task(int cpu)
2240
{
2241
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2242
	unsigned long total = weighted_cpuload(cpu);
2243 2244
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
2245
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2246 2247
}

N
Nick Piggin 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2265 2266
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2267
			continue;
2268

N
Nick Piggin 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2285 2286
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2287 2288 2289 2290 2291 2292 2293 2294

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2295
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2296 2297 2298 2299 2300 2301 2302

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2303
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2304
 */
I
Ingo Molnar 已提交
2305
static int
2306 2307
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2308 2309 2310 2311 2312
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2313
	/* Traverse only the allowed CPUs */
2314
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2315

2316
	for_each_cpu_mask(i, *tmp) {
2317
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2343

2344
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2345 2346 2347
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2348 2349
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2350 2351
		if (tmp->flags & flag)
			sd = tmp;
2352
	}
N
Nick Piggin 已提交
2353 2354

	while (sd) {
2355
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2356
		struct sched_group *group;
2357 2358 2359 2360 2361 2362
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2363 2364 2365

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2366 2367 2368 2369
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2370

2371
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2372 2373 2374 2375 2376
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2377

2378
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2410
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2411
{
2412
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2413 2414
	unsigned long flags;
	long old_state;
2415
	struct rq *rq;
L
Linus Torvalds 已提交
2416

2417 2418 2419
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2420
	smp_wmb();
L
Linus Torvalds 已提交
2421 2422 2423 2424 2425
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2426
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2427 2428 2429
		goto out_running;

	cpu = task_cpu(p);
2430
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2431 2432 2433 2434 2435 2436
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2437 2438 2439
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2440 2441 2442 2443 2444 2445
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2446
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2447 2448 2449 2450 2451 2452
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
2468 2469
out_activate:
#endif /* CONFIG_SMP */
2470 2471 2472 2473 2474 2475 2476 2477 2478
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2479
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2480
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2481 2482 2483
	success = 1;

out_running:
I
Ingo Molnar 已提交
2484 2485
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2486
	p->state = TASK_RUNNING;
2487 2488 2489 2490
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2491 2492 2493 2494 2495 2496
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2497
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2498
{
2499
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2500 2501 2502
}
EXPORT_SYMBOL(wake_up_process);

2503
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2504 2505 2506 2507 2508 2509 2510
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2511 2512 2513 2514 2515 2516 2517
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2518
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2519 2520
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2521 2522 2523

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2524 2525 2526 2527 2528 2529
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2530
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2531
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2532
#endif
N
Nick Piggin 已提交
2533

P
Peter Zijlstra 已提交
2534
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2535
	p->se.on_rq = 0;
2536
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2537

2538 2539 2540 2541
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2542 2543 2544 2545 2546 2547 2548
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2563
	set_task_cpu(p, cpu);
2564 2565 2566 2567 2568

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2569 2570
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2571

2572
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2573
	if (likely(sched_info_on()))
2574
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2575
#endif
2576
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2577 2578
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2579
#ifdef CONFIG_PREEMPT
2580
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2581
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2582
#endif
N
Nick Piggin 已提交
2583
	put_cpu();
L
Linus Torvalds 已提交
2584 2585 2586 2587 2588 2589 2590 2591 2592
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2593
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2594 2595
{
	unsigned long flags;
I
Ingo Molnar 已提交
2596
	struct rq *rq;
L
Linus Torvalds 已提交
2597 2598

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2599
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2600
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2601 2602 2603

	p->prio = effective_prio(p);

2604
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2605
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2606 2607
	} else {
		/*
I
Ingo Molnar 已提交
2608 2609
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2610
		 */
2611
		p->sched_class->task_new(rq, p);
2612
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2613
	}
I
Ingo Molnar 已提交
2614
	check_preempt_curr(rq, p);
2615 2616 2617 2618
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2619
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2620 2621
}

2622 2623 2624
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2625 2626
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2627 2628 2629 2630 2631 2632 2633 2634 2635
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2636
 * @notifier: notifier struct to unregister
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2680 2681 2682
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2683
 * @prev: the current task that is being switched out
2684 2685 2686 2687 2688 2689 2690 2691 2692
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2693 2694 2695
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2696
{
2697
	fire_sched_out_preempt_notifiers(prev, next);
2698 2699 2700 2701
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2702 2703
/**
 * finish_task_switch - clean up after a task-switch
2704
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2705 2706
 * @prev: the thread we just switched away from.
 *
2707 2708 2709 2710
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2711 2712
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2713
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2714 2715 2716
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2717
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2718 2719 2720
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2721
	long prev_state;
L
Linus Torvalds 已提交
2722 2723 2724 2725 2726

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2727
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2728 2729
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2730
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2731 2732 2733 2734 2735
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2736
	prev_state = prev->state;
2737 2738
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2739 2740 2741 2742
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2743

2744
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2745 2746
	if (mm)
		mmdrop(mm);
2747
	if (unlikely(prev_state == TASK_DEAD)) {
2748 2749 2750
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2751
		 */
2752
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2753
		put_task_struct(prev);
2754
	}
L
Linus Torvalds 已提交
2755 2756 2757 2758 2759 2760
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2761
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2762 2763
	__releases(rq->lock)
{
2764 2765
	struct rq *rq = this_rq();

2766 2767 2768 2769 2770
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2771
	if (current->set_child_tid)
2772
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2773 2774 2775 2776 2777 2778
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2779
static inline void
2780
context_switch(struct rq *rq, struct task_struct *prev,
2781
	       struct task_struct *next)
L
Linus Torvalds 已提交
2782
{
I
Ingo Molnar 已提交
2783
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2784

2785
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2786 2787
	mm = next->mm;
	oldmm = prev->active_mm;
2788 2789 2790 2791 2792 2793 2794
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2795
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2796 2797 2798 2799 2800 2801
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2802
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2803 2804 2805
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2806 2807 2808 2809 2810 2811 2812
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2813
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2814
#endif
L
Linus Torvalds 已提交
2815 2816 2817 2818

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2819 2820 2821 2822 2823 2824 2825
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2849
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2864 2865
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2866

2867
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2868 2869 2870 2871 2872 2873 2874 2875 2876
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2877
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2878 2879 2880 2881 2882
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2898
/*
I
Ingo Molnar 已提交
2899 2900
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2901
 */
I
Ingo Molnar 已提交
2902
static void update_cpu_load(struct rq *this_rq)
2903
{
2904
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2917 2918 2919 2920 2921 2922 2923
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2924 2925
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2926 2927
}

I
Ingo Molnar 已提交
2928 2929
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2930 2931 2932 2933 2934 2935
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2936
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2937 2938 2939
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2940
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2941 2942 2943 2944
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2945
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2946 2947 2948 2949 2950 2951 2952
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2953 2954
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2955 2956 2957 2958 2959 2960 2961 2962
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2963
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2977
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2978 2979 2980 2981
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2982 2983
	int ret = 0;

2984 2985 2986 2987 2988
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2989
	if (unlikely(!spin_trylock(&busiest->lock))) {
2990
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2991 2992 2993
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2994
			ret = 1;
L
Linus Torvalds 已提交
2995 2996 2997
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2998
	return ret;
L
Linus Torvalds 已提交
2999 3000 3001 3002 3003
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3004
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3005 3006
 * the cpu_allowed mask is restored.
 */
3007
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3008
{
3009
	struct migration_req req;
L
Linus Torvalds 已提交
3010
	unsigned long flags;
3011
	struct rq *rq;
L
Linus Torvalds 已提交
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3022

L
Linus Torvalds 已提交
3023 3024 3025 3026 3027
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3028

L
Linus Torvalds 已提交
3029 3030 3031 3032 3033 3034 3035
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3036 3037
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3038 3039 3040 3041
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3042
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3043
	put_cpu();
N
Nick Piggin 已提交
3044 3045
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3046 3047 3048 3049 3050 3051
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3052 3053
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3054
{
3055
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3056
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3057
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3058 3059 3060 3061
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
3062
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
3063 3064 3065 3066 3067
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3068
static
3069
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3070
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3071
		     int *all_pinned)
L
Linus Torvalds 已提交
3072 3073 3074 3075 3076 3077 3078
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3079 3080
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3081
		return 0;
3082
	}
3083 3084
	*all_pinned = 0;

3085 3086
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3087
		return 0;
3088
	}
L
Linus Torvalds 已提交
3089

3090 3091 3092 3093 3094 3095
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3096 3097
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
3098
#ifdef CONFIG_SCHEDSTATS
3099
		if (task_hot(p, rq->clock, sd)) {
3100
			schedstat_inc(sd, lb_hot_gained[idle]);
3101 3102
			schedstat_inc(p, se.nr_forced_migrations);
		}
3103 3104 3105 3106
#endif
		return 1;
	}

3107 3108
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
3109
		return 0;
3110
	}
L
Linus Torvalds 已提交
3111 3112 3113
	return 1;
}

3114 3115 3116 3117 3118
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3119
{
3120
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
3121 3122
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3123

3124
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3125 3126
		goto out;

3127 3128
	pinned = 1;

L
Linus Torvalds 已提交
3129
	/*
I
Ingo Molnar 已提交
3130
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3131
	 */
I
Ingo Molnar 已提交
3132 3133
	p = iterator->start(iterator->arg);
next:
3134
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3135
		goto out;
3136
	/*
3137
	 * To help distribute high priority tasks across CPUs we don't
3138 3139 3140
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
3141 3142
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
3143
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
3144 3145 3146
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3147 3148
	}

I
Ingo Molnar 已提交
3149
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3150
	pulled++;
I
Ingo Molnar 已提交
3151
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3152

3153
	/*
3154
	 * We only want to steal up to the prescribed amount of weighted load.
3155
	 */
3156
	if (rem_load_move > 0) {
3157 3158
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3159 3160
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3161 3162 3163
	}
out:
	/*
3164
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3165 3166 3167 3168
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3169 3170 3171

	if (all_pinned)
		*all_pinned = pinned;
3172 3173

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3174 3175
}

I
Ingo Molnar 已提交
3176
/*
P
Peter Williams 已提交
3177 3178 3179
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3180 3181 3182 3183
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3184
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3185 3186 3187
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3188
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3189
	unsigned long total_load_moved = 0;
3190
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3191 3192

	do {
P
Peter Williams 已提交
3193 3194
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3195
				max_load_move - total_load_moved,
3196
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3197
		class = class->next;
P
Peter Williams 已提交
3198
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3199

P
Peter Williams 已提交
3200 3201 3202
	return total_load_moved > 0;
}

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3239
	const struct sched_class *class;
P
Peter Williams 已提交
3240 3241

	for (class = sched_class_highest; class; class = class->next)
3242
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3243 3244 3245
			return 1;

	return 0;
I
Ingo Molnar 已提交
3246 3247
}

L
Linus Torvalds 已提交
3248 3249
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3250 3251
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3252 3253 3254
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3255
		   unsigned long *imbalance, enum cpu_idle_type idle,
3256
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3257 3258 3259
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3260
	unsigned long max_pull;
3261 3262
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3263
	int load_idx, group_imb = 0;
3264 3265 3266 3267 3268 3269
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3270 3271

	max_load = this_load = total_load = total_pwr = 0;
3272 3273
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
3274
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3275
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3276
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3277 3278 3279
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3280 3281

	do {
3282
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3283 3284
		int local_group;
		int i;
3285
		int __group_imb = 0;
3286
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3287
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
3288 3289 3290

		local_group = cpu_isset(this_cpu, group->cpumask);

3291 3292 3293
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3294
		/* Tally up the load of all CPUs in the group */
3295
		sum_weighted_load = sum_nr_running = avg_load = 0;
3296 3297
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3298 3299

		for_each_cpu_mask(i, group->cpumask) {
3300 3301 3302 3303 3304 3305
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3306

3307
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3308 3309
				*sd_idle = 0;

L
Linus Torvalds 已提交
3310
			/* Bias balancing toward cpus of our domain */
3311 3312 3313 3314 3315 3316
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3317
				load = target_load(i, load_idx);
3318
			} else {
N
Nick Piggin 已提交
3319
				load = source_load(i, load_idx);
3320 3321 3322 3323 3324
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3325 3326

			avg_load += load;
3327
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3328
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
3329 3330
		}

3331 3332 3333
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3334 3335
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3336
		 */
3337 3338
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3339 3340 3341 3342
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3343
		total_load += avg_load;
3344
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3345 3346

		/* Adjust by relative CPU power of the group */
3347 3348
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3349

3350 3351 3352
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

3353
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3354

L
Linus Torvalds 已提交
3355 3356 3357
		if (local_group) {
			this_load = avg_load;
			this = group;
3358 3359 3360
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3361
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3362 3363
			max_load = avg_load;
			busiest = group;
3364 3365
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3366
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3367
		}
3368 3369 3370 3371 3372 3373

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3374 3375 3376
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3377 3378 3379 3380 3381 3382 3383 3384 3385

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3386
		/*
3387 3388
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3389 3390
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3391
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3392
			goto group_next;
3393

I
Ingo Molnar 已提交
3394
		/*
3395
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3396 3397 3398 3399 3400
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3401 3402
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3403 3404
			group_min = group;
			min_nr_running = sum_nr_running;
3405 3406
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3407
		}
3408

I
Ingo Molnar 已提交
3409
		/*
3410
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3422
		}
3423 3424
group_next:
#endif
L
Linus Torvalds 已提交
3425 3426 3427
		group = group->next;
	} while (group != sd->groups);

3428
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3429 3430 3431 3432 3433 3434 3435 3436
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3437
	busiest_load_per_task /= busiest_nr_running;
3438 3439 3440
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3441 3442 3443 3444 3445 3446 3447 3448
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3449
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3450 3451
	 * appear as very large values with unsigned longs.
	 */
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3464 3465

	/* Don't want to pull so many tasks that a group would go idle */
3466
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3467

L
Linus Torvalds 已提交
3468
	/* How much load to actually move to equalise the imbalance */
3469 3470
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3471 3472
			/ SCHED_LOAD_SCALE;

3473 3474 3475 3476 3477 3478
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3479
	if (*imbalance < busiest_load_per_task) {
3480
		unsigned long tmp, pwr_now, pwr_move;
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3492

I
Ingo Molnar 已提交
3493 3494
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3495
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3496 3497 3498 3499 3500 3501 3502 3503 3504
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3505 3506 3507 3508
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3509 3510 3511
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3512 3513
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3514
		if (max_load > tmp)
3515
			pwr_move += busiest->__cpu_power *
3516
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3517 3518

		/* Amount of load we'd add */
3519
		if (max_load * busiest->__cpu_power <
3520
				busiest_load_per_task * SCHED_LOAD_SCALE)
3521 3522
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3523
		else
3524 3525 3526 3527
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3528 3529 3530
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3531 3532
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3533 3534 3535 3536 3537
	}

	return busiest;

out_balanced:
3538
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3539
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3540
		goto ret;
L
Linus Torvalds 已提交
3541

3542 3543 3544 3545 3546
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3547
ret:
L
Linus Torvalds 已提交
3548 3549 3550 3551 3552 3553 3554
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3555
static struct rq *
I
Ingo Molnar 已提交
3556
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3557
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3558
{
3559
	struct rq *busiest = NULL, *rq;
3560
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3561 3562 3563
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3564
		unsigned long wl;
3565 3566 3567 3568

		if (!cpu_isset(i, *cpus))
			continue;

3569
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3570
		wl = weighted_cpuload(i);
3571

I
Ingo Molnar 已提交
3572
		if (rq->nr_running == 1 && wl > imbalance)
3573
			continue;
L
Linus Torvalds 已提交
3574

I
Ingo Molnar 已提交
3575 3576
		if (wl > max_load) {
			max_load = wl;
3577
			busiest = rq;
L
Linus Torvalds 已提交
3578 3579 3580 3581 3582 3583
		}
	}

	return busiest;
}

3584 3585 3586 3587 3588 3589
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3590 3591 3592 3593
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3594
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3595
			struct sched_domain *sd, enum cpu_idle_type idle,
3596
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3597
{
P
Peter Williams 已提交
3598
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3599 3600
	struct sched_group *group;
	unsigned long imbalance;
3601
	struct rq *busiest;
3602
	unsigned long flags;
3603
	int unlock_aggregate;
N
Nick Piggin 已提交
3604

3605 3606
	cpus_setall(*cpus);

3607 3608
	unlock_aggregate = get_aggregate(sd);

3609 3610 3611
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3612
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3613
	 * portraying it as CPU_NOT_IDLE.
3614
	 */
I
Ingo Molnar 已提交
3615
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3616
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3617
		sd_idle = 1;
L
Linus Torvalds 已提交
3618

3619
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3620

3621 3622
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3623
				   cpus, balance);
3624

3625
	if (*balance == 0)
3626 3627
		goto out_balanced;

L
Linus Torvalds 已提交
3628 3629 3630 3631 3632
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3633
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3634 3635 3636 3637 3638
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3639
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3640 3641 3642

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3643
	ld_moved = 0;
L
Linus Torvalds 已提交
3644 3645 3646 3647
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3648
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3649 3650
		 * correctly treated as an imbalance.
		 */
3651
		local_irq_save(flags);
N
Nick Piggin 已提交
3652
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3653
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3654
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3655
		double_rq_unlock(this_rq, busiest);
3656
		local_irq_restore(flags);
3657

3658 3659 3660
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3661
		if (ld_moved && this_cpu != smp_processor_id())
3662 3663
			resched_cpu(this_cpu);

3664
		/* All tasks on this runqueue were pinned by CPU affinity */
3665
		if (unlikely(all_pinned)) {
3666 3667
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3668
				goto redo;
3669
			goto out_balanced;
3670
		}
L
Linus Torvalds 已提交
3671
	}
3672

P
Peter Williams 已提交
3673
	if (!ld_moved) {
L
Linus Torvalds 已提交
3674 3675 3676 3677 3678
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3679
			spin_lock_irqsave(&busiest->lock, flags);
3680 3681 3682 3683 3684

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3685
				spin_unlock_irqrestore(&busiest->lock, flags);
3686 3687 3688 3689
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3690 3691 3692
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3693
				active_balance = 1;
L
Linus Torvalds 已提交
3694
			}
3695
			spin_unlock_irqrestore(&busiest->lock, flags);
3696
			if (active_balance)
L
Linus Torvalds 已提交
3697 3698 3699 3700 3701 3702
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3703
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3704
		}
3705
	} else
L
Linus Torvalds 已提交
3706 3707
		sd->nr_balance_failed = 0;

3708
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3709 3710
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3711 3712 3713 3714 3715 3716 3717 3718 3719
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3720 3721
	}

P
Peter Williams 已提交
3722
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3723
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3724 3725 3726
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3727 3728 3729 3730

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3731
	sd->nr_balance_failed = 0;
3732 3733

out_one_pinned:
L
Linus Torvalds 已提交
3734
	/* tune up the balancing interval */
3735 3736
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3737 3738
		sd->balance_interval *= 2;

3739
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3740
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3741 3742 3743 3744 3745 3746 3747
		ld_moved = -1;
	else
		ld_moved = 0;
out:
	if (unlock_aggregate)
		put_aggregate(sd);
	return ld_moved;
L
Linus Torvalds 已提交
3748 3749 3750 3751 3752 3753
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3754
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3755 3756
 * this_rq is locked.
 */
3757
static int
3758 3759
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3760 3761
{
	struct sched_group *group;
3762
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3763
	unsigned long imbalance;
P
Peter Williams 已提交
3764
	int ld_moved = 0;
N
Nick Piggin 已提交
3765
	int sd_idle = 0;
3766
	int all_pinned = 0;
3767 3768

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3769

3770 3771 3772 3773
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3774
	 * portraying it as CPU_NOT_IDLE.
3775 3776 3777
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3778
		sd_idle = 1;
L
Linus Torvalds 已提交
3779

3780
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3781
redo:
I
Ingo Molnar 已提交
3782
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3783
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3784
	if (!group) {
I
Ingo Molnar 已提交
3785
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3786
		goto out_balanced;
L
Linus Torvalds 已提交
3787 3788
	}

3789
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3790
	if (!busiest) {
I
Ingo Molnar 已提交
3791
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3792
		goto out_balanced;
L
Linus Torvalds 已提交
3793 3794
	}

N
Nick Piggin 已提交
3795 3796
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3797
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3798

P
Peter Williams 已提交
3799
	ld_moved = 0;
3800 3801 3802
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3803 3804
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3805
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3806 3807
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3808
		spin_unlock(&busiest->lock);
3809

3810
		if (unlikely(all_pinned)) {
3811 3812
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3813 3814
				goto redo;
		}
3815 3816
	}

P
Peter Williams 已提交
3817
	if (!ld_moved) {
I
Ingo Molnar 已提交
3818
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3819 3820
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3821 3822
			return -1;
	} else
3823
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3824

P
Peter Williams 已提交
3825
	return ld_moved;
3826 3827

out_balanced:
I
Ingo Molnar 已提交
3828
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3829
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3830
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3831
		return -1;
3832
	sd->nr_balance_failed = 0;
3833

3834
	return 0;
L
Linus Torvalds 已提交
3835 3836 3837 3838 3839 3840
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3841
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3842 3843
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3844 3845
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3846
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3847 3848

	for_each_domain(this_cpu, sd) {
3849 3850 3851 3852 3853 3854
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3855
			/* If we've pulled tasks over stop searching: */
3856 3857
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3858 3859 3860 3861 3862 3863

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3864
	}
I
Ingo Molnar 已提交
3865
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3866 3867 3868 3869 3870
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3871
	}
L
Linus Torvalds 已提交
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3882
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3883
{
3884
	int target_cpu = busiest_rq->push_cpu;
3885 3886
	struct sched_domain *sd;
	struct rq *target_rq;
3887

3888
	/* Is there any task to move? */
3889 3890 3891 3892
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3893 3894

	/*
3895
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3896
	 * we need to fix it. Originally reported by
3897
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3898
	 */
3899
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3900

3901 3902
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3903 3904
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3905 3906

	/* Search for an sd spanning us and the target CPU. */
3907
	for_each_domain(target_cpu, sd) {
3908
		if ((sd->flags & SD_LOAD_BALANCE) &&
3909
		    cpu_isset(busiest_cpu, sd->span))
3910
				break;
3911
	}
3912

3913
	if (likely(sd)) {
3914
		schedstat_inc(sd, alb_count);
3915

P
Peter Williams 已提交
3916 3917
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3918 3919 3920 3921
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3922
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3923 3924
}

3925 3926 3927
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3928
	cpumask_t cpu_mask;
3929 3930 3931 3932 3933
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3934
/*
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3945
 *
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4002 4003 4004 4005 4006
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4007
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4008
{
4009 4010
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4011 4012
	unsigned long interval;
	struct sched_domain *sd;
4013
	/* Earliest time when we have to do rebalance again */
4014
	unsigned long next_balance = jiffies + 60*HZ;
4015
	int update_next_balance = 0;
4016
	cpumask_t tmp;
L
Linus Torvalds 已提交
4017

4018
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4019 4020 4021 4022
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4023
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4024 4025 4026 4027 4028 4029
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4030 4031 4032
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
4033

4034 4035 4036 4037 4038
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

4039
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4040
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
4041 4042
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4043 4044 4045
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4046
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4047
			}
4048
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4049
		}
4050 4051 4052
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
4053
		if (time_after(next_balance, sd->last_balance + interval)) {
4054
			next_balance = sd->last_balance + interval;
4055 4056
			update_next_balance = 1;
		}
4057 4058 4059 4060 4061 4062 4063 4064

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4065
	}
4066 4067 4068 4069 4070 4071 4072 4073

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4074 4075 4076 4077 4078 4079 4080 4081 4082
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4083 4084 4085 4086
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4087

I
Ingo Molnar 已提交
4088
	rebalance_domains(this_cpu, idle);
4089 4090 4091 4092 4093 4094 4095

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4096 4097
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4098 4099 4100 4101
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
4102
		cpu_clear(this_cpu, cpus);
4103 4104 4105 4106 4107 4108 4109 4110 4111
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4112
			rebalance_domains(balance_cpu, CPU_IDLE);
4113 4114

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4115 4116
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4129
static inline void trigger_load_balance(struct rq *rq, int cpu)
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4156
			if (ilb < nr_cpu_ids)
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4181
}
I
Ingo Molnar 已提交
4182 4183 4184

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4185 4186 4187
/*
 * on UP we do not need to balance between CPUs:
 */
4188
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4189 4190
{
}
I
Ingo Molnar 已提交
4191

L
Linus Torvalds 已提交
4192 4193 4194 4195 4196 4197 4198
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4199 4200
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4201
 */
4202
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4203 4204
{
	unsigned long flags;
4205 4206
	u64 ns, delta_exec;
	struct rq *rq;
4207

4208 4209
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4210
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4211 4212
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4213 4214 4215 4216
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4217

L
Linus Torvalds 已提交
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4241 4242 4243 4244 4245
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4246
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4280
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4281 4282
	cputime64_t tmp;

4283 4284 4285 4286
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4287

L
Linus Torvalds 已提交
4288 4289 4290 4291 4292 4293 4294 4295
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4296
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4297
		cpustat->system = cputime64_add(cpustat->system, tmp);
4298
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4299 4300 4301 4302 4303 4304 4305
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4317 4318 4319 4320 4321 4322 4323 4324 4325
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4326
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4327 4328 4329 4330 4331 4332 4333

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4334
	} else
L
Linus Torvalds 已提交
4335 4336 4337
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4349
	struct task_struct *curr = rq->curr;
4350 4351

	sched_clock_tick();
I
Ingo Molnar 已提交
4352 4353

	spin_lock(&rq->lock);
4354
	update_rq_clock(rq);
4355
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4356
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4357
	spin_unlock(&rq->lock);
4358

4359
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4360 4361
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4362
#endif
L
Linus Torvalds 已提交
4363 4364 4365 4366
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4367
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4368 4369 4370 4371
{
	/*
	 * Underflow?
	 */
4372 4373
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4374 4375 4376 4377
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4378 4379
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4380 4381 4382
}
EXPORT_SYMBOL(add_preempt_count);

4383
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4384 4385 4386 4387
{
	/*
	 * Underflow?
	 */
4388 4389
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4390 4391 4392
	/*
	 * Is the spinlock portion underflowing?
	 */
4393 4394 4395 4396
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4397 4398 4399 4400 4401 4402 4403
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4404
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4405
 */
I
Ingo Molnar 已提交
4406
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4407
{
4408 4409 4410 4411 4412
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4413 4414 4415
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
4416 4417 4418 4419 4420

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4421
}
L
Linus Torvalds 已提交
4422

I
Ingo Molnar 已提交
4423 4424 4425 4426 4427
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4428
	/*
I
Ingo Molnar 已提交
4429
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4430 4431 4432
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
4433 4434 4435
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4436 4437
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4438
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4439 4440
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4441 4442
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4443 4444
	}
#endif
I
Ingo Molnar 已提交
4445 4446 4447 4448 4449 4450
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4451
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4452
{
4453
	const struct sched_class *class;
I
Ingo Molnar 已提交
4454
	struct task_struct *p;
L
Linus Torvalds 已提交
4455 4456

	/*
I
Ingo Molnar 已提交
4457 4458
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4459
	 */
I
Ingo Molnar 已提交
4460
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4461
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4462 4463
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4464 4465
	}

I
Ingo Molnar 已提交
4466 4467
	class = sched_class_highest;
	for ( ; ; ) {
4468
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4469 4470 4471 4472 4473 4474 4475 4476 4477
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4478

I
Ingo Molnar 已提交
4479 4480 4481 4482 4483 4484
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4485
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4501

P
Peter Zijlstra 已提交
4502 4503
	hrtick_clear(rq);

4504 4505 4506 4507
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4508
	update_rq_clock(rq);
4509 4510
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4511 4512 4513

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4514
				signal_pending(prev))) {
L
Linus Torvalds 已提交
4515
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4516
		} else {
4517
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
4518
		}
I
Ingo Molnar 已提交
4519
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4520 4521
	}

4522 4523 4524 4525
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4526

I
Ingo Molnar 已提交
4527
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4528 4529
		idle_balance(cpu, rq);

4530
	prev->sched_class->put_prev_task(rq, prev);
4531
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4532 4533

	if (likely(prev != next)) {
4534 4535
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4536 4537 4538 4539
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4540
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4541 4542 4543 4544 4545 4546
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4547 4548 4549
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4550 4551 4552
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4553
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4554

L
Linus Torvalds 已提交
4555 4556 4557 4558 4559 4560 4561 4562
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4563
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4564
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4565 4566 4567 4568 4569
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4570

L
Linus Torvalds 已提交
4571 4572
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4573
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4574
	 */
N
Nick Piggin 已提交
4575
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4576 4577
		return;

4578 4579 4580 4581
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4582

4583 4584 4585 4586 4587 4588
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4589 4590 4591 4592
}
EXPORT_SYMBOL(preempt_schedule);

/*
4593
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4594 4595 4596 4597 4598 4599 4600
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4601

4602
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4603 4604
	BUG_ON(ti->preempt_count || !irqs_disabled());

4605 4606 4607 4608 4609 4610
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4611

4612 4613 4614 4615 4616 4617
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4618 4619 4620 4621
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4622 4623
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4624
{
4625
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4626 4627 4628 4629
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4630 4631
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4632 4633 4634
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4635
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4636 4637 4638 4639 4640
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4641
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4642

4643
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4644 4645
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4646
		if (curr->func(curr, mode, sync, key) &&
4647
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4657
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4658
 */
4659
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4660
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4673
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4674 4675 4676 4677 4678
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4679
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4691
void
I
Ingo Molnar 已提交
4692
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4709
void complete(struct completion *x)
L
Linus Torvalds 已提交
4710 4711 4712 4713 4714
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4715
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4716 4717 4718 4719
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4720
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4721 4722 4723 4724 4725
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4726
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4727 4728 4729 4730
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4731 4732
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4733 4734 4735 4736 4737 4738 4739
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4740 4741 4742 4743
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4744 4745 4746 4747
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4748 4749 4750 4751 4752
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4753
				return timeout;
L
Linus Torvalds 已提交
4754 4755 4756 4757 4758 4759 4760 4761
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4762 4763
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4764 4765 4766 4767
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4768
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4769
	spin_unlock_irq(&x->wait.lock);
4770 4771
	return timeout;
}
L
Linus Torvalds 已提交
4772

4773
void __sched wait_for_completion(struct completion *x)
4774 4775
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4776
}
4777
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4778

4779
unsigned long __sched
4780
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4781
{
4782
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4783
}
4784
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4785

4786
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4787
{
4788 4789 4790 4791
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4792
}
4793
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4794

4795
unsigned long __sched
4796 4797
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4798
{
4799
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4800
}
4801
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4802

M
Matthew Wilcox 已提交
4803 4804 4805 4806 4807 4808 4809 4810 4811
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4812 4813
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4814
{
I
Ingo Molnar 已提交
4815 4816 4817 4818
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4819

4820
	__set_current_state(state);
L
Linus Torvalds 已提交
4821

4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4836 4837 4838
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4839
long __sched
I
Ingo Molnar 已提交
4840
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4841
{
4842
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4843 4844 4845
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4846
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4847
{
4848
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4849 4850 4851
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4852
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4853
{
4854
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4855 4856 4857
}
EXPORT_SYMBOL(sleep_on_timeout);

4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4870
void rt_mutex_setprio(struct task_struct *p, int prio)
4871 4872
{
	unsigned long flags;
4873
	int oldprio, on_rq, running;
4874
	struct rq *rq;
4875
	const struct sched_class *prev_class = p->sched_class;
4876 4877 4878 4879

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4880
	update_rq_clock(rq);
4881

4882
	oldprio = p->prio;
I
Ingo Molnar 已提交
4883
	on_rq = p->se.on_rq;
4884
	running = task_current(rq, p);
4885
	if (on_rq)
4886
		dequeue_task(rq, p, 0);
4887 4888
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4889 4890 4891 4892 4893 4894

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4895 4896
	p->prio = prio;

4897 4898
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4899
	if (on_rq) {
4900
		enqueue_task(rq, p, 0);
4901 4902

		check_class_changed(rq, p, prev_class, oldprio, running);
4903 4904 4905 4906 4907 4908
	}
	task_rq_unlock(rq, &flags);
}

#endif

4909
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4910
{
I
Ingo Molnar 已提交
4911
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4912
	unsigned long flags;
4913
	struct rq *rq;
L
Linus Torvalds 已提交
4914 4915 4916 4917 4918 4919 4920 4921

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4922
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4923 4924 4925 4926
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4927
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4928
	 */
4929
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4930 4931 4932
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4933
	on_rq = p->se.on_rq;
4934
	if (on_rq)
4935
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4936 4937

	p->static_prio = NICE_TO_PRIO(nice);
4938
	set_load_weight(p);
4939 4940 4941
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4942

I
Ingo Molnar 已提交
4943
	if (on_rq) {
4944
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4945
		/*
4946 4947
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4948
		 */
4949
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4950 4951 4952 4953 4954 4955 4956
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4957 4958 4959 4960 4961
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4962
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4963
{
4964 4965
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4966

M
Matt Mackall 已提交
4967 4968 4969 4970
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4982
	long nice, retval;
L
Linus Torvalds 已提交
4983 4984 4985 4986 4987 4988

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4989 4990
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4991 4992 4993 4994 4995 4996 4997 4998 4999
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5000 5001 5002
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5021
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5022 5023 5024 5025 5026 5027 5028 5029
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5030
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5031 5032 5033
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5034
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5049
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5050 5051 5052 5053 5054 5055 5056 5057
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5058
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5059
{
5060
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5061 5062 5063
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5064 5065
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5066
{
I
Ingo Molnar 已提交
5067
	BUG_ON(p->se.on_rq);
5068

L
Linus Torvalds 已提交
5069
	p->policy = policy;
I
Ingo Molnar 已提交
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5082
	p->rt_priority = prio;
5083 5084 5085
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5086
	set_load_weight(p);
L
Linus Torvalds 已提交
5087 5088 5089
}

/**
5090
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
5091 5092 5093
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
5094
 *
5095
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
5096
 */
I
Ingo Molnar 已提交
5097 5098
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
5099
{
5100
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5101
	unsigned long flags;
5102
	const struct sched_class *prev_class = p->sched_class;
5103
	struct rq *rq;
L
Linus Torvalds 已提交
5104

5105 5106
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5107 5108 5109 5110 5111
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5112 5113
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5114
		return -EINVAL;
L
Linus Torvalds 已提交
5115 5116
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5117 5118
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5119 5120
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5121
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5122
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5123
		return -EINVAL;
5124
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5125 5126
		return -EINVAL;

5127 5128 5129 5130
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
5131
		if (rt_policy(policy)) {
5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5148 5149 5150 5151 5152 5153
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5154

5155 5156 5157 5158 5159
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5160

5161 5162 5163 5164 5165
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
5166
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5167 5168 5169
		return -EPERM;
#endif

L
Linus Torvalds 已提交
5170 5171 5172
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
5173 5174 5175 5176 5177
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5178 5179 5180 5181
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5182
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5183 5184 5185
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5186 5187
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5188 5189
		goto recheck;
	}
I
Ingo Molnar 已提交
5190
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5191
	on_rq = p->se.on_rq;
5192
	running = task_current(rq, p);
5193
	if (on_rq)
5194
		deactivate_task(rq, p, 0);
5195 5196
	if (running)
		p->sched_class->put_prev_task(rq, p);
5197

L
Linus Torvalds 已提交
5198
	oldprio = p->prio;
I
Ingo Molnar 已提交
5199
	__setscheduler(rq, p, policy, param->sched_priority);
5200

5201 5202
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5203 5204
	if (on_rq) {
		activate_task(rq, p, 0);
5205 5206

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5207
	}
5208 5209 5210
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5211 5212
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5213 5214 5215 5216
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
5217 5218
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5219 5220 5221
{
	struct sched_param lparam;
	struct task_struct *p;
5222
	int retval;
L
Linus Torvalds 已提交
5223 5224 5225 5226 5227

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5228 5229 5230

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5231
	p = find_process_by_pid(pid);
5232 5233 5234
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5235

L
Linus Torvalds 已提交
5236 5237 5238 5239 5240 5241 5242 5243 5244
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5245 5246
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5247
{
5248 5249 5250 5251
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5271
	struct task_struct *p;
5272
	int retval;
L
Linus Torvalds 已提交
5273 5274

	if (pid < 0)
5275
		return -EINVAL;
L
Linus Torvalds 已提交
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5297
	struct task_struct *p;
5298
	int retval;
L
Linus Torvalds 已提交
5299 5300

	if (!param || pid < 0)
5301
		return -EINVAL;
L
Linus Torvalds 已提交
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5328
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5329 5330
{
	cpumask_t cpus_allowed;
5331
	cpumask_t new_mask = *in_mask;
5332 5333
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5334

5335
	get_online_cpus();
L
Linus Torvalds 已提交
5336 5337 5338 5339 5340
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5341
		put_online_cpus();
L
Linus Torvalds 已提交
5342 5343 5344 5345 5346
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5347
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5358 5359 5360 5361
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5362
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5363
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5364
 again:
5365
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5366

P
Paul Menage 已提交
5367
	if (!retval) {
5368
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5379 5380
out_unlock:
	put_task_struct(p);
5381
	put_online_cpus();
L
Linus Torvalds 已提交
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5412
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5413 5414 5415 5416 5417 5418 5419 5420 5421
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

5422
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
5423 5424 5425
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
5426
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5427 5428
EXPORT_SYMBOL(cpu_online_map);

5429
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5430
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
5431 5432 5433 5434
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5435
	struct task_struct *p;
L
Linus Torvalds 已提交
5436 5437
	int retval;

5438
	get_online_cpus();
L
Linus Torvalds 已提交
5439 5440 5441 5442 5443 5444 5445
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5446 5447 5448 5449
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5450
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5451 5452 5453

out_unlock:
	read_unlock(&tasklist_lock);
5454
	put_online_cpus();
L
Linus Torvalds 已提交
5455

5456
	return retval;
L
Linus Torvalds 已提交
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5487 5488
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5489 5490 5491
 */
asmlinkage long sys_sched_yield(void)
{
5492
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5493

5494
	schedstat_inc(rq, yld_count);
5495
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5496 5497 5498 5499 5500 5501

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5502
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5503 5504 5505 5506 5507 5508 5509 5510
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5511
static void __cond_resched(void)
L
Linus Torvalds 已提交
5512
{
5513 5514 5515
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5516 5517 5518 5519 5520
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5521 5522 5523 5524 5525 5526 5527
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5528
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5529
{
5530 5531
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5532 5533 5534 5535 5536
		__cond_resched();
		return 1;
	}
	return 0;
}
5537
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5538 5539 5540 5541 5542

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5543
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5544 5545 5546
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5547
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5548
{
N
Nick Piggin 已提交
5549
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5550 5551
	int ret = 0;

N
Nick Piggin 已提交
5552
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5553
		spin_unlock(lock);
N
Nick Piggin 已提交
5554 5555 5556 5557
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5558
		ret = 1;
L
Linus Torvalds 已提交
5559 5560
		spin_lock(lock);
	}
J
Jan Kara 已提交
5561
	return ret;
L
Linus Torvalds 已提交
5562 5563 5564 5565 5566 5567 5568
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5569
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5570
		local_bh_enable();
L
Linus Torvalds 已提交
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5582
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5593
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5594 5595 5596 5597 5598 5599 5600
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5601
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5602

5603
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5604 5605 5606
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5607
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5608 5609 5610 5611 5612
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5613
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5614 5615
	long ret;

5616
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5617 5618 5619
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5620
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5641
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5642
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5666
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5667
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5684
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5685
	unsigned int time_slice;
5686
	int retval;
L
Linus Torvalds 已提交
5687 5688 5689
	struct timespec t;

	if (pid < 0)
5690
		return -EINVAL;
L
Linus Torvalds 已提交
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5702 5703 5704 5705 5706 5707
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5708
		time_slice = DEF_TIMESLICE;
5709
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5710 5711 5712 5713 5714
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5715 5716
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5717 5718
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5719
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5720
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5721 5722
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5723

L
Linus Torvalds 已提交
5724 5725 5726 5727 5728
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5729
static const char stat_nam[] = "RSDTtZX";
5730

5731
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5732 5733
{
	unsigned long free = 0;
5734
	unsigned state;
L
Linus Torvalds 已提交
5735 5736

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5737
	printk(KERN_INFO "%-13.13s %c", p->comm,
5738
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5739
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5740
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5741
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5742
	else
I
Ingo Molnar 已提交
5743
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5744 5745
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5746
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5747
	else
I
Ingo Molnar 已提交
5748
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5749 5750 5751
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5752
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5753 5754
		while (!*n)
			n++;
5755
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5756 5757
	}
#endif
5758
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5759
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5760

5761
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5762 5763
}

I
Ingo Molnar 已提交
5764
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5765
{
5766
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5767

5768 5769 5770
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5771
#else
5772 5773
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5774 5775 5776 5777 5778 5779 5780 5781
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5782
		if (!state_filter || (p->state & state_filter))
5783
			sched_show_task(p);
L
Linus Torvalds 已提交
5784 5785
	} while_each_thread(g, p);

5786 5787
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5788 5789 5790
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5791
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5792 5793 5794 5795 5796
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5797 5798
}

I
Ingo Molnar 已提交
5799 5800
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5801
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5802 5803
}

5804 5805 5806 5807 5808 5809 5810 5811
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5812
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5813
{
5814
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5815 5816
	unsigned long flags;

I
Ingo Molnar 已提交
5817 5818 5819
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5820
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5821
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5822
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5823 5824 5825

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5826 5827 5828
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5829 5830 5831
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5832 5833 5834
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5835
	task_thread_info(idle)->preempt_count = 0;
5836
#endif
I
Ingo Molnar 已提交
5837 5838 5839 5840
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5877 5878 5879 5880
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5881
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5900
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5901 5902
 * call is not atomic; no spinlocks may be held.
 */
5903
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5904
{
5905
	struct migration_req req;
L
Linus Torvalds 已提交
5906
	unsigned long flags;
5907
	struct rq *rq;
5908
	int ret = 0;
L
Linus Torvalds 已提交
5909 5910

	rq = task_rq_lock(p, &flags);
5911
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5912 5913 5914 5915
		ret = -EINVAL;
		goto out;
	}

5916
	if (p->sched_class->set_cpus_allowed)
5917
		p->sched_class->set_cpus_allowed(p, new_mask);
5918
	else {
5919 5920
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5921 5922
	}

L
Linus Torvalds 已提交
5923
	/* Can the task run on the task's current CPU? If so, we're done */
5924
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5925 5926
		goto out;

5927
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5928 5929 5930 5931 5932 5933 5934 5935 5936
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5937

L
Linus Torvalds 已提交
5938 5939
	return ret;
}
5940
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5941 5942

/*
I
Ingo Molnar 已提交
5943
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5944 5945 5946 5947 5948 5949
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5950 5951
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5952
 */
5953
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5954
{
5955
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5956
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5957 5958

	if (unlikely(cpu_is_offline(dest_cpu)))
5959
		return ret;
L
Linus Torvalds 已提交
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5972
	on_rq = p->se.on_rq;
5973
	if (on_rq)
5974
		deactivate_task(rq_src, p, 0);
5975

L
Linus Torvalds 已提交
5976
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5977 5978 5979
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5980
	}
5981
	ret = 1;
L
Linus Torvalds 已提交
5982 5983
out:
	double_rq_unlock(rq_src, rq_dest);
5984
	return ret;
L
Linus Torvalds 已提交
5985 5986 5987 5988 5989 5990 5991
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5992
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5993 5994
{
	int cpu = (long)data;
5995
	struct rq *rq;
L
Linus Torvalds 已提交
5996 5997 5998 5999 6000 6001

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6002
		struct migration_req *req;
L
Linus Torvalds 已提交
6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6025
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6026 6027
		list_del_init(head->next);

N
Nick Piggin 已提交
6028 6029 6030
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6060
/*
6061
 * Figure out where task on dead CPU should go, use force if necessary.
6062 6063
 * NOTE: interrupts should be disabled by the caller
 */
6064
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6065
{
6066
	unsigned long flags;
L
Linus Torvalds 已提交
6067
	cpumask_t mask;
6068 6069
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6070

6071 6072 6073 6074 6075 6076 6077
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6078
		if (dest_cpu >= nr_cpu_ids)
6079 6080 6081
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6082
		if (dest_cpu >= nr_cpu_ids) {
6083 6084 6085
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6086 6087 6088 6089
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6090
			 * cpuset_cpus_allowed() will not block. It must be
6091 6092
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6093
			rq = task_rq_lock(p, &flags);
6094
			p->cpus_allowed = cpus_allowed;
6095 6096
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6097

6098 6099 6100 6101 6102
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6103
			if (p->mm && printk_ratelimit()) {
6104 6105
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6106 6107
					task_pid_nr(p), p->comm, dead_cpu);
			}
6108
		}
6109
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6110 6111 6112 6113 6114 6115 6116 6117 6118
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6119
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6120
{
6121
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6135
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6136

6137
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6138

6139 6140
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6141 6142
			continue;

6143 6144 6145
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6146

6147
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6148 6149
}

I
Ingo Molnar 已提交
6150 6151
/*
 * Schedules idle task to be the next runnable task on current CPU.
6152 6153
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6154 6155 6156
 */
void sched_idle_next(void)
{
6157
	int this_cpu = smp_processor_id();
6158
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6159 6160 6161 6162
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6163
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6164

6165 6166 6167
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6168 6169 6170
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6171
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6172

6173 6174
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6175 6176 6177 6178

	spin_unlock_irqrestore(&rq->lock, flags);
}

6179 6180
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6194
/* called under rq->lock with disabled interrupts */
6195
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6196
{
6197
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6198 6199

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6200
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6201 6202

	/* Cannot have done final schedule yet: would have vanished. */
6203
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6204

6205
	get_task_struct(p);
L
Linus Torvalds 已提交
6206 6207 6208

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6209
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6210 6211
	 * fine.
	 */
6212
	spin_unlock_irq(&rq->lock);
6213
	move_task_off_dead_cpu(dead_cpu, p);
6214
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6215

6216
	put_task_struct(p);
L
Linus Torvalds 已提交
6217 6218 6219 6220 6221
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6222
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6223
	struct task_struct *next;
6224

I
Ingo Molnar 已提交
6225 6226 6227
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6228
		update_rq_clock(rq);
6229
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6230 6231 6232
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
6233

L
Linus Torvalds 已提交
6234 6235 6236 6237
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6238 6239 6240
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6241 6242
	{
		.procname	= "sched_domain",
6243
		.mode		= 0555,
6244
	},
I
Ingo Molnar 已提交
6245
	{0, },
6246 6247 6248
};

static struct ctl_table sd_ctl_root[] = {
6249
	{
6250
		.ctl_name	= CTL_KERN,
6251
		.procname	= "kernel",
6252
		.mode		= 0555,
6253 6254
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6255
	{0, },
6256 6257 6258 6259 6260
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6261
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6262 6263 6264 6265

	return entry;
}

6266 6267
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6268
	struct ctl_table *entry;
6269

6270 6271 6272
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6273
	 * will always be set. In the lowest directory the names are
6274 6275 6276
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6277 6278
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6279 6280 6281
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6282 6283 6284 6285 6286

	kfree(*tablep);
	*tablep = NULL;
}

6287
static void
6288
set_table_entry(struct ctl_table *entry,
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6302
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6303

6304 6305 6306
	if (table == NULL)
		return NULL;

6307
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6308
		sizeof(long), 0644, proc_doulongvec_minmax);
6309
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6310
		sizeof(long), 0644, proc_doulongvec_minmax);
6311
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6312
		sizeof(int), 0644, proc_dointvec_minmax);
6313
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6314
		sizeof(int), 0644, proc_dointvec_minmax);
6315
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6316
		sizeof(int), 0644, proc_dointvec_minmax);
6317
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6318
		sizeof(int), 0644, proc_dointvec_minmax);
6319
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6320
		sizeof(int), 0644, proc_dointvec_minmax);
6321
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6322
		sizeof(int), 0644, proc_dointvec_minmax);
6323
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6324
		sizeof(int), 0644, proc_dointvec_minmax);
6325
	set_table_entry(&table[9], "cache_nice_tries",
6326 6327
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6328
	set_table_entry(&table[10], "flags", &sd->flags,
6329
		sizeof(int), 0644, proc_dointvec_minmax);
6330
	/* &table[11] is terminator */
6331 6332 6333 6334

	return table;
}

6335
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6336 6337 6338 6339 6340 6341 6342 6343 6344
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6345 6346
	if (table == NULL)
		return NULL;
6347 6348 6349 6350 6351

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6352
		entry->mode = 0555;
6353 6354 6355 6356 6357 6358 6359 6360
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6361
static void register_sched_domain_sysctl(void)
6362 6363 6364 6365 6366
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6367 6368 6369
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6370 6371 6372
	if (entry == NULL)
		return;

6373
	for_each_online_cpu(i) {
6374 6375
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6376
		entry->mode = 0555;
6377
		entry->child = sd_alloc_ctl_cpu_table(i);
6378
		entry++;
6379
	}
6380 6381

	WARN_ON(sd_sysctl_header);
6382 6383
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6384

6385
/* may be called multiple times per register */
6386 6387
static void unregister_sched_domain_sysctl(void)
{
6388 6389
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6390
	sd_sysctl_header = NULL;
6391 6392
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6393
}
6394
#else
6395 6396 6397 6398
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6399 6400 6401 6402
{
}
#endif

L
Linus Torvalds 已提交
6403 6404 6405 6406
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6407 6408
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6409 6410
{
	struct task_struct *p;
6411
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6412
	unsigned long flags;
6413
	struct rq *rq;
L
Linus Torvalds 已提交
6414 6415

	switch (action) {
6416

L
Linus Torvalds 已提交
6417
	case CPU_UP_PREPARE:
6418
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6419
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6420 6421 6422 6423 6424
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6425
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6426 6427 6428
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6429

L
Linus Torvalds 已提交
6430
	case CPU_ONLINE:
6431
	case CPU_ONLINE_FROZEN:
6432
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6433
		wake_up_process(cpu_rq(cpu)->migration_thread);
6434 6435 6436 6437 6438 6439 6440 6441 6442

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6443
		break;
6444

L
Linus Torvalds 已提交
6445 6446
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6447
	case CPU_UP_CANCELED_FROZEN:
6448 6449
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6450
		/* Unbind it from offline cpu so it can run. Fall thru. */
6451 6452
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6453 6454 6455
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6456

L
Linus Torvalds 已提交
6457
	case CPU_DEAD:
6458
	case CPU_DEAD_FROZEN:
6459
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6460 6461 6462 6463 6464
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6465
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6466
		update_rq_clock(rq);
6467
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6468
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6469 6470
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6471
		migrate_dead_tasks(cpu);
6472
		spin_unlock_irq(&rq->lock);
6473
		cpuset_unlock();
L
Linus Torvalds 已提交
6474 6475 6476
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6477 6478 6479 6480 6481
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6482 6483
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6484 6485
			struct migration_req *req;

L
Linus Torvalds 已提交
6486
			req = list_entry(rq->migration_queue.next,
6487
					 struct migration_req, list);
L
Linus Torvalds 已提交
6488 6489 6490 6491 6492
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6493

6494 6495
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6496 6497 6498 6499 6500 6501 6502 6503 6504
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6505 6506 6507 6508 6509 6510 6511 6512
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6513
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6514 6515 6516 6517
	.notifier_call = migration_call,
	.priority = 10
};

6518
void __init migration_init(void)
L
Linus Torvalds 已提交
6519 6520
{
	void *cpu = (void *)(long)smp_processor_id();
6521
	int err;
6522 6523

	/* Start one for the boot CPU: */
6524 6525
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6526 6527 6528 6529 6530 6531
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6532

6533
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6534

6535 6536
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6537
{
I
Ingo Molnar 已提交
6538
	struct sched_group *group = sd->groups;
6539
	char str[256];
L
Linus Torvalds 已提交
6540

6541
	cpulist_scnprintf(str, sizeof(str), sd->span);
6542
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6543 6544 6545 6546 6547 6548 6549 6550 6551

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6552 6553
	}

I
Ingo Molnar 已提交
6554 6555 6556 6557 6558 6559 6560 6561 6562 6563
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6564

I
Ingo Molnar 已提交
6565
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6566
	do {
I
Ingo Molnar 已提交
6567 6568 6569
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6570 6571 6572
			break;
		}

I
Ingo Molnar 已提交
6573 6574 6575 6576 6577 6578
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6579

I
Ingo Molnar 已提交
6580 6581 6582 6583 6584
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6585

6586
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6587 6588 6589 6590
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6591

6592
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6593

6594
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6595
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6596

I
Ingo Molnar 已提交
6597 6598 6599
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6600

6601
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6602
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6603

6604
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6605 6606 6607 6608
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6609

I
Ingo Molnar 已提交
6610 6611
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6612
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6613
	int level = 0;
L
Linus Torvalds 已提交
6614

I
Ingo Molnar 已提交
6615 6616 6617 6618
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6619

I
Ingo Molnar 已提交
6620 6621
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6622 6623 6624 6625 6626 6627
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6628
	for (;;) {
6629
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6630
			break;
L
Linus Torvalds 已提交
6631 6632
		level++;
		sd = sd->parent;
6633
		if (!sd)
I
Ingo Molnar 已提交
6634 6635
			break;
	}
6636
	kfree(groupmask);
L
Linus Torvalds 已提交
6637 6638
}
#else
6639
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6640 6641
#endif

6642
static int sd_degenerate(struct sched_domain *sd)
6643 6644 6645 6646 6647 6648 6649 6650
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6651 6652 6653
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6667 6668
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6687 6688 6689
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6690 6691 6692 6693 6694 6695 6696
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6707
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6708 6709
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6710
		}
G
Gregory Haskins 已提交
6711

6712 6713 6714
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6715 6716 6717 6718 6719 6720 6721
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6722
	cpu_set(rq->cpu, rd->span);
6723 6724
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);
6725

I
Ingo Molnar 已提交
6726
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6727 6728
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6729
	}
G
Gregory Haskins 已提交
6730 6731 6732 6733

	spin_unlock_irqrestore(&rq->lock, flags);
}

6734
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6735 6736 6737
{
	memset(rd, 0, sizeof(*rd));

6738 6739
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6740 6741 6742 6743
}

static void init_defrootdomain(void)
{
6744
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6745 6746 6747
	atomic_set(&def_root_domain.refcount, 1);
}

6748
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6749 6750 6751 6752 6753 6754 6755
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6756
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6757 6758 6759 6760

	return rd;
}

L
Linus Torvalds 已提交
6761
/*
I
Ingo Molnar 已提交
6762
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6763 6764
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6765 6766
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6767
{
6768
	struct rq *rq = cpu_rq(cpu);
6769 6770 6771 6772 6773 6774 6775
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6776
		if (sd_parent_degenerate(tmp, parent)) {
6777
			tmp->parent = parent->parent;
6778 6779 6780
			if (parent->parent)
				parent->parent->child = tmp;
		}
6781 6782
	}

6783
	if (sd && sd_degenerate(sd)) {
6784
		sd = sd->parent;
6785 6786 6787
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6788 6789 6790

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6791
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6792
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6793 6794 6795
}

/* cpus with isolated domains */
6796
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6811
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6812 6813

/*
6814 6815 6816 6817
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6818 6819 6820 6821 6822
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6823
static void
6824
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6825
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6826 6827 6828
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6829 6830 6831 6832
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6833 6834 6835
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6836
		struct sched_group *sg;
6837
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6838 6839
		int j;

6840
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6841 6842
			continue;

6843
		cpus_clear(sg->cpumask);
6844
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6845

6846 6847
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6848 6849
				continue;

6850
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6862
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6863

6864
#ifdef CONFIG_NUMA
6865

6866 6867 6868 6869 6870
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6871
 * Find the next node to include in a given scheduling domain. Simply
6872 6873 6874 6875
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6876
static int find_next_best_node(int node, nodemask_t *used_nodes)
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6890
		if (node_isset(n, *used_nodes))
6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6902
	node_set(best_node, *used_nodes);
6903 6904 6905 6906 6907 6908
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6909
 * @span: resulting cpumask
6910
 *
I
Ingo Molnar 已提交
6911
 * Given a node, construct a good cpumask for its sched_domain to span. It
6912 6913 6914
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6915
static void sched_domain_node_span(int node, cpumask_t *span)
6916
{
6917 6918
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6919
	int i;
6920

6921
	cpus_clear(*span);
6922
	nodes_clear(used_nodes);
6923

6924
	cpus_or(*span, *span, *nodemask);
6925
	node_set(node, used_nodes);
6926 6927

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6928
		int next_node = find_next_best_node(node, &used_nodes);
6929

6930
		node_to_cpumask_ptr_next(nodemask, next_node);
6931
		cpus_or(*span, *span, *nodemask);
6932 6933 6934 6935
	}
}
#endif

6936
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6937

6938
/*
6939
 * SMT sched-domains:
6940
 */
L
Linus Torvalds 已提交
6941 6942
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6943
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6944

I
Ingo Molnar 已提交
6945
static int
6946 6947
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6948
{
6949 6950
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6951 6952 6953 6954
	return cpu;
}
#endif

6955 6956 6957
/*
 * multi-core sched-domains:
 */
6958 6959
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6960
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6961 6962 6963
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6964
static int
6965 6966
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6967
{
6968
	int group;
6969 6970 6971 6972

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6973 6974 6975
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6976 6977
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6978
static int
6979 6980
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6981
{
6982 6983
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6984 6985 6986 6987
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6988
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6989
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6990

I
Ingo Molnar 已提交
6991
static int
6992 6993
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6994
{
6995
	int group;
6996
#ifdef CONFIG_SCHED_MC
6997 6998 6999
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7000
#elif defined(CONFIG_SCHED_SMT)
7001 7002 7003
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7004
#else
7005
	group = cpu;
L
Linus Torvalds 已提交
7006
#endif
7007 7008 7009
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7010 7011 7012 7013
}

#ifdef CONFIG_NUMA
/*
7014 7015 7016
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7017
 */
7018
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7019
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7020

7021
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7022
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7023

7024
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7025
				 struct sched_group **sg, cpumask_t *nodemask)
7026
{
7027 7028
	int group;

7029 7030 7031
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7032 7033 7034 7035

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7036
}
7037

7038 7039 7040 7041 7042 7043 7044
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7045 7046 7047
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
7048

7049 7050 7051 7052 7053 7054 7055 7056
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7057

7058 7059 7060 7061
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7062
}
L
Linus Torvalds 已提交
7063 7064
#endif

7065
#ifdef CONFIG_NUMA
7066
/* Free memory allocated for various sched_group structures */
7067
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7068
{
7069
	int cpu, i;
7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7081 7082 7083
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7100
#else
7101
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7102 7103 7104
{
}
#endif
7105

7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7132 7133
	sd->groups->__cpu_power = 0;

7134 7135 7136 7137 7138 7139 7140 7141 7142 7143
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7144
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7145 7146 7147 7148 7149 7150 7151 7152
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7153
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7154 7155 7156 7157
		group = group->next;
	} while (group != child->groups);
}

7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7169
	sd->level = SD_LV_##type;				\
7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
	default_relax_domain_level = simple_strtoul(str, NULL, 0);
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7248
/*
7249 7250
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7251
 */
7252 7253
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7254 7255
{
	int i;
G
Gregory Haskins 已提交
7256
	struct root_domain *rd;
7257 7258
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7259 7260
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7261
	int sd_allnodes = 0;
7262 7263 7264 7265

	/*
	 * Allocate the per-node list of sched groups
	 */
7266
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7267
				    GFP_KERNEL);
7268 7269
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7270
		return -ENOMEM;
7271 7272
	}
#endif
L
Linus Torvalds 已提交
7273

7274
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7275 7276
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7277 7278 7279
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7280 7281 7282
		return -ENOMEM;
	}

7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7302
	/*
7303
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7304
	 */
7305
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7306
		struct sched_domain *sd = NULL, *p;
7307
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7308

7309 7310
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7311 7312

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7313
		if (cpus_weight(*cpu_map) >
7314
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7315
			sd = &per_cpu(allnodes_domains, i);
7316
			SD_INIT(sd, ALLNODES);
7317
			set_domain_attribute(sd, attr);
7318
			sd->span = *cpu_map;
7319
			sd->first_cpu = first_cpu(sd->span);
7320
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7321
			p = sd;
7322
			sd_allnodes = 1;
7323 7324 7325
		} else
			p = NULL;

L
Linus Torvalds 已提交
7326
		sd = &per_cpu(node_domains, i);
7327
		SD_INIT(sd, NODE);
7328
		set_domain_attribute(sd, attr);
7329
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7330
		sd->first_cpu = first_cpu(sd->span);
7331
		sd->parent = p;
7332 7333
		if (p)
			p->child = sd;
7334
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7335 7336 7337 7338
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7339
		SD_INIT(sd, CPU);
7340
		set_domain_attribute(sd, attr);
7341
		sd->span = *nodemask;
7342
		sd->first_cpu = first_cpu(sd->span);
L
Linus Torvalds 已提交
7343
		sd->parent = p;
7344 7345
		if (p)
			p->child = sd;
7346
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7347

7348 7349 7350
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7351
		SD_INIT(sd, MC);
7352
		set_domain_attribute(sd, attr);
7353
		sd->span = cpu_coregroup_map(i);
7354
		sd->first_cpu = first_cpu(sd->span);
7355 7356
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7357
		p->child = sd;
7358
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7359 7360
#endif

L
Linus Torvalds 已提交
7361 7362 7363
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7364
		SD_INIT(sd, SIBLING);
7365
		set_domain_attribute(sd, attr);
7366
		sd->span = per_cpu(cpu_sibling_map, i);
7367
		sd->first_cpu = first_cpu(sd->span);
7368
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7369
		sd->parent = p;
7370
		p->child = sd;
7371
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7372 7373 7374 7375 7376
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7377
	for_each_cpu_mask(i, *cpu_map) {
7378 7379 7380 7381 7382 7383
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7384 7385
			continue;

I
Ingo Molnar 已提交
7386
		init_sched_build_groups(this_sibling_map, cpu_map,
7387 7388
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7389 7390 7391
	}
#endif

7392 7393 7394
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7395 7396 7397 7398 7399 7400
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7401
			continue;
7402

I
Ingo Molnar 已提交
7403
		init_sched_build_groups(this_core_map, cpu_map,
7404 7405
					&cpu_to_core_group,
					send_covered, tmpmask);
7406 7407 7408
	}
#endif

L
Linus Torvalds 已提交
7409 7410
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7411 7412
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7413

7414 7415 7416
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7417 7418
			continue;

7419 7420 7421
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7422 7423 7424 7425
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7426 7427 7428 7429 7430 7431 7432
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7433 7434 7435 7436

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7437 7438 7439
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7440 7441
		int j;

7442 7443 7444 7445 7446
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7447
			sched_group_nodes[i] = NULL;
7448
			continue;
7449
		}
7450

7451
		sched_domain_node_span(i, domainspan);
7452
		cpus_and(*domainspan, *domainspan, *cpu_map);
7453

7454
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7455 7456 7457 7458 7459
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7460
		sched_group_nodes[i] = sg;
7461
		for_each_cpu_mask(j, *nodemask) {
7462
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7463

7464 7465 7466
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7467
		sg->__cpu_power = 0;
7468
		sg->cpumask = *nodemask;
7469
		sg->next = sg;
7470
		cpus_or(*covered, *covered, *nodemask);
7471 7472 7473
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7474
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7475
			int n = (i + j) % MAX_NUMNODES;
7476
			node_to_cpumask_ptr(pnodemask, n);
7477

7478 7479 7480 7481
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7482 7483
				break;

7484 7485
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7486 7487
				continue;

7488 7489
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7490 7491 7492
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7493
				goto error;
7494
			}
7495
			sg->__cpu_power = 0;
7496
			sg->cpumask = *tmpmask;
7497
			sg->next = prev->next;
7498
			cpus_or(*covered, *covered, *tmpmask);
7499 7500 7501 7502
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7503 7504 7505
#endif

	/* Calculate CPU power for physical packages and nodes */
7506
#ifdef CONFIG_SCHED_SMT
7507
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7508 7509
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7510
		init_sched_groups_power(i, sd);
7511
	}
L
Linus Torvalds 已提交
7512
#endif
7513
#ifdef CONFIG_SCHED_MC
7514
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7515 7516
		struct sched_domain *sd = &per_cpu(core_domains, i);

7517
		init_sched_groups_power(i, sd);
7518 7519
	}
#endif
7520

7521
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7522 7523
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7524
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7525 7526
	}

7527
#ifdef CONFIG_NUMA
7528 7529
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7530

7531 7532
	if (sd_allnodes) {
		struct sched_group *sg;
7533

7534 7535
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7536 7537
		init_numa_sched_groups_power(sg);
	}
7538 7539
#endif

L
Linus Torvalds 已提交
7540
	/* Attach the domains */
7541
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7542 7543 7544
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7545 7546
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7547 7548 7549
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7550
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7551
	}
7552

7553
	SCHED_CPUMASK_FREE((void *)allmasks);
7554 7555
	return 0;

7556
#ifdef CONFIG_NUMA
7557
error:
7558 7559
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7560
	return -ENOMEM;
7561
#endif
L
Linus Torvalds 已提交
7562
}
P
Paul Jackson 已提交
7563

7564 7565 7566 7567 7568
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7569 7570
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
7571 7572
static struct sched_domain_attr *dattr_cur;	/* attribues of custom domains
						   in 'doms_cur' */
P
Paul Jackson 已提交
7573 7574 7575 7576 7577 7578 7579 7580

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7581 7582 7583 7584
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7585
/*
I
Ingo Molnar 已提交
7586
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7587 7588
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7589
 */
7590
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7591
{
7592 7593
	int err;

7594
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7595 7596 7597 7598 7599
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7600
	dattr_cur = NULL;
7601
	err = build_sched_domains(doms_cur);
7602
	register_sched_domain_sysctl();
7603 7604

	return err;
7605 7606
}

7607 7608
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7609
{
7610
	free_sched_groups(cpu_map, tmpmask);
7611
}
L
Linus Torvalds 已提交
7612

7613 7614 7615 7616
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7617
static void detach_destroy_domains(const cpumask_t *cpu_map)
7618
{
7619
	cpumask_t tmpmask;
7620 7621
	int i;

7622 7623
	unregister_sched_domain_sysctl();

7624
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7625
		cpu_attach_domain(NULL, &def_root_domain, i);
7626
	synchronize_sched();
7627
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7628 7629
}

7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7646 7647
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7648
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7649 7650 7651 7652
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7653 7654 7655
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7656 7657 7658
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7659 7660
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7661 7662 7663 7664 7665 7666
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7667 7668
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7669 7670 7671
{
	int i, j;

7672
	mutex_lock(&sched_domains_mutex);
7673

7674 7675 7676
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7677 7678 7679 7680
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7681
		dattr_new = NULL;
P
Paul Jackson 已提交
7682 7683 7684 7685 7686
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7687 7688
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7700 7701
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7702 7703 7704
				goto match2;
		}
		/* no match - add a new doms_new */
7705 7706
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7707 7708 7709 7710 7711 7712 7713
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7714
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7715
	doms_cur = doms_new;
7716
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7717
	ndoms_cur = ndoms_new;
7718 7719

	register_sched_domain_sysctl();
7720

7721
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7722 7723
}

7724
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7725
int arch_reinit_sched_domains(void)
7726 7727 7728
{
	int err;

7729
	get_online_cpus();
7730
	mutex_lock(&sched_domains_mutex);
7731 7732
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
7733
	mutex_unlock(&sched_domains_mutex);
7734
	put_online_cpus();
7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7761 7762
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7763 7764 7765
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7766 7767
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7768 7769 7770 7771 7772 7773 7774
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7775 7776
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7777 7778 7779
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7800 7801
#endif

L
Linus Torvalds 已提交
7802
/*
I
Ingo Molnar 已提交
7803
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7804
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7805
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7806 7807 7808 7809 7810 7811 7812
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7813
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7814
	case CPU_DOWN_PREPARE:
7815
	case CPU_DOWN_PREPARE_FROZEN:
7816
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7817 7818 7819
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7820
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7821
	case CPU_DOWN_FAILED:
7822
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7823
	case CPU_ONLINE:
7824
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7825
	case CPU_DEAD:
7826
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7827 7828 7829 7830 7831 7832 7833 7834 7835
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7836
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7837 7838 7839 7840 7841 7842

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7843 7844
	cpumask_t non_isolated_cpus;

7845 7846 7847 7848 7849
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7850
	get_online_cpus();
7851
	mutex_lock(&sched_domains_mutex);
7852
	arch_init_sched_domains(&cpu_online_map);
7853
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7854 7855
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7856
	mutex_unlock(&sched_domains_mutex);
7857
	put_online_cpus();
L
Linus Torvalds 已提交
7858 7859
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7860
	init_hrtick();
7861 7862

	/* Move init over to a non-isolated CPU */
7863
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7864
		BUG();
I
Ingo Molnar 已提交
7865
	sched_init_granularity();
L
Linus Torvalds 已提交
7866 7867 7868 7869
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7870
	sched_init_granularity();
L
Linus Torvalds 已提交
7871 7872 7873 7874 7875 7876 7877 7878 7879 7880
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7881
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7882 7883
{
	cfs_rq->tasks_timeline = RB_ROOT;
7884
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7885 7886 7887
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7888
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7889 7890
}

P
Peter Zijlstra 已提交
7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7904
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7905 7906
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7907 7908 7909 7910 7911 7912 7913
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7914 7915
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7916

7917
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7918
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7919 7920
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7921 7922
}

P
Peter Zijlstra 已提交
7923
#ifdef CONFIG_FAIR_GROUP_SCHED
7924 7925 7926
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7927
{
7928
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7929 7930 7931 7932 7933 7934 7935
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7936 7937 7938 7939
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7940 7941 7942 7943 7944
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7945 7946
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7947
	se->load.inv_weight = 0;
7948
	se->parent = parent;
P
Peter Zijlstra 已提交
7949
}
7950
#endif
P
Peter Zijlstra 已提交
7951

7952
#ifdef CONFIG_RT_GROUP_SCHED
7953 7954 7955
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7956
{
7957 7958
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7959 7960 7961 7962
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7963
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7964 7965 7966 7967
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7968 7969 7970
	if (!rt_se)
		return;

7971 7972 7973 7974 7975
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7976 7977
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
7978
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7979 7980 7981 7982
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7983 7984
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7985
	int i, j;
7986 7987 7988 7989 7990 7991 7992
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7993 7994 7995
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7996 7997 7998 7999 8000 8001
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8002
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8003 8004 8005 8006 8007 8008 8009

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8010 8011 8012 8013 8014 8015 8016 8017

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
8018 8019 8020 8021 8022 8023
#endif
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8024 8025 8026 8027 8028 8029 8030 8031 8032
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
8033 8034
#endif
	}
I
Ingo Molnar 已提交
8035

G
Gregory Haskins 已提交
8036
#ifdef CONFIG_SMP
8037
	init_aggregate();
G
Gregory Haskins 已提交
8038 8039 8040
	init_defrootdomain();
#endif

8041 8042 8043 8044 8045 8046
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8047 8048 8049 8050
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
#endif
8051 8052
#endif

8053
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8054
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8055 8056 8057 8058 8059 8060 8061
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
#endif
P
Peter Zijlstra 已提交
8062 8063
#endif

8064
	for_each_possible_cpu(i) {
8065
		struct rq *rq;
L
Linus Torvalds 已提交
8066 8067 8068

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
8069
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
8070
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8071
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8072
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8073
#ifdef CONFIG_FAIR_GROUP_SCHED
8074
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8075
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8096
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8097
#elif defined CONFIG_USER_SCHED
8098 8099
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8111
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8112
				&per_cpu(init_cfs_rq, i),
8113 8114
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8115

8116
#endif
D
Dhaval Giani 已提交
8117 8118 8119
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8120
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8121
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8122
#ifdef CONFIG_CGROUP_SCHED
8123
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8124
#elif defined CONFIG_USER_SCHED
8125
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8126
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8127
				&per_cpu(init_rt_rq, i),
8128 8129
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8130
#endif
I
Ingo Molnar 已提交
8131
#endif
L
Linus Torvalds 已提交
8132

I
Ingo Molnar 已提交
8133 8134
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8135
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8136
		rq->sd = NULL;
G
Gregory Haskins 已提交
8137
		rq->rd = NULL;
L
Linus Torvalds 已提交
8138
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8139
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8140
		rq->push_cpu = 0;
8141
		rq->cpu = i;
L
Linus Torvalds 已提交
8142 8143
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8144
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8145
#endif
P
Peter Zijlstra 已提交
8146
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8147 8148 8149
		atomic_set(&rq->nr_iowait, 0);
	}

8150
	set_load_weight(&init_task);
8151

8152 8153 8154 8155
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8156 8157 8158 8159
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

8160 8161 8162 8163
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8177 8178 8179 8180
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8181 8182

	scheduler_running = 1;
L
Linus Torvalds 已提交
8183 8184 8185 8186 8187
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8188
#ifdef in_atomic
L
Linus Torvalds 已提交
8189 8190 8191 8192 8193 8194 8195
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8196
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8197 8198 8199
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8200
		debug_show_held_locks(current);
8201 8202
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8203 8204 8205 8206 8207 8208 8209 8210
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8211 8212 8213
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8214

8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8226 8227
void normalize_rt_tasks(void)
{
8228
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8229
	unsigned long flags;
8230
	struct rq *rq;
L
Linus Torvalds 已提交
8231

8232
	read_lock_irqsave(&tasklist_lock, flags);
8233
	do_each_thread(g, p) {
8234 8235 8236 8237 8238 8239
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8240 8241
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8242 8243 8244
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8245
#endif
I
Ingo Molnar 已提交
8246 8247 8248 8249 8250 8251 8252 8253

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8254
			continue;
I
Ingo Molnar 已提交
8255
		}
L
Linus Torvalds 已提交
8256

8257
		spin_lock(&p->pi_lock);
8258
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8259

8260
		normalize_task(rq, p);
8261

8262
		__task_rq_unlock(rq);
8263
		spin_unlock(&p->pi_lock);
8264 8265
	} while_each_thread(g, p);

8266
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8267 8268 8269
}

#endif /* CONFIG_MAGIC_SYSRQ */
8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8288
struct task_struct *curr_task(int cpu)
8289 8290 8291 8292 8293 8294 8295 8296 8297 8298
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8299 8300
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8301 8302 8303 8304 8305 8306 8307
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8308
void set_curr_task(int cpu, struct task_struct *p)
8309 8310 8311 8312 8313
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8314

8315 8316
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8331 8332
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8333 8334
{
	struct cfs_rq *cfs_rq;
8335
	struct sched_entity *se, *parent_se;
8336
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8337 8338
	int i;

8339
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8340 8341
	if (!tg->cfs_rq)
		goto err;
8342
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8343 8344
	if (!tg->se)
		goto err;
8345 8346

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8347 8348

	for_each_possible_cpu(i) {
8349
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8350

P
Peter Zijlstra 已提交
8351 8352
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8353 8354 8355
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8356 8357
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8358 8359 8360
		if (!se)
			goto err;

8361 8362
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8386 8387
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8399 8400 8401
#endif

#ifdef CONFIG_RT_GROUP_SCHED
8402 8403 8404 8405
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8406 8407
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8419 8420
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8421 8422
{
	struct rt_rq *rt_rq;
8423
	struct sched_rt_entity *rt_se, *parent_se;
8424 8425 8426
	struct rq *rq;
	int i;

8427
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8428 8429
	if (!tg->rt_rq)
		goto err;
8430
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8431 8432 8433
	if (!tg->rt_se)
		goto err;

8434 8435
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8436 8437 8438 8439

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8440 8441 8442 8443
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8444

P
Peter Zijlstra 已提交
8445 8446 8447 8448
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8449

8450 8451
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8452 8453
	}

8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8475 8476
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

8490
#ifdef CONFIG_GROUP_SCHED
8491 8492 8493 8494 8495 8496 8497 8498
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8499
struct task_group *sched_create_group(struct task_group *parent)
8500 8501 8502 8503 8504 8505 8506 8507 8508
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8509
	if (!alloc_fair_sched_group(tg, parent))
8510 8511
		goto err;

8512
	if (!alloc_rt_sched_group(tg, parent))
8513 8514
		goto err;

8515
	spin_lock_irqsave(&task_group_lock, flags);
8516
	for_each_possible_cpu(i) {
8517 8518
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8519
	}
P
Peter Zijlstra 已提交
8520
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8521 8522 8523 8524 8525 8526

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8527
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8528

8529
	return tg;
S
Srivatsa Vaddagiri 已提交
8530 8531

err:
P
Peter Zijlstra 已提交
8532
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8533 8534 8535
	return ERR_PTR(-ENOMEM);
}

8536
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8537
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8538 8539
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8540
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8541 8542
}

8543
/* Destroy runqueue etc associated with a task group */
8544
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8545
{
8546
	unsigned long flags;
8547
	int i;
S
Srivatsa Vaddagiri 已提交
8548

8549
	spin_lock_irqsave(&task_group_lock, flags);
8550
	for_each_possible_cpu(i) {
8551 8552
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8553
	}
P
Peter Zijlstra 已提交
8554
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8555
	list_del_rcu(&tg->siblings);
8556
	spin_unlock_irqrestore(&task_group_lock, flags);
8557 8558

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8559
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8560 8561
}

8562
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8563 8564 8565
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8566 8567
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8568 8569 8570 8571 8572 8573 8574 8575 8576
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8577
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8578 8579
	on_rq = tsk->se.on_rq;

8580
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8581
		dequeue_task(rq, tsk, 0);
8582 8583
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8584

P
Peter Zijlstra 已提交
8585
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8586

P
Peter Zijlstra 已提交
8587 8588 8589 8590 8591
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8592 8593 8594
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8595
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8596 8597 8598

	task_rq_unlock(rq, &flags);
}
8599
#endif
S
Srivatsa Vaddagiri 已提交
8600

8601
#ifdef CONFIG_FAIR_GROUP_SCHED
8602
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8603 8604 8605 8606 8607
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8608
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8609 8610 8611
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8612
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8613

8614
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8615
		enqueue_entity(cfs_rq, se, 0);
8616
}
8617

8618 8619 8620 8621 8622 8623 8624 8625 8626
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8627 8628
}

8629 8630
static DEFINE_MUTEX(shares_mutex);

8631
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8632 8633
{
	int i;
8634
	unsigned long flags;
8635

8636 8637 8638 8639 8640 8641
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8642 8643
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8644 8645
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8646

8647
	mutex_lock(&shares_mutex);
8648
	if (tg->shares == shares)
8649
		goto done;
S
Srivatsa Vaddagiri 已提交
8650

8651
	spin_lock_irqsave(&task_group_lock, flags);
8652 8653
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8654
	list_del_rcu(&tg->siblings);
8655
	spin_unlock_irqrestore(&task_group_lock, flags);
8656 8657 8658 8659 8660 8661 8662 8663

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8664
	tg->shares = shares;
8665 8666 8667 8668 8669
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8670
		set_se_shares(tg->se[i], shares);
8671
	}
S
Srivatsa Vaddagiri 已提交
8672

8673 8674 8675 8676
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8677
	spin_lock_irqsave(&task_group_lock, flags);
8678 8679
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8680
	list_add_rcu(&tg->siblings, &tg->parent->children);
8681
	spin_unlock_irqrestore(&task_group_lock, flags);
8682
done:
8683
	mutex_unlock(&shares_mutex);
8684
	return 0;
S
Srivatsa Vaddagiri 已提交
8685 8686
}

8687 8688 8689 8690
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8691
#endif
8692

8693
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8694
/*
P
Peter Zijlstra 已提交
8695
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8696
 */
P
Peter Zijlstra 已提交
8697 8698 8699 8700 8701 8702 8703
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8704
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8705 8706
}

8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
	struct task_group *tgi, *parent = tg->parent;
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

	return total + to_ratio(period, runtime) <
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8739
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8740 8741 8742
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8743
	unsigned long global_ratio =
8744
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8745 8746

	rcu_read_lock();
P
Peter Zijlstra 已提交
8747 8748 8749
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8750

8751 8752
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8753 8754
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8755

P
Peter Zijlstra 已提交
8756
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8757
}
8758
#endif
P
Peter Zijlstra 已提交
8759

8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8771 8772
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8773
{
P
Peter Zijlstra 已提交
8774
	int i, err = 0;
P
Peter Zijlstra 已提交
8775 8776

	mutex_lock(&rt_constraints_mutex);
8777
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8778
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8779 8780 8781
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8782 8783 8784 8785
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8786 8787

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8788 8789
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8790 8791 8792 8793 8794 8795 8796 8797 8798

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8799
 unlock:
8800
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8801 8802 8803
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8804 8805
}

8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8818 8819 8820 8821
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8822
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8823 8824
		return -1;

8825
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8826 8827 8828
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(NULL, 1, 0))
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
#else
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8876 8877
	return 0;
}
8878
#endif
8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8909

8910
#ifdef CONFIG_CGROUP_SCHED
8911 8912

/* return corresponding task_group object of a cgroup */
8913
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8914
{
8915 8916
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8917 8918 8919
}

static struct cgroup_subsys_state *
8920
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8921
{
8922
	struct task_group *tg, *parent;
8923

8924
	if (!cgrp->parent) {
8925
		/* This is early initialization for the top cgroup */
8926
		init_task_group.css.cgroup = cgrp;
8927 8928 8929
		return &init_task_group.css;
	}

8930 8931
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8932 8933 8934 8935
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8936
	tg->css.cgroup = cgrp;
8937 8938 8939 8940

	return &tg->css;
}

I
Ingo Molnar 已提交
8941 8942
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8943
{
8944
	struct task_group *tg = cgroup_tg(cgrp);
8945 8946 8947 8948

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8949 8950 8951
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8952
{
8953 8954
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8955
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8956 8957
		return -EINVAL;
#else
8958 8959 8960
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8961
#endif
8962 8963 8964 8965 8966

	return 0;
}

static void
8967
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8968 8969 8970 8971 8972
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8973
#ifdef CONFIG_FAIR_GROUP_SCHED
8974
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8975
				u64 shareval)
8976
{
8977
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8978 8979
}

8980
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8981
{
8982
	struct task_group *tg = cgroup_tg(cgrp);
8983 8984 8985

	return (u64) tg->shares;
}
8986
#endif
8987

8988
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8989
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8990
				s64 val)
P
Peter Zijlstra 已提交
8991
{
8992
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8993 8994
}

8995
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8996
{
8997
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8998
}
8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9010
#endif
P
Peter Zijlstra 已提交
9011

9012
static struct cftype cpu_files[] = {
9013
#ifdef CONFIG_FAIR_GROUP_SCHED
9014 9015
	{
		.name = "shares",
9016 9017
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9018
	},
9019 9020
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9021
	{
P
Peter Zijlstra 已提交
9022
		.name = "rt_runtime_us",
9023 9024
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9025
	},
9026 9027
	{
		.name = "rt_period_us",
9028 9029
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9030
	},
9031
#endif
9032 9033 9034 9035
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9036
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9037 9038 9039
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9040 9041 9042 9043 9044 9045 9046
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9047 9048 9049
	.early_init	= 1,
};

9050
#endif	/* CONFIG_CGROUP_SCHED */
9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9071
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9072
{
9073
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9086
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9103
static void
9104
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9105
{
9106
	struct cpuacct *ca = cgroup_ca(cgrp);
9107 9108 9109 9110 9111 9112

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9113
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9114
{
9115
	struct cpuacct *ca = cgroup_ca(cgrp);
9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9157 9158 9159
static struct cftype files[] = {
	{
		.name = "usage",
9160 9161
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9162 9163 9164
	},
};

9165
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9166
{
9167
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */