sched.c 214.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76

77 78
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
98
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
99
 */
100
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
101

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

139 140
static inline int rt_policy(int policy)
{
141
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 143 144 145 146 147 148 149 150
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
151
/*
I
Ingo Molnar 已提交
152
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
153
 */
I
Ingo Molnar 已提交
154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156 157
	struct list_head xqueue[MAX_RT_PRIO]; /* exclusive queue */
	struct list_head squeue[MAX_RT_PRIO];  /* shared queue */
I
Ingo Molnar 已提交
158 159
};

160
struct rt_bandwidth {
I
Ingo Molnar 已提交
161 162 163 164 165
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
199 200
	spin_lock_init(&rt_b->rt_runtime_lock);

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

238 239 240 241 242 243
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

244
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
245

246 247
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
248 249
struct cfs_rq;

P
Peter Zijlstra 已提交
250 251
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
252
/* task group related information */
253
struct task_group {
254
#ifdef CONFIG_CGROUP_SCHED
255 256
	struct cgroup_subsys_state css;
#endif
257 258

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
259 260 261 262 263
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
264 265 266 267 268 269
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

270
	struct rt_bandwidth rt_bandwidth;
271
#endif
272

273
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
274
	struct list_head list;
P
Peter Zijlstra 已提交
275 276 277 278

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
279 280
};

D
Dhaval Giani 已提交
281
#ifdef CONFIG_USER_SCHED
282 283 284 285 286 287 288 289

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

290
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
291 292 293 294
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295
#endif /* CONFIG_FAIR_GROUP_SCHED */
296 297 298 299

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 301
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
302
#define root_task_group init_task_group
303
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
304

305
/* task_group_lock serializes add/remove of task groups and also changes to
306 307
 * a task group's cpu shares.
 */
308
static DEFINE_SPINLOCK(task_group_lock);
309

310 311 312
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
313
#else /* !CONFIG_USER_SCHED */
314
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
315
#endif /* CONFIG_USER_SCHED */
316

317 318 319 320 321
/*
 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
322
#define MIN_SHARES	2
323
#define MAX_SHARES	(ULONG_MAX - 1)
324

325 326 327
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
328
/* Default task group.
I
Ingo Molnar 已提交
329
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
330
 */
331
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
332 333

/* return group to which a task belongs */
334
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
335
{
336
	struct task_group *tg;
337

338
#ifdef CONFIG_USER_SCHED
339
	tg = p->user->tg;
340
#elif defined(CONFIG_CGROUP_SCHED)
341 342
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
343
#else
I
Ingo Molnar 已提交
344
	tg = &init_task_group;
345
#endif
346
	return tg;
S
Srivatsa Vaddagiri 已提交
347 348 349
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
350
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
351
{
352
#ifdef CONFIG_FAIR_GROUP_SCHED
353 354
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
355
#endif
P
Peter Zijlstra 已提交
356

357
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
358 359
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
360
#endif
S
Srivatsa Vaddagiri 已提交
361 362 363 364
}

#else

P
Peter Zijlstra 已提交
365
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
366

367
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
368

I
Ingo Molnar 已提交
369 370 371 372 373 374
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
375
	u64 min_vruntime;
I
Ingo Molnar 已提交
376 377 378

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
379 380 381 382 383 384

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
385 386
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
387
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
388 389 390

	unsigned long nr_spread_over;

391
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
392 393
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
394 395
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
396 397 398 399 400 401
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
402 403
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
404 405
#endif
};
L
Linus Torvalds 已提交
406

I
Ingo Molnar 已提交
407 408 409
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
410
	unsigned long rt_nr_running;
411
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
412 413
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
414
#ifdef CONFIG_SMP
415
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
416
	int overloaded;
P
Peter Zijlstra 已提交
417
#endif
P
Peter Zijlstra 已提交
418
	int rt_throttled;
P
Peter Zijlstra 已提交
419
	u64 rt_time;
P
Peter Zijlstra 已提交
420
	u64 rt_runtime;
I
Ingo Molnar 已提交
421
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
422
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
423

424
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
425 426
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
427 428 429 430 431
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
432 433
};

G
Gregory Haskins 已提交
434 435 436 437
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
438 439
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
440 441 442 443 444 445 446 447
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
448

I
Ingo Molnar 已提交
449
	/*
450 451 452 453
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
454
	atomic_t rto_count;
455 456 457
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
458 459
};

460 461 462 463
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
464 465 466 467
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
468 469 470 471 472 473 474
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
475
struct rq {
476 477
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
478 479 480 481 482 483

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
484 485
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
486
	unsigned char idle_at_tick;
487
#ifdef CONFIG_NO_HZ
488
	unsigned long last_tick_seen;
489 490
	unsigned char in_nohz_recently;
#endif
491 492
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
493 494 495 496
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
497 498
	struct rt_rq rt;

I
Ingo Molnar 已提交
499
#ifdef CONFIG_FAIR_GROUP_SCHED
500 501
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
502 503
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
504
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
505 506 507 508 509 510 511 512 513 514
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

515
	struct task_struct *curr, *idle;
516
	unsigned long next_balance;
L
Linus Torvalds 已提交
517
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
518

519
	u64 clock;
I
Ingo Molnar 已提交
520

L
Linus Torvalds 已提交
521 522 523
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
524
	struct root_domain *rd;
L
Linus Torvalds 已提交
525 526 527 528 529
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
530 531
	/* cpu of this runqueue: */
	int cpu;
532
	int online;
L
Linus Torvalds 已提交
533

534
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
535 536 537
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
538 539 540 541 542 543
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
544 545 546 547 548
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
549 550 551 552
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
553 554

	/* schedule() stats */
555 556 557
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
558 559

	/* try_to_wake_up() stats */
560 561
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
562 563

	/* BKL stats */
564
	unsigned int bkl_count;
L
Linus Torvalds 已提交
565
#endif
566
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
567 568
};

569
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
570

I
Ingo Molnar 已提交
571 572 573 574 575
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

576 577 578 579 580 581 582 583 584
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
585 586
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
587
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
588 589 590 591
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
592 593
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
594 595 596 597 598 599

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

600 601 602 603 604
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
605 606 607 608 609 610 611 612 613 614 615 616
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
617 618 619 620

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
621
enum {
P
Peter Zijlstra 已提交
622
#include "sched_features.h"
I
Ingo Molnar 已提交
623 624
};

P
Peter Zijlstra 已提交
625 626 627 628 629
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
630
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
631 632 633 634 635 636 637 638 639
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

640
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
641 642 643 644 645 646
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

647
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
675
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
705
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
748

749 750 751 752 753 754
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
755
/*
P
Peter Zijlstra 已提交
756
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
757 758
 * default: 1s
 */
P
Peter Zijlstra 已提交
759
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
760

761 762
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
763 764 765 766 767
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
768

769 770 771 772 773 774 775 776 777 778 779 780
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
781

782
unsigned long long time_sync_thresh = 100000;
783 784 785 786

static DEFINE_PER_CPU(unsigned long long, time_offset);
static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);

787
/*
788 789 790 791
 * Global lock which we take every now and then to synchronize
 * the CPUs time. This method is not warp-safe, but it's good
 * enough to synchronize slowly diverging time sources and thus
 * it's good enough for tracing:
792
 */
793 794 795
static DEFINE_SPINLOCK(time_sync_lock);
static unsigned long long prev_global_time;

I
Ingo Molnar 已提交
796
static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
797
{
I
Ingo Molnar 已提交
798 799 800 801 802 803
	/*
	 * We want this inlined, to not get tracer function calls
	 * in this critical section:
	 */
	spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
	__raw_spin_lock(&time_sync_lock.raw_lock);
804 805 806 807 808 809 810 811

	if (time < prev_global_time) {
		per_cpu(time_offset, cpu) += prev_global_time - time;
		time = prev_global_time;
	} else {
		prev_global_time = time;
	}

I
Ingo Molnar 已提交
812 813
	__raw_spin_unlock(&time_sync_lock.raw_lock);
	spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
814 815 816 817 818

	return time;
}

static unsigned long long __cpu_clock(int cpu)
819 820 821
{
	unsigned long long now;

822 823 824 825
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
826 827 828
	if (unlikely(!scheduler_running))
		return 0;

829
	now = sched_clock_cpu(cpu);
830 831 832

	return now;
}
833 834 835 836 837 838 839 840

/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long prev_cpu_time, time, delta_time;
I
Ingo Molnar 已提交
841
	unsigned long flags;
842

I
Ingo Molnar 已提交
843
	local_irq_save(flags);
844 845 846 847
	prev_cpu_time = per_cpu(prev_cpu_time, cpu);
	time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
	delta_time = time-prev_cpu_time;

I
Ingo Molnar 已提交
848
	if (unlikely(delta_time > time_sync_thresh)) {
849
		time = __sync_cpu_clock(time, cpu);
I
Ingo Molnar 已提交
850 851 852
		per_cpu(prev_cpu_time, cpu) = time;
	}
	local_irq_restore(flags);
853 854 855

	return time;
}
P
Paul E. McKenney 已提交
856
EXPORT_SYMBOL_GPL(cpu_clock);
857

L
Linus Torvalds 已提交
858
#ifndef prepare_arch_switch
859 860 861 862 863 864
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

865 866 867 868 869
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

870
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
871
static inline int task_running(struct rq *rq, struct task_struct *p)
872
{
873
	return task_current(rq, p);
874 875
}

876
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
877 878 879
{
}

880
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
881
{
882 883 884 885
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
886 887 888 889 890 891 892
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

893 894 895 896
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
897
static inline int task_running(struct rq *rq, struct task_struct *p)
898 899 900 901
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
902
	return task_current(rq, p);
903 904 905
#endif
}

906
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

923
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
924 925 926 927 928 929 930 931 932 933 934 935
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
936
#endif
937 938
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
939

940 941 942 943
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
944
static inline struct rq *__task_rq_lock(struct task_struct *p)
945 946
	__acquires(rq->lock)
{
947 948 949 950 951
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
952 953 954 955
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
956 957
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
958
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
959 960
 * explicitly disabling preemption.
 */
961
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
962 963
	__acquires(rq->lock)
{
964
	struct rq *rq;
L
Linus Torvalds 已提交
965

966 967 968 969 970 971
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
972 973 974 975
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
976
static void __task_rq_unlock(struct rq *rq)
977 978 979 980 981
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

982
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
983 984 985 986 987 988
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
989
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
990
 */
A
Alexey Dobriyan 已提交
991
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
992 993
	__acquires(rq->lock)
{
994
	struct rq *rq;
L
Linus Torvalds 已提交
995 996 997 998 999 1000 1001 1002

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
1038
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1050 1051
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1127
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1128 1129 1130 1131 1132 1133
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1134
#ifdef CONFIG_SMP
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1190
#endif /* CONFIG_SMP */
1191 1192

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1229 1230 1231 1232

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1233 1234
#endif

I
Ingo Molnar 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1248
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1249 1250 1251 1252 1253
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1254
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1255 1256
		return;

P
Peter Zijlstra 已提交
1257
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1320
#endif /* CONFIG_NO_HZ */
1321

1322
#else /* !CONFIG_SMP */
P
Peter Zijlstra 已提交
1323
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1324 1325
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1326
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1327
}
1328
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1329

1330 1331 1332 1333 1334 1335 1336 1337
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1338 1339 1340
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1341
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1342

1343
static unsigned long
1344 1345 1346 1347 1348
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1349 1350
	if (!lw->inv_weight)
		lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
1351 1352 1353 1354 1355

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1356
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1357
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1358 1359
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1360
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1361

1362
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1363 1364
}

1365 1366 1367 1368 1369 1370
static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1371
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1372 1373
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1374
	lw->inv_weight = 0;
1375 1376
}

1377
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1378 1379
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1380
	lw->inv_weight = 0;
1381 1382
}

1383 1384 1385 1386
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1387
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1388 1389 1390 1391
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1403 1404 1405
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1406 1407
 */
static const int prio_to_weight[40] = {
1408 1409 1410 1411 1412 1413 1414 1415
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1416 1417
};

1418 1419 1420 1421 1422 1423 1424
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1425
static const u32 prio_to_wmult[40] = {
1426 1427 1428 1429 1430 1431 1432 1433
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1434
};
1435

I
Ingo Molnar 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1461

1462 1463 1464 1465 1466 1467
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1478 1479 1480 1481 1482
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1483 1484 1485 1486 1487 1488 1489 1490
#else /* CONFIG_SMP */

#ifdef CONFIG_FAIR_GROUP_SCHED
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
}
#endif

1491 1492
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1493 1494
#include "sched_stats.h"
#include "sched_idletask.c"
1495 1496
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1497 1498 1499 1500 1501
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1502 1503
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1504

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
static inline void inc_load(struct rq *rq, const struct task_struct *p)
{
	update_load_add(&rq->load, p->se.load.weight);
}

static inline void dec_load(struct rq *rq, const struct task_struct *p)
{
	update_load_sub(&rq->load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq)
1516 1517
{
	rq->nr_running++;
1518
	inc_load(rq, p);
1519 1520
}

1521
static void dec_nr_running(struct task_struct *p, struct rq *rq)
1522 1523
{
	rq->nr_running--;
1524
	dec_load(rq, p);
1525 1526
}

1527 1528 1529
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1530 1531 1532 1533
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1534

I
Ingo Molnar 已提交
1535 1536 1537 1538 1539 1540 1541 1542
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1543

I
Ingo Molnar 已提交
1544 1545
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1546 1547
}

1548
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1549
{
I
Ingo Molnar 已提交
1550
	sched_info_queued(p);
1551
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1552
	p->se.on_rq = 1;
1553 1554
}

1555
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1556
{
1557
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1558
	p->se.on_rq = 0;
1559 1560
}

1561
/*
I
Ingo Molnar 已提交
1562
 * __normal_prio - return the priority that is based on the static prio
1563 1564 1565
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1566
	return p->static_prio;
1567 1568
}

1569 1570 1571 1572 1573 1574 1575
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1576
static inline int normal_prio(struct task_struct *p)
1577 1578 1579
{
	int prio;

1580
	if (task_has_rt_policy(p))
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1594
static int effective_prio(struct task_struct *p)
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1607
/*
I
Ingo Molnar 已提交
1608
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1609
 */
I
Ingo Molnar 已提交
1610
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1611
{
1612
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1613
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1614

1615
	enqueue_task(rq, p, wakeup);
1616
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1617 1618 1619 1620 1621
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1622
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1623
{
1624
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1625 1626
		rq->nr_uninterruptible++;

1627
	dequeue_task(rq, p, sleep);
1628
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1629 1630 1631 1632 1633 1634
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1635
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1636 1637 1638 1639
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1640 1641
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1642
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1643
#ifdef CONFIG_SMP
1644 1645 1646 1647 1648 1649
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1650 1651
	task_thread_info(p)->cpu = cpu;
#endif
1652 1653
}

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1666
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1667

1668 1669 1670 1671 1672 1673
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1674 1675 1676
/*
 * Is this task likely cache-hot:
 */
1677
static int
1678 1679 1680 1681
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1682 1683 1684
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1685
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1686 1687
		return 1;

1688 1689 1690
	if (p->sched_class != &fair_sched_class)
		return 0;

1691 1692 1693 1694 1695
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1696 1697 1698 1699 1700 1701
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1702
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1703
{
I
Ingo Molnar 已提交
1704 1705
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1706 1707
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1708
	u64 clock_offset;
I
Ingo Molnar 已提交
1709 1710

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1711 1712 1713 1714

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1715 1716 1717 1718
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1719 1720 1721 1722 1723
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1724
#endif
1725 1726
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1727 1728

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1729 1730
}

1731
struct migration_req {
L
Linus Torvalds 已提交
1732 1733
	struct list_head list;

1734
	struct task_struct *task;
L
Linus Torvalds 已提交
1735 1736 1737
	int dest_cpu;

	struct completion done;
1738
};
L
Linus Torvalds 已提交
1739 1740 1741 1742 1743

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1744
static int
1745
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1746
{
1747
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1748 1749 1750 1751 1752

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1753
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1754 1755 1756 1757 1758 1759 1760 1761
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1762

L
Linus Torvalds 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1775
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1776 1777
{
	unsigned long flags;
I
Ingo Molnar 已提交
1778
	int running, on_rq;
1779
	struct rq *rq;
L
Linus Torvalds 已提交
1780

1781 1782 1783 1784 1785 1786 1787 1788
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1789

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1813

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1824

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1838

1839 1840 1841 1842 1843 1844 1845
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1861
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1873 1874
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1875 1876 1877 1878
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1879
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1880
{
1881
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1882
	unsigned long total = weighted_cpuload(cpu);
1883

1884
	if (type == 0)
I
Ingo Molnar 已提交
1885
		return total;
1886

I
Ingo Molnar 已提交
1887
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1888 1889 1890
}

/*
1891 1892
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1893
 */
A
Alexey Dobriyan 已提交
1894
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1895
{
1896
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1897
	unsigned long total = weighted_cpuload(cpu);
1898

N
Nick Piggin 已提交
1899
	if (type == 0)
I
Ingo Molnar 已提交
1900
		return total;
1901

I
Ingo Molnar 已提交
1902
	return max(rq->cpu_load[type-1], total);
1903 1904 1905 1906 1907
}

/*
 * Return the average load per task on the cpu's run queue
 */
1908
static unsigned long cpu_avg_load_per_task(int cpu)
1909
{
1910
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1911
	unsigned long total = weighted_cpuload(cpu);
1912 1913
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1914
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1915 1916
}

N
Nick Piggin 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1934 1935
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1936
			continue;
1937

N
Nick Piggin 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1954 1955
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1956 1957 1958 1959 1960 1961 1962 1963

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1964
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1965 1966 1967 1968 1969 1970 1971

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1972
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1973
 */
I
Ingo Molnar 已提交
1974
static int
1975 1976
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
1977 1978 1979 1980 1981
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1982
	/* Traverse only the allowed CPUs */
1983
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
1984

1985
	for_each_cpu_mask(i, *tmp) {
1986
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2012

2013
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2014 2015 2016
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2017 2018
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2019 2020
		if (tmp->flags & flag)
			sd = tmp;
2021
	}
N
Nick Piggin 已提交
2022 2023

	while (sd) {
2024
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2025
		struct sched_group *group;
2026 2027 2028 2029 2030 2031
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2032 2033 2034

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2035 2036 2037 2038
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2039

2040
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2041 2042 2043 2044 2045
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2046

2047
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2079
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2080
{
2081
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2082 2083
	unsigned long flags;
	long old_state;
2084
	struct rq *rq;
L
Linus Torvalds 已提交
2085

2086 2087 2088
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2089
	smp_wmb();
L
Linus Torvalds 已提交
2090 2091 2092 2093 2094
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2095
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2096 2097 2098
		goto out_running;

	cpu = task_cpu(p);
2099
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2100 2101 2102 2103 2104 2105
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2106 2107 2108
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2109 2110 2111 2112 2113 2114
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2115
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2135
#endif /* CONFIG_SCHEDSTATS */
2136

L
Linus Torvalds 已提交
2137 2138
out_activate:
#endif /* CONFIG_SMP */
2139 2140 2141 2142 2143 2144 2145 2146 2147
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2148
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2149
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2150 2151 2152
	success = 1;

out_running:
I
Ingo Molnar 已提交
2153 2154
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2155
	p->state = TASK_RUNNING;
2156 2157 2158 2159
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2160 2161 2162 2163 2164 2165
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2166
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2167
{
2168
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2169 2170 2171
}
EXPORT_SYMBOL(wake_up_process);

2172
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2173 2174 2175 2176 2177 2178 2179
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2180 2181 2182 2183 2184 2185 2186
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2187
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2188 2189
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2190 2191 2192

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2193 2194 2195 2196 2197 2198
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2199
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2200
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2201
#endif
N
Nick Piggin 已提交
2202

P
Peter Zijlstra 已提交
2203
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2204
	p->se.on_rq = 0;
2205
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2206

2207 2208 2209 2210
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2211 2212 2213 2214 2215 2216 2217
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2232
	set_task_cpu(p, cpu);
2233 2234 2235 2236 2237

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2238 2239
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2240

2241
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2242
	if (likely(sched_info_on()))
2243
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2244
#endif
2245
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2246 2247
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2248
#ifdef CONFIG_PREEMPT
2249
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2250
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2251
#endif
N
Nick Piggin 已提交
2252
	put_cpu();
L
Linus Torvalds 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2262
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2263 2264
{
	unsigned long flags;
I
Ingo Molnar 已提交
2265
	struct rq *rq;
L
Linus Torvalds 已提交
2266 2267

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2268
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2269
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2270 2271 2272

	p->prio = effective_prio(p);

2273
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2274
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2275 2276
	} else {
		/*
I
Ingo Molnar 已提交
2277 2278
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2279
		 */
2280
		p->sched_class->task_new(rq, p);
2281
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
2282
	}
I
Ingo Molnar 已提交
2283
	check_preempt_curr(rq, p);
2284 2285 2286 2287
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2288
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2289 2290
}

2291 2292 2293
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2294 2295
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2296 2297 2298 2299 2300 2301 2302 2303 2304
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2305
 * @notifier: notifier struct to unregister
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2335
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2347
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2348

2349 2350 2351
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2352
 * @prev: the current task that is being switched out
2353 2354 2355 2356 2357 2358 2359 2360 2361
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2362 2363 2364
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2365
{
2366
	fire_sched_out_preempt_notifiers(prev, next);
2367 2368 2369 2370
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2371 2372
/**
 * finish_task_switch - clean up after a task-switch
2373
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2374 2375
 * @prev: the thread we just switched away from.
 *
2376 2377 2378 2379
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2380 2381
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2382
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2383 2384 2385
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2386
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2387 2388 2389
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2390
	long prev_state;
L
Linus Torvalds 已提交
2391 2392 2393 2394 2395

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2396
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2397 2398
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2399
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2400 2401 2402 2403 2404
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2405
	prev_state = prev->state;
2406 2407
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2408 2409 2410 2411
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2412

2413
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2414 2415
	if (mm)
		mmdrop(mm);
2416
	if (unlikely(prev_state == TASK_DEAD)) {
2417 2418 2419
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2420
		 */
2421
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2422
		put_task_struct(prev);
2423
	}
L
Linus Torvalds 已提交
2424 2425 2426 2427 2428 2429
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2430
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2431 2432
	__releases(rq->lock)
{
2433 2434
	struct rq *rq = this_rq();

2435 2436 2437 2438 2439
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2440
	if (current->set_child_tid)
2441
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2442 2443 2444 2445 2446 2447
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2448
static inline void
2449
context_switch(struct rq *rq, struct task_struct *prev,
2450
	       struct task_struct *next)
L
Linus Torvalds 已提交
2451
{
I
Ingo Molnar 已提交
2452
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2453

2454
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2455 2456
	mm = next->mm;
	oldmm = prev->active_mm;
2457 2458 2459 2460 2461 2462 2463
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2464
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2465 2466 2467 2468 2469 2470
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2471
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2472 2473 2474
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2475 2476 2477 2478 2479 2480 2481
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2482
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2483
#endif
L
Linus Torvalds 已提交
2484 2485 2486 2487

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2488 2489 2490 2491 2492 2493 2494
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2518
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2533 2534
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2535

2536
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2546
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2547 2548 2549 2550 2551
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2567
/*
I
Ingo Molnar 已提交
2568 2569
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2570
 */
I
Ingo Molnar 已提交
2571
static void update_cpu_load(struct rq *this_rq)
2572
{
2573
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2586 2587 2588 2589 2590 2591 2592
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2593 2594
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2595 2596
}

I
Ingo Molnar 已提交
2597 2598
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2599 2600 2601 2602 2603 2604
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2605
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2606 2607 2608
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2609
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2610 2611 2612 2613
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2614
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2615 2616 2617 2618 2619 2620 2621
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2622 2623
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2624 2625 2626 2627 2628 2629 2630 2631
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2632
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2646
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2647 2648 2649 2650
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2651 2652
	int ret = 0;

2653 2654 2655 2656 2657
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2658
	if (unlikely(!spin_trylock(&busiest->lock))) {
2659
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2660 2661 2662
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2663
			ret = 1;
L
Linus Torvalds 已提交
2664 2665 2666
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2667
	return ret;
L
Linus Torvalds 已提交
2668 2669 2670 2671 2672
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2673
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2674 2675
 * the cpu_allowed mask is restored.
 */
2676
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2677
{
2678
	struct migration_req req;
L
Linus Torvalds 已提交
2679
	unsigned long flags;
2680
	struct rq *rq;
L
Linus Torvalds 已提交
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2691

L
Linus Torvalds 已提交
2692 2693 2694 2695 2696
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2697

L
Linus Torvalds 已提交
2698 2699 2700 2701 2702 2703 2704
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2705 2706
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2707 2708 2709 2710
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2711
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2712
	put_cpu();
N
Nick Piggin 已提交
2713 2714
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2715 2716 2717 2718 2719 2720
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2721 2722
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2723
{
2724
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2725
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2726
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2727 2728 2729 2730
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2731
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2732 2733 2734 2735 2736
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2737
static
2738
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2739
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2740
		     int *all_pinned)
L
Linus Torvalds 已提交
2741 2742 2743 2744 2745 2746 2747
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2748 2749
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2750
		return 0;
2751
	}
2752 2753
	*all_pinned = 0;

2754 2755
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2756
		return 0;
2757
	}
L
Linus Torvalds 已提交
2758

2759 2760 2761 2762 2763 2764
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2765 2766
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2767
#ifdef CONFIG_SCHEDSTATS
2768
		if (task_hot(p, rq->clock, sd)) {
2769
			schedstat_inc(sd, lb_hot_gained[idle]);
2770 2771
			schedstat_inc(p, se.nr_forced_migrations);
		}
2772 2773 2774 2775
#endif
		return 1;
	}

2776 2777
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2778
		return 0;
2779
	}
L
Linus Torvalds 已提交
2780 2781 2782
	return 1;
}

2783 2784 2785 2786 2787
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2788
{
2789
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2790 2791
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2792

2793
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2794 2795
		goto out;

2796 2797
	pinned = 1;

L
Linus Torvalds 已提交
2798
	/*
I
Ingo Molnar 已提交
2799
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2800
	 */
I
Ingo Molnar 已提交
2801 2802
	p = iterator->start(iterator->arg);
next:
2803
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2804
		goto out;
2805
	/*
2806
	 * To help distribute high priority tasks across CPUs we don't
2807 2808 2809
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2810 2811
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2812
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2813 2814 2815
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2816 2817
	}

I
Ingo Molnar 已提交
2818
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2819
	pulled++;
I
Ingo Molnar 已提交
2820
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2821

2822
	/*
2823
	 * We only want to steal up to the prescribed amount of weighted load.
2824
	 */
2825
	if (rem_load_move > 0) {
2826 2827
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2828 2829
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2830 2831 2832
	}
out:
	/*
2833
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2834 2835 2836 2837
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2838 2839 2840

	if (all_pinned)
		*all_pinned = pinned;
2841 2842

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2843 2844
}

I
Ingo Molnar 已提交
2845
/*
P
Peter Williams 已提交
2846 2847 2848
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2849 2850 2851 2852
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2853
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2854 2855 2856
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2857
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2858
	unsigned long total_load_moved = 0;
2859
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2860 2861

	do {
P
Peter Williams 已提交
2862 2863
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2864
				max_load_move - total_load_moved,
2865
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2866
		class = class->next;
P
Peter Williams 已提交
2867
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2868

P
Peter Williams 已提交
2869 2870 2871
	return total_load_moved > 0;
}

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2908
	const struct sched_class *class;
P
Peter Williams 已提交
2909 2910

	for (class = sched_class_highest; class; class = class->next)
2911
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2912 2913 2914
			return 1;

	return 0;
I
Ingo Molnar 已提交
2915 2916
}

L
Linus Torvalds 已提交
2917 2918
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2919 2920
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2921 2922 2923
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2924
		   unsigned long *imbalance, enum cpu_idle_type idle,
2925
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2926 2927 2928
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2929
	unsigned long max_pull;
2930 2931
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2932
	int load_idx, group_imb = 0;
2933 2934 2935 2936 2937 2938
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2939 2940

	max_load = this_load = total_load = total_pwr = 0;
2941 2942
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2943
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2944
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2945
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2946 2947 2948
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2949 2950

	do {
2951
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2952 2953
		int local_group;
		int i;
2954
		int __group_imb = 0;
2955
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2956
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2957 2958 2959

		local_group = cpu_isset(this_cpu, group->cpumask);

2960 2961 2962
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2963
		/* Tally up the load of all CPUs in the group */
2964
		sum_weighted_load = sum_nr_running = avg_load = 0;
2965 2966
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2967 2968

		for_each_cpu_mask(i, group->cpumask) {
2969 2970 2971 2972 2973 2974
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2975

2976
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2977 2978
				*sd_idle = 0;

L
Linus Torvalds 已提交
2979
			/* Bias balancing toward cpus of our domain */
2980 2981 2982 2983 2984 2985
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2986
				load = target_load(i, load_idx);
2987
			} else {
N
Nick Piggin 已提交
2988
				load = source_load(i, load_idx);
2989 2990 2991 2992 2993
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2994 2995

			avg_load += load;
2996
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2997
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2998 2999
		}

3000 3001 3002
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3003 3004
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3005
		 */
3006 3007
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3008 3009 3010 3011
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3012
		total_load += avg_load;
3013
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3014 3015

		/* Adjust by relative CPU power of the group */
3016 3017
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3018

3019 3020 3021
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

3022
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3023

L
Linus Torvalds 已提交
3024 3025 3026
		if (local_group) {
			this_load = avg_load;
			this = group;
3027 3028 3029
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3030
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3031 3032
			max_load = avg_load;
			busiest = group;
3033 3034
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3035
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3036
		}
3037 3038 3039 3040 3041 3042

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3043 3044 3045
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3046 3047 3048 3049 3050 3051 3052 3053 3054

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3055
		/*
3056 3057
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3058 3059
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3060
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3061
			goto group_next;
3062

I
Ingo Molnar 已提交
3063
		/*
3064
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3065 3066 3067 3068 3069
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3070 3071
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3072 3073
			group_min = group;
			min_nr_running = sum_nr_running;
3074 3075
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3076
		}
3077

I
Ingo Molnar 已提交
3078
		/*
3079
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3091
		}
3092 3093
group_next:
#endif
L
Linus Torvalds 已提交
3094 3095 3096
		group = group->next;
	} while (group != sd->groups);

3097
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3098 3099 3100 3101 3102 3103 3104 3105
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3106
	busiest_load_per_task /= busiest_nr_running;
3107 3108 3109
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3110 3111 3112 3113 3114 3115 3116 3117
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3118
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3119 3120
	 * appear as very large values with unsigned longs.
	 */
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3133 3134

	/* Don't want to pull so many tasks that a group would go idle */
3135
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3136

L
Linus Torvalds 已提交
3137
	/* How much load to actually move to equalise the imbalance */
3138 3139
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3140 3141
			/ SCHED_LOAD_SCALE;

3142 3143 3144 3145 3146 3147
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3148
	if (*imbalance < busiest_load_per_task) {
3149
		unsigned long tmp, pwr_now, pwr_move;
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3161

I
Ingo Molnar 已提交
3162 3163
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3164
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3165 3166 3167 3168 3169 3170 3171 3172 3173
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3174 3175 3176 3177
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3178 3179 3180
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3181 3182
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3183
		if (max_load > tmp)
3184
			pwr_move += busiest->__cpu_power *
3185
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3186 3187

		/* Amount of load we'd add */
3188
		if (max_load * busiest->__cpu_power <
3189
				busiest_load_per_task * SCHED_LOAD_SCALE)
3190 3191
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3192
		else
3193 3194 3195 3196
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3197 3198 3199
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3200 3201
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3202 3203 3204 3205 3206
	}

	return busiest;

out_balanced:
3207
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3208
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3209
		goto ret;
L
Linus Torvalds 已提交
3210

3211 3212 3213 3214 3215
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3216
ret:
L
Linus Torvalds 已提交
3217 3218 3219 3220 3221 3222 3223
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3224
static struct rq *
I
Ingo Molnar 已提交
3225
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3226
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3227
{
3228
	struct rq *busiest = NULL, *rq;
3229
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3230 3231 3232
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3233
		unsigned long wl;
3234 3235 3236 3237

		if (!cpu_isset(i, *cpus))
			continue;

3238
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3239
		wl = weighted_cpuload(i);
3240

I
Ingo Molnar 已提交
3241
		if (rq->nr_running == 1 && wl > imbalance)
3242
			continue;
L
Linus Torvalds 已提交
3243

I
Ingo Molnar 已提交
3244 3245
		if (wl > max_load) {
			max_load = wl;
3246
			busiest = rq;
L
Linus Torvalds 已提交
3247 3248 3249 3250 3251 3252
		}
	}

	return busiest;
}

3253 3254 3255 3256 3257 3258
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3259 3260 3261 3262
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3263
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3264
			struct sched_domain *sd, enum cpu_idle_type idle,
3265
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3266
{
P
Peter Williams 已提交
3267
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3268 3269
	struct sched_group *group;
	unsigned long imbalance;
3270
	struct rq *busiest;
3271
	unsigned long flags;
N
Nick Piggin 已提交
3272

3273 3274
	cpus_setall(*cpus);

3275 3276 3277
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3278
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3279
	 * portraying it as CPU_NOT_IDLE.
3280
	 */
I
Ingo Molnar 已提交
3281
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3282
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3283
		sd_idle = 1;
L
Linus Torvalds 已提交
3284

3285
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3286

3287 3288
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3289
				   cpus, balance);
3290

3291
	if (*balance == 0)
3292 3293
		goto out_balanced;

L
Linus Torvalds 已提交
3294 3295 3296 3297 3298
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3299
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3300 3301 3302 3303 3304
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3305
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3306 3307 3308

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3309
	ld_moved = 0;
L
Linus Torvalds 已提交
3310 3311 3312 3313
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3314
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3315 3316
		 * correctly treated as an imbalance.
		 */
3317
		local_irq_save(flags);
N
Nick Piggin 已提交
3318
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3319
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3320
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3321
		double_rq_unlock(this_rq, busiest);
3322
		local_irq_restore(flags);
3323

3324 3325 3326
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3327
		if (ld_moved && this_cpu != smp_processor_id())
3328 3329
			resched_cpu(this_cpu);

3330
		/* All tasks on this runqueue were pinned by CPU affinity */
3331
		if (unlikely(all_pinned)) {
3332 3333
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3334
				goto redo;
3335
			goto out_balanced;
3336
		}
L
Linus Torvalds 已提交
3337
	}
3338

P
Peter Williams 已提交
3339
	if (!ld_moved) {
L
Linus Torvalds 已提交
3340 3341 3342 3343 3344
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3345
			spin_lock_irqsave(&busiest->lock, flags);
3346 3347 3348 3349 3350

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3351
				spin_unlock_irqrestore(&busiest->lock, flags);
3352 3353 3354 3355
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3356 3357 3358
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3359
				active_balance = 1;
L
Linus Torvalds 已提交
3360
			}
3361
			spin_unlock_irqrestore(&busiest->lock, flags);
3362
			if (active_balance)
L
Linus Torvalds 已提交
3363 3364 3365 3366 3367 3368
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3369
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3370
		}
3371
	} else
L
Linus Torvalds 已提交
3372 3373
		sd->nr_balance_failed = 0;

3374
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3375 3376
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3377 3378 3379 3380 3381 3382 3383 3384 3385
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3386 3387
	}

P
Peter Williams 已提交
3388
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3389
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3390 3391
		return -1;
	return ld_moved;
L
Linus Torvalds 已提交
3392 3393 3394 3395

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3396
	sd->nr_balance_failed = 0;
3397 3398

out_one_pinned:
L
Linus Torvalds 已提交
3399
	/* tune up the balancing interval */
3400 3401
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3402 3403
		sd->balance_interval *= 2;

3404
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3405
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3406 3407
		return -1;
	return 0;
L
Linus Torvalds 已提交
3408 3409 3410 3411 3412 3413
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3414
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3415 3416
 * this_rq is locked.
 */
3417
static int
3418 3419
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3420 3421
{
	struct sched_group *group;
3422
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3423
	unsigned long imbalance;
P
Peter Williams 已提交
3424
	int ld_moved = 0;
N
Nick Piggin 已提交
3425
	int sd_idle = 0;
3426
	int all_pinned = 0;
3427 3428

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3429

3430 3431 3432 3433
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3434
	 * portraying it as CPU_NOT_IDLE.
3435 3436 3437
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3438
		sd_idle = 1;
L
Linus Torvalds 已提交
3439

3440
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3441
redo:
I
Ingo Molnar 已提交
3442
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3443
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3444
	if (!group) {
I
Ingo Molnar 已提交
3445
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3446
		goto out_balanced;
L
Linus Torvalds 已提交
3447 3448
	}

3449
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3450
	if (!busiest) {
I
Ingo Molnar 已提交
3451
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3452
		goto out_balanced;
L
Linus Torvalds 已提交
3453 3454
	}

N
Nick Piggin 已提交
3455 3456
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3457
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3458

P
Peter Williams 已提交
3459
	ld_moved = 0;
3460 3461 3462
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3463 3464
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3465
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3466 3467
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3468
		spin_unlock(&busiest->lock);
3469

3470
		if (unlikely(all_pinned)) {
3471 3472
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3473 3474
				goto redo;
		}
3475 3476
	}

P
Peter Williams 已提交
3477
	if (!ld_moved) {
I
Ingo Molnar 已提交
3478
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3479 3480
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3481 3482
			return -1;
	} else
3483
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3484

P
Peter Williams 已提交
3485
	return ld_moved;
3486 3487

out_balanced:
I
Ingo Molnar 已提交
3488
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3489
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3490
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3491
		return -1;
3492
	sd->nr_balance_failed = 0;
3493

3494
	return 0;
L
Linus Torvalds 已提交
3495 3496 3497 3498 3499 3500
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3501
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3502 3503
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3504 3505
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3506
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3507 3508

	for_each_domain(this_cpu, sd) {
3509 3510 3511 3512 3513 3514
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3515
			/* If we've pulled tasks over stop searching: */
3516 3517
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3518 3519 3520 3521 3522 3523

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3524
	}
I
Ingo Molnar 已提交
3525
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3526 3527 3528 3529 3530
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3531
	}
L
Linus Torvalds 已提交
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3542
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3543
{
3544
	int target_cpu = busiest_rq->push_cpu;
3545 3546
	struct sched_domain *sd;
	struct rq *target_rq;
3547

3548
	/* Is there any task to move? */
3549 3550 3551 3552
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3553 3554

	/*
3555
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3556
	 * we need to fix it. Originally reported by
3557
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3558
	 */
3559
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3560

3561 3562
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3563 3564
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3565 3566

	/* Search for an sd spanning us and the target CPU. */
3567
	for_each_domain(target_cpu, sd) {
3568
		if ((sd->flags & SD_LOAD_BALANCE) &&
3569
		    cpu_isset(busiest_cpu, sd->span))
3570
				break;
3571
	}
3572

3573
	if (likely(sd)) {
3574
		schedstat_inc(sd, alb_count);
3575

P
Peter Williams 已提交
3576 3577
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3578 3579 3580 3581
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3582
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3583 3584
}

3585 3586 3587
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3588
	cpumask_t cpu_mask;
3589 3590 3591 3592 3593
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3594
/*
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3605
 *
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3662 3663 3664 3665 3666
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3667
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3668
{
3669 3670
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3671 3672
	unsigned long interval;
	struct sched_domain *sd;
3673
	/* Earliest time when we have to do rebalance again */
3674
	unsigned long next_balance = jiffies + 60*HZ;
3675
	int update_next_balance = 0;
3676
	int need_serialize;
3677
	cpumask_t tmp;
L
Linus Torvalds 已提交
3678

3679
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3680 3681 3682 3683
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3684
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3685 3686 3687 3688 3689 3690
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3691 3692 3693
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3694
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3695

3696
		if (need_serialize) {
3697 3698 3699 3700
			if (!spin_trylock(&balancing))
				goto out;
		}

3701
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3702
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3703 3704
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3705 3706 3707
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3708
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3709
			}
3710
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3711
		}
3712
		if (need_serialize)
3713 3714
			spin_unlock(&balancing);
out:
3715
		if (time_after(next_balance, sd->last_balance + interval)) {
3716
			next_balance = sd->last_balance + interval;
3717 3718
			update_next_balance = 1;
		}
3719 3720 3721 3722 3723 3724 3725 3726

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3727
	}
3728 3729 3730 3731 3732 3733 3734 3735

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3736 3737 3738 3739 3740 3741 3742 3743 3744
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3745 3746 3747 3748
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3749

I
Ingo Molnar 已提交
3750
	rebalance_domains(this_cpu, idle);
3751 3752 3753 3754 3755 3756 3757

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3758 3759
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3760 3761 3762 3763
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3764
		cpu_clear(this_cpu, cpus);
3765 3766 3767 3768 3769 3770 3771 3772 3773
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3774
			rebalance_domains(balance_cpu, CPU_IDLE);
3775 3776

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3777 3778
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3791
static inline void trigger_load_balance(struct rq *rq, int cpu)
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3818
			if (ilb < nr_cpu_ids)
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3843
}
I
Ingo Molnar 已提交
3844 3845 3846

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3847 3848 3849
/*
 * on UP we do not need to balance between CPUs:
 */
3850
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3851 3852
{
}
I
Ingo Molnar 已提交
3853

L
Linus Torvalds 已提交
3854 3855 3856 3857 3858 3859 3860
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3861 3862
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3863
 */
3864
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3865 3866
{
	unsigned long flags;
3867 3868
	u64 ns, delta_exec;
	struct rq *rq;
3869

3870 3871
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3872
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3873 3874
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3875 3876 3877 3878
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3879

L
Linus Torvalds 已提交
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3903 3904 3905 3906 3907
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3908
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3942
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3943 3944
	cputime64_t tmp;

3945 3946 3947 3948
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
3949

L
Linus Torvalds 已提交
3950 3951 3952 3953 3954 3955 3956 3957
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3958
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3959
		cpustat->system = cputime64_add(cpustat->system, tmp);
3960
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3961 3962 3963 3964 3965 3966 3967
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3979 3980 3981 3982 3983 3984 3985 3986 3987
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3988
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3989 3990 3991 3992 3993 3994 3995

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3996
	} else
L
Linus Torvalds 已提交
3997 3998 3999
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4011
	struct task_struct *curr = rq->curr;
4012 4013

	sched_clock_tick();
I
Ingo Molnar 已提交
4014 4015

	spin_lock(&rq->lock);
4016
	update_rq_clock(rq);
4017
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4018
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4019
	spin_unlock(&rq->lock);
4020

4021
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4022 4023
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4024
#endif
L
Linus Torvalds 已提交
4025 4026 4027 4028
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4029
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4030 4031 4032 4033
{
	/*
	 * Underflow?
	 */
4034 4035
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4036 4037 4038 4039
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4040 4041
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4042 4043 4044
}
EXPORT_SYMBOL(add_preempt_count);

4045
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4046 4047 4048 4049
{
	/*
	 * Underflow?
	 */
4050 4051
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4052 4053 4054
	/*
	 * Is the spinlock portion underflowing?
	 */
4055 4056 4057 4058
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4059 4060 4061 4062 4063 4064 4065
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4066
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4067
 */
I
Ingo Molnar 已提交
4068
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4069
{
4070 4071 4072 4073 4074
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4075
	debug_show_held_locks(prev);
4076
	print_modules();
I
Ingo Molnar 已提交
4077 4078
	if (irqs_disabled())
		print_irqtrace_events(prev);
4079 4080 4081 4082 4083

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4084
}
L
Linus Torvalds 已提交
4085

I
Ingo Molnar 已提交
4086 4087 4088 4089 4090
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4091
	/*
I
Ingo Molnar 已提交
4092
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4093 4094 4095
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4096
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4097 4098
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4099 4100
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4101
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4102 4103
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4104 4105
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4106 4107
	}
#endif
I
Ingo Molnar 已提交
4108 4109 4110 4111 4112 4113
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4114
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4115
{
4116
	const struct sched_class *class;
I
Ingo Molnar 已提交
4117
	struct task_struct *p;
L
Linus Torvalds 已提交
4118 4119

	/*
I
Ingo Molnar 已提交
4120 4121
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4122
	 */
I
Ingo Molnar 已提交
4123
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4124
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4125 4126
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4127 4128
	}

I
Ingo Molnar 已提交
4129 4130
	class = sched_class_highest;
	for ( ; ; ) {
4131
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4132 4133 4134 4135 4136 4137 4138 4139 4140
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4141

I
Ingo Molnar 已提交
4142 4143 4144 4145 4146 4147
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4148
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4149
	struct rq *rq;
M
Mike Galbraith 已提交
4150
	int cpu, hrtick = sched_feat(HRTICK);
I
Ingo Molnar 已提交
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4164

M
Mike Galbraith 已提交
4165 4166
	if (hrtick)
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4167

4168 4169 4170 4171
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4172
	update_rq_clock(rq);
4173 4174
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4175 4176 4177

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4178
				signal_pending(prev))) {
L
Linus Torvalds 已提交
4179
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4180
		} else {
4181
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
4182
		}
I
Ingo Molnar 已提交
4183
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4184 4185
	}

4186 4187 4188 4189
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4190

I
Ingo Molnar 已提交
4191
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4192 4193
		idle_balance(cpu, rq);

4194
	prev->sched_class->put_prev_task(rq, prev);
4195
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4196 4197

	if (likely(prev != next)) {
4198 4199
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4200 4201 4202 4203
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4204
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4205 4206 4207 4208 4209 4210
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4211 4212 4213
	} else
		spin_unlock_irq(&rq->lock);

M
Mike Galbraith 已提交
4214 4215
	if (hrtick)
		hrtick_set(rq);
P
Peter Zijlstra 已提交
4216 4217

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4218
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4219

L
Linus Torvalds 已提交
4220 4221 4222 4223 4224 4225 4226 4227
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4228
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4229
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4230 4231 4232 4233 4234
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4235

L
Linus Torvalds 已提交
4236 4237
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4238
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4239
	 */
N
Nick Piggin 已提交
4240
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4241 4242
		return;

4243 4244 4245 4246
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4247

4248 4249 4250 4251 4252 4253
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4254 4255 4256 4257
}
EXPORT_SYMBOL(preempt_schedule);

/*
4258
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4259 4260 4261 4262 4263 4264 4265
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4266

4267
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4268 4269
	BUG_ON(ti->preempt_count || !irqs_disabled());

4270 4271 4272 4273 4274 4275
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4276

4277 4278 4279 4280 4281 4282
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4283 4284 4285 4286
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4287 4288
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4289
{
4290
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4291 4292 4293 4294
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4295 4296
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4297 4298 4299
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4300
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4301 4302 4303 4304 4305
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4306
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4307

4308
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4309 4310
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4311
		if (curr->func(curr, mode, sync, key) &&
4312
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4313 4314 4315 4316 4317 4318 4319 4320 4321
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4322
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4323
 */
4324
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4325
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4338
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4339 4340 4341 4342 4343
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4344
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4356
void
I
Ingo Molnar 已提交
4357
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4374
void complete(struct completion *x)
L
Linus Torvalds 已提交
4375 4376 4377 4378 4379
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4380
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4381 4382 4383 4384
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4385
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4386 4387 4388 4389 4390
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4391
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4392 4393 4394 4395
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4396 4397
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4398 4399 4400 4401 4402 4403 4404
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4405 4406 4407 4408
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4409 4410 4411 4412
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4413 4414 4415 4416 4417
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4418
				return timeout;
L
Linus Torvalds 已提交
4419 4420 4421 4422 4423 4424 4425 4426
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4427 4428
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4429 4430 4431 4432
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4433
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4434
	spin_unlock_irq(&x->wait.lock);
4435 4436
	return timeout;
}
L
Linus Torvalds 已提交
4437

4438
void __sched wait_for_completion(struct completion *x)
4439 4440
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4441
}
4442
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4443

4444
unsigned long __sched
4445
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4446
{
4447
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4448
}
4449
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4450

4451
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4452
{
4453 4454 4455 4456
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4457
}
4458
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4459

4460
unsigned long __sched
4461 4462
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4463
{
4464
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4465
}
4466
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4467

M
Matthew Wilcox 已提交
4468 4469 4470 4471 4472 4473 4474 4475 4476
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4477 4478
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4479
{
I
Ingo Molnar 已提交
4480 4481 4482 4483
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4484

4485
	__set_current_state(state);
L
Linus Torvalds 已提交
4486

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4501 4502 4503
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4504
long __sched
I
Ingo Molnar 已提交
4505
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4506
{
4507
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4508 4509 4510
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4511
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4512
{
4513
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4514 4515 4516
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4517
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4518
{
4519
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4520 4521 4522
}
EXPORT_SYMBOL(sleep_on_timeout);

4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4535
void rt_mutex_setprio(struct task_struct *p, int prio)
4536 4537
{
	unsigned long flags;
4538
	int oldprio, on_rq, running;
4539
	struct rq *rq;
4540
	const struct sched_class *prev_class = p->sched_class;
4541 4542 4543 4544

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4545
	update_rq_clock(rq);
4546

4547
	oldprio = p->prio;
I
Ingo Molnar 已提交
4548
	on_rq = p->se.on_rq;
4549
	running = task_current(rq, p);
4550
	if (on_rq)
4551
		dequeue_task(rq, p, 0);
4552 4553
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4554 4555 4556 4557 4558 4559

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4560 4561
	p->prio = prio;

4562 4563
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4564
	if (on_rq) {
4565
		enqueue_task(rq, p, 0);
4566 4567

		check_class_changed(rq, p, prev_class, oldprio, running);
4568 4569 4570 4571 4572 4573
	}
	task_rq_unlock(rq, &flags);
}

#endif

4574
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4575
{
I
Ingo Molnar 已提交
4576
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4577
	unsigned long flags;
4578
	struct rq *rq;
L
Linus Torvalds 已提交
4579 4580 4581 4582 4583 4584 4585 4586

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4587
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4588 4589 4590 4591
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4592
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4593
	 */
4594
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4595 4596 4597
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4598
	on_rq = p->se.on_rq;
4599
	if (on_rq) {
4600
		dequeue_task(rq, p, 0);
4601 4602
		dec_load(rq, p);
	}
L
Linus Torvalds 已提交
4603 4604

	p->static_prio = NICE_TO_PRIO(nice);
4605
	set_load_weight(p);
4606 4607 4608
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4609

I
Ingo Molnar 已提交
4610
	if (on_rq) {
4611
		enqueue_task(rq, p, 0);
4612
		inc_load(rq, p);
L
Linus Torvalds 已提交
4613
		/*
4614 4615
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4616
		 */
4617
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4618 4619 4620 4621 4622 4623 4624
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4625 4626 4627 4628 4629
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4630
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4631
{
4632 4633
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4634

M
Matt Mackall 已提交
4635 4636 4637 4638
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4650
	long nice, retval;
L
Linus Torvalds 已提交
4651 4652 4653 4654 4655 4656

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4657 4658
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4659 4660 4661 4662 4663 4664 4665 4666 4667
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4668 4669 4670
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4689
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4690 4691 4692 4693 4694 4695 4696 4697
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4698
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4699 4700 4701
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4702
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4717
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4718 4719 4720 4721 4722 4723 4724 4725
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4726
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4727
{
4728
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4729 4730 4731
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4732 4733
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4734
{
I
Ingo Molnar 已提交
4735
	BUG_ON(p->se.on_rq);
4736

L
Linus Torvalds 已提交
4737
	p->policy = policy;
I
Ingo Molnar 已提交
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4750
	p->rt_priority = prio;
4751 4752 4753
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4754
	set_load_weight(p);
L
Linus Torvalds 已提交
4755 4756 4757
}

/**
4758
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4759 4760 4761
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4762
 *
4763
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4764
 */
I
Ingo Molnar 已提交
4765 4766
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4767
{
4768
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4769
	unsigned long flags;
4770
	const struct sched_class *prev_class = p->sched_class;
4771
	struct rq *rq;
L
Linus Torvalds 已提交
4772

4773 4774
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4775 4776 4777 4778 4779
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4780 4781
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4782
		return -EINVAL;
L
Linus Torvalds 已提交
4783 4784
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4785 4786
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4787 4788
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4789
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4790
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4791
		return -EINVAL;
4792
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4793 4794
		return -EINVAL;

4795 4796 4797 4798
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4799
		if (rt_policy(policy)) {
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4816 4817 4818 4819 4820 4821
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4822

4823 4824 4825 4826 4827
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4828

4829 4830 4831 4832 4833
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
4834
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4835 4836 4837
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4838 4839 4840
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4841 4842 4843 4844 4845
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4846 4847 4848 4849
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4850
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4851 4852 4853
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4854 4855
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4856 4857
		goto recheck;
	}
I
Ingo Molnar 已提交
4858
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4859
	on_rq = p->se.on_rq;
4860
	running = task_current(rq, p);
4861
	if (on_rq)
4862
		deactivate_task(rq, p, 0);
4863 4864
	if (running)
		p->sched_class->put_prev_task(rq, p);
4865

L
Linus Torvalds 已提交
4866
	oldprio = p->prio;
I
Ingo Molnar 已提交
4867
	__setscheduler(rq, p, policy, param->sched_priority);
4868

4869 4870
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4871 4872
	if (on_rq) {
		activate_task(rq, p, 0);
4873 4874

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4875
	}
4876 4877 4878
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4879 4880
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4881 4882 4883 4884
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4885 4886
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4887 4888 4889
{
	struct sched_param lparam;
	struct task_struct *p;
4890
	int retval;
L
Linus Torvalds 已提交
4891 4892 4893 4894 4895

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4896 4897 4898

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4899
	p = find_process_by_pid(pid);
4900 4901 4902
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4903

L
Linus Torvalds 已提交
4904 4905 4906 4907 4908 4909 4910 4911 4912
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4913 4914
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4915
{
4916 4917 4918 4919
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4939
	struct task_struct *p;
4940
	int retval;
L
Linus Torvalds 已提交
4941 4942

	if (pid < 0)
4943
		return -EINVAL;
L
Linus Torvalds 已提交
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4965
	struct task_struct *p;
4966
	int retval;
L
Linus Torvalds 已提交
4967 4968

	if (!param || pid < 0)
4969
		return -EINVAL;
L
Linus Torvalds 已提交
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4996
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
4997 4998
{
	cpumask_t cpus_allowed;
4999
	cpumask_t new_mask = *in_mask;
5000 5001
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5002

5003
	get_online_cpus();
L
Linus Torvalds 已提交
5004 5005 5006 5007 5008
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5009
		put_online_cpus();
L
Linus Torvalds 已提交
5010 5011 5012 5013 5014
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5015
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5026 5027 5028 5029
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5030
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5031
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5032
 again:
5033
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5034

P
Paul Menage 已提交
5035
	if (!retval) {
5036
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5047 5048
out_unlock:
	put_task_struct(p);
5049
	put_online_cpus();
L
Linus Torvalds 已提交
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5080
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5081 5082 5083 5084
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5085
	struct task_struct *p;
L
Linus Torvalds 已提交
5086 5087
	int retval;

5088
	get_online_cpus();
L
Linus Torvalds 已提交
5089 5090 5091 5092 5093 5094 5095
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5096 5097 5098 5099
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5100
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5101 5102 5103

out_unlock:
	read_unlock(&tasklist_lock);
5104
	put_online_cpus();
L
Linus Torvalds 已提交
5105

5106
	return retval;
L
Linus Torvalds 已提交
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5137 5138
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5139 5140 5141
 */
asmlinkage long sys_sched_yield(void)
{
5142
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5143

5144
	schedstat_inc(rq, yld_count);
5145
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5146 5147 5148 5149 5150 5151

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5152
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5153 5154 5155 5156 5157 5158 5159 5160
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5161
static void __cond_resched(void)
L
Linus Torvalds 已提交
5162
{
5163 5164 5165
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5166 5167 5168 5169 5170
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5171 5172 5173 5174 5175 5176 5177
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5178
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5179
{
5180 5181
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5182 5183 5184 5185 5186
		__cond_resched();
		return 1;
	}
	return 0;
}
5187
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5188 5189 5190 5191 5192

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5193
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5194 5195 5196
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5197
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5198
{
N
Nick Piggin 已提交
5199
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5200 5201
	int ret = 0;

N
Nick Piggin 已提交
5202
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5203
		spin_unlock(lock);
N
Nick Piggin 已提交
5204 5205 5206 5207
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5208
		ret = 1;
L
Linus Torvalds 已提交
5209 5210
		spin_lock(lock);
	}
J
Jan Kara 已提交
5211
	return ret;
L
Linus Torvalds 已提交
5212 5213 5214 5215 5216 5217 5218
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5219
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5220
		local_bh_enable();
L
Linus Torvalds 已提交
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5232
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5243
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5244 5245 5246 5247 5248 5249 5250
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5251
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5252

5253
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5254 5255 5256
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5257
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5258 5259 5260 5261 5262
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5263
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5264 5265
	long ret;

5266
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5267 5268 5269
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5270
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5291
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5292
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5316
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5317
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5334
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5335
	unsigned int time_slice;
5336
	int retval;
L
Linus Torvalds 已提交
5337 5338 5339
	struct timespec t;

	if (pid < 0)
5340
		return -EINVAL;
L
Linus Torvalds 已提交
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5352 5353 5354 5355 5356 5357
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5358
		time_slice = DEF_TIMESLICE;
5359
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5360 5361 5362 5363 5364
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5365 5366
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5367 5368
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5369
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5370
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5371 5372
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5373

L
Linus Torvalds 已提交
5374 5375 5376 5377 5378
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5379
static const char stat_nam[] = "RSDTtZX";
5380

5381
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5382 5383
{
	unsigned long free = 0;
5384
	unsigned state;
L
Linus Torvalds 已提交
5385 5386

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5387
	printk(KERN_INFO "%-13.13s %c", p->comm,
5388
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5389
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5390
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5391
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5392
	else
I
Ingo Molnar 已提交
5393
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5394 5395
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5396
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5397
	else
I
Ingo Molnar 已提交
5398
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5399 5400 5401
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5402
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5403 5404
		while (!*n)
			n++;
5405
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5406 5407
	}
#endif
5408
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5409
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5410

5411
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5412 5413
}

I
Ingo Molnar 已提交
5414
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5415
{
5416
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5417

5418 5419 5420
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5421
#else
5422 5423
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5424 5425 5426 5427 5428 5429 5430 5431
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5432
		if (!state_filter || (p->state & state_filter))
5433
			sched_show_task(p);
L
Linus Torvalds 已提交
5434 5435
	} while_each_thread(g, p);

5436 5437
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5438 5439 5440
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5441
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5442 5443 5444 5445 5446
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5447 5448
}

I
Ingo Molnar 已提交
5449 5450
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5451
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5452 5453
}

5454 5455 5456 5457 5458 5459 5460 5461
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5462
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5463
{
5464
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5465 5466
	unsigned long flags;

I
Ingo Molnar 已提交
5467 5468 5469
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5470
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5471
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5472
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5473 5474 5475

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5476 5477 5478
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5479 5480 5481
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5482 5483 5484
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5485
	task_thread_info(idle)->preempt_count = 0;
5486
#endif
I
Ingo Molnar 已提交
5487 5488 5489 5490
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5527 5528 5529 5530
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5531
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5550
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5551 5552
 * call is not atomic; no spinlocks may be held.
 */
5553
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5554
{
5555
	struct migration_req req;
L
Linus Torvalds 已提交
5556
	unsigned long flags;
5557
	struct rq *rq;
5558
	int ret = 0;
L
Linus Torvalds 已提交
5559 5560

	rq = task_rq_lock(p, &flags);
5561
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5562 5563 5564 5565
		ret = -EINVAL;
		goto out;
	}

5566
	if (p->sched_class->set_cpus_allowed)
5567
		p->sched_class->set_cpus_allowed(p, new_mask);
5568
	else {
5569 5570
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5571 5572
	}

L
Linus Torvalds 已提交
5573
	/* Can the task run on the task's current CPU? If so, we're done */
5574
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5575 5576
		goto out;

5577
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5578 5579 5580 5581 5582 5583 5584 5585 5586
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5587

L
Linus Torvalds 已提交
5588 5589
	return ret;
}
5590
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5591 5592

/*
I
Ingo Molnar 已提交
5593
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5594 5595 5596 5597 5598 5599
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5600 5601
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5602
 */
5603
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5604
{
5605
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5606
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5607 5608

	if (unlikely(cpu_is_offline(dest_cpu)))
5609
		return ret;
L
Linus Torvalds 已提交
5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5622
	on_rq = p->se.on_rq;
5623
	if (on_rq)
5624
		deactivate_task(rq_src, p, 0);
5625

L
Linus Torvalds 已提交
5626
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5627 5628 5629
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5630
	}
5631
	ret = 1;
L
Linus Torvalds 已提交
5632 5633
out:
	double_rq_unlock(rq_src, rq_dest);
5634
	return ret;
L
Linus Torvalds 已提交
5635 5636 5637 5638 5639 5640 5641
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5642
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5643 5644
{
	int cpu = (long)data;
5645
	struct rq *rq;
L
Linus Torvalds 已提交
5646 5647 5648 5649 5650 5651

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5652
		struct migration_req *req;
L
Linus Torvalds 已提交
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5675
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5676 5677
		list_del_init(head->next);

N
Nick Piggin 已提交
5678 5679 5680
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5710
/*
5711
 * Figure out where task on dead CPU should go, use force if necessary.
5712 5713
 * NOTE: interrupts should be disabled by the caller
 */
5714
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5715
{
5716
	unsigned long flags;
L
Linus Torvalds 已提交
5717
	cpumask_t mask;
5718 5719
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5720

5721 5722 5723 5724 5725 5726 5727
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
5728
		if (dest_cpu >= nr_cpu_ids)
5729 5730 5731
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
5732
		if (dest_cpu >= nr_cpu_ids) {
5733 5734 5735
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
5736 5737 5738 5739
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5740
			 * cpuset_cpus_allowed() will not block. It must be
5741 5742
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5743
			rq = task_rq_lock(p, &flags);
5744
			p->cpus_allowed = cpus_allowed;
5745 5746
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5747

5748 5749 5750 5751 5752
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5753
			if (p->mm && printk_ratelimit()) {
5754 5755
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5756 5757
					task_pid_nr(p), p->comm, dead_cpu);
			}
5758
		}
5759
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5760 5761 5762 5763 5764 5765 5766 5767 5768
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5769
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5770
{
5771
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5785
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5786

5787
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5788

5789 5790
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5791 5792
			continue;

5793 5794 5795
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5796

5797
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5798 5799
}

I
Ingo Molnar 已提交
5800 5801
/*
 * Schedules idle task to be the next runnable task on current CPU.
5802 5803
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5804 5805 5806
 */
void sched_idle_next(void)
{
5807
	int this_cpu = smp_processor_id();
5808
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5809 5810 5811 5812
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5813
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5814

5815 5816 5817
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5818 5819 5820
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5821
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5822

5823 5824
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5825 5826 5827 5828

	spin_unlock_irqrestore(&rq->lock, flags);
}

5829 5830
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5844
/* called under rq->lock with disabled interrupts */
5845
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5846
{
5847
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5848 5849

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5850
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5851 5852

	/* Cannot have done final schedule yet: would have vanished. */
5853
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5854

5855
	get_task_struct(p);
L
Linus Torvalds 已提交
5856 5857 5858

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5859
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5860 5861
	 * fine.
	 */
5862
	spin_unlock_irq(&rq->lock);
5863
	move_task_off_dead_cpu(dead_cpu, p);
5864
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5865

5866
	put_task_struct(p);
L
Linus Torvalds 已提交
5867 5868 5869 5870 5871
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5872
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5873
	struct task_struct *next;
5874

I
Ingo Molnar 已提交
5875 5876 5877
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5878
		update_rq_clock(rq);
5879
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5880 5881 5882
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5883

L
Linus Torvalds 已提交
5884 5885 5886 5887
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5888 5889 5890
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5891 5892
	{
		.procname	= "sched_domain",
5893
		.mode		= 0555,
5894
	},
I
Ingo Molnar 已提交
5895
	{0, },
5896 5897 5898
};

static struct ctl_table sd_ctl_root[] = {
5899
	{
5900
		.ctl_name	= CTL_KERN,
5901
		.procname	= "kernel",
5902
		.mode		= 0555,
5903 5904
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5905
	{0, },
5906 5907 5908 5909 5910
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5911
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5912 5913 5914 5915

	return entry;
}

5916 5917
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5918
	struct ctl_table *entry;
5919

5920 5921 5922
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5923
	 * will always be set. In the lowest directory the names are
5924 5925 5926
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5927 5928
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5929 5930 5931
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5932 5933 5934 5935 5936

	kfree(*tablep);
	*tablep = NULL;
}

5937
static void
5938
set_table_entry(struct ctl_table *entry,
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5952
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5953

5954 5955 5956
	if (table == NULL)
		return NULL;

5957
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5958
		sizeof(long), 0644, proc_doulongvec_minmax);
5959
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5960
		sizeof(long), 0644, proc_doulongvec_minmax);
5961
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5962
		sizeof(int), 0644, proc_dointvec_minmax);
5963
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5964
		sizeof(int), 0644, proc_dointvec_minmax);
5965
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5966
		sizeof(int), 0644, proc_dointvec_minmax);
5967
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5968
		sizeof(int), 0644, proc_dointvec_minmax);
5969
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5970
		sizeof(int), 0644, proc_dointvec_minmax);
5971
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5972
		sizeof(int), 0644, proc_dointvec_minmax);
5973
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5974
		sizeof(int), 0644, proc_dointvec_minmax);
5975
	set_table_entry(&table[9], "cache_nice_tries",
5976 5977
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5978
	set_table_entry(&table[10], "flags", &sd->flags,
5979
		sizeof(int), 0644, proc_dointvec_minmax);
5980
	/* &table[11] is terminator */
5981 5982 5983 5984

	return table;
}

5985
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5986 5987 5988 5989 5990 5991 5992 5993 5994
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5995 5996
	if (table == NULL)
		return NULL;
5997 5998 5999 6000 6001

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6002
		entry->mode = 0555;
6003 6004 6005 6006 6007 6008 6009 6010
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6011
static void register_sched_domain_sysctl(void)
6012 6013 6014 6015 6016
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6017 6018 6019
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6020 6021 6022
	if (entry == NULL)
		return;

6023
	for_each_online_cpu(i) {
6024 6025
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6026
		entry->mode = 0555;
6027
		entry->child = sd_alloc_ctl_cpu_table(i);
6028
		entry++;
6029
	}
6030 6031

	WARN_ON(sd_sysctl_header);
6032 6033
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6034

6035
/* may be called multiple times per register */
6036 6037
static void unregister_sched_domain_sysctl(void)
{
6038 6039
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6040
	sd_sysctl_header = NULL;
6041 6042
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6043
}
6044
#else
6045 6046 6047 6048
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6049 6050 6051 6052
{
}
#endif

6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6083 6084 6085 6086
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6087 6088
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6089 6090
{
	struct task_struct *p;
6091
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6092
	unsigned long flags;
6093
	struct rq *rq;
L
Linus Torvalds 已提交
6094 6095

	switch (action) {
6096

L
Linus Torvalds 已提交
6097
	case CPU_UP_PREPARE:
6098
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6099
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6100 6101 6102 6103 6104
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6105
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6106 6107 6108
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6109

L
Linus Torvalds 已提交
6110
	case CPU_ONLINE:
6111
	case CPU_ONLINE_FROZEN:
6112
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6113
		wake_up_process(cpu_rq(cpu)->migration_thread);
6114 6115 6116 6117 6118 6119

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6120 6121

			set_rq_online(rq);
6122 6123
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6124
		break;
6125

L
Linus Torvalds 已提交
6126 6127
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6128
	case CPU_UP_CANCELED_FROZEN:
6129 6130
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6131
		/* Unbind it from offline cpu so it can run. Fall thru. */
6132 6133
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6134 6135 6136
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6137

L
Linus Torvalds 已提交
6138
	case CPU_DEAD:
6139
	case CPU_DEAD_FROZEN:
6140
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6141 6142 6143 6144 6145
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6146
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6147
		update_rq_clock(rq);
6148
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6149
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6150 6151
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6152
		migrate_dead_tasks(cpu);
6153
		spin_unlock_irq(&rq->lock);
6154
		cpuset_unlock();
L
Linus Torvalds 已提交
6155 6156 6157
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6158 6159 6160 6161 6162
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6163 6164
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6165 6166
			struct migration_req *req;

L
Linus Torvalds 已提交
6167
			req = list_entry(rq->migration_queue.next,
6168
					 struct migration_req, list);
L
Linus Torvalds 已提交
6169 6170 6171 6172 6173
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6174

6175 6176
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6177 6178 6179 6180 6181
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6182
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6183 6184 6185
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6186 6187 6188 6189 6190 6191 6192 6193
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6194
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6195 6196 6197 6198
	.notifier_call = migration_call,
	.priority = 10
};

6199
void __init migration_init(void)
L
Linus Torvalds 已提交
6200 6201
{
	void *cpu = (void *)(long)smp_processor_id();
6202
	int err;
6203 6204

	/* Start one for the boot CPU: */
6205 6206
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6207 6208 6209 6210 6211 6212
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6213

6214
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6215

6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6238 6239
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6240
{
I
Ingo Molnar 已提交
6241
	struct sched_group *group = sd->groups;
6242
	char str[256];
L
Linus Torvalds 已提交
6243

6244
	cpulist_scnprintf(str, sizeof(str), sd->span);
6245
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6246 6247 6248 6249 6250 6251 6252 6253 6254

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6255 6256
	}

6257 6258
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6259 6260 6261 6262 6263 6264 6265 6266 6267

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6268

I
Ingo Molnar 已提交
6269
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6270
	do {
I
Ingo Molnar 已提交
6271 6272 6273
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6274 6275 6276
			break;
		}

I
Ingo Molnar 已提交
6277 6278 6279 6280 6281 6282
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6283

I
Ingo Molnar 已提交
6284 6285 6286 6287 6288
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6289

6290
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6291 6292 6293 6294
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6295

6296
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6297

6298
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6299
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6300

I
Ingo Molnar 已提交
6301 6302 6303
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6304

6305
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6306
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6307

6308
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6309 6310 6311 6312
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6313

I
Ingo Molnar 已提交
6314 6315
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6316
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6317
	int level = 0;
L
Linus Torvalds 已提交
6318

I
Ingo Molnar 已提交
6319 6320 6321 6322
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6323

I
Ingo Molnar 已提交
6324 6325
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6326 6327 6328 6329 6330 6331
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6332
	for (;;) {
6333
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6334
			break;
L
Linus Torvalds 已提交
6335 6336
		level++;
		sd = sd->parent;
6337
		if (!sd)
I
Ingo Molnar 已提交
6338 6339
			break;
	}
6340
	kfree(groupmask);
L
Linus Torvalds 已提交
6341
}
6342
#else /* !CONFIG_SCHED_DEBUG */
6343
# define sched_domain_debug(sd, cpu) do { } while (0)
6344
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6345

6346
static int sd_degenerate(struct sched_domain *sd)
6347 6348 6349 6350 6351 6352 6353 6354
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6355 6356 6357
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6371 6372
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6391 6392 6393
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6394 6395 6396 6397 6398 6399 6400
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6401 6402 6403 6404 6405 6406 6407 6408 6409
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6410 6411
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6412

6413 6414
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6415 6416 6417 6418 6419 6420 6421
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6422
	cpu_set(rq->cpu, rd->span);
6423
	if (cpu_isset(rq->cpu, cpu_online_map))
6424
		set_rq_online(rq);
G
Gregory Haskins 已提交
6425 6426 6427 6428

	spin_unlock_irqrestore(&rq->lock, flags);
}

6429
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6430 6431 6432
{
	memset(rd, 0, sizeof(*rd));

6433 6434
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6435 6436

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6437 6438 6439 6440
}

static void init_defrootdomain(void)
{
6441
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6442 6443 6444
	atomic_set(&def_root_domain.refcount, 1);
}

6445
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6446 6447 6448 6449 6450 6451 6452
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6453
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6454 6455 6456 6457

	return rd;
}

L
Linus Torvalds 已提交
6458
/*
I
Ingo Molnar 已提交
6459
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6460 6461
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6462 6463
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6464
{
6465
	struct rq *rq = cpu_rq(cpu);
6466 6467 6468 6469 6470 6471 6472
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6473
		if (sd_parent_degenerate(tmp, parent)) {
6474
			tmp->parent = parent->parent;
6475 6476 6477
			if (parent->parent)
				parent->parent->child = tmp;
		}
6478 6479
	}

6480
	if (sd && sd_degenerate(sd)) {
6481
		sd = sd->parent;
6482 6483 6484
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6485 6486 6487

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6488
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6489
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6490 6491 6492
}

/* cpus with isolated domains */
6493
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6508
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6509 6510

/*
6511 6512 6513 6514
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6515 6516 6517 6518 6519
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6520
static void
6521
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6522
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6523 6524 6525
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6526 6527 6528 6529
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6530 6531 6532
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6533
		struct sched_group *sg;
6534
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6535 6536
		int j;

6537
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6538 6539
			continue;

6540
		cpus_clear(sg->cpumask);
6541
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6542

6543 6544
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6545 6546
				continue;

6547
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6559
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6560

6561
#ifdef CONFIG_NUMA
6562

6563 6564 6565 6566 6567
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6568
 * Find the next node to include in a given scheduling domain. Simply
6569 6570 6571 6572
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6573
static int find_next_best_node(int node, nodemask_t *used_nodes)
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6587
		if (node_isset(n, *used_nodes))
6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6599
	node_set(best_node, *used_nodes);
6600 6601 6602 6603 6604 6605
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6606
 * @span: resulting cpumask
6607
 *
I
Ingo Molnar 已提交
6608
 * Given a node, construct a good cpumask for its sched_domain to span. It
6609 6610 6611
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6612
static void sched_domain_node_span(int node, cpumask_t *span)
6613
{
6614 6615
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6616
	int i;
6617

6618
	cpus_clear(*span);
6619
	nodes_clear(used_nodes);
6620

6621
	cpus_or(*span, *span, *nodemask);
6622
	node_set(node, used_nodes);
6623 6624

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6625
		int next_node = find_next_best_node(node, &used_nodes);
6626

6627
		node_to_cpumask_ptr_next(nodemask, next_node);
6628
		cpus_or(*span, *span, *nodemask);
6629 6630
	}
}
6631
#endif /* CONFIG_NUMA */
6632

6633
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6634

6635
/*
6636
 * SMT sched-domains:
6637
 */
L
Linus Torvalds 已提交
6638 6639
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6640
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6641

I
Ingo Molnar 已提交
6642
static int
6643 6644
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6645
{
6646 6647
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6648 6649
	return cpu;
}
6650
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6651

6652 6653 6654
/*
 * multi-core sched-domains:
 */
6655 6656
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6657
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6658
#endif /* CONFIG_SCHED_MC */
6659 6660

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6661
static int
6662 6663
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6664
{
6665
	int group;
6666 6667 6668 6669

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6670 6671 6672
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6673 6674
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6675
static int
6676 6677
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6678
{
6679 6680
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6681 6682 6683 6684
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6685
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6686
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6687

I
Ingo Molnar 已提交
6688
static int
6689 6690
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6691
{
6692
	int group;
6693
#ifdef CONFIG_SCHED_MC
6694 6695 6696
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6697
#elif defined(CONFIG_SCHED_SMT)
6698 6699 6700
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6701
#else
6702
	group = cpu;
L
Linus Torvalds 已提交
6703
#endif
6704 6705 6706
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6707 6708 6709 6710
}

#ifdef CONFIG_NUMA
/*
6711 6712 6713
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6714
 */
6715
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6716
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6717

6718
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6719
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6720

6721
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6722
				 struct sched_group **sg, cpumask_t *nodemask)
6723
{
6724 6725
	int group;

6726 6727 6728
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
6729 6730 6731 6732

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6733
}
6734

6735 6736 6737 6738 6739 6740 6741
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6742 6743 6744
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6745

6746 6747 6748 6749 6750 6751 6752 6753
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6754

6755 6756 6757 6758
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6759
}
6760
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6761

6762
#ifdef CONFIG_NUMA
6763
/* Free memory allocated for various sched_group structures */
6764
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6765
{
6766
	int cpu, i;
6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6778 6779 6780
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6797
#else /* !CONFIG_NUMA */
6798
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6799 6800
{
}
6801
#endif /* CONFIG_NUMA */
6802

6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6829 6830
	sd->groups->__cpu_power = 0;

6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6841
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6842 6843 6844 6845 6846 6847 6848 6849
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6850
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6851 6852 6853 6854
		group = group->next;
	} while (group != child->groups);
}

6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6866
	sd->level = SD_LV_##type;				\
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
	default_relax_domain_level = simple_strtoul(str, NULL, 0);
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
6945
/*
6946 6947
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6948
 */
6949 6950
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
6951 6952
{
	int i;
G
Gregory Haskins 已提交
6953
	struct root_domain *rd;
6954 6955
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
6956 6957
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6958
	int sd_allnodes = 0;
6959 6960 6961 6962

	/*
	 * Allocate the per-node list of sched groups
	 */
6963
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6964
				    GFP_KERNEL);
6965 6966
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6967
		return -ENOMEM;
6968 6969
	}
#endif
L
Linus Torvalds 已提交
6970

6971
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6972 6973
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
6974 6975 6976
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
6977 6978 6979
		return -ENOMEM;
	}

6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
6999
	/*
7000
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7001
	 */
7002
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7003
		struct sched_domain *sd = NULL, *p;
7004
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7005

7006 7007
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7008 7009

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7010
		if (cpus_weight(*cpu_map) >
7011
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7012
			sd = &per_cpu(allnodes_domains, i);
7013
			SD_INIT(sd, ALLNODES);
7014
			set_domain_attribute(sd, attr);
7015
			sd->span = *cpu_map;
7016
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7017
			p = sd;
7018
			sd_allnodes = 1;
7019 7020 7021
		} else
			p = NULL;

L
Linus Torvalds 已提交
7022
		sd = &per_cpu(node_domains, i);
7023
		SD_INIT(sd, NODE);
7024
		set_domain_attribute(sd, attr);
7025
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7026
		sd->parent = p;
7027 7028
		if (p)
			p->child = sd;
7029
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7030 7031 7032 7033
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7034
		SD_INIT(sd, CPU);
7035
		set_domain_attribute(sd, attr);
7036
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7037
		sd->parent = p;
7038 7039
		if (p)
			p->child = sd;
7040
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7041

7042 7043 7044
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7045
		SD_INIT(sd, MC);
7046
		set_domain_attribute(sd, attr);
7047 7048 7049
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7050
		p->child = sd;
7051
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7052 7053
#endif

L
Linus Torvalds 已提交
7054 7055 7056
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7057
		SD_INIT(sd, SIBLING);
7058
		set_domain_attribute(sd, attr);
7059
		sd->span = per_cpu(cpu_sibling_map, i);
7060
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7061
		sd->parent = p;
7062
		p->child = sd;
7063
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7064 7065 7066 7067 7068
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7069
	for_each_cpu_mask(i, *cpu_map) {
7070 7071 7072 7073 7074 7075
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7076 7077
			continue;

I
Ingo Molnar 已提交
7078
		init_sched_build_groups(this_sibling_map, cpu_map,
7079 7080
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7081 7082 7083
	}
#endif

7084 7085 7086
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7087 7088 7089 7090 7091 7092
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7093
			continue;
7094

I
Ingo Molnar 已提交
7095
		init_sched_build_groups(this_core_map, cpu_map,
7096 7097
					&cpu_to_core_group,
					send_covered, tmpmask);
7098 7099 7100
	}
#endif

L
Linus Torvalds 已提交
7101 7102
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7103 7104
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7105

7106 7107 7108
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7109 7110
			continue;

7111 7112 7113
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7114 7115 7116 7117
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7118 7119 7120 7121 7122 7123 7124
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7125 7126 7127 7128

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7129 7130 7131
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7132 7133
		int j;

7134 7135 7136 7137 7138
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7139
			sched_group_nodes[i] = NULL;
7140
			continue;
7141
		}
7142

7143
		sched_domain_node_span(i, domainspan);
7144
		cpus_and(*domainspan, *domainspan, *cpu_map);
7145

7146
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7147 7148 7149 7150 7151
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7152
		sched_group_nodes[i] = sg;
7153
		for_each_cpu_mask(j, *nodemask) {
7154
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7155

7156 7157 7158
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7159
		sg->__cpu_power = 0;
7160
		sg->cpumask = *nodemask;
7161
		sg->next = sg;
7162
		cpus_or(*covered, *covered, *nodemask);
7163 7164 7165
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7166
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7167
			int n = (i + j) % MAX_NUMNODES;
7168
			node_to_cpumask_ptr(pnodemask, n);
7169

7170 7171 7172 7173
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7174 7175
				break;

7176 7177
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7178 7179
				continue;

7180 7181
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7182 7183 7184
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7185
				goto error;
7186
			}
7187
			sg->__cpu_power = 0;
7188
			sg->cpumask = *tmpmask;
7189
			sg->next = prev->next;
7190
			cpus_or(*covered, *covered, *tmpmask);
7191 7192 7193 7194
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7195 7196 7197
#endif

	/* Calculate CPU power for physical packages and nodes */
7198
#ifdef CONFIG_SCHED_SMT
7199
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7200 7201
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7202
		init_sched_groups_power(i, sd);
7203
	}
L
Linus Torvalds 已提交
7204
#endif
7205
#ifdef CONFIG_SCHED_MC
7206
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7207 7208
		struct sched_domain *sd = &per_cpu(core_domains, i);

7209
		init_sched_groups_power(i, sd);
7210 7211
	}
#endif
7212

7213
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7214 7215
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7216
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7217 7218
	}

7219
#ifdef CONFIG_NUMA
7220 7221
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7222

7223 7224
	if (sd_allnodes) {
		struct sched_group *sg;
7225

7226 7227
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7228 7229
		init_numa_sched_groups_power(sg);
	}
7230 7231
#endif

L
Linus Torvalds 已提交
7232
	/* Attach the domains */
7233
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7234 7235 7236
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7237 7238
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7239 7240 7241
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7242
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7243
	}
7244

7245
	SCHED_CPUMASK_FREE((void *)allmasks);
7246 7247
	return 0;

7248
#ifdef CONFIG_NUMA
7249
error:
7250 7251
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7252
	return -ENOMEM;
7253
#endif
L
Linus Torvalds 已提交
7254
}
P
Paul Jackson 已提交
7255

7256 7257 7258 7259 7260
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7261 7262
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7263 7264
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7265 7266 7267 7268 7269 7270 7271 7272

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7273 7274 7275 7276
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288
/*
 * Free current domain masks.
 * Called after all cpus are attached to NULL domain.
 */
static void free_sched_domains(void)
{
	ndoms_cur = 0;
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = &fallback_doms;
}

7289
/*
I
Ingo Molnar 已提交
7290
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7291 7292
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7293
 */
7294
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7295
{
7296 7297
	int err;

7298
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7299 7300 7301 7302 7303
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7304
	dattr_cur = NULL;
7305
	err = build_sched_domains(doms_cur);
7306
	register_sched_domain_sysctl();
7307 7308

	return err;
7309 7310
}

7311 7312
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7313
{
7314
	free_sched_groups(cpu_map, tmpmask);
7315
}
L
Linus Torvalds 已提交
7316

7317 7318 7319 7320
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7321
static void detach_destroy_domains(const cpumask_t *cpu_map)
7322
{
7323
	cpumask_t tmpmask;
7324 7325
	int i;

7326 7327
	unregister_sched_domain_sysctl();

7328
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7329
		cpu_attach_domain(NULL, &def_root_domain, i);
7330
	synchronize_sched();
7331
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7332 7333
}

7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7350 7351
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7352
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7353 7354 7355 7356
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7357 7358 7359
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7360 7361 7362
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7363 7364
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7365 7366 7367 7368 7369 7370
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7371 7372
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7373 7374 7375
{
	int i, j;

7376
	mutex_lock(&sched_domains_mutex);
7377

7378 7379 7380
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7381 7382 7383 7384
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7385
		dattr_new = NULL;
P
Paul Jackson 已提交
7386 7387 7388 7389 7390
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7391 7392
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7404 7405
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7406 7407 7408
				goto match2;
		}
		/* no match - add a new doms_new */
7409 7410
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7411 7412 7413 7414 7415 7416 7417
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7418
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7419
	doms_cur = doms_new;
7420
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7421
	ndoms_cur = ndoms_new;
7422 7423

	register_sched_domain_sysctl();
7424

7425
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7426 7427
}

7428
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7429
int arch_reinit_sched_domains(void)
7430 7431 7432
{
	int err;

7433
	get_online_cpus();
7434
	mutex_lock(&sched_domains_mutex);
7435
	detach_destroy_domains(&cpu_online_map);
7436
	free_sched_domains();
7437
	err = arch_init_sched_domains(&cpu_online_map);
7438
	mutex_unlock(&sched_domains_mutex);
7439
	put_online_cpus();
7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7466 7467
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7468 7469 7470
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7471 7472
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7473 7474 7475 7476 7477 7478 7479
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7480 7481
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7482 7483 7484
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7505
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7506

L
Linus Torvalds 已提交
7507
/*
I
Ingo Molnar 已提交
7508
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7509
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7510
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7511 7512 7513 7514 7515
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
P
Peter Zijlstra 已提交
7516 7517
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7518 7519
	switch (action) {
	case CPU_DOWN_PREPARE:
7520
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7521 7522 7523 7524
		disable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
7525
		detach_destroy_domains(&cpu_online_map);
7526
		free_sched_domains();
L
Linus Torvalds 已提交
7527 7528
		return NOTIFY_OK;

P
Peter Zijlstra 已提交
7529

L
Linus Torvalds 已提交
7530
	case CPU_DOWN_FAILED:
7531
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7532
	case CPU_ONLINE:
7533
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7534 7535 7536 7537
		enable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7538
	case CPU_DEAD:
7539
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7540 7541 7542 7543 7544 7545 7546 7547
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

7548 7549 7550 7551 7552 7553 7554
#ifndef CONFIG_CPUSETS
	/*
	 * Create default domain partitioning if cpusets are disabled.
	 * Otherwise we let cpusets rebuild the domains based on the
	 * current setup.
	 */

L
Linus Torvalds 已提交
7555
	/* The hotplug lock is already held by cpu_up/cpu_down */
7556
	arch_init_sched_domains(&cpu_online_map);
7557
#endif
L
Linus Torvalds 已提交
7558 7559 7560 7561 7562 7563

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7564 7565
	cpumask_t non_isolated_cpus;

7566 7567 7568 7569 7570
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7571
	get_online_cpus();
7572
	mutex_lock(&sched_domains_mutex);
7573
	arch_init_sched_domains(&cpu_online_map);
7574
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7575 7576
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7577
	mutex_unlock(&sched_domains_mutex);
7578
	put_online_cpus();
L
Linus Torvalds 已提交
7579 7580
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7581
	init_hrtick();
7582 7583

	/* Move init over to a non-isolated CPU */
7584
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7585
		BUG();
I
Ingo Molnar 已提交
7586
	sched_init_granularity();
L
Linus Torvalds 已提交
7587 7588 7589 7590
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7591
	sched_init_granularity();
L
Linus Torvalds 已提交
7592 7593 7594 7595 7596 7597 7598 7599 7600 7601
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7602
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7603 7604
{
	cfs_rq->tasks_timeline = RB_ROOT;
7605
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7606 7607 7608
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7609
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7610 7611
}

P
Peter Zijlstra 已提交
7612 7613 7614 7615 7616 7617 7618
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
7619 7620
		INIT_LIST_HEAD(array->xqueue + i);
		INIT_LIST_HEAD(array->squeue + i);
P
Peter Zijlstra 已提交
7621 7622 7623 7624 7625
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7626
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7627 7628
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7629 7630 7631 7632 7633 7634 7635
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7636 7637
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7638

7639
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7640
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7641 7642
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7643 7644
}

P
Peter Zijlstra 已提交
7645
#ifdef CONFIG_FAIR_GROUP_SCHED
7646 7647 7648
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7649
{
7650
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7651 7652 7653 7654 7655 7656 7657
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7658 7659 7660 7661
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7662 7663 7664 7665 7666
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7667 7668
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7669
	se->load.inv_weight = 0;
7670
	se->parent = parent;
P
Peter Zijlstra 已提交
7671
}
7672
#endif
P
Peter Zijlstra 已提交
7673

7674
#ifdef CONFIG_RT_GROUP_SCHED
7675 7676 7677
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7678
{
7679 7680
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7681 7682 7683 7684
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7685
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7686 7687 7688 7689
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7690 7691 7692
	if (!rt_se)
		return;

7693 7694 7695 7696 7697
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7698 7699
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
7700
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7701 7702 7703 7704
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7705 7706
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7707
	int i, j;
7708 7709 7710 7711 7712 7713 7714
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7715 7716 7717
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7718 7719 7720 7721 7722 7723
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
7724
		ptr = (unsigned long)alloc_bootmem(alloc_size);
7725 7726 7727 7728 7729 7730 7731

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7732 7733 7734 7735 7736 7737 7738

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7739 7740
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
7741 7742 7743 7744 7745
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7746 7747 7748 7749 7750 7751 7752 7753
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7754 7755
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7756
	}
I
Ingo Molnar 已提交
7757

G
Gregory Haskins 已提交
7758 7759 7760 7761
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7762 7763 7764 7765 7766 7767
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7768 7769 7770
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
7771 7772
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7773

7774
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7775
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7776 7777 7778 7779 7780 7781
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
7782 7783
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
7784

7785
	for_each_possible_cpu(i) {
7786
		struct rq *rq;
L
Linus Torvalds 已提交
7787 7788 7789

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7790
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7791
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7792
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7793
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7794
#ifdef CONFIG_FAIR_GROUP_SCHED
7795
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7796
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7817
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7818
#elif defined CONFIG_USER_SCHED
7819 7820
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
7832
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
7833
				&per_cpu(init_cfs_rq, i),
7834 7835
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
7836

7837
#endif
D
Dhaval Giani 已提交
7838 7839 7840
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7841
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7842
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7843
#ifdef CONFIG_CGROUP_SCHED
7844
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7845
#elif defined CONFIG_USER_SCHED
7846
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7847
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
7848
				&per_cpu(init_rt_rq, i),
7849 7850
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
7851
#endif
I
Ingo Molnar 已提交
7852
#endif
L
Linus Torvalds 已提交
7853

I
Ingo Molnar 已提交
7854 7855
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7856
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7857
		rq->sd = NULL;
G
Gregory Haskins 已提交
7858
		rq->rd = NULL;
L
Linus Torvalds 已提交
7859
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7860
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7861
		rq->push_cpu = 0;
7862
		rq->cpu = i;
7863
		rq->online = 0;
L
Linus Torvalds 已提交
7864 7865
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7866
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7867
#endif
P
Peter Zijlstra 已提交
7868
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7869 7870 7871
		atomic_set(&rq->nr_iowait, 0);
	}

7872
	set_load_weight(&init_task);
7873

7874 7875 7876 7877
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7878 7879 7880 7881
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7882 7883 7884 7885
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
7899 7900 7901 7902
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7903 7904

	scheduler_running = 1;
L
Linus Torvalds 已提交
7905 7906 7907 7908 7909
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7910
#ifdef in_atomic
L
Linus Torvalds 已提交
7911 7912 7913 7914 7915 7916 7917
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7918
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7919 7920 7921
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7922
		debug_show_held_locks(current);
7923 7924
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7925 7926 7927 7928 7929 7930 7931 7932
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7933 7934 7935
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7936

7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7948 7949
void normalize_rt_tasks(void)
{
7950
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7951
	unsigned long flags;
7952
	struct rq *rq;
L
Linus Torvalds 已提交
7953

7954
	read_lock_irqsave(&tasklist_lock, flags);
7955
	do_each_thread(g, p) {
7956 7957 7958 7959 7960 7961
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7962 7963
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7964 7965 7966
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7967
#endif
I
Ingo Molnar 已提交
7968 7969 7970 7971 7972 7973 7974 7975

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7976
			continue;
I
Ingo Molnar 已提交
7977
		}
L
Linus Torvalds 已提交
7978

7979
		spin_lock(&p->pi_lock);
7980
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7981

7982
		normalize_task(rq, p);
7983

7984
		__task_rq_unlock(rq);
7985
		spin_unlock(&p->pi_lock);
7986 7987
	} while_each_thread(g, p);

7988
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7989 7990 7991
}

#endif /* CONFIG_MAGIC_SYSRQ */
7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8010
struct task_struct *curr_task(int cpu)
8011 8012 8013 8014 8015 8016 8017 8018 8019 8020
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8021 8022
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8023 8024 8025 8026 8027 8028 8029
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8030
void set_curr_task(int cpu, struct task_struct *p)
8031 8032 8033 8034 8035
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8036

8037 8038
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8053 8054
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8055 8056
{
	struct cfs_rq *cfs_rq;
8057
	struct sched_entity *se, *parent_se;
8058
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8059 8060
	int i;

8061
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8062 8063
	if (!tg->cfs_rq)
		goto err;
8064
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8065 8066
	if (!tg->se)
		goto err;
8067 8068

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8069 8070

	for_each_possible_cpu(i) {
8071
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8072

P
Peter Zijlstra 已提交
8073 8074
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8075 8076 8077
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8078 8079
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8080 8081 8082
		if (!se)
			goto err;

8083 8084
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8103
#else /* !CONFG_FAIR_GROUP_SCHED */
8104 8105 8106 8107
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8108 8109
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8121
#endif /* CONFIG_FAIR_GROUP_SCHED */
8122 8123

#ifdef CONFIG_RT_GROUP_SCHED
8124 8125 8126 8127
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8128 8129
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8141 8142
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8143 8144
{
	struct rt_rq *rt_rq;
8145
	struct sched_rt_entity *rt_se, *parent_se;
8146 8147 8148
	struct rq *rq;
	int i;

8149
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8150 8151
	if (!tg->rt_rq)
		goto err;
8152
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8153 8154 8155
	if (!tg->rt_se)
		goto err;

8156 8157
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8158 8159 8160 8161

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8162 8163 8164 8165
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8166

P
Peter Zijlstra 已提交
8167 8168 8169 8170
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8171

8172 8173
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8174 8175
	}

8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8192
#else /* !CONFIG_RT_GROUP_SCHED */
8193 8194 8195 8196
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8197 8198
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8210
#endif /* CONFIG_RT_GROUP_SCHED */
8211

8212
#ifdef CONFIG_GROUP_SCHED
8213 8214 8215 8216 8217 8218 8219 8220
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8221
struct task_group *sched_create_group(struct task_group *parent)
8222 8223 8224 8225 8226 8227 8228 8229 8230
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8231
	if (!alloc_fair_sched_group(tg, parent))
8232 8233
		goto err;

8234
	if (!alloc_rt_sched_group(tg, parent))
8235 8236
		goto err;

8237
	spin_lock_irqsave(&task_group_lock, flags);
8238
	for_each_possible_cpu(i) {
8239 8240
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8241
	}
P
Peter Zijlstra 已提交
8242
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8243 8244 8245 8246 8247 8248

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8249
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8250

8251
	return tg;
S
Srivatsa Vaddagiri 已提交
8252 8253

err:
P
Peter Zijlstra 已提交
8254
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8255 8256 8257
	return ERR_PTR(-ENOMEM);
}

8258
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8259
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8260 8261
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8262
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8263 8264
}

8265
/* Destroy runqueue etc associated with a task group */
8266
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8267
{
8268
	unsigned long flags;
8269
	int i;
S
Srivatsa Vaddagiri 已提交
8270

8271
	spin_lock_irqsave(&task_group_lock, flags);
8272
	for_each_possible_cpu(i) {
8273 8274
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8275
	}
P
Peter Zijlstra 已提交
8276
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8277
	list_del_rcu(&tg->siblings);
8278
	spin_unlock_irqrestore(&task_group_lock, flags);
8279 8280

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8281
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8282 8283
}

8284
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8285 8286 8287
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8288 8289
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8290 8291 8292 8293 8294 8295 8296 8297 8298
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8299
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8300 8301
	on_rq = tsk->se.on_rq;

8302
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8303
		dequeue_task(rq, tsk, 0);
8304 8305
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8306

P
Peter Zijlstra 已提交
8307
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8308

P
Peter Zijlstra 已提交
8309 8310 8311 8312 8313
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8314 8315 8316
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8317
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8318 8319 8320

	task_rq_unlock(rq, &flags);
}
8321
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8322

8323
#ifdef CONFIG_FAIR_GROUP_SCHED
8324
static void set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8325 8326
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
8327
	struct rq *rq = cfs_rq->rq;
S
Srivatsa Vaddagiri 已提交
8328 8329
	int on_rq;

8330 8331
	spin_lock_irq(&rq->lock);

S
Srivatsa Vaddagiri 已提交
8332
	on_rq = se->on_rq;
8333
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8334 8335 8336
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8337
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8338

8339
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8340
		enqueue_entity(cfs_rq, se, 0);
8341

8342
	spin_unlock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
8343 8344
}

8345 8346
static DEFINE_MUTEX(shares_mutex);

8347
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8348 8349
{
	int i;
8350
	unsigned long flags;
8351

8352 8353 8354 8355 8356 8357
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8358 8359
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8360 8361
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8362

8363
	mutex_lock(&shares_mutex);
8364
	if (tg->shares == shares)
8365
		goto done;
S
Srivatsa Vaddagiri 已提交
8366

8367
	spin_lock_irqsave(&task_group_lock, flags);
8368 8369
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8370
	list_del_rcu(&tg->siblings);
8371
	spin_unlock_irqrestore(&task_group_lock, flags);
8372 8373 8374 8375 8376 8377 8378 8379

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8380
	tg->shares = shares;
8381
	for_each_possible_cpu(i)
8382
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
8383

8384 8385 8386 8387
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8388
	spin_lock_irqsave(&task_group_lock, flags);
8389 8390
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8391
	list_add_rcu(&tg->siblings, &tg->parent->children);
8392
	spin_unlock_irqrestore(&task_group_lock, flags);
8393
done:
8394
	mutex_unlock(&shares_mutex);
8395
	return 0;
S
Srivatsa Vaddagiri 已提交
8396 8397
}

8398 8399 8400 8401
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8402
#endif
8403

8404
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8405
/*
P
Peter Zijlstra 已提交
8406
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8407
 */
P
Peter Zijlstra 已提交
8408 8409 8410 8411 8412 8413 8414
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8415
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8416 8417
}

8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
	struct task_group *tgi, *parent = tg->parent;
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

	return total + to_ratio(period, runtime) <
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8450
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8451 8452 8453
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8454
	unsigned long global_ratio =
8455
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8456 8457

	rcu_read_lock();
P
Peter Zijlstra 已提交
8458 8459 8460
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8461

8462 8463
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8464 8465
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8466

P
Peter Zijlstra 已提交
8467
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8468
}
8469
#endif
P
Peter Zijlstra 已提交
8470

8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8482 8483
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8484
{
P
Peter Zijlstra 已提交
8485
	int i, err = 0;
P
Peter Zijlstra 已提交
8486 8487

	mutex_lock(&rt_constraints_mutex);
8488
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8489
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8490 8491 8492
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8493 8494 8495 8496
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8497 8498

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8499 8500
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8501 8502 8503 8504 8505 8506 8507 8508 8509

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8510
 unlock:
8511
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8512 8513 8514
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8515 8516
}

8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8529 8530 8531 8532
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8533
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8534 8535
		return -1;

8536
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8537 8538 8539
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(NULL, 1, 0))
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8571
#else /* !CONFIG_RT_GROUP_SCHED */
8572 8573
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8587 8588
	return 0;
}
8589
#endif /* CONFIG_RT_GROUP_SCHED */
8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8620

8621
#ifdef CONFIG_CGROUP_SCHED
8622 8623

/* return corresponding task_group object of a cgroup */
8624
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8625
{
8626 8627
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8628 8629 8630
}

static struct cgroup_subsys_state *
8631
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8632
{
8633
	struct task_group *tg, *parent;
8634

8635
	if (!cgrp->parent) {
8636
		/* This is early initialization for the top cgroup */
8637
		init_task_group.css.cgroup = cgrp;
8638 8639 8640
		return &init_task_group.css;
	}

8641 8642
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8643 8644 8645 8646
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8647
	tg->css.cgroup = cgrp;
8648 8649 8650 8651

	return &tg->css;
}

I
Ingo Molnar 已提交
8652 8653
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8654
{
8655
	struct task_group *tg = cgroup_tg(cgrp);
8656 8657 8658 8659

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8660 8661 8662
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8663
{
8664 8665
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8666
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8667 8668
		return -EINVAL;
#else
8669 8670 8671
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8672
#endif
8673 8674 8675 8676 8677

	return 0;
}

static void
8678
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8679 8680 8681 8682 8683
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8684
#ifdef CONFIG_FAIR_GROUP_SCHED
8685
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8686
				u64 shareval)
8687
{
8688
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8689 8690
}

8691
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8692
{
8693
	struct task_group *tg = cgroup_tg(cgrp);
8694 8695 8696

	return (u64) tg->shares;
}
8697
#endif /* CONFIG_FAIR_GROUP_SCHED */
8698

8699
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8700
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8701
				s64 val)
P
Peter Zijlstra 已提交
8702
{
8703
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8704 8705
}

8706
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8707
{
8708
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8709
}
8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8721
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8722

8723
static struct cftype cpu_files[] = {
8724
#ifdef CONFIG_FAIR_GROUP_SCHED
8725 8726
	{
		.name = "shares",
8727 8728
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8729
	},
8730 8731
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8732
	{
P
Peter Zijlstra 已提交
8733
		.name = "rt_runtime_us",
8734 8735
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8736
	},
8737 8738
	{
		.name = "rt_period_us",
8739 8740
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8741
	},
8742
#endif
8743 8744 8745 8746
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8747
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8748 8749 8750
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8751 8752 8753 8754 8755 8756 8757
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8758 8759 8760
	.early_init	= 1,
};

8761
#endif	/* CONFIG_CGROUP_SCHED */
8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8782
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8783
{
8784
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8797
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8814
static void
8815
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8816
{
8817
	struct cpuacct *ca = cgroup_ca(cgrp);
8818 8819 8820 8821 8822 8823

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
8824
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8825
{
8826
	struct cpuacct *ca = cgroup_ca(cgrp);
8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

8868 8869 8870
static struct cftype files[] = {
	{
		.name = "usage",
8871 8872
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8873 8874 8875
	},
};

8876
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8877
{
8878
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */