sched.c 224.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

142 143
static inline int rt_policy(int policy)
{
144
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 146 147 148 149 150 151 152 153
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
154
/*
I
Ingo Molnar 已提交
155
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
156
 */
I
Ingo Molnar 已提交
157 158 159 160 161
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

162
struct rt_bandwidth {
I
Ingo Molnar 已提交
163 164 165 166 167
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
201 202
	spin_lock_init(&rt_b->rt_runtime_lock);

203 204 205
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
206
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
207 208
}

209 210 211
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
212 213 214 215 216 217
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

218
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 220 221 222 223 224 225 226 227 228 229 230
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 232
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
233 234 235 236 237 238 239 240 241 242 243
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

244 245 246 247 248 249
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

250
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
251

252 253
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
254 255
struct cfs_rq;

P
Peter Zijlstra 已提交
256 257
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
258
/* task group related information */
259
struct task_group {
260
#ifdef CONFIG_CGROUP_SCHED
261 262
	struct cgroup_subsys_state css;
#endif
263

264 265 266 267
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

268
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
269 270 271 272 273
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
274 275 276 277 278 279
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

280
	struct rt_bandwidth rt_bandwidth;
281
#endif
282

283
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
284
	struct list_head list;
P
Peter Zijlstra 已提交
285 286 287 288

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
289 290
};

D
Dhaval Giani 已提交
291
#ifdef CONFIG_USER_SCHED
292

293 294 295 296 297 298
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

299 300 301 302 303 304 305
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

306
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
307 308 309 310
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
311
#endif /* CONFIG_FAIR_GROUP_SCHED */
312 313 314 315

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
316
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
317
#else /* !CONFIG_USER_SCHED */
318
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
319
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
320

321
/* task_group_lock serializes add/remove of task groups and also changes to
322 323
 * a task group's cpu shares.
 */
324
static DEFINE_SPINLOCK(task_group_lock);
325

326 327 328
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
329
#else /* !CONFIG_USER_SCHED */
330
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
331
#endif /* CONFIG_USER_SCHED */
332

333
/*
334 335 336 337
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
338 339 340
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
341
#define MIN_SHARES	2
342
#define MAX_SHARES	(1UL << 18)
343

344 345 346
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
347
/* Default task group.
I
Ingo Molnar 已提交
348
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
349
 */
350
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
351 352

/* return group to which a task belongs */
353
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
354
{
355
	struct task_group *tg;
356

357
#ifdef CONFIG_USER_SCHED
358
	tg = p->user->tg;
359
#elif defined(CONFIG_CGROUP_SCHED)
360 361
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
362
#else
I
Ingo Molnar 已提交
363
	tg = &init_task_group;
364
#endif
365
	return tg;
S
Srivatsa Vaddagiri 已提交
366 367 368
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
369
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
370
{
371
#ifdef CONFIG_FAIR_GROUP_SCHED
372 373
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
374
#endif
P
Peter Zijlstra 已提交
375

376
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
377 378
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
379
#endif
S
Srivatsa Vaddagiri 已提交
380 381 382 383
}

#else

P
Peter Zijlstra 已提交
384
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
385 386 387 388
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
389

390
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
391

I
Ingo Molnar 已提交
392 393 394 395 396 397
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
398
	u64 min_vruntime;
I
Ingo Molnar 已提交
399 400 401

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
402 403 404 405 406 407

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
408 409
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
410
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
411

P
Peter Zijlstra 已提交
412
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
413

414
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
415 416
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
417 418
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
419 420 421 422 423 424
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
425 426
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
427 428 429

#ifdef CONFIG_SMP
	/*
430
	 * the part of load.weight contributed by tasks
431
	 */
432
	unsigned long task_weight;
433

434 435 436 437 438 439 440
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
441

442 443 444 445
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
446 447 448 449 450

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
451
#endif
I
Ingo Molnar 已提交
452 453
#endif
};
L
Linus Torvalds 已提交
454

I
Ingo Molnar 已提交
455 456 457
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
458
	unsigned long rt_nr_running;
459
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
460 461
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
462
#ifdef CONFIG_SMP
463
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
464
	int overloaded;
P
Peter Zijlstra 已提交
465
#endif
P
Peter Zijlstra 已提交
466
	int rt_throttled;
P
Peter Zijlstra 已提交
467
	u64 rt_time;
P
Peter Zijlstra 已提交
468
	u64 rt_runtime;
I
Ingo Molnar 已提交
469
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
470
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
471

472
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
473 474
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
475 476 477 478 479
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
480 481
};

G
Gregory Haskins 已提交
482 483 484 485
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
486 487
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
488 489 490 491 492 493 494 495
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
496

I
Ingo Molnar 已提交
497
	/*
498 499 500 501
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
502
	atomic_t rto_count;
503 504 505
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
506 507
};

508 509 510 511
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
512 513 514 515
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
516 517 518 519 520 521 522
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
523
struct rq {
524 525
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
526 527 528 529 530 531

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
532 533
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
534
	unsigned char idle_at_tick;
535
#ifdef CONFIG_NO_HZ
536
	unsigned long last_tick_seen;
537 538
	unsigned char in_nohz_recently;
#endif
539 540
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
541 542 543 544
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
545 546
	struct rt_rq rt;

I
Ingo Molnar 已提交
547
#ifdef CONFIG_FAIR_GROUP_SCHED
548 549
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
550 551
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
552
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
553 554 555 556 557 558 559 560 561 562
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

563
	struct task_struct *curr, *idle;
564
	unsigned long next_balance;
L
Linus Torvalds 已提交
565
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
566

567
	u64 clock;
I
Ingo Molnar 已提交
568

L
Linus Torvalds 已提交
569 570 571
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
572
	struct root_domain *rd;
L
Linus Torvalds 已提交
573 574 575 576 577
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
578 579
	/* cpu of this runqueue: */
	int cpu;
580
	int online;
L
Linus Torvalds 已提交
581

582
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
583

584
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
585 586 587
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
588
#ifdef CONFIG_SCHED_HRTICK
589 590 591 592
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
593 594 595
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
596 597 598 599 600
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
601 602 603 604
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
605 606

	/* schedule() stats */
607 608 609
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
610 611

	/* try_to_wake_up() stats */
612 613
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
614 615

	/* BKL stats */
616
	unsigned int bkl_count;
L
Linus Torvalds 已提交
617 618 619
#endif
};

620
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
621

622
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
623
{
624
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
625 626
}

627 628 629 630 631 632 633 634 635
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
636 637
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
638
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
639 640 641 642
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
643 644
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
645 646 647 648 649 650

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

651 652 653 654 655
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
656 657 658 659 660 661 662 663 664
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
683 684 685
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
686 687 688 689

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
690
enum {
P
Peter Zijlstra 已提交
691
#include "sched_features.h"
I
Ingo Molnar 已提交
692 693
};

P
Peter Zijlstra 已提交
694 695 696 697 698
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
699
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
700 701 702 703 704 705 706 707 708
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

709
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
710 711 712 713 714 715
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
716
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
717 718 719 720
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
721 722 723
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
724
	}
L
Li Zefan 已提交
725
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
726

L
Li Zefan 已提交
727
	return 0;
P
Peter Zijlstra 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
747
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
772 773 774 775 776
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
777
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
778 779 780 781 782
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
797

798 799 800 801 802 803
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
804 805
/*
 * ratelimit for updating the group shares.
806
 * default: 0.25ms
P
Peter Zijlstra 已提交
807
 */
808
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
809

810 811 812 813 814 815 816
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
817
/*
P
Peter Zijlstra 已提交
818
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
819 820
 * default: 1s
 */
P
Peter Zijlstra 已提交
821
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
822

823 824
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
825 826 827 828 829
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
830

831 832 833 834 835 836 837
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
838
	if (sysctl_sched_rt_runtime < 0)
839 840 841 842
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
843

L
Linus Torvalds 已提交
844
#ifndef prepare_arch_switch
845 846 847 848 849 850
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

851 852 853 854 855
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

856
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
857
static inline int task_running(struct rq *rq, struct task_struct *p)
858
{
859
	return task_current(rq, p);
860 861
}

862
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
863 864 865
{
}

866
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
867
{
868 869 870 871
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
872 873 874 875 876 877 878
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

879 880 881 882
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
883
static inline int task_running(struct rq *rq, struct task_struct *p)
884 885 886 887
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
888
	return task_current(rq, p);
889 890 891
#endif
}

892
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

909
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
910 911 912 913 914 915 916 917 918 919 920 921
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
922
#endif
923 924
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
925

926 927 928 929
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
930
static inline struct rq *__task_rq_lock(struct task_struct *p)
931 932
	__acquires(rq->lock)
{
933 934 935 936 937
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
938 939 940 941
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
942 943
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
944
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
945 946
 * explicitly disabling preemption.
 */
947
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
948 949
	__acquires(rq->lock)
{
950
	struct rq *rq;
L
Linus Torvalds 已提交
951

952 953 954 955 956 957
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
958 959 960 961
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

962 963 964 965 966 967 968 969
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
970
static void __task_rq_unlock(struct rq *rq)
971 972 973 974 975
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

976
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
977 978 979 980 981 982
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
983
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
984
 */
A
Alexey Dobriyan 已提交
985
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
986 987
	__acquires(rq->lock)
{
988
	struct rq *rq;
L
Linus Torvalds 已提交
989 990 991 992 993 994 995 996

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1018
	if (!cpu_active(cpu_of(rq)))
1019
		return 0;
P
Peter Zijlstra 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1040
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1041 1042 1043 1044 1045 1046
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1047
#ifdef CONFIG_SMP
1048 1049 1050 1051
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1052
{
1053
	struct rq *rq = arg;
1054

1055 1056 1057 1058
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1059 1060
}

1061 1062 1063 1064 1065 1066
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1067
{
1068 1069
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1070

1071
	hrtimer_set_expires(timer, time);
1072 1073 1074 1075 1076 1077 1078

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1093
		hrtick_clear(cpu_rq(cpu));
1094 1095 1096 1097 1098 1099
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1100
static __init void init_hrtick(void)
1101 1102 1103
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1114

A
Andrew Morton 已提交
1115
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1116 1117
{
}
1118
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1119

1120
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1121
{
1122 1123
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1124

1125 1126 1127 1128
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1129

1130 1131
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
1132
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
P
Peter Zijlstra 已提交
1133
}
A
Andrew Morton 已提交
1134
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1135 1136 1137 1138 1139 1140 1141 1142
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1143 1144 1145
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1146
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1147

I
Ingo Molnar 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1161
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1162 1163 1164 1165 1166
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1167
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1168 1169
		return;

1170
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1233
#endif /* CONFIG_NO_HZ */
1234

1235
#else /* !CONFIG_SMP */
1236
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1237 1238
{
	assert_spin_locked(&task_rq(p)->lock);
1239
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1240
}
1241
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1242

1243 1244 1245 1246 1247 1248 1249 1250
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1251 1252 1253
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1254
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1255

1256 1257 1258
/*
 * delta *= weight / lw
 */
1259
static unsigned long
1260 1261 1262 1263 1264
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1265 1266 1267 1268 1269 1270 1271
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1272 1273 1274 1275 1276

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1277
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1278
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1279 1280
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1281
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1282

1283
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1284 1285
}

1286
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1287 1288
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1289
	lw->inv_weight = 0;
1290 1291
}

1292
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1293 1294
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1295
	lw->inv_weight = 0;
1296 1297
}

1298 1299 1300 1301
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1302
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1303 1304 1305 1306
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1318 1319 1320
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1321 1322
 */
static const int prio_to_weight[40] = {
1323 1324 1325 1326 1327 1328 1329 1330
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1331 1332
};

1333 1334 1335 1336 1337 1338 1339
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1340
static const u32 prio_to_wmult[40] = {
1341 1342 1343 1344 1345 1346 1347 1348
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1349
};
1350

I
Ingo Molnar 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1376

1377 1378 1379 1380 1381 1382
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1393
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1394
typedef int (*tg_visitor)(struct task_group *, void *);
1395 1396 1397 1398 1399

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1400
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1401 1402
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1403
	int ret;
1404 1405 1406 1407

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1408 1409 1410
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1411 1412 1413 1414 1415 1416 1417
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1418 1419 1420
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1421 1422 1423 1424 1425

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1426
out_unlock:
1427
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1428 1429

	return ret;
1430 1431
}

P
Peter Zijlstra 已提交
1432 1433 1434
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1435
}
P
Peter Zijlstra 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1446
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1447

1448 1449
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1450 1451
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1452 1453 1454 1455 1456

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1457 1458 1459 1460 1461 1462 1463

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1464 1465
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1466
{
1467 1468 1469
	unsigned long shares;
	unsigned long rq_weight;

1470
	if (!tg->se[cpu])
1471 1472
		return;

1473
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1474

1475 1476 1477 1478 1479 1480
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1481
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1482
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1483

1484 1485 1486 1487
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1488

1489
		spin_lock_irqsave(&rq->lock, flags);
1490
		tg->cfs_rq[cpu]->shares = shares;
1491

1492 1493 1494
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1495
}
1496 1497

/*
1498 1499 1500
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1501
 */
P
Peter Zijlstra 已提交
1502
static int tg_shares_up(struct task_group *tg, void *data)
1503
{
1504
	unsigned long weight, rq_weight = 0;
1505
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1506
	struct sched_domain *sd = data;
1507
	int i;
1508

1509
	for_each_cpu_mask(i, sd->span) {
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1521
		shares += tg->cfs_rq[i]->shares;
1522 1523
	}

1524 1525 1526 1527 1528
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1529

1530 1531
	for_each_cpu_mask(i, sd->span)
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1532 1533

	return 0;
1534 1535 1536
}

/*
1537 1538 1539
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1540
 */
P
Peter Zijlstra 已提交
1541
static int tg_load_down(struct task_group *tg, void *data)
1542
{
1543
	unsigned long load;
P
Peter Zijlstra 已提交
1544
	long cpu = (long)data;
1545

1546 1547 1548 1549 1550 1551 1552
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1553

1554
	tg->cfs_rq[cpu]->h_load = load;
1555

P
Peter Zijlstra 已提交
1556
	return 0;
1557 1558
}

1559
static void update_shares(struct sched_domain *sd)
1560
{
P
Peter Zijlstra 已提交
1561 1562 1563 1564 1565
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1566
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1567
	}
1568 1569
}

1570 1571 1572 1573 1574 1575 1576
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1577
static void update_h_load(long cpu)
1578
{
P
Peter Zijlstra 已提交
1579
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1580 1581 1582 1583
}

#else

1584
static inline void update_shares(struct sched_domain *sd)
1585 1586 1587
{
}

1588 1589 1590 1591
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1592 1593
#endif

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1627 1628
#endif

V
Vegard Nossum 已提交
1629
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1630 1631
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1632
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1633 1634 1635
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1636
#endif
1637

I
Ingo Molnar 已提交
1638 1639
#include "sched_stats.h"
#include "sched_idletask.c"
1640 1641
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1642 1643 1644 1645 1646
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1647 1648
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1649

1650
static void inc_nr_running(struct rq *rq)
1651 1652 1653 1654
{
	rq->nr_running++;
}

1655
static void dec_nr_running(struct rq *rq)
1656 1657 1658 1659
{
	rq->nr_running--;
}

1660 1661 1662
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1663 1664 1665 1666
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1667

I
Ingo Molnar 已提交
1668 1669 1670 1671 1672 1673 1674 1675
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1676

I
Ingo Molnar 已提交
1677 1678
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1679 1680
}

1681 1682 1683 1684 1685 1686
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1687
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1688
{
I
Ingo Molnar 已提交
1689
	sched_info_queued(p);
1690
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1691
	p->se.on_rq = 1;
1692 1693
}

1694
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1695
{
1696 1697 1698 1699 1700 1701
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1702
	sched_info_dequeued(p);
1703
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1704
	p->se.on_rq = 0;
1705 1706
}

1707
/*
I
Ingo Molnar 已提交
1708
 * __normal_prio - return the priority that is based on the static prio
1709 1710 1711
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1712
	return p->static_prio;
1713 1714
}

1715 1716 1717 1718 1719 1720 1721
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1722
static inline int normal_prio(struct task_struct *p)
1723 1724 1725
{
	int prio;

1726
	if (task_has_rt_policy(p))
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1740
static int effective_prio(struct task_struct *p)
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1753
/*
I
Ingo Molnar 已提交
1754
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1755
 */
I
Ingo Molnar 已提交
1756
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1757
{
1758
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1759
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1760

1761
	enqueue_task(rq, p, wakeup);
1762
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1763 1764 1765 1766 1767
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1768
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1769
{
1770
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1771 1772
		rq->nr_uninterruptible++;

1773
	dequeue_task(rq, p, sleep);
1774
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1775 1776 1777 1778 1779 1780
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1781
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1782 1783 1784 1785
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1786 1787
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1788
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1789
#ifdef CONFIG_SMP
1790 1791 1792 1793 1794 1795
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1796 1797
	task_thread_info(p)->cpu = cpu;
#endif
1798 1799
}

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1812
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1813

1814 1815 1816 1817 1818 1819
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1820 1821 1822
/*
 * Is this task likely cache-hot:
 */
1823
static int
1824 1825 1826 1827
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1828 1829 1830
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1831 1832 1833
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1834 1835
		return 1;

1836 1837 1838
	if (p->sched_class != &fair_sched_class)
		return 0;

1839 1840 1841 1842 1843
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1844 1845 1846 1847 1848 1849
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1850
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1851
{
I
Ingo Molnar 已提交
1852 1853
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1854 1855
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1856
	u64 clock_offset;
I
Ingo Molnar 已提交
1857 1858

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1859 1860 1861 1862

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1863 1864 1865 1866
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1867 1868 1869 1870 1871
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1872
#endif
1873 1874
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1875 1876

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1877 1878
}

1879
struct migration_req {
L
Linus Torvalds 已提交
1880 1881
	struct list_head list;

1882
	struct task_struct *task;
L
Linus Torvalds 已提交
1883 1884 1885
	int dest_cpu;

	struct completion done;
1886
};
L
Linus Torvalds 已提交
1887 1888 1889 1890 1891

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1892
static int
1893
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1894
{
1895
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1896 1897 1898 1899 1900

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1901
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1902 1903 1904 1905 1906 1907 1908 1909
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1910

L
Linus Torvalds 已提交
1911 1912 1913 1914 1915 1916
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1917 1918 1919 1920 1921 1922 1923
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1924 1925 1926 1927 1928 1929
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1930
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1931 1932
{
	unsigned long flags;
I
Ingo Molnar 已提交
1933
	int running, on_rq;
R
Roland McGrath 已提交
1934
	unsigned long ncsw;
1935
	struct rq *rq;
L
Linus Torvalds 已提交
1936

1937 1938 1939 1940 1941 1942 1943 1944
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1945

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1957 1958 1959
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1960
			cpu_relax();
R
Roland McGrath 已提交
1961
		}
1962

1963 1964 1965 1966 1967 1968
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1969
		trace_sched_wait_task(rq, p);
1970 1971
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1972
		ncsw = 0;
1973
		if (!match_state || p->state == match_state)
1974
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1975
		task_rq_unlock(rq, &flags);
1976

R
Roland McGrath 已提交
1977 1978 1979 1980 1981 1982
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1993

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2007

2008 2009 2010 2011 2012 2013 2014
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2015 2016

	return ncsw;
L
Linus Torvalds 已提交
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2032
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2044 2045
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2046 2047 2048 2049
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2050
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2051
{
2052
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2053
	unsigned long total = weighted_cpuload(cpu);
2054

2055
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2056
		return total;
2057

I
Ingo Molnar 已提交
2058
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2059 2060 2061
}

/*
2062 2063
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2064
 */
A
Alexey Dobriyan 已提交
2065
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2066
{
2067
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2068
	unsigned long total = weighted_cpuload(cpu);
2069

2070
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2071
		return total;
2072

I
Ingo Molnar 已提交
2073
	return max(rq->cpu_load[type-1], total);
2074 2075
}

N
Nick Piggin 已提交
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2093 2094
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2095
			continue;
2096

N
Nick Piggin 已提交
2097 2098 2099 2100 2101
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2102
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2113 2114
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2115 2116 2117 2118 2119 2120 2121 2122

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2123
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2124 2125 2126 2127 2128 2129 2130

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2131
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2132
 */
I
Ingo Molnar 已提交
2133
static int
2134 2135
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2136 2137 2138 2139 2140
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2141
	/* Traverse only the allowed CPUs */
2142
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2143

2144
	for_each_cpu_mask_nr(i, *tmp) {
2145
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2171

2172
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2173 2174 2175
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2176 2177
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2178 2179
		if (tmp->flags & flag)
			sd = tmp;
2180
	}
N
Nick Piggin 已提交
2181

2182 2183 2184
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2185
	while (sd) {
2186
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2187
		struct sched_group *group;
2188 2189 2190 2191 2192 2193
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2194 2195 2196

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2197 2198 2199 2200
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2201

2202
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2203 2204 2205 2206 2207
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2208

2209
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2241
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2242
{
2243
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2244 2245
	unsigned long flags;
	long old_state;
2246
	struct rq *rq;
L
Linus Torvalds 已提交
2247

2248 2249 2250
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2267
	smp_wmb();
L
Linus Torvalds 已提交
2268 2269 2270 2271 2272
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2273
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2274 2275 2276
		goto out_running;

	cpu = task_cpu(p);
2277
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2278 2279 2280 2281 2282 2283
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2284 2285 2286
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2287 2288 2289 2290 2291 2292
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2293
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2294 2295 2296 2297 2298 2299
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2313
#endif /* CONFIG_SCHEDSTATS */
2314

L
Linus Torvalds 已提交
2315 2316
out_activate:
#endif /* CONFIG_SMP */
2317 2318 2319 2320 2321 2322 2323 2324 2325
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2326
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2327
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2328 2329 2330
	success = 1;

out_running:
2331
	trace_sched_wakeup(rq, p);
2332
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2333

L
Linus Torvalds 已提交
2334
	p->state = TASK_RUNNING;
2335 2336 2337 2338
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2339
out:
2340 2341
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2342 2343 2344 2345 2346
	task_rq_unlock(rq, &flags);

	return success;
}

2347
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2348
{
2349
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2350 2351 2352
}
EXPORT_SYMBOL(wake_up_process);

2353
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2354 2355 2356 2357 2358 2359 2360
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2361 2362 2363 2364 2365 2366 2367
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2368
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2369 2370
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2371 2372 2373

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2374 2375 2376 2377 2378 2379
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2380
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2381
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2382
#endif
N
Nick Piggin 已提交
2383

P
Peter Zijlstra 已提交
2384
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2385
	p->se.on_rq = 0;
2386
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2387

2388 2389 2390 2391
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2392 2393 2394 2395 2396 2397 2398
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2413
	set_task_cpu(p, cpu);
2414 2415 2416 2417 2418

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2419 2420
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2421

2422
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2423
	if (likely(sched_info_on()))
2424
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2425
#endif
2426
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2427 2428
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2429
#ifdef CONFIG_PREEMPT
2430
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2431
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2432
#endif
N
Nick Piggin 已提交
2433
	put_cpu();
L
Linus Torvalds 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2443
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2444 2445
{
	unsigned long flags;
I
Ingo Molnar 已提交
2446
	struct rq *rq;
L
Linus Torvalds 已提交
2447 2448

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2449
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2450
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2451 2452 2453

	p->prio = effective_prio(p);

2454
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2455
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2456 2457
	} else {
		/*
I
Ingo Molnar 已提交
2458 2459
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2460
		 */
2461
		p->sched_class->task_new(rq, p);
2462
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2463
	}
2464
	trace_sched_wakeup_new(rq, p);
2465
	check_preempt_curr(rq, p, 0);
2466 2467 2468 2469
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2470
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2471 2472
}

2473 2474 2475
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2476 2477
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2478 2479 2480 2481 2482 2483 2484 2485 2486
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2487
 * @notifier: notifier struct to unregister
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2517
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2529
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2530

2531 2532 2533
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2534
 * @prev: the current task that is being switched out
2535 2536 2537 2538 2539 2540 2541 2542 2543
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2544 2545 2546
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2547
{
2548
	fire_sched_out_preempt_notifiers(prev, next);
2549 2550 2551 2552
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2553 2554
/**
 * finish_task_switch - clean up after a task-switch
2555
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2556 2557
 * @prev: the thread we just switched away from.
 *
2558 2559 2560 2561
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2562 2563
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2564
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2565 2566 2567
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2568
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2569 2570 2571
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2572
	long prev_state;
L
Linus Torvalds 已提交
2573 2574 2575 2576 2577

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2578
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2579 2580
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2581
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2582 2583 2584 2585 2586
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2587
	prev_state = prev->state;
2588 2589
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2590 2591 2592 2593
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2594

2595
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2596 2597
	if (mm)
		mmdrop(mm);
2598
	if (unlikely(prev_state == TASK_DEAD)) {
2599 2600 2601
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2602
		 */
2603
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2604
		put_task_struct(prev);
2605
	}
L
Linus Torvalds 已提交
2606 2607 2608 2609 2610 2611
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2612
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2613 2614
	__releases(rq->lock)
{
2615 2616
	struct rq *rq = this_rq();

2617 2618 2619 2620 2621
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2622
	if (current->set_child_tid)
2623
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2624 2625 2626 2627 2628 2629
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2630
static inline void
2631
context_switch(struct rq *rq, struct task_struct *prev,
2632
	       struct task_struct *next)
L
Linus Torvalds 已提交
2633
{
I
Ingo Molnar 已提交
2634
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2635

2636
	prepare_task_switch(rq, prev, next);
2637
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2638 2639
	mm = next->mm;
	oldmm = prev->active_mm;
2640 2641 2642 2643 2644 2645 2646
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2647
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2648 2649 2650 2651 2652 2653
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2654
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2655 2656 2657
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2658 2659 2660 2661 2662 2663 2664
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2665
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2666
#endif
L
Linus Torvalds 已提交
2667 2668 2669 2670

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2671 2672 2673 2674 2675 2676 2677
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2701
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2716 2717
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2718

2719
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2720 2721 2722 2723 2724 2725 2726 2727 2728
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2729
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2730 2731 2732 2733 2734
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2750
/*
I
Ingo Molnar 已提交
2751 2752
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2753
 */
I
Ingo Molnar 已提交
2754
static void update_cpu_load(struct rq *this_rq)
2755
{
2756
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2769 2770 2771 2772 2773 2774 2775
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2776 2777
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2778 2779
}

I
Ingo Molnar 已提交
2780 2781
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2782 2783 2784 2785 2786 2787
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2788
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2789 2790 2791
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2792
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2793 2794 2795 2796
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2797
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2798
			spin_lock(&rq1->lock);
2799
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2800 2801
		} else {
			spin_lock(&rq2->lock);
2802
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2803 2804
		}
	}
2805 2806
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2807 2808 2809 2810 2811 2812 2813 2814
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2815
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2829
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2830 2831
 * the cpu_allowed mask is restored.
 */
2832
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2833
{
2834
	struct migration_req req;
L
Linus Torvalds 已提交
2835
	unsigned long flags;
2836
	struct rq *rq;
L
Linus Torvalds 已提交
2837 2838 2839

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2840
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2841 2842
		goto out;

2843
	trace_sched_migrate_task(rq, p, dest_cpu);
L
Linus Torvalds 已提交
2844 2845 2846 2847
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2848

L
Linus Torvalds 已提交
2849 2850 2851 2852 2853
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2854

L
Linus Torvalds 已提交
2855 2856 2857 2858 2859 2860 2861
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2862 2863
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2864 2865 2866 2867
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2868
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2869
	put_cpu();
N
Nick Piggin 已提交
2870 2871
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2872 2873 2874 2875 2876 2877
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2878 2879
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2880
{
2881
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2882
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2883
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2884 2885 2886 2887
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2888
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2889 2890 2891 2892 2893
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2894
static
2895
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2896
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2897
		     int *all_pinned)
L
Linus Torvalds 已提交
2898 2899 2900 2901 2902 2903 2904
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2905 2906
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2907
		return 0;
2908
	}
2909 2910
	*all_pinned = 0;

2911 2912
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2913
		return 0;
2914
	}
L
Linus Torvalds 已提交
2915

2916 2917 2918 2919 2920 2921
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2922 2923
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2924
#ifdef CONFIG_SCHEDSTATS
2925
		if (task_hot(p, rq->clock, sd)) {
2926
			schedstat_inc(sd, lb_hot_gained[idle]);
2927 2928
			schedstat_inc(p, se.nr_forced_migrations);
		}
2929 2930 2931 2932
#endif
		return 1;
	}

2933 2934
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2935
		return 0;
2936
	}
L
Linus Torvalds 已提交
2937 2938 2939
	return 1;
}

2940 2941 2942 2943 2944
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2945
{
2946
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2947 2948
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2949

2950
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2951 2952
		goto out;

2953 2954
	pinned = 1;

L
Linus Torvalds 已提交
2955
	/*
I
Ingo Molnar 已提交
2956
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2957
	 */
I
Ingo Molnar 已提交
2958 2959
	p = iterator->start(iterator->arg);
next:
2960
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2961
		goto out;
2962 2963

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2964 2965 2966
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2967 2968
	}

I
Ingo Molnar 已提交
2969
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2970
	pulled++;
I
Ingo Molnar 已提交
2971
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2972

2973
	/*
2974
	 * We only want to steal up to the prescribed amount of weighted load.
2975
	 */
2976
	if (rem_load_move > 0) {
2977 2978
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2979 2980
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2981 2982 2983
	}
out:
	/*
2984
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2985 2986 2987 2988
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2989 2990 2991

	if (all_pinned)
		*all_pinned = pinned;
2992 2993

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2994 2995
}

I
Ingo Molnar 已提交
2996
/*
P
Peter Williams 已提交
2997 2998 2999
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3000 3001 3002 3003
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3004
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3005 3006 3007
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3008
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3009
	unsigned long total_load_moved = 0;
3010
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3011 3012

	do {
P
Peter Williams 已提交
3013 3014
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3015
				max_load_move - total_load_moved,
3016
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3017
		class = class->next;
3018 3019 3020 3021

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3022
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3023

P
Peter Williams 已提交
3024 3025 3026
	return total_load_moved > 0;
}

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3063
	const struct sched_class *class;
P
Peter Williams 已提交
3064 3065

	for (class = sched_class_highest; class; class = class->next)
3066
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3067 3068 3069
			return 1;

	return 0;
I
Ingo Molnar 已提交
3070 3071
}

L
Linus Torvalds 已提交
3072 3073
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3074 3075
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3076 3077 3078
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3079
		   unsigned long *imbalance, enum cpu_idle_type idle,
3080
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3081 3082 3083
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3084
	unsigned long max_pull;
3085 3086
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3087
	int load_idx, group_imb = 0;
3088 3089 3090 3091 3092 3093
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3094 3095

	max_load = this_load = total_load = total_pwr = 0;
3096 3097
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3098

I
Ingo Molnar 已提交
3099
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3100
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3101
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3102 3103 3104
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3105 3106

	do {
3107
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3108 3109
		int local_group;
		int i;
3110
		int __group_imb = 0;
3111
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3112
		unsigned long sum_nr_running, sum_weighted_load;
3113 3114
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3115 3116 3117

		local_group = cpu_isset(this_cpu, group->cpumask);

3118 3119 3120
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3121
		/* Tally up the load of all CPUs in the group */
3122
		sum_weighted_load = sum_nr_running = avg_load = 0;
3123 3124
		sum_avg_load_per_task = avg_load_per_task = 0;

3125 3126
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3127

3128
		for_each_cpu_mask_nr(i, group->cpumask) {
3129 3130 3131 3132 3133 3134
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3135

3136
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3137 3138
				*sd_idle = 0;

L
Linus Torvalds 已提交
3139
			/* Bias balancing toward cpus of our domain */
3140 3141 3142 3143 3144 3145
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3146
				load = target_load(i, load_idx);
3147
			} else {
N
Nick Piggin 已提交
3148
				load = source_load(i, load_idx);
3149 3150 3151 3152 3153
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3154 3155

			avg_load += load;
3156
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3157
			sum_weighted_load += weighted_cpuload(i);
3158 3159

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3160 3161
		}

3162 3163 3164
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3165 3166
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3167
		 */
3168 3169
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3170 3171 3172 3173
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3174
		total_load += avg_load;
3175
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3176 3177

		/* Adjust by relative CPU power of the group */
3178 3179
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3180

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3195 3196
			__group_imb = 1;

3197
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3198

L
Linus Torvalds 已提交
3199 3200 3201
		if (local_group) {
			this_load = avg_load;
			this = group;
3202 3203 3204
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3205
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3206 3207
			max_load = avg_load;
			busiest = group;
3208 3209
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3210
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3211
		}
3212 3213 3214 3215 3216 3217

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3218 3219 3220
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3221 3222 3223 3224 3225 3226 3227 3228 3229

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3230
		/*
3231 3232
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3233 3234
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3235
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3236
			goto group_next;
3237

I
Ingo Molnar 已提交
3238
		/*
3239
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3240 3241 3242 3243 3244
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3245 3246
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3247 3248
			group_min = group;
			min_nr_running = sum_nr_running;
3249 3250
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3251
		}
3252

I
Ingo Molnar 已提交
3253
		/*
3254
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3266
		}
3267 3268
group_next:
#endif
L
Linus Torvalds 已提交
3269 3270 3271
		group = group->next;
	} while (group != sd->groups);

3272
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3273 3274 3275 3276 3277 3278 3279 3280
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3281
	busiest_load_per_task /= busiest_nr_running;
3282 3283 3284
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3285 3286 3287 3288 3289 3290 3291 3292
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3293
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3294 3295
	 * appear as very large values with unsigned longs.
	 */
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3308 3309

	/* Don't want to pull so many tasks that a group would go idle */
3310
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3311

L
Linus Torvalds 已提交
3312
	/* How much load to actually move to equalise the imbalance */
3313 3314
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3315 3316
			/ SCHED_LOAD_SCALE;

3317 3318 3319 3320 3321 3322
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3323
	if (*imbalance < busiest_load_per_task) {
3324
		unsigned long tmp, pwr_now, pwr_move;
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3335
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3336

3337
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3338
					busiest_load_per_task * imbn) {
3339
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3349 3350 3351 3352
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3353 3354 3355
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3356 3357
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3358
		if (max_load > tmp)
3359
			pwr_move += busiest->__cpu_power *
3360
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3361 3362

		/* Amount of load we'd add */
3363
		if (max_load * busiest->__cpu_power <
3364
				busiest_load_per_task * SCHED_LOAD_SCALE)
3365 3366
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3367
		else
3368 3369 3370 3371
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3372 3373 3374
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3375 3376
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3377 3378 3379 3380 3381
	}

	return busiest;

out_balanced:
3382
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3383
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3384
		goto ret;
L
Linus Torvalds 已提交
3385

3386 3387 3388 3389 3390
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3391
ret:
L
Linus Torvalds 已提交
3392 3393 3394 3395 3396 3397 3398
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3399
static struct rq *
I
Ingo Molnar 已提交
3400
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3401
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3402
{
3403
	struct rq *busiest = NULL, *rq;
3404
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3405 3406
	int i;

3407
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3408
		unsigned long wl;
3409 3410 3411 3412

		if (!cpu_isset(i, *cpus))
			continue;

3413
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3414
		wl = weighted_cpuload(i);
3415

I
Ingo Molnar 已提交
3416
		if (rq->nr_running == 1 && wl > imbalance)
3417
			continue;
L
Linus Torvalds 已提交
3418

I
Ingo Molnar 已提交
3419 3420
		if (wl > max_load) {
			max_load = wl;
3421
			busiest = rq;
L
Linus Torvalds 已提交
3422 3423 3424 3425 3426 3427
		}
	}

	return busiest;
}

3428 3429 3430 3431 3432 3433
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3434 3435 3436 3437
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3438
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3439
			struct sched_domain *sd, enum cpu_idle_type idle,
3440
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3441
{
P
Peter Williams 已提交
3442
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3443 3444
	struct sched_group *group;
	unsigned long imbalance;
3445
	struct rq *busiest;
3446
	unsigned long flags;
N
Nick Piggin 已提交
3447

3448 3449
	cpus_setall(*cpus);

3450 3451 3452
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3453
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3454
	 * portraying it as CPU_NOT_IDLE.
3455
	 */
I
Ingo Molnar 已提交
3456
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3457
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3458
		sd_idle = 1;
L
Linus Torvalds 已提交
3459

3460
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3461

3462
redo:
3463
	update_shares(sd);
3464
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3465
				   cpus, balance);
3466

3467
	if (*balance == 0)
3468 3469
		goto out_balanced;

L
Linus Torvalds 已提交
3470 3471 3472 3473 3474
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3475
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3476 3477 3478 3479 3480
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3481
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3482 3483 3484

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3485
	ld_moved = 0;
L
Linus Torvalds 已提交
3486 3487 3488 3489
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3490
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3491 3492
		 * correctly treated as an imbalance.
		 */
3493
		local_irq_save(flags);
N
Nick Piggin 已提交
3494
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3495
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3496
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3497
		double_rq_unlock(this_rq, busiest);
3498
		local_irq_restore(flags);
3499

3500 3501 3502
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3503
		if (ld_moved && this_cpu != smp_processor_id())
3504 3505
			resched_cpu(this_cpu);

3506
		/* All tasks on this runqueue were pinned by CPU affinity */
3507
		if (unlikely(all_pinned)) {
3508 3509
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3510
				goto redo;
3511
			goto out_balanced;
3512
		}
L
Linus Torvalds 已提交
3513
	}
3514

P
Peter Williams 已提交
3515
	if (!ld_moved) {
L
Linus Torvalds 已提交
3516 3517 3518 3519 3520
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3521
			spin_lock_irqsave(&busiest->lock, flags);
3522 3523 3524 3525 3526

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3527
				spin_unlock_irqrestore(&busiest->lock, flags);
3528 3529 3530 3531
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3532 3533 3534
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3535
				active_balance = 1;
L
Linus Torvalds 已提交
3536
			}
3537
			spin_unlock_irqrestore(&busiest->lock, flags);
3538
			if (active_balance)
L
Linus Torvalds 已提交
3539 3540 3541 3542 3543 3544
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3545
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3546
		}
3547
	} else
L
Linus Torvalds 已提交
3548 3549
		sd->nr_balance_failed = 0;

3550
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3551 3552
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3553 3554 3555 3556 3557 3558 3559 3560 3561
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3562 3563
	}

P
Peter Williams 已提交
3564
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3565
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3566 3567 3568
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3569 3570 3571 3572

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3573
	sd->nr_balance_failed = 0;
3574 3575

out_one_pinned:
L
Linus Torvalds 已提交
3576
	/* tune up the balancing interval */
3577 3578
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3579 3580
		sd->balance_interval *= 2;

3581
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3582
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3583 3584 3585 3586
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3587 3588
	if (ld_moved)
		update_shares(sd);
3589
	return ld_moved;
L
Linus Torvalds 已提交
3590 3591 3592 3593 3594 3595
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3596
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3597 3598
 * this_rq is locked.
 */
3599
static int
3600 3601
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3602 3603
{
	struct sched_group *group;
3604
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3605
	unsigned long imbalance;
P
Peter Williams 已提交
3606
	int ld_moved = 0;
N
Nick Piggin 已提交
3607
	int sd_idle = 0;
3608
	int all_pinned = 0;
3609 3610

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3611

3612 3613 3614 3615
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3616
	 * portraying it as CPU_NOT_IDLE.
3617 3618 3619
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3620
		sd_idle = 1;
L
Linus Torvalds 已提交
3621

3622
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3623
redo:
3624
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3625
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3626
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3627
	if (!group) {
I
Ingo Molnar 已提交
3628
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3629
		goto out_balanced;
L
Linus Torvalds 已提交
3630 3631
	}

3632
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3633
	if (!busiest) {
I
Ingo Molnar 已提交
3634
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3635
		goto out_balanced;
L
Linus Torvalds 已提交
3636 3637
	}

N
Nick Piggin 已提交
3638 3639
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3640
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3641

P
Peter Williams 已提交
3642
	ld_moved = 0;
3643 3644 3645
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3646 3647
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3648
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3649 3650
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3651
		double_unlock_balance(this_rq, busiest);
3652

3653
		if (unlikely(all_pinned)) {
3654 3655
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3656 3657
				goto redo;
		}
3658 3659
	}

P
Peter Williams 已提交
3660
	if (!ld_moved) {
I
Ingo Molnar 已提交
3661
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3662 3663
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3664 3665
			return -1;
	} else
3666
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3667

3668
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3669
	return ld_moved;
3670 3671

out_balanced:
I
Ingo Molnar 已提交
3672
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3673
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3674
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3675
		return -1;
3676
	sd->nr_balance_failed = 0;
3677

3678
	return 0;
L
Linus Torvalds 已提交
3679 3680 3681 3682 3683 3684
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3685
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3686 3687
{
	struct sched_domain *sd;
3688
	int pulled_task = 0;
I
Ingo Molnar 已提交
3689
	unsigned long next_balance = jiffies + HZ;
3690
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3691 3692

	for_each_domain(this_cpu, sd) {
3693 3694 3695 3696 3697 3698
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3699
			/* If we've pulled tasks over stop searching: */
3700 3701
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3702 3703 3704 3705 3706 3707

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3708
	}
I
Ingo Molnar 已提交
3709
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3710 3711 3712 3713 3714
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3715
	}
L
Linus Torvalds 已提交
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3726
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3727
{
3728
	int target_cpu = busiest_rq->push_cpu;
3729 3730
	struct sched_domain *sd;
	struct rq *target_rq;
3731

3732
	/* Is there any task to move? */
3733 3734 3735 3736
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3737 3738

	/*
3739
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3740
	 * we need to fix it. Originally reported by
3741
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3742
	 */
3743
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3744

3745 3746
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3747 3748
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3749 3750

	/* Search for an sd spanning us and the target CPU. */
3751
	for_each_domain(target_cpu, sd) {
3752
		if ((sd->flags & SD_LOAD_BALANCE) &&
3753
		    cpu_isset(busiest_cpu, sd->span))
3754
				break;
3755
	}
3756

3757
	if (likely(sd)) {
3758
		schedstat_inc(sd, alb_count);
3759

P
Peter Williams 已提交
3760 3761
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3762 3763 3764 3765
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3766
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3767 3768
}

3769 3770 3771
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3772
	cpumask_t cpu_mask;
3773 3774 3775 3776 3777
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3778
/*
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3789
 *
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3809
		if (!cpu_active(cpu) &&
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3846 3847 3848 3849 3850
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3851
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3852
{
3853 3854
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3855 3856
	unsigned long interval;
	struct sched_domain *sd;
3857
	/* Earliest time when we have to do rebalance again */
3858
	unsigned long next_balance = jiffies + 60*HZ;
3859
	int update_next_balance = 0;
3860
	int need_serialize;
3861
	cpumask_t tmp;
L
Linus Torvalds 已提交
3862

3863
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3864 3865 3866 3867
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3868
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3869 3870 3871 3872 3873 3874
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3875 3876 3877
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3878
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3879

3880
		if (need_serialize) {
3881 3882 3883 3884
			if (!spin_trylock(&balancing))
				goto out;
		}

3885
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3886
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3887 3888
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3889 3890 3891
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3892
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3893
			}
3894
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3895
		}
3896
		if (need_serialize)
3897 3898
			spin_unlock(&balancing);
out:
3899
		if (time_after(next_balance, sd->last_balance + interval)) {
3900
			next_balance = sd->last_balance + interval;
3901 3902
			update_next_balance = 1;
		}
3903 3904 3905 3906 3907 3908 3909 3910

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3911
	}
3912 3913 3914 3915 3916 3917 3918 3919

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3920 3921 3922 3923 3924 3925 3926 3927 3928
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3929 3930 3931 3932
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3933

I
Ingo Molnar 已提交
3934
	rebalance_domains(this_cpu, idle);
3935 3936 3937 3938 3939 3940 3941

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3942 3943
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3944 3945 3946 3947
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3948
		cpu_clear(this_cpu, cpus);
3949
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3950 3951 3952 3953 3954 3955 3956 3957
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3958
			rebalance_domains(balance_cpu, CPU_IDLE);
3959 3960

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3961 3962
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3975
static inline void trigger_load_balance(struct rq *rq, int cpu)
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4002
			if (ilb < nr_cpu_ids)
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4027
}
I
Ingo Molnar 已提交
4028 4029 4030

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4031 4032 4033
/*
 * on UP we do not need to balance between CPUs:
 */
4034
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4035 4036
{
}
I
Ingo Molnar 已提交
4037

L
Linus Torvalds 已提交
4038 4039 4040 4041 4042 4043 4044
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4045 4046
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4047
 */
4048
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4049 4050
{
	unsigned long flags;
4051
	struct rq *rq;
4052
	u64 ns = 0;
4053

4054
	rq = task_rq_lock(p, &flags);
4055

4056
	if (task_current(rq, p)) {
4057 4058
		u64 delta_exec;

I
Ingo Molnar 已提交
4059 4060
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4061
		if ((s64)delta_exec > 0)
4062
			ns = delta_exec;
4063
	}
4064

4065
	task_rq_unlock(rq, &flags);
4066

L
Linus Torvalds 已提交
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);
4081
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4082 4083 4084 4085 4086 4087 4088

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4089 4090
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4091 4092
}

4093 4094 4095 4096 4097
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4098
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4099 4100 4101 4102 4103 4104 4105
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
4106
	account_group_user_time(p, cputime);
4107 4108 4109 4110 4111 4112
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4133
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4134 4135
	cputime64_t tmp;

4136 4137 4138 4139
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4140

L
Linus Torvalds 已提交
4141
	p->stime = cputime_add(p->stime, cputime);
4142
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4143 4144 4145 4146 4147 4148 4149

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4150
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4151
		cpustat->system = cputime64_add(cpustat->system, tmp);
4152
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4153 4154 4155 4156 4157 4158 4159
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4171 4172 4173 4174 4175 4176 4177 4178 4179
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4180
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4181 4182 4183

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
4184
		account_group_system_time(p, steal);
L
Linus Torvalds 已提交
4185 4186 4187 4188
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4189
	} else
L
Linus Torvalds 已提交
4190 4191 4192
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4263
	struct task_struct *curr = rq->curr;
4264 4265

	sched_clock_tick();
I
Ingo Molnar 已提交
4266 4267

	spin_lock(&rq->lock);
4268
	update_rq_clock(rq);
4269
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4270
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4271
	spin_unlock(&rq->lock);
4272

4273
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4274 4275
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4276
#endif
L
Linus Torvalds 已提交
4277 4278
}

4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4291

4292
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4293
{
4294
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4295 4296 4297
	/*
	 * Underflow?
	 */
4298 4299
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4300
#endif
L
Linus Torvalds 已提交
4301
	preempt_count() += val;
4302
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4303 4304 4305
	/*
	 * Spinlock count overflowing soon?
	 */
4306 4307
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4308 4309 4310
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4311 4312 4313
}
EXPORT_SYMBOL(add_preempt_count);

4314
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4315
{
4316
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4317 4318 4319
	/*
	 * Underflow?
	 */
4320 4321
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4322 4323 4324
	/*
	 * Is the spinlock portion underflowing?
	 */
4325 4326 4327
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4328
#endif
4329

4330 4331
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4332 4333 4334 4335 4336 4337 4338
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4339
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4340
 */
I
Ingo Molnar 已提交
4341
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4342
{
4343 4344 4345 4346 4347
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4348
	debug_show_held_locks(prev);
4349
	print_modules();
I
Ingo Molnar 已提交
4350 4351
	if (irqs_disabled())
		print_irqtrace_events(prev);
4352 4353 4354 4355 4356

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4357
}
L
Linus Torvalds 已提交
4358

I
Ingo Molnar 已提交
4359 4360 4361 4362 4363
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4364
	/*
I
Ingo Molnar 已提交
4365
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4366 4367 4368
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4369
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4370 4371
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4372 4373
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4374
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4375 4376
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4377 4378
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4379 4380
	}
#endif
I
Ingo Molnar 已提交
4381 4382 4383 4384 4385 4386
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4387
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4388
{
4389
	const struct sched_class *class;
I
Ingo Molnar 已提交
4390
	struct task_struct *p;
L
Linus Torvalds 已提交
4391 4392

	/*
I
Ingo Molnar 已提交
4393 4394
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4395
	 */
I
Ingo Molnar 已提交
4396
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4397
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4398 4399
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4400 4401
	}

I
Ingo Molnar 已提交
4402 4403
	class = sched_class_highest;
	for ( ; ; ) {
4404
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4405 4406 4407 4408 4409 4410 4411 4412 4413
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4414

I
Ingo Molnar 已提交
4415 4416 4417 4418 4419 4420
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4421
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4422
	struct rq *rq;
4423
	int cpu;
I
Ingo Molnar 已提交
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4437

4438
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4439
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4440

4441
	spin_lock_irq(&rq->lock);
4442
	update_rq_clock(rq);
4443
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4444 4445

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4446
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4447
			prev->state = TASK_RUNNING;
4448
		else
4449
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4450
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4451 4452
	}

4453 4454 4455 4456
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4457

I
Ingo Molnar 已提交
4458
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4459 4460
		idle_balance(cpu, rq);

4461
	prev->sched_class->put_prev_task(rq, prev);
4462
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4463 4464

	if (likely(prev != next)) {
4465 4466
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4467 4468 4469 4470
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4471
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4472 4473 4474 4475 4476 4477
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4478 4479 4480
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4481
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4482
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4483

L
Linus Torvalds 已提交
4484 4485 4486 4487 4488 4489 4490 4491
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4492
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4493
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4494 4495 4496 4497 4498
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4499

L
Linus Torvalds 已提交
4500 4501
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4502
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4503
	 */
N
Nick Piggin 已提交
4504
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4505 4506
		return;

4507 4508 4509 4510
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4511

4512 4513 4514 4515 4516 4517
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4518 4519 4520 4521
}
EXPORT_SYMBOL(preempt_schedule);

/*
4522
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4523 4524 4525 4526 4527 4528 4529
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4530

4531
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4532 4533
	BUG_ON(ti->preempt_count || !irqs_disabled());

4534 4535 4536 4537 4538 4539
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4540

4541 4542 4543 4544 4545 4546
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4547 4548 4549 4550
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4551 4552
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4553
{
4554
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4555 4556 4557 4558
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4559 4560
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4561 4562 4563
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4564
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4565 4566 4567 4568 4569
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4570
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4571

4572
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4573 4574
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4575
		if (curr->func(curr, mode, sync, key) &&
4576
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4577 4578 4579 4580 4581 4582 4583 4584 4585
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4586
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4587
 */
4588
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4589
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4602
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4603 4604 4605 4606 4607
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4608
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4620
void
I
Ingo Molnar 已提交
4621
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4638 4639 4640 4641 4642 4643 4644 4645 4646
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4647
void complete(struct completion *x)
L
Linus Torvalds 已提交
4648 4649 4650 4651 4652
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4653
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4654 4655 4656 4657
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4658 4659 4660 4661 4662 4663
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4664
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4665 4666 4667 4668 4669
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4670
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4671 4672 4673 4674
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4675 4676
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4677 4678 4679 4680 4681 4682 4683
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4684
			if (signal_pending_state(state, current)) {
4685 4686
				timeout = -ERESTARTSYS;
				break;
4687 4688
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4689 4690 4691
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4692
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4693
		__remove_wait_queue(&x->wait, &wait);
4694 4695
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4696 4697
	}
	x->done--;
4698
	return timeout ?: 1;
L
Linus Torvalds 已提交
4699 4700
}

4701 4702
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4703 4704 4705 4706
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4707
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4708
	spin_unlock_irq(&x->wait.lock);
4709 4710
	return timeout;
}
L
Linus Torvalds 已提交
4711

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4722
void __sched wait_for_completion(struct completion *x)
4723 4724
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4725
}
4726
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4727

4728 4729 4730 4731 4732 4733 4734 4735 4736
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4737
unsigned long __sched
4738
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4739
{
4740
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4741
}
4742
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4743

4744 4745 4746 4747 4748 4749 4750
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4751
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4752
{
4753 4754 4755 4756
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4757
}
4758
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4759

4760 4761 4762 4763 4764 4765 4766 4767
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4768
unsigned long __sched
4769 4770
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4771
{
4772
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4773
}
4774
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4775

4776 4777 4778 4779 4780 4781 4782
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4783 4784 4785 4786 4787 4788 4789 4790 4791
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4838 4839
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4840
{
I
Ingo Molnar 已提交
4841 4842 4843 4844
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4845

4846
	__set_current_state(state);
L
Linus Torvalds 已提交
4847

4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4862 4863 4864
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4865
long __sched
I
Ingo Molnar 已提交
4866
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4867
{
4868
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4869 4870 4871
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4872
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4873
{
4874
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4875 4876 4877
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4878
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4879
{
4880
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4881 4882 4883
}
EXPORT_SYMBOL(sleep_on_timeout);

4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4896
void rt_mutex_setprio(struct task_struct *p, int prio)
4897 4898
{
	unsigned long flags;
4899
	int oldprio, on_rq, running;
4900
	struct rq *rq;
4901
	const struct sched_class *prev_class = p->sched_class;
4902 4903 4904 4905

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4906
	update_rq_clock(rq);
4907

4908
	oldprio = p->prio;
I
Ingo Molnar 已提交
4909
	on_rq = p->se.on_rq;
4910
	running = task_current(rq, p);
4911
	if (on_rq)
4912
		dequeue_task(rq, p, 0);
4913 4914
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4915 4916 4917 4918 4919 4920

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4921 4922
	p->prio = prio;

4923 4924
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4925
	if (on_rq) {
4926
		enqueue_task(rq, p, 0);
4927 4928

		check_class_changed(rq, p, prev_class, oldprio, running);
4929 4930 4931 4932 4933 4934
	}
	task_rq_unlock(rq, &flags);
}

#endif

4935
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4936
{
I
Ingo Molnar 已提交
4937
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4938
	unsigned long flags;
4939
	struct rq *rq;
L
Linus Torvalds 已提交
4940 4941 4942 4943 4944 4945 4946 4947

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4948
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4949 4950 4951 4952
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4953
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4954
	 */
4955
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4956 4957 4958
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4959
	on_rq = p->se.on_rq;
4960
	if (on_rq)
4961
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4962 4963

	p->static_prio = NICE_TO_PRIO(nice);
4964
	set_load_weight(p);
4965 4966 4967
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4968

I
Ingo Molnar 已提交
4969
	if (on_rq) {
4970
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4971
		/*
4972 4973
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4974
		 */
4975
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4976 4977 4978 4979 4980 4981 4982
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4983 4984 4985 4986 4987
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4988
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4989
{
4990 4991
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4992

M
Matt Mackall 已提交
4993 4994 4995 4996
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5008
	long nice, retval;
L
Linus Torvalds 已提交
5009 5010 5011 5012 5013 5014

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5015 5016
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5017 5018 5019 5020 5021 5022 5023 5024 5025
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5026 5027 5028
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5047
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5048 5049 5050 5051 5052 5053 5054 5055
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5056
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5057 5058 5059
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5060
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5075
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5076 5077 5078 5079 5080 5081 5082 5083
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5084
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5085
{
5086
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5087 5088 5089
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5090 5091
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5092
{
I
Ingo Molnar 已提交
5093
	BUG_ON(p->se.on_rq);
5094

L
Linus Torvalds 已提交
5095
	p->policy = policy;
I
Ingo Molnar 已提交
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5108
	p->rt_priority = prio;
5109 5110 5111
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5112
	set_load_weight(p);
L
Linus Torvalds 已提交
5113 5114
}

5115 5116
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5117
{
5118
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5119
	unsigned long flags;
5120
	const struct sched_class *prev_class = p->sched_class;
5121
	struct rq *rq;
L
Linus Torvalds 已提交
5122

5123 5124
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5125 5126 5127 5128 5129
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5130 5131
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5132
		return -EINVAL;
L
Linus Torvalds 已提交
5133 5134
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5135 5136
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5137 5138
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5139
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5140
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5141
		return -EINVAL;
5142
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5143 5144
		return -EINVAL;

5145 5146 5147
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5148
	if (user && !capable(CAP_SYS_NICE)) {
5149
		if (rt_policy(policy)) {
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5166 5167 5168 5169 5170 5171
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5172

5173 5174 5175 5176 5177
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5178

5179
	if (user) {
5180
#ifdef CONFIG_RT_GROUP_SCHED
5181 5182 5183 5184
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5185 5186
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5187
			return -EPERM;
5188 5189
#endif

5190 5191 5192 5193 5194
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5195 5196 5197 5198 5199
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5200 5201 5202 5203
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5204
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5205 5206 5207
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5208 5209
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5210 5211
		goto recheck;
	}
I
Ingo Molnar 已提交
5212
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5213
	on_rq = p->se.on_rq;
5214
	running = task_current(rq, p);
5215
	if (on_rq)
5216
		deactivate_task(rq, p, 0);
5217 5218
	if (running)
		p->sched_class->put_prev_task(rq, p);
5219

L
Linus Torvalds 已提交
5220
	oldprio = p->prio;
I
Ingo Molnar 已提交
5221
	__setscheduler(rq, p, policy, param->sched_priority);
5222

5223 5224
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5225 5226
	if (on_rq) {
		activate_task(rq, p, 0);
5227 5228

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5229
	}
5230 5231 5232
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5233 5234
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5235 5236
	return 0;
}
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5251 5252
EXPORT_SYMBOL_GPL(sched_setscheduler);

5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5270 5271
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5272 5273 5274
{
	struct sched_param lparam;
	struct task_struct *p;
5275
	int retval;
L
Linus Torvalds 已提交
5276 5277 5278 5279 5280

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5281 5282 5283

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5284
	p = find_process_by_pid(pid);
5285 5286 5287
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5288

L
Linus Torvalds 已提交
5289 5290 5291 5292 5293 5294 5295 5296 5297
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5298 5299
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5300
{
5301 5302 5303 5304
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5324
	struct task_struct *p;
5325
	int retval;
L
Linus Torvalds 已提交
5326 5327

	if (pid < 0)
5328
		return -EINVAL;
L
Linus Torvalds 已提交
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5350
	struct task_struct *p;
5351
	int retval;
L
Linus Torvalds 已提交
5352 5353

	if (!param || pid < 0)
5354
		return -EINVAL;
L
Linus Torvalds 已提交
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5381
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5382 5383
{
	cpumask_t cpus_allowed;
5384
	cpumask_t new_mask = *in_mask;
5385 5386
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5387

5388
	get_online_cpus();
L
Linus Torvalds 已提交
5389 5390 5391 5392 5393
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5394
		put_online_cpus();
L
Linus Torvalds 已提交
5395 5396 5397 5398 5399
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5400
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5411 5412 5413 5414
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5415
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5416
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5417
 again:
5418
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5419

P
Paul Menage 已提交
5420
	if (!retval) {
5421
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5432 5433
out_unlock:
	put_task_struct(p);
5434
	put_online_cpus();
L
Linus Torvalds 已提交
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5465
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5466 5467 5468 5469
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5470
	struct task_struct *p;
L
Linus Torvalds 已提交
5471 5472
	int retval;

5473
	get_online_cpus();
L
Linus Torvalds 已提交
5474 5475 5476 5477 5478 5479 5480
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5481 5482 5483 5484
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5485
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5486 5487 5488

out_unlock:
	read_unlock(&tasklist_lock);
5489
	put_online_cpus();
L
Linus Torvalds 已提交
5490

5491
	return retval;
L
Linus Torvalds 已提交
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5522 5523
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5524 5525 5526
 */
asmlinkage long sys_sched_yield(void)
{
5527
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5528

5529
	schedstat_inc(rq, yld_count);
5530
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5531 5532 5533 5534 5535 5536

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5537
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5538 5539 5540 5541 5542 5543 5544 5545
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5546
static void __cond_resched(void)
L
Linus Torvalds 已提交
5547
{
5548 5549 5550
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5551 5552 5553 5554 5555
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5556 5557 5558 5559 5560 5561 5562
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5563
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5564
{
5565 5566
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5567 5568 5569 5570 5571
		__cond_resched();
		return 1;
	}
	return 0;
}
5572
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5573 5574 5575 5576 5577

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5578
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5579 5580 5581
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5582
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5583
{
N
Nick Piggin 已提交
5584
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5585 5586
	int ret = 0;

N
Nick Piggin 已提交
5587
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5588
		spin_unlock(lock);
N
Nick Piggin 已提交
5589 5590 5591 5592
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5593
		ret = 1;
L
Linus Torvalds 已提交
5594 5595
		spin_lock(lock);
	}
J
Jan Kara 已提交
5596
	return ret;
L
Linus Torvalds 已提交
5597 5598 5599 5600 5601 5602 5603
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5604
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5605
		local_bh_enable();
L
Linus Torvalds 已提交
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5617
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5628
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5629 5630 5631 5632 5633 5634 5635
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5636
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5637

5638
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5639 5640 5641
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5642
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5643 5644 5645 5646 5647
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5648
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5649 5650
	long ret;

5651
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5652 5653 5654
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5655
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5676
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5677
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5701
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5702
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5719
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5720
	unsigned int time_slice;
5721
	int retval;
L
Linus Torvalds 已提交
5722 5723 5724
	struct timespec t;

	if (pid < 0)
5725
		return -EINVAL;
L
Linus Torvalds 已提交
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5737 5738 5739 5740 5741 5742
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5743
		time_slice = DEF_TIMESLICE;
5744
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5745 5746 5747 5748 5749
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5750 5751
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5752 5753
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5754
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5755
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5756 5757
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5758

L
Linus Torvalds 已提交
5759 5760 5761 5762 5763
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5764
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5765

5766
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5767 5768
{
	unsigned long free = 0;
5769
	unsigned state;
L
Linus Torvalds 已提交
5770 5771

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5772
	printk(KERN_INFO "%-13.13s %c", p->comm,
5773
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5774
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5775
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5776
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5777
	else
I
Ingo Molnar 已提交
5778
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5779 5780
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5781
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5782
	else
I
Ingo Molnar 已提交
5783
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5784 5785 5786
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5787
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5788 5789
		while (!*n)
			n++;
5790
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5791 5792
	}
#endif
5793
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5794
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5795

5796
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5797 5798
}

I
Ingo Molnar 已提交
5799
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5800
{
5801
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5802

5803 5804 5805
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5806
#else
5807 5808
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5809 5810 5811 5812 5813 5814 5815 5816
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5817
		if (!state_filter || (p->state & state_filter))
5818
			sched_show_task(p);
L
Linus Torvalds 已提交
5819 5820
	} while_each_thread(g, p);

5821 5822
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5823 5824 5825
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5826
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5827 5828 5829 5830 5831
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5832 5833
}

I
Ingo Molnar 已提交
5834 5835
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5836
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5837 5838
}

5839 5840 5841 5842 5843 5844 5845 5846
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5847
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5848
{
5849
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5850 5851
	unsigned long flags;

5852 5853
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5854 5855 5856
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5857
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5858
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5859
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5860 5861

	rq->curr = rq->idle = idle;
5862 5863 5864
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5865 5866 5867
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5868 5869 5870
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5871
	task_thread_info(idle)->preempt_count = 0;
5872
#endif
I
Ingo Molnar 已提交
5873 5874 5875 5876
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5911 5912

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5913 5914
}

L
Linus Torvalds 已提交
5915 5916 5917 5918
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5919
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5938
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5939 5940
 * call is not atomic; no spinlocks may be held.
 */
5941
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5942
{
5943
	struct migration_req req;
L
Linus Torvalds 已提交
5944
	unsigned long flags;
5945
	struct rq *rq;
5946
	int ret = 0;
L
Linus Torvalds 已提交
5947 5948

	rq = task_rq_lock(p, &flags);
5949
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5950 5951 5952 5953
		ret = -EINVAL;
		goto out;
	}

5954 5955 5956 5957 5958 5959
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5960
	if (p->sched_class->set_cpus_allowed)
5961
		p->sched_class->set_cpus_allowed(p, new_mask);
5962
	else {
5963 5964
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5965 5966
	}

L
Linus Torvalds 已提交
5967
	/* Can the task run on the task's current CPU? If so, we're done */
5968
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5969 5970
		goto out;

5971
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5972 5973 5974 5975 5976 5977 5978 5979 5980
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5981

L
Linus Torvalds 已提交
5982 5983
	return ret;
}
5984
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5985 5986

/*
I
Ingo Molnar 已提交
5987
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5988 5989 5990 5991 5992 5993
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5994 5995
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5996
 */
5997
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5998
{
5999
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6000
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6001

6002
	if (unlikely(!cpu_active(dest_cpu)))
6003
		return ret;
L
Linus Torvalds 已提交
6004 6005 6006 6007 6008 6009 6010

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6011
		goto done;
L
Linus Torvalds 已提交
6012 6013
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
6014
		goto fail;
L
Linus Torvalds 已提交
6015

I
Ingo Molnar 已提交
6016
	on_rq = p->se.on_rq;
6017
	if (on_rq)
6018
		deactivate_task(rq_src, p, 0);
6019

L
Linus Torvalds 已提交
6020
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6021 6022
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6023
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6024
	}
L
Linus Torvalds 已提交
6025
done:
6026
	ret = 1;
L
Linus Torvalds 已提交
6027
fail:
L
Linus Torvalds 已提交
6028
	double_rq_unlock(rq_src, rq_dest);
6029
	return ret;
L
Linus Torvalds 已提交
6030 6031 6032 6033 6034 6035 6036
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6037
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6038 6039
{
	int cpu = (long)data;
6040
	struct rq *rq;
L
Linus Torvalds 已提交
6041 6042 6043 6044 6045 6046

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6047
		struct migration_req *req;
L
Linus Torvalds 已提交
6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6070
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6071 6072
		list_del_init(head->next);

N
Nick Piggin 已提交
6073 6074 6075
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6105
/*
6106
 * Figure out where task on dead CPU should go, use force if necessary.
6107
 */
6108
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6109
{
6110
	unsigned long flags;
L
Linus Torvalds 已提交
6111
	cpumask_t mask;
6112 6113
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6114

6115 6116 6117 6118 6119 6120 6121
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6122
		if (dest_cpu >= nr_cpu_ids)
6123 6124 6125
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6126
		if (dest_cpu >= nr_cpu_ids) {
6127 6128 6129
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6130 6131 6132 6133
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6134
			 * cpuset_cpus_allowed() will not block. It must be
6135 6136
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6137
			rq = task_rq_lock(p, &flags);
6138
			p->cpus_allowed = cpus_allowed;
6139 6140
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6141

6142 6143 6144 6145 6146
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6147
			if (p->mm && printk_ratelimit()) {
6148 6149
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6150 6151
					task_pid_nr(p), p->comm, dead_cpu);
			}
6152
		}
6153
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6154 6155 6156 6157 6158 6159 6160 6161 6162
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6163
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6164
{
6165
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6179
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6180

6181
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6182

6183 6184
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6185 6186
			continue;

6187 6188 6189
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6190

6191
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6192 6193
}

I
Ingo Molnar 已提交
6194 6195
/*
 * Schedules idle task to be the next runnable task on current CPU.
6196 6197
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6198 6199 6200
 */
void sched_idle_next(void)
{
6201
	int this_cpu = smp_processor_id();
6202
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6203 6204 6205 6206
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6207
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6208

6209 6210 6211
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6212 6213 6214
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6215
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6216

6217 6218
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6219 6220 6221 6222

	spin_unlock_irqrestore(&rq->lock, flags);
}

6223 6224
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6238
/* called under rq->lock with disabled interrupts */
6239
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6240
{
6241
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6242 6243

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6244
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6245 6246

	/* Cannot have done final schedule yet: would have vanished. */
6247
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6248

6249
	get_task_struct(p);
L
Linus Torvalds 已提交
6250 6251 6252

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6253
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6254 6255
	 * fine.
	 */
6256
	spin_unlock_irq(&rq->lock);
6257
	move_task_off_dead_cpu(dead_cpu, p);
6258
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6259

6260
	put_task_struct(p);
L
Linus Torvalds 已提交
6261 6262 6263 6264 6265
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6266
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6267
	struct task_struct *next;
6268

I
Ingo Molnar 已提交
6269 6270 6271
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6272
		update_rq_clock(rq);
6273
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6274 6275
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6276
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6277
		migrate_dead(dead_cpu, next);
6278

L
Linus Torvalds 已提交
6279 6280 6281 6282
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6283 6284 6285
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6286 6287
	{
		.procname	= "sched_domain",
6288
		.mode		= 0555,
6289
	},
I
Ingo Molnar 已提交
6290
	{0, },
6291 6292 6293
};

static struct ctl_table sd_ctl_root[] = {
6294
	{
6295
		.ctl_name	= CTL_KERN,
6296
		.procname	= "kernel",
6297
		.mode		= 0555,
6298 6299
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6300
	{0, },
6301 6302 6303 6304 6305
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6306
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6307 6308 6309 6310

	return entry;
}

6311 6312
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6313
	struct ctl_table *entry;
6314

6315 6316 6317
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6318
	 * will always be set. In the lowest directory the names are
6319 6320 6321
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6322 6323
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6324 6325 6326
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6327 6328 6329 6330 6331

	kfree(*tablep);
	*tablep = NULL;
}

6332
static void
6333
set_table_entry(struct ctl_table *entry,
6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6347
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6348

6349 6350 6351
	if (table == NULL)
		return NULL;

6352
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6353
		sizeof(long), 0644, proc_doulongvec_minmax);
6354
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6355
		sizeof(long), 0644, proc_doulongvec_minmax);
6356
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6357
		sizeof(int), 0644, proc_dointvec_minmax);
6358
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6359
		sizeof(int), 0644, proc_dointvec_minmax);
6360
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6361
		sizeof(int), 0644, proc_dointvec_minmax);
6362
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6363
		sizeof(int), 0644, proc_dointvec_minmax);
6364
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6365
		sizeof(int), 0644, proc_dointvec_minmax);
6366
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6367
		sizeof(int), 0644, proc_dointvec_minmax);
6368
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6369
		sizeof(int), 0644, proc_dointvec_minmax);
6370
	set_table_entry(&table[9], "cache_nice_tries",
6371 6372
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6373
	set_table_entry(&table[10], "flags", &sd->flags,
6374
		sizeof(int), 0644, proc_dointvec_minmax);
6375 6376 6377
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6378 6379 6380 6381

	return table;
}

6382
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6383 6384 6385 6386 6387 6388 6389 6390 6391
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6392 6393
	if (table == NULL)
		return NULL;
6394 6395 6396 6397 6398

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6399
		entry->mode = 0555;
6400 6401 6402 6403 6404 6405 6406 6407
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6408
static void register_sched_domain_sysctl(void)
6409 6410 6411 6412 6413
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6414 6415 6416
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6417 6418 6419
	if (entry == NULL)
		return;

6420
	for_each_online_cpu(i) {
6421 6422
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6423
		entry->mode = 0555;
6424
		entry->child = sd_alloc_ctl_cpu_table(i);
6425
		entry++;
6426
	}
6427 6428

	WARN_ON(sd_sysctl_header);
6429 6430
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6431

6432
/* may be called multiple times per register */
6433 6434
static void unregister_sched_domain_sysctl(void)
{
6435 6436
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6437
	sd_sysctl_header = NULL;
6438 6439
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6440
}
6441
#else
6442 6443 6444 6445
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6446 6447 6448 6449
{
}
#endif

6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6480 6481 6482 6483
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6484 6485
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6486 6487
{
	struct task_struct *p;
6488
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6489
	unsigned long flags;
6490
	struct rq *rq;
L
Linus Torvalds 已提交
6491 6492

	switch (action) {
6493

L
Linus Torvalds 已提交
6494
	case CPU_UP_PREPARE:
6495
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6496
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6497 6498 6499 6500 6501
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6502
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6503 6504 6505
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6506

L
Linus Torvalds 已提交
6507
	case CPU_ONLINE:
6508
	case CPU_ONLINE_FROZEN:
6509
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6510
		wake_up_process(cpu_rq(cpu)->migration_thread);
6511 6512 6513 6514 6515 6516

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6517 6518

			set_rq_online(rq);
6519 6520
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6521
		break;
6522

L
Linus Torvalds 已提交
6523 6524
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6525
	case CPU_UP_CANCELED_FROZEN:
6526 6527
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6528
		/* Unbind it from offline cpu so it can run. Fall thru. */
6529 6530
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6531 6532 6533
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6534

L
Linus Torvalds 已提交
6535
	case CPU_DEAD:
6536
	case CPU_DEAD_FROZEN:
6537
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6538 6539 6540 6541 6542
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6543
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6544
		update_rq_clock(rq);
6545
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6546
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6547 6548
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6549
		migrate_dead_tasks(cpu);
6550
		spin_unlock_irq(&rq->lock);
6551
		cpuset_unlock();
L
Linus Torvalds 已提交
6552 6553 6554
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6555 6556 6557 6558 6559
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6560 6561
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6562 6563
			struct migration_req *req;

L
Linus Torvalds 已提交
6564
			req = list_entry(rq->migration_queue.next,
6565
					 struct migration_req, list);
L
Linus Torvalds 已提交
6566
			list_del_init(&req->list);
B
Brian King 已提交
6567
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
6568
			complete(&req->done);
B
Brian King 已提交
6569
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6570 6571 6572
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6573

6574 6575
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6576 6577 6578 6579 6580
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6581
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6582 6583 6584
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6585 6586 6587 6588 6589 6590 6591 6592
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6593
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6594 6595 6596 6597
	.notifier_call = migration_call,
	.priority = 10
};

6598
static int __init migration_init(void)
L
Linus Torvalds 已提交
6599 6600
{
	void *cpu = (void *)(long)smp_processor_id();
6601
	int err;
6602 6603

	/* Start one for the boot CPU: */
6604 6605
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6606 6607
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6608 6609

	return err;
L
Linus Torvalds 已提交
6610
}
6611
early_initcall(migration_init);
L
Linus Torvalds 已提交
6612 6613 6614
#endif

#ifdef CONFIG_SMP
6615

6616
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6617

6618 6619
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6620
{
I
Ingo Molnar 已提交
6621
	struct sched_group *group = sd->groups;
6622
	char str[256];
L
Linus Torvalds 已提交
6623

6624
	cpulist_scnprintf(str, sizeof(str), sd->span);
6625
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6626 6627 6628 6629 6630 6631 6632 6633 6634

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6635 6636
	}

6637
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6638 6639 6640 6641 6642 6643 6644 6645 6646

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6647

I
Ingo Molnar 已提交
6648
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6649
	do {
I
Ingo Molnar 已提交
6650 6651 6652
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6653 6654 6655
			break;
		}

I
Ingo Molnar 已提交
6656 6657 6658 6659 6660 6661
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6662

I
Ingo Molnar 已提交
6663 6664 6665 6666 6667
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6668

6669
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6670 6671 6672 6673
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6674

6675
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6676

6677
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6678
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6679

I
Ingo Molnar 已提交
6680 6681 6682
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6683

6684
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6685
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6686

6687
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6688 6689 6690 6691
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6692

I
Ingo Molnar 已提交
6693 6694
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6695
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6696
	int level = 0;
L
Linus Torvalds 已提交
6697

I
Ingo Molnar 已提交
6698 6699 6700 6701
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6702

I
Ingo Molnar 已提交
6703 6704
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6705 6706 6707 6708 6709 6710
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6711
	for (;;) {
6712
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6713
			break;
L
Linus Torvalds 已提交
6714 6715
		level++;
		sd = sd->parent;
6716
		if (!sd)
I
Ingo Molnar 已提交
6717 6718
			break;
	}
6719
	kfree(groupmask);
L
Linus Torvalds 已提交
6720
}
6721
#else /* !CONFIG_SCHED_DEBUG */
6722
# define sched_domain_debug(sd, cpu) do { } while (0)
6723
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6724

6725
static int sd_degenerate(struct sched_domain *sd)
6726 6727 6728 6729 6730 6731 6732 6733
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6734 6735 6736
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6750 6751
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6770 6771 6772
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6773 6774
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6775 6776 6777 6778 6779 6780 6781
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6782 6783 6784 6785 6786 6787 6788 6789 6790
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6791 6792
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6793

6794 6795
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6796 6797 6798 6799 6800 6801 6802
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6803
	cpu_set(rq->cpu, rd->span);
6804
	if (cpu_isset(rq->cpu, cpu_online_map))
6805
		set_rq_online(rq);
G
Gregory Haskins 已提交
6806 6807 6808 6809

	spin_unlock_irqrestore(&rq->lock, flags);
}

6810
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6811 6812 6813
{
	memset(rd, 0, sizeof(*rd));

6814 6815
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6816 6817

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6818 6819 6820 6821
}

static void init_defrootdomain(void)
{
6822
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6823 6824 6825
	atomic_set(&def_root_domain.refcount, 1);
}

6826
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6827 6828 6829 6830 6831 6832 6833
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6834
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6835 6836 6837 6838

	return rd;
}

L
Linus Torvalds 已提交
6839
/*
I
Ingo Molnar 已提交
6840
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6841 6842
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6843 6844
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6845
{
6846
	struct rq *rq = cpu_rq(cpu);
6847 6848 6849
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6850
	for (tmp = sd; tmp; ) {
6851 6852 6853
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6854

6855
		if (sd_parent_degenerate(tmp, parent)) {
6856
			tmp->parent = parent->parent;
6857 6858
			if (parent->parent)
				parent->parent->child = tmp;
6859 6860
		} else
			tmp = tmp->parent;
6861 6862
	}

6863
	if (sd && sd_degenerate(sd)) {
6864
		sd = sd->parent;
6865 6866 6867
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6868 6869 6870

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6871
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6872
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6873 6874 6875
}

/* cpus with isolated domains */
6876
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6877 6878 6879 6880

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6881 6882
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6883 6884 6885 6886 6887 6888 6889 6890 6891

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6892
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6893 6894

/*
6895 6896 6897 6898
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6899 6900 6901 6902 6903
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6904
static void
6905
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6906
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6907 6908 6909
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6910 6911 6912 6913
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6914 6915
	cpus_clear(*covered);

6916
	for_each_cpu_mask_nr(i, *span) {
6917
		struct sched_group *sg;
6918
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6919 6920
		int j;

6921
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6922 6923
			continue;

6924
		cpus_clear(sg->cpumask);
6925
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6926

6927
		for_each_cpu_mask_nr(j, *span) {
6928
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6929 6930
				continue;

6931
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6943
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6944

6945
#ifdef CONFIG_NUMA
6946

6947 6948 6949 6950 6951
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6952
 * Find the next node to include in a given scheduling domain. Simply
6953 6954 6955 6956
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6957
static int find_next_best_node(int node, nodemask_t *used_nodes)
6958 6959 6960 6961 6962
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6963
	for (i = 0; i < nr_node_ids; i++) {
6964
		/* Start at @node */
6965
		n = (node + i) % nr_node_ids;
6966 6967 6968 6969 6970

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6971
		if (node_isset(n, *used_nodes))
6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6983
	node_set(best_node, *used_nodes);
6984 6985 6986 6987 6988 6989
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6990
 * @span: resulting cpumask
6991
 *
I
Ingo Molnar 已提交
6992
 * Given a node, construct a good cpumask for its sched_domain to span. It
6993 6994 6995
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6996
static void sched_domain_node_span(int node, cpumask_t *span)
6997
{
6998 6999
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
7000
	int i;
7001

7002
	cpus_clear(*span);
7003
	nodes_clear(used_nodes);
7004

7005
	cpus_or(*span, *span, *nodemask);
7006
	node_set(node, used_nodes);
7007 7008

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7009
		int next_node = find_next_best_node(node, &used_nodes);
7010

7011
		node_to_cpumask_ptr_next(nodemask, next_node);
7012
		cpus_or(*span, *span, *nodemask);
7013 7014
	}
}
7015
#endif /* CONFIG_NUMA */
7016

7017
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7018

7019
/*
7020
 * SMT sched-domains:
7021
 */
L
Linus Torvalds 已提交
7022 7023
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7024
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7025

I
Ingo Molnar 已提交
7026
static int
7027 7028
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7029
{
7030 7031
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
7032 7033
	return cpu;
}
7034
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7035

7036 7037 7038
/*
 * multi-core sched-domains:
 */
7039 7040
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
7041
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7042
#endif /* CONFIG_SCHED_MC */
7043 7044

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7045
static int
7046 7047
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7048
{
7049
	int group;
7050 7051 7052 7053

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7054 7055 7056
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7057 7058
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7059
static int
7060 7061
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7062
{
7063 7064
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7065 7066 7067 7068
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7069
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7070
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7071

I
Ingo Molnar 已提交
7072
static int
7073 7074
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7075
{
7076
	int group;
7077
#ifdef CONFIG_SCHED_MC
7078 7079 7080
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7081
#elif defined(CONFIG_SCHED_SMT)
7082 7083 7084
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7085
#else
7086
	group = cpu;
L
Linus Torvalds 已提交
7087
#endif
7088 7089 7090
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7091 7092 7093 7094
}

#ifdef CONFIG_NUMA
/*
7095 7096 7097
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7098
 */
7099
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7100
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7101

7102
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7103
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7104

7105
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7106
				 struct sched_group **sg, cpumask_t *nodemask)
7107
{
7108 7109
	int group;

7110 7111 7112
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7113 7114 7115 7116

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7117
}
7118

7119 7120 7121 7122 7123 7124 7125
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7126
	do {
7127
		for_each_cpu_mask_nr(j, sg->cpumask) {
7128
			struct sched_domain *sd;
7129

7130 7131 7132 7133 7134 7135 7136 7137
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7138

7139 7140 7141 7142
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7143
}
7144
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7145

7146
#ifdef CONFIG_NUMA
7147
/* Free memory allocated for various sched_group structures */
7148
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7149
{
7150
	int cpu, i;
7151

7152
	for_each_cpu_mask_nr(cpu, *cpu_map) {
7153 7154 7155 7156 7157 7158
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7159
		for (i = 0; i < nr_node_ids; i++) {
7160 7161
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7162 7163 7164
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7181
#else /* !CONFIG_NUMA */
7182
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7183 7184
{
}
7185
#endif /* CONFIG_NUMA */
7186

7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7213 7214
	sd->groups->__cpu_power = 0;

7215 7216 7217 7218 7219 7220 7221 7222 7223 7224
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7225
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7226 7227 7228 7229 7230 7231 7232 7233
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7234
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7235 7236 7237 7238
		group = group->next;
	} while (group != child->groups);
}

7239 7240 7241 7242 7243
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7244 7245 7246 7247 7248 7249
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7250
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7251

7252 7253 7254 7255 7256
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7257
	sd->level = SD_LV_##type;				\
7258
	SD_INIT_NAME(sd, type);					\
7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
L
Li Zefan 已提交
7295 7296 7297 7298 7299 7300 7301 7302 7303
#define SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
static inline void sched_cpumask_alloc(struct allmasks **masks)
{
	*masks = kmalloc(sizeof(**masks), GFP_KERNEL);
}
static inline void sched_cpumask_free(struct allmasks *masks)
{
	kfree(masks);
}
7304
#else
L
Li Zefan 已提交
7305 7306 7307 7308 7309
#define SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
static inline void sched_cpumask_alloc(struct allmasks **masks)
{ }
static inline void sched_cpumask_free(struct allmasks *masks)
{ }
7310 7311 7312 7313 7314
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7315 7316 7317 7318
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7319 7320 7321 7322 7323 7324
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7350
/*
7351 7352
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7353
 */
7354 7355
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7356 7357
{
	int i;
G
Gregory Haskins 已提交
7358
	struct root_domain *rd;
7359 7360
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7361 7362
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7363
	int sd_allnodes = 0;
7364 7365 7366 7367

	/*
	 * Allocate the per-node list of sched groups
	 */
7368
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7369
				    GFP_KERNEL);
7370 7371
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7372
		return -ENOMEM;
7373 7374
	}
#endif
L
Linus Torvalds 已提交
7375

7376
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7377 7378
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7379 7380 7381
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7382 7383 7384
		return -ENOMEM;
	}

7385
	/* get space for all scratch cpumask variables */
L
Li Zefan 已提交
7386
	sched_cpumask_alloc(&allmasks);
7387 7388 7389 7390 7391 7392 7393 7394
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
L
Li Zefan 已提交
7395

7396 7397 7398 7399 7400 7401 7402
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7403
	/*
7404
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7405
	 */
7406
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7407
		struct sched_domain *sd = NULL, *p;
7408
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7409

7410 7411
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7412 7413

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7414
		if (cpus_weight(*cpu_map) >
7415
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7416
			sd = &per_cpu(allnodes_domains, i);
7417
			SD_INIT(sd, ALLNODES);
7418
			set_domain_attribute(sd, attr);
7419
			sd->span = *cpu_map;
7420
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7421
			p = sd;
7422
			sd_allnodes = 1;
7423 7424 7425
		} else
			p = NULL;

L
Linus Torvalds 已提交
7426
		sd = &per_cpu(node_domains, i);
7427
		SD_INIT(sd, NODE);
7428
		set_domain_attribute(sd, attr);
7429
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7430
		sd->parent = p;
7431 7432
		if (p)
			p->child = sd;
7433
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7434 7435 7436 7437
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7438
		SD_INIT(sd, CPU);
7439
		set_domain_attribute(sd, attr);
7440
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7441
		sd->parent = p;
7442 7443
		if (p)
			p->child = sd;
7444
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7445

7446 7447 7448
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7449
		SD_INIT(sd, MC);
7450
		set_domain_attribute(sd, attr);
7451 7452 7453
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7454
		p->child = sd;
7455
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7456 7457
#endif

L
Linus Torvalds 已提交
7458 7459 7460
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7461
		SD_INIT(sd, SIBLING);
7462
		set_domain_attribute(sd, attr);
7463
		sd->span = per_cpu(cpu_sibling_map, i);
7464
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7465
		sd->parent = p;
7466
		p->child = sd;
7467
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7468 7469 7470 7471 7472
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7473
	for_each_cpu_mask_nr(i, *cpu_map) {
7474 7475 7476 7477 7478 7479
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7480 7481
			continue;

I
Ingo Molnar 已提交
7482
		init_sched_build_groups(this_sibling_map, cpu_map,
7483 7484
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7485 7486 7487
	}
#endif

7488 7489
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7490
	for_each_cpu_mask_nr(i, *cpu_map) {
7491 7492 7493 7494 7495 7496
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7497
			continue;
7498

I
Ingo Molnar 已提交
7499
		init_sched_build_groups(this_core_map, cpu_map,
7500 7501
					&cpu_to_core_group,
					send_covered, tmpmask);
7502 7503 7504
	}
#endif

L
Linus Torvalds 已提交
7505
	/* Set up physical groups */
7506
	for (i = 0; i < nr_node_ids; i++) {
7507 7508
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7509

7510 7511 7512
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7513 7514
			continue;

7515 7516 7517
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7518 7519 7520 7521
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7522 7523 7524 7525 7526 7527 7528
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7529

7530
	for (i = 0; i < nr_node_ids; i++) {
7531 7532
		/* Set up node groups */
		struct sched_group *sg, *prev;
7533 7534 7535
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7536 7537
		int j;

7538 7539 7540 7541 7542
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7543
			sched_group_nodes[i] = NULL;
7544
			continue;
7545
		}
7546

7547
		sched_domain_node_span(i, domainspan);
7548
		cpus_and(*domainspan, *domainspan, *cpu_map);
7549

7550
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7551 7552 7553 7554 7555
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7556
		sched_group_nodes[i] = sg;
7557
		for_each_cpu_mask_nr(j, *nodemask) {
7558
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7559

7560 7561 7562
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7563
		sg->__cpu_power = 0;
7564
		sg->cpumask = *nodemask;
7565
		sg->next = sg;
7566
		cpus_or(*covered, *covered, *nodemask);
7567 7568
		prev = sg;

7569
		for (j = 0; j < nr_node_ids; j++) {
7570
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7571
			int n = (i + j) % nr_node_ids;
7572
			node_to_cpumask_ptr(pnodemask, n);
7573

7574 7575 7576 7577
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7578 7579
				break;

7580 7581
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7582 7583
				continue;

7584 7585
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7586 7587 7588
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7589
				goto error;
7590
			}
7591
			sg->__cpu_power = 0;
7592
			sg->cpumask = *tmpmask;
7593
			sg->next = prev->next;
7594
			cpus_or(*covered, *covered, *tmpmask);
7595 7596 7597 7598
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7599 7600 7601
#endif

	/* Calculate CPU power for physical packages and nodes */
7602
#ifdef CONFIG_SCHED_SMT
7603
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7604 7605
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7606
		init_sched_groups_power(i, sd);
7607
	}
L
Linus Torvalds 已提交
7608
#endif
7609
#ifdef CONFIG_SCHED_MC
7610
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7611 7612
		struct sched_domain *sd = &per_cpu(core_domains, i);

7613
		init_sched_groups_power(i, sd);
7614 7615
	}
#endif
7616

7617
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7618 7619
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7620
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7621 7622
	}

7623
#ifdef CONFIG_NUMA
7624
	for (i = 0; i < nr_node_ids; i++)
7625
		init_numa_sched_groups_power(sched_group_nodes[i]);
7626

7627 7628
	if (sd_allnodes) {
		struct sched_group *sg;
7629

7630 7631
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7632 7633
		init_numa_sched_groups_power(sg);
	}
7634 7635
#endif

L
Linus Torvalds 已提交
7636
	/* Attach the domains */
7637
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7638 7639 7640
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7641 7642
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7643 7644 7645
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7646
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7647
	}
7648

L
Li Zefan 已提交
7649
	sched_cpumask_free(allmasks);
7650 7651
	return 0;

7652
#ifdef CONFIG_NUMA
7653
error:
7654
	free_sched_groups(cpu_map, tmpmask);
L
Li Zefan 已提交
7655
	sched_cpumask_free(allmasks);
7656
	kfree(rd);
7657
	return -ENOMEM;
7658
#endif
L
Linus Torvalds 已提交
7659
}
P
Paul Jackson 已提交
7660

7661 7662 7663 7664 7665
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7666 7667
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7668 7669
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7670 7671 7672 7673 7674 7675 7676 7677

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7678 7679 7680 7681 7682 7683
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7684
{
7685
	return 0;
7686 7687
}

7688
/*
I
Ingo Molnar 已提交
7689
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7690 7691
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7692
 */
7693
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7694
{
7695 7696
	int err;

7697
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7698 7699 7700 7701 7702
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7703
	dattr_cur = NULL;
7704
	err = build_sched_domains(doms_cur);
7705
	register_sched_domain_sysctl();
7706 7707

	return err;
7708 7709
}

7710 7711
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7712
{
7713
	free_sched_groups(cpu_map, tmpmask);
7714
}
L
Linus Torvalds 已提交
7715

7716 7717 7718 7719
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7720
static void detach_destroy_domains(const cpumask_t *cpu_map)
7721
{
7722
	cpumask_t tmpmask;
7723 7724
	int i;

7725
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7726
		cpu_attach_domain(NULL, &def_root_domain, i);
7727
	synchronize_sched();
7728
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7729 7730
}

7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7747 7748
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7749
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7750 7751 7752 7753
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7754 7755 7756
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7757 7758 7759
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7760 7761
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
7762 7763 7764 7765
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
7766
 *
7767 7768 7769
 * If doms_new == NULL it will be replaced with cpu_online_map.
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7770
 *
P
Paul Jackson 已提交
7771 7772
 * Call with hotplug lock held
 */
7773 7774
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7775
{
7776
	int i, j, n;
P
Paul Jackson 已提交
7777

7778
	mutex_lock(&sched_domains_mutex);
7779

7780 7781 7782
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7783
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7784 7785 7786

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7787
		for (j = 0; j < n; j++) {
7788 7789
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7790 7791 7792 7793 7794 7795 7796 7797
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7798 7799 7800 7801
	if (doms_new == NULL) {
		ndoms_cur = 0;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7802
		WARN_ON_ONCE(dattr_new);
7803 7804
	}

P
Paul Jackson 已提交
7805 7806 7807
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7808 7809
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7810 7811 7812
				goto match2;
		}
		/* no match - add a new doms_new */
7813 7814
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7815 7816 7817 7818 7819 7820 7821
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7822
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7823
	doms_cur = doms_new;
7824
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7825
	ndoms_cur = ndoms_new;
7826 7827

	register_sched_domain_sysctl();
7828

7829
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7830 7831
}

7832
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7833
int arch_reinit_sched_domains(void)
7834
{
7835
	get_online_cpus();
7836 7837 7838 7839

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7840
	rebuild_sched_domains();
7841
	put_online_cpus();
7842

7843
	return 0;
7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7864 7865
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7866 7867 7868
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7869
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7870
					    const char *buf, size_t count)
7871 7872 7873
{
	return sched_power_savings_store(buf, count, 0);
}
7874 7875 7876
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7877 7878 7879
#endif

#ifdef CONFIG_SCHED_SMT
7880 7881
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7882 7883 7884
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7885
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7886
					     const char *buf, size_t count)
7887 7888 7889
{
	return sched_power_savings_store(buf, count, 1);
}
7890 7891
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7911
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7912

7913
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7914
/*
7915 7916
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7917 7918 7919
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7920 7921 7922 7923 7924 7925
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
7926
		partition_sched_domains(1, NULL, NULL);
7927 7928 7929 7930 7931 7932 7933 7934 7935 7936
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7937
{
P
Peter Zijlstra 已提交
7938 7939
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7940 7941
	switch (action) {
	case CPU_DOWN_PREPARE:
7942
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7943
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7944 7945 7946
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7947
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7948
	case CPU_ONLINE:
7949
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7950
		enable_runtime(cpu_rq(cpu));
7951 7952
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7953 7954 7955 7956 7957 7958 7959
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7960 7961
	cpumask_t non_isolated_cpus;

7962 7963 7964 7965 7966
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7967
	get_online_cpus();
7968
	mutex_lock(&sched_domains_mutex);
7969
	arch_init_sched_domains(&cpu_online_map);
7970
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7971 7972
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7973
	mutex_unlock(&sched_domains_mutex);
7974
	put_online_cpus();
7975 7976

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7977 7978
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7979 7980 7981 7982 7983
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7984
	init_hrtick();
7985 7986

	/* Move init over to a non-isolated CPU */
7987
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7988
		BUG();
I
Ingo Molnar 已提交
7989
	sched_init_granularity();
L
Linus Torvalds 已提交
7990 7991 7992 7993
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7994
	sched_init_granularity();
L
Linus Torvalds 已提交
7995 7996 7997 7998 7999 8000 8001 8002 8003 8004
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8005
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8006 8007
{
	cfs_rq->tasks_timeline = RB_ROOT;
8008
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8009 8010 8011
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8012
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8013 8014
}

P
Peter Zijlstra 已提交
8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8028
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8029 8030
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8031 8032 8033 8034 8035 8036 8037
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8038 8039
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8040

8041
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8042
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8043 8044
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8045 8046
}

P
Peter Zijlstra 已提交
8047
#ifdef CONFIG_FAIR_GROUP_SCHED
8048 8049 8050
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8051
{
8052
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8053 8054 8055 8056 8057 8058 8059
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8060 8061 8062 8063
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8064 8065 8066 8067 8068
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8069 8070
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8071
	se->load.inv_weight = 0;
8072
	se->parent = parent;
P
Peter Zijlstra 已提交
8073
}
8074
#endif
P
Peter Zijlstra 已提交
8075

8076
#ifdef CONFIG_RT_GROUP_SCHED
8077 8078 8079
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8080
{
8081 8082
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8083 8084 8085 8086
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8087
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8088 8089 8090 8091
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8092 8093 8094
	if (!rt_se)
		return;

8095 8096 8097 8098 8099
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8100
	rt_se->my_q = rt_rq;
8101
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8102 8103 8104 8105
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8106 8107
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8108
	int i, j;
8109 8110 8111 8112 8113 8114 8115
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8116 8117 8118
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8119 8120 8121 8122 8123 8124
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8125
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8126 8127 8128 8129 8130 8131 8132

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8133 8134 8135 8136 8137 8138 8139

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8140 8141
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8142 8143 8144 8145 8146
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8147 8148 8149 8150 8151 8152 8153 8154
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8155 8156
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8157
	}
I
Ingo Molnar 已提交
8158

G
Gregory Haskins 已提交
8159 8160 8161 8162
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8163 8164 8165 8166 8167 8168
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8169 8170 8171
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8172 8173
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8174

8175
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8176
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8177 8178 8179 8180 8181 8182
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8183 8184
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8185

8186
	for_each_possible_cpu(i) {
8187
		struct rq *rq;
L
Linus Torvalds 已提交
8188 8189 8190

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8191
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8192
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8193
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8194
#ifdef CONFIG_FAIR_GROUP_SCHED
8195
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8196
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8217
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8218
#elif defined CONFIG_USER_SCHED
8219 8220
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8232
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8233
				&per_cpu(init_cfs_rq, i),
8234 8235
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8236

8237
#endif
D
Dhaval Giani 已提交
8238 8239 8240
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8241
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8242
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8243
#ifdef CONFIG_CGROUP_SCHED
8244
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8245
#elif defined CONFIG_USER_SCHED
8246
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8247
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8248
				&per_cpu(init_rt_rq, i),
8249 8250
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8251
#endif
I
Ingo Molnar 已提交
8252
#endif
L
Linus Torvalds 已提交
8253

I
Ingo Molnar 已提交
8254 8255
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8256
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8257
		rq->sd = NULL;
G
Gregory Haskins 已提交
8258
		rq->rd = NULL;
L
Linus Torvalds 已提交
8259
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8260
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8261
		rq->push_cpu = 0;
8262
		rq->cpu = i;
8263
		rq->online = 0;
L
Linus Torvalds 已提交
8264 8265
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8266
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8267
#endif
P
Peter Zijlstra 已提交
8268
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8269 8270 8271
		atomic_set(&rq->nr_iowait, 0);
	}

8272
	set_load_weight(&init_task);
8273

8274 8275 8276 8277
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8278
#ifdef CONFIG_SMP
8279
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8280 8281
#endif

8282 8283 8284 8285
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8299 8300 8301 8302
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8303 8304

	scheduler_running = 1;
L
Linus Torvalds 已提交
8305 8306 8307 8308 8309
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8310
#ifdef in_atomic
L
Linus Torvalds 已提交
8311 8312
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8332 8333 8334 8335 8336 8337
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8338 8339 8340
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8341

8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8353 8354
void normalize_rt_tasks(void)
{
8355
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8356
	unsigned long flags;
8357
	struct rq *rq;
L
Linus Torvalds 已提交
8358

8359
	read_lock_irqsave(&tasklist_lock, flags);
8360
	do_each_thread(g, p) {
8361 8362 8363 8364 8365 8366
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8367 8368
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8369 8370 8371
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8372
#endif
I
Ingo Molnar 已提交
8373 8374 8375 8376 8377 8378 8379 8380

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8381
			continue;
I
Ingo Molnar 已提交
8382
		}
L
Linus Torvalds 已提交
8383

8384
		spin_lock(&p->pi_lock);
8385
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8386

8387
		normalize_task(rq, p);
8388

8389
		__task_rq_unlock(rq);
8390
		spin_unlock(&p->pi_lock);
8391 8392
	} while_each_thread(g, p);

8393
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8394 8395 8396
}

#endif /* CONFIG_MAGIC_SYSRQ */
8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8415
struct task_struct *curr_task(int cpu)
8416 8417 8418 8419 8420 8421 8422 8423 8424 8425
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8426 8427
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8428 8429 8430 8431 8432 8433 8434
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8435
void set_curr_task(int cpu, struct task_struct *p)
8436 8437 8438 8439 8440
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8441

8442 8443
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8458 8459
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8460 8461
{
	struct cfs_rq *cfs_rq;
8462
	struct sched_entity *se;
8463
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8464 8465
	int i;

8466
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8467 8468
	if (!tg->cfs_rq)
		goto err;
8469
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8470 8471
	if (!tg->se)
		goto err;
8472 8473

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8474 8475

	for_each_possible_cpu(i) {
8476
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8477

8478 8479
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8480 8481 8482
		if (!cfs_rq)
			goto err;

8483 8484
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8485 8486 8487
		if (!se)
			goto err;

8488
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8507
#else /* !CONFG_FAIR_GROUP_SCHED */
8508 8509 8510 8511
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8512 8513
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8525
#endif /* CONFIG_FAIR_GROUP_SCHED */
8526 8527

#ifdef CONFIG_RT_GROUP_SCHED
8528 8529 8530 8531
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8532 8533
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8545 8546
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8547 8548
{
	struct rt_rq *rt_rq;
8549
	struct sched_rt_entity *rt_se;
8550 8551 8552
	struct rq *rq;
	int i;

8553
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8554 8555
	if (!tg->rt_rq)
		goto err;
8556
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8557 8558 8559
	if (!tg->rt_se)
		goto err;

8560 8561
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8562 8563 8564 8565

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8566 8567
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8568 8569
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8570

8571 8572
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8573 8574
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8575

8576
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8577 8578
	}

8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8595
#else /* !CONFIG_RT_GROUP_SCHED */
8596 8597 8598 8599
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8600 8601
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8613
#endif /* CONFIG_RT_GROUP_SCHED */
8614

8615
#ifdef CONFIG_GROUP_SCHED
8616 8617 8618 8619 8620 8621 8622 8623
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8624
struct task_group *sched_create_group(struct task_group *parent)
8625 8626 8627 8628 8629 8630 8631 8632 8633
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8634
	if (!alloc_fair_sched_group(tg, parent))
8635 8636
		goto err;

8637
	if (!alloc_rt_sched_group(tg, parent))
8638 8639
		goto err;

8640
	spin_lock_irqsave(&task_group_lock, flags);
8641
	for_each_possible_cpu(i) {
8642 8643
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8644
	}
P
Peter Zijlstra 已提交
8645
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8646 8647 8648 8649 8650

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8651
	list_add_rcu(&tg->siblings, &parent->children);
8652
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8653

8654
	return tg;
S
Srivatsa Vaddagiri 已提交
8655 8656

err:
P
Peter Zijlstra 已提交
8657
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8658 8659 8660
	return ERR_PTR(-ENOMEM);
}

8661
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8662
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8663 8664
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8665
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8666 8667
}

8668
/* Destroy runqueue etc associated with a task group */
8669
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8670
{
8671
	unsigned long flags;
8672
	int i;
S
Srivatsa Vaddagiri 已提交
8673

8674
	spin_lock_irqsave(&task_group_lock, flags);
8675
	for_each_possible_cpu(i) {
8676 8677
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8678
	}
P
Peter Zijlstra 已提交
8679
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8680
	list_del_rcu(&tg->siblings);
8681
	spin_unlock_irqrestore(&task_group_lock, flags);
8682 8683

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8684
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8685 8686
}

8687
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8688 8689 8690
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8691 8692
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8693 8694 8695 8696 8697 8698 8699 8700 8701
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8702
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8703 8704
	on_rq = tsk->se.on_rq;

8705
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8706
		dequeue_task(rq, tsk, 0);
8707 8708
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8709

P
Peter Zijlstra 已提交
8710
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8711

P
Peter Zijlstra 已提交
8712 8713 8714 8715 8716
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8717 8718 8719
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8720
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8721 8722 8723

	task_rq_unlock(rq, &flags);
}
8724
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8725

8726
#ifdef CONFIG_FAIR_GROUP_SCHED
8727
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8728 8729 8730 8731 8732
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8733
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8734 8735 8736
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8737
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8738

8739
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8740
		enqueue_entity(cfs_rq, se, 0);
8741
}
8742

8743 8744 8745 8746 8747 8748 8749 8750 8751
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8752 8753
}

8754 8755
static DEFINE_MUTEX(shares_mutex);

8756
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8757 8758
{
	int i;
8759
	unsigned long flags;
8760

8761 8762 8763 8764 8765 8766
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8767 8768
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8769 8770
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8771

8772
	mutex_lock(&shares_mutex);
8773
	if (tg->shares == shares)
8774
		goto done;
S
Srivatsa Vaddagiri 已提交
8775

8776
	spin_lock_irqsave(&task_group_lock, flags);
8777 8778
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8779
	list_del_rcu(&tg->siblings);
8780
	spin_unlock_irqrestore(&task_group_lock, flags);
8781 8782 8783 8784 8785 8786 8787 8788

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8789
	tg->shares = shares;
8790 8791 8792 8793 8794
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8795
		set_se_shares(tg->se[i], shares);
8796
	}
S
Srivatsa Vaddagiri 已提交
8797

8798 8799 8800 8801
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8802
	spin_lock_irqsave(&task_group_lock, flags);
8803 8804
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8805
	list_add_rcu(&tg->siblings, &tg->parent->children);
8806
	spin_unlock_irqrestore(&task_group_lock, flags);
8807
done:
8808
	mutex_unlock(&shares_mutex);
8809
	return 0;
S
Srivatsa Vaddagiri 已提交
8810 8811
}

8812 8813 8814 8815
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8816
#endif
8817

8818
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8819
/*
P
Peter Zijlstra 已提交
8820
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8821
 */
P
Peter Zijlstra 已提交
8822 8823 8824 8825 8826
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8827
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8828

P
Peter Zijlstra 已提交
8829
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8830 8831
}

P
Peter Zijlstra 已提交
8832 8833
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8834
{
P
Peter Zijlstra 已提交
8835
	struct task_struct *g, *p;
8836

P
Peter Zijlstra 已提交
8837 8838 8839 8840
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8841

P
Peter Zijlstra 已提交
8842 8843
	return 0;
}
8844

P
Peter Zijlstra 已提交
8845 8846 8847 8848 8849
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8850

P
Peter Zijlstra 已提交
8851 8852 8853 8854 8855 8856
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8857

P
Peter Zijlstra 已提交
8858 8859
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8860

P
Peter Zijlstra 已提交
8861 8862 8863
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8864 8865
	}

8866 8867 8868 8869 8870
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8871

8872 8873 8874
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8875 8876
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8877

P
Peter Zijlstra 已提交
8878
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8879

8880 8881 8882 8883 8884
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8885

8886 8887 8888
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8889 8890 8891
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8892

P
Peter Zijlstra 已提交
8893 8894 8895 8896
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8897

P
Peter Zijlstra 已提交
8898
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8899
	}
P
Peter Zijlstra 已提交
8900

P
Peter Zijlstra 已提交
8901 8902 8903 8904
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8905 8906
}

P
Peter Zijlstra 已提交
8907
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8908
{
P
Peter Zijlstra 已提交
8909 8910 8911 8912 8913 8914 8915
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8916 8917
}

8918 8919
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8920
{
P
Peter Zijlstra 已提交
8921
	int i, err = 0;
P
Peter Zijlstra 已提交
8922 8923

	mutex_lock(&rt_constraints_mutex);
8924
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8925 8926
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8927
		goto unlock;
P
Peter Zijlstra 已提交
8928 8929

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8930 8931
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8932 8933 8934 8935 8936 8937 8938 8939 8940

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8941
 unlock:
8942
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8943 8944 8945
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8946 8947
}

8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8960 8961 8962 8963
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8964
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8965 8966
		return -1;

8967
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8968 8969 8970
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8971 8972 8973 8974 8975 8976 8977 8978

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8979 8980 8981
	if (rt_period == 0)
		return -EINVAL;

8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8996
	u64 runtime, period;
8997 8998
	int ret = 0;

8999 9000 9001
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9002 9003 9004 9005 9006 9007 9008 9009
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9010

9011
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9012
	read_lock(&tasklist_lock);
9013
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9014
	read_unlock(&tasklist_lock);
9015 9016 9017 9018
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9019
#else /* !CONFIG_RT_GROUP_SCHED */
9020 9021
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9022 9023 9024
	unsigned long flags;
	int i;

9025 9026 9027
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9028 9029 9030 9031 9032 9033 9034 9035 9036 9037
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9038 9039
	return 0;
}
9040
#endif /* CONFIG_RT_GROUP_SCHED */
9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9071

9072
#ifdef CONFIG_CGROUP_SCHED
9073 9074

/* return corresponding task_group object of a cgroup */
9075
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9076
{
9077 9078
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9079 9080 9081
}

static struct cgroup_subsys_state *
9082
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9083
{
9084
	struct task_group *tg, *parent;
9085

9086
	if (!cgrp->parent) {
9087 9088 9089 9090
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9091 9092
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9093 9094 9095 9096 9097 9098
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9099 9100
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9101
{
9102
	struct task_group *tg = cgroup_tg(cgrp);
9103 9104 9105 9106

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9107 9108 9109
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9110
{
9111 9112
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9113
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9114 9115
		return -EINVAL;
#else
9116 9117 9118
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9119
#endif
9120 9121 9122 9123 9124

	return 0;
}

static void
9125
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9126 9127 9128 9129 9130
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9131
#ifdef CONFIG_FAIR_GROUP_SCHED
9132
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9133
				u64 shareval)
9134
{
9135
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9136 9137
}

9138
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9139
{
9140
	struct task_group *tg = cgroup_tg(cgrp);
9141 9142 9143

	return (u64) tg->shares;
}
9144
#endif /* CONFIG_FAIR_GROUP_SCHED */
9145

9146
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9147
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9148
				s64 val)
P
Peter Zijlstra 已提交
9149
{
9150
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9151 9152
}

9153
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9154
{
9155
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9156
}
9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9168
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9169

9170
static struct cftype cpu_files[] = {
9171
#ifdef CONFIG_FAIR_GROUP_SCHED
9172 9173
	{
		.name = "shares",
9174 9175
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9176
	},
9177 9178
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9179
	{
P
Peter Zijlstra 已提交
9180
		.name = "rt_runtime_us",
9181 9182
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9183
	},
9184 9185
	{
		.name = "rt_period_us",
9186 9187
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9188
	},
9189
#endif
9190 9191 9192 9193
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9194
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9195 9196 9197
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9198 9199 9200 9201 9202 9203 9204
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9205 9206 9207
	.early_init	= 1,
};

9208
#endif	/* CONFIG_CGROUP_SCHED */
9209 9210 9211 9212 9213 9214 9215 9216 9217 9218

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9219
/* track cpu usage of a group of tasks and its child groups */
9220 9221 9222 9223
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
9224
	struct cpuacct *parent;
9225 9226 9227 9228 9229
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9230
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9231
{
9232
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9245
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

9258 9259 9260
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9261 9262 9263 9264
	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9265
static void
9266
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9267
{
9268
	struct cpuacct *ca = cgroup_ca(cgrp);
9269 9270 9271 9272 9273 9274

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9275
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9276
{
9277
	struct cpuacct *ca = cgroup_ca(cgrp);
9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9319 9320 9321
static struct cftype files[] = {
	{
		.name = "usage",
9322 9323
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9324 9325 9326
	},
};

9327
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9328
{
9329
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9330 9331 9332 9333 9334 9335 9336 9337 9338 9339
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9340
	int cpu;
9341 9342 9343 9344

	if (!cpuacct_subsys.active)
		return;

9345
	cpu = task_cpu(tsk);
9346 9347
	ca = task_ca(tsk);

9348 9349
	for (; ca; ca = ca->parent) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361
		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */