sched.c 162.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
J
Jens Axboe 已提交
64
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
65

66
#include <asm/tlb.h>
L
Linus Torvalds 已提交
67

68 69 70 71 72 73 74 75 76 77
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107 108 109 110 111 112 113
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
136 137 138
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

139
/*
I
Ingo Molnar 已提交
140
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 142
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
143
static unsigned int static_prio_timeslice(int static_prio)
144
{
I
Ingo Molnar 已提交
145 146 147 148 149 150 151
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 153
}

154 155 156 157 158 159 160 161 162 163 164 165
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
166
/*
I
Ingo Molnar 已提交
167
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
168
 */
I
Ingo Molnar 已提交
169 170 171 172 173 174 175 176 177 178 179
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
180
	u64 min_vruntime;
I
Ingo Molnar 已提交
181 182 183 184 185 186 187 188

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
189
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
190 191 192 193 194 195 196 197 198 199 200 201
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
202

I
Ingo Molnar 已提交
203 204 205 206 207 208 209
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
210 211 212 213 214 215 216
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
217
struct rq {
I
Ingo Molnar 已提交
218
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
219 220 221 222 223 224

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
225 226
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
227
	unsigned char idle_at_tick;
228 229 230
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
231
	struct load_weight load;	/* capture load from *all* tasks on this cpu */
I
Ingo Molnar 已提交
232 233 234 235 236 237
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
238
#endif
I
Ingo Molnar 已提交
239
	struct rt_rq  rt;
L
Linus Torvalds 已提交
240 241 242 243 244 245 246 247 248

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

249
	struct task_struct *curr, *idle;
250
	unsigned long next_balance;
L
Linus Torvalds 已提交
251
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
252 253 254 255 256

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
257 258
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
259
	u64 tick_timestamp;
I
Ingo Molnar 已提交
260

L
Linus Torvalds 已提交
261 262 263 264 265 266 267 268
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
269
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
270

271
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
294
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
295 296
};

297
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
298
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
299

I
Ingo Molnar 已提交
300 301 302 303 304
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

305 306 307 308 309 310 311 312 313
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
314
/*
I
Ingo Molnar 已提交
315 316
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
317
 */
I
Ingo Molnar 已提交
318
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
319 320 321 322 323 324
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
325 326 327
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
328 329 330 331 332 333 334 335 336 337
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
338 339 340 341 342
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
343 344 345 346 347 348 349 350 351 352
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
353
}
I
Ingo Molnar 已提交
354

I
Ingo Molnar 已提交
355 356 357 358
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
359 360
}

N
Nick Piggin 已提交
361 362
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
363
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
364 365 366 367
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
368 369
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
370 371 372 373 374 375

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
389 390 391 392
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_START_DEBIT		= 2,
	SCHED_FEAT_USE_TREE_AVG         = 4,
	SCHED_FEAT_APPROX_AVG           = 8,
I
Ingo Molnar 已提交
393 394 395 396
};

const_debug unsigned int sysctl_sched_features =
		SCHED_FEAT_NEW_FAIR_SLEEPERS	*1 |
P
Peter Zijlstra 已提交
397 398 399
		SCHED_FEAT_START_DEBIT		*1 |
		SCHED_FEAT_USE_TREE_AVG		*0 |
		SCHED_FEAT_APPROX_AVG		*0;
I
Ingo Molnar 已提交
400 401 402

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

403 404 405 406 407 408 409 410
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
411
	struct rq *rq;
412

413
	local_irq_save(flags);
I
Ingo Molnar 已提交
414 415 416
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
417
	local_irq_restore(flags);
418 419 420 421

	return now;
}

I
Ingo Molnar 已提交
422 423 424 425 426 427 428 429 430 431 432 433
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
434
#ifndef prepare_arch_switch
435 436 437 438 439 440 441
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
442
static inline int task_running(struct rq *rq, struct task_struct *p)
443 444 445 446
{
	return rq->curr == p;
}

447
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
448 449 450
{
}

451
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
452
{
453 454 455 456
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
457 458 459 460 461 462 463
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

464 465 466 467
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
468
static inline int task_running(struct rq *rq, struct task_struct *p)
469 470 471 472 473 474 475 476
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

477
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

494
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
495 496 497 498 499 500 501 502 503 504 505 506
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
507
#endif
508 509
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
510

511 512 513 514
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
515
static inline struct rq *__task_rq_lock(struct task_struct *p)
516 517
	__acquires(rq->lock)
{
518
	struct rq *rq;
519 520 521 522 523 524 525 526 527 528 529

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
530 531 532 533 534
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
535
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
536 537
	__acquires(rq->lock)
{
538
	struct rq *rq;
L
Linus Torvalds 已提交
539 540 541 542 543 544 545 546 547 548 549 550

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

551
static inline void __task_rq_unlock(struct rq *rq)
552 553 554 555 556
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

557
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
558 559 560 561 562 563
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
564
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
565
 */
566
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
567 568
	__acquires(rq->lock)
{
569
	struct rq *rq;
L
Linus Torvalds 已提交
570 571 572 573 574 575 576 577

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

578
/*
579
 * We are going deep-idle (irqs are disabled):
580
 */
581
void sched_clock_idle_sleep_event(void)
582
{
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
599

600 601 602 603 604 605 606 607 608 609 610
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
611
}
612
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
613

I
Ingo Molnar 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

666 667 668 669 670 671 672 673
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
674 675 676
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
677
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
678

679
static unsigned long
680 681 682 683 684 685
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
686
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
687 688 689 690 691

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
692
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
693
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
694 695
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
696
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
697

698
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
699 700 701 702 703 704 705 706
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

707
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
708 709 710 711
{
	lw->weight += inc;
}

712
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
713 714 715 716
{
	lw->weight -= dec;
}

717 718 719 720 721 722 723 724 725
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
726 727 728 729 730 731 732 733 734 735 736
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
737 738 739
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
740 741
 */
static const int prio_to_weight[40] = {
742 743 744 745 746 747 748 749
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
750 751
};

752 753 754 755 756 757 758
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
759
static const u32 prio_to_wmult[40] = {
760 761 762 763 764 765 766 767
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
768
};
769

I
Ingo Molnar 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
787
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
788 789 790 791 792 793 794 795 796 797 798

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

799 800 801 802
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
803
 * total load (rq->load.weight) on the runqueue, while
804 805 806 807 808 809 810
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
811
 * This function is called /before/ updating rq->load
812 813
 * and when switching tasks.
 */
814
static inline void inc_load(struct rq *rq, const struct task_struct *p)
815
{
816
	update_load_add(&rq->load, p->se.load.weight);
817 818
}

819
static inline void dec_load(struct rq *rq, const struct task_struct *p)
820
{
821
	update_load_sub(&rq->load, p->se.load.weight);
822 823
}

824
static void inc_nr_running(struct task_struct *p, struct rq *rq)
825 826
{
	rq->nr_running++;
827
	inc_load(rq, p);
828 829
}

830
static void dec_nr_running(struct task_struct *p, struct rq *rq)
831 832
{
	rq->nr_running--;
833
	dec_load(rq, p);
834 835
}

836 837 838
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
839 840 841 842
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
843

I
Ingo Molnar 已提交
844 845 846 847 848 849 850 851
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
852

I
Ingo Molnar 已提交
853 854
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
855 856
}

857
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
858
{
I
Ingo Molnar 已提交
859
	sched_info_queued(p);
860
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
861
	p->se.on_rq = 1;
862 863
}

864
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
865
{
866
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
867
	p->se.on_rq = 0;
868 869
}

870
/*
I
Ingo Molnar 已提交
871
 * __normal_prio - return the priority that is based on the static prio
872 873 874
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
875
	return p->static_prio;
876 877
}

878 879 880 881 882 883 884
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
885
static inline int normal_prio(struct task_struct *p)
886 887 888
{
	int prio;

889
	if (task_has_rt_policy(p))
890 891 892 893 894 895 896 897 898 899 900 901 902
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
903
static int effective_prio(struct task_struct *p)
904 905 906 907 908 909 910 911 912 913 914 915
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
916
/*
I
Ingo Molnar 已提交
917
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
918
 */
I
Ingo Molnar 已提交
919
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
920
{
I
Ingo Molnar 已提交
921 922
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
923

924
	enqueue_task(rq, p, wakeup);
925
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
926 927 928
}

/*
I
Ingo Molnar 已提交
929
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
930
 */
I
Ingo Molnar 已提交
931
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
932
{
I
Ingo Molnar 已提交
933
	update_rq_clock(rq);
L
Linus Torvalds 已提交
934

I
Ingo Molnar 已提交
935 936
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
937

938
	enqueue_task(rq, p, 0);
939
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
940 941 942 943 944
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
945
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
946
{
I
Ingo Molnar 已提交
947 948 949
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

950
	dequeue_task(rq, p, sleep);
951
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
952 953 954 955 956 957
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
958
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
959 960 961 962
{
	return cpu_curr(task_cpu(p)) == p;
}

963 964 965
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
966
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
967 968 969 970 971 972 973 974
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
975 976
}

L
Linus Torvalds 已提交
977
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
978

I
Ingo Molnar 已提交
979
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
980
{
I
Ingo Molnar 已提交
981 982
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
983
	u64 clock_offset;
I
Ingo Molnar 已提交
984 985

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
986 987 988 989

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
990 991 992 993
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
I
Ingo Molnar 已提交
994
#endif
995 996 997
	if (likely(new_rq->cfs.min_vruntime))
		p->se.vruntime -= old_rq->cfs.min_vruntime -
						new_rq->cfs.min_vruntime;
I
Ingo Molnar 已提交
998 999

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1000 1001
}

1002
struct migration_req {
L
Linus Torvalds 已提交
1003 1004
	struct list_head list;

1005
	struct task_struct *task;
L
Linus Torvalds 已提交
1006 1007 1008
	int dest_cpu;

	struct completion done;
1009
};
L
Linus Torvalds 已提交
1010 1011 1012 1013 1014

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1015
static int
1016
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1017
{
1018
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1019 1020 1021 1022 1023

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1024
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1025 1026 1027 1028 1029 1030 1031 1032
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1033

L
Linus Torvalds 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1046
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1047 1048
{
	unsigned long flags;
I
Ingo Molnar 已提交
1049
	int running, on_rq;
1050
	struct rq *rq;
L
Linus Torvalds 已提交
1051 1052

repeat:
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1080
	rq = task_rq_lock(p, &flags);
1081
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1082
	on_rq = p->se.on_rq;
1083 1084 1085 1086 1087 1088 1089 1090 1091
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1092 1093 1094
		cpu_relax();
		goto repeat;
	}
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1105
	if (unlikely(on_rq)) {
1106 1107 1108 1109 1110 1111 1112 1113 1114
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1130
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1142 1143
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1144 1145 1146 1147
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1148
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1149
{
1150
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1151
	unsigned long total = weighted_cpuload(cpu);
1152

1153
	if (type == 0)
I
Ingo Molnar 已提交
1154
		return total;
1155

I
Ingo Molnar 已提交
1156
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1157 1158 1159
}

/*
1160 1161
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1162
 */
N
Nick Piggin 已提交
1163
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1164
{
1165
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1166
	unsigned long total = weighted_cpuload(cpu);
1167

N
Nick Piggin 已提交
1168
	if (type == 0)
I
Ingo Molnar 已提交
1169
		return total;
1170

I
Ingo Molnar 已提交
1171
	return max(rq->cpu_load[type-1], total);
1172 1173 1174 1175 1176 1177 1178
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1179
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1180
	unsigned long total = weighted_cpuload(cpu);
1181 1182
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1183
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1184 1185
}

N
Nick Piggin 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1203 1204 1205 1206
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1223 1224
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1225 1226 1227 1228 1229 1230 1231 1232

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1233
nextgroup:
N
Nick Piggin 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1243
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1244
 */
I
Ingo Molnar 已提交
1245 1246
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1247
{
1248
	cpumask_t tmp;
N
Nick Piggin 已提交
1249 1250 1251 1252
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1253 1254 1255 1256
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1257
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1283

1284
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1285 1286 1287
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1288 1289
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1290 1291
		if (tmp->flags & flag)
			sd = tmp;
1292
	}
N
Nick Piggin 已提交
1293 1294 1295 1296

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1297 1298 1299 1300 1301 1302
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1303 1304 1305

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1306 1307 1308 1309
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1310

1311
		new_cpu = find_idlest_cpu(group, t, cpu);
1312 1313 1314 1315 1316
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1317

1318
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1345
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1346 1347 1348 1349 1350
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1361 1362 1363 1364
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1365
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1366 1367 1368 1369
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1370
		} else {
N
Nick Piggin 已提交
1371
			break;
I
Ingo Molnar 已提交
1372
		}
L
Linus Torvalds 已提交
1373 1374 1375 1376
	}
	return cpu;
}
#else
1377
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1397
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1398 1399 1400 1401
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1402
	struct rq *rq;
L
Linus Torvalds 已提交
1403
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1404
	struct sched_domain *sd, *this_sd = NULL;
1405
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1406 1407 1408 1409 1410 1411 1412 1413
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1414
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1424 1425
	new_cpu = cpu;

L
Linus Torvalds 已提交
1426 1427 1428
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1429 1430 1431 1432 1433 1434 1435 1436
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1437 1438 1439
		}
	}

N
Nick Piggin 已提交
1440
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1441 1442 1443
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1444
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1445
	 */
N
Nick Piggin 已提交
1446 1447 1448
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1449

1450 1451
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1452 1453
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1454

N
Nick Piggin 已提交
1455 1456
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1457 1458
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1459 1460 1461
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1462

L
Linus Torvalds 已提交
1463
			/*
1464 1465 1466
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1467
			 */
1468
			if (sync)
I
Ingo Molnar 已提交
1469
				tl -= current->se.load.weight;
1470 1471

			if ((tl <= load &&
1472
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1473
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1507
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1508 1509 1510 1511 1512 1513 1514 1515
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1516
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1517
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1518 1519 1520 1521 1522 1523 1524 1525
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1526 1527
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1538
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1539 1540 1541 1542 1543 1544
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1545
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1546 1547 1548 1549 1550 1551 1552
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1553 1554 1555 1556 1557 1558 1559
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1560
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1561 1562 1563

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1564 1565 1566 1567 1568 1569
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1570
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1571
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1572
#endif
N
Nick Piggin 已提交
1573

I
Ingo Molnar 已提交
1574 1575
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1576

1577 1578 1579 1580
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1581 1582 1583 1584 1585 1586 1587
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1603 1604 1605 1606 1607 1608

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1609
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1610
	if (likely(sched_info_on()))
1611
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1612
#endif
1613
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1614 1615
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1616
#ifdef CONFIG_PREEMPT
1617
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1618
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1619
#endif
N
Nick Piggin 已提交
1620
	put_cpu();
L
Linus Torvalds 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1630
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1631 1632
{
	unsigned long flags;
I
Ingo Molnar 已提交
1633 1634
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1635 1636

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1637
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1638
	this_cpu = smp_processor_id(); /* parent's CPU */
I
Ingo Molnar 已提交
1639
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1640 1641 1642

	p->prio = effective_prio(p);

1643 1644 1645 1646 1647
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

1648 1649
	if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
							!current->se.on_rq) {
I
Ingo Molnar 已提交
1650
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1651 1652
	} else {
		/*
I
Ingo Molnar 已提交
1653 1654
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1655
		 */
1656
		p->sched_class->task_new(rq, p);
1657
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1658
	}
I
Ingo Molnar 已提交
1659 1660
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1661 1662
}

1663 1664 1665
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1666 1667
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1668 1669 1670 1671 1672 1673 1674 1675 1676
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1677
 * @notifier: notifier struct to unregister
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1721 1722 1723
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1724
 * @prev: the current task that is being switched out
1725 1726 1727 1728 1729 1730 1731 1732 1733
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1734 1735 1736
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1737
{
1738
	fire_sched_out_preempt_notifiers(prev, next);
1739 1740 1741 1742
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1743 1744
/**
 * finish_task_switch - clean up after a task-switch
1745
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1746 1747
 * @prev: the thread we just switched away from.
 *
1748 1749 1750 1751
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1752 1753 1754 1755 1756 1757
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1758
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1759 1760 1761
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1762
	long prev_state;
L
Linus Torvalds 已提交
1763 1764 1765 1766 1767

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1768
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1769 1770
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1771
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1772 1773 1774 1775 1776
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1777
	prev_state = prev->state;
1778 1779
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1780
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1781 1782
	if (mm)
		mmdrop(mm);
1783
	if (unlikely(prev_state == TASK_DEAD)) {
1784 1785 1786
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1787
		 */
1788
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1789
		put_task_struct(prev);
1790
	}
L
Linus Torvalds 已提交
1791 1792 1793 1794 1795 1796
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1797
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1798 1799
	__releases(rq->lock)
{
1800 1801
	struct rq *rq = this_rq();

1802 1803 1804 1805 1806
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1807 1808 1809 1810 1811 1812 1813 1814
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1815
static inline void
1816
context_switch(struct rq *rq, struct task_struct *prev,
1817
	       struct task_struct *next)
L
Linus Torvalds 已提交
1818
{
I
Ingo Molnar 已提交
1819
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1820

1821
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1822 1823
	mm = next->mm;
	oldmm = prev->active_mm;
1824 1825 1826 1827 1828 1829 1830
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1831
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1832 1833 1834 1835 1836 1837
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1838
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1839 1840 1841
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1842 1843 1844 1845 1846 1847 1848
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1849
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1850
#endif
L
Linus Torvalds 已提交
1851 1852 1853 1854

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1855 1856 1857 1858 1859 1860 1861
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1885
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1900 1901
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1902

1903
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1913
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1914 1915 1916 1917 1918
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1934
/*
I
Ingo Molnar 已提交
1935 1936
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1937
 */
I
Ingo Molnar 已提交
1938
static void update_cpu_load(struct rq *this_rq)
1939
{
1940
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
1953 1954 1955 1956 1957 1958 1959
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
1960 1961
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
1962 1963
}

I
Ingo Molnar 已提交
1964 1965
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
1966 1967 1968 1969 1970 1971
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
1972
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1973 1974 1975
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
1976
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
1977 1978 1979 1980
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
1981
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
1982 1983 1984 1985 1986 1987 1988
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
1989 1990
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
1991 1992 1993 1994 1995 1996 1997 1998
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
1999
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2013
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2014 2015 2016 2017
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2018 2019 2020 2021 2022
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2023
	if (unlikely(!spin_trylock(&busiest->lock))) {
2024
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2039
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2040
{
2041
	struct migration_req req;
L
Linus Torvalds 已提交
2042
	unsigned long flags;
2043
	struct rq *rq;
L
Linus Torvalds 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2054

L
Linus Torvalds 已提交
2055 2056 2057 2058 2059
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2060

L
Linus Torvalds 已提交
2061 2062 2063 2064 2065 2066 2067
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2068 2069
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2070 2071 2072 2073
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2074
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2075
	put_cpu();
N
Nick Piggin 已提交
2076 2077
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2078 2079 2080 2081 2082 2083
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2084 2085
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2086
{
2087
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2088
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2089
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2090 2091 2092 2093
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2094
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2095 2096 2097 2098 2099
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2100
static
2101
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2102
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2103
		     int *all_pinned)
L
Linus Torvalds 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2113 2114 2115 2116
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2117 2118 2119 2120

	return 1;
}

I
Ingo Molnar 已提交
2121
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2122
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2123
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2124
		      int *all_pinned, unsigned long *load_moved,
2125
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2126
{
I
Ingo Molnar 已提交
2127 2128 2129
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2130

2131
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2132 2133
		goto out;

2134 2135
	pinned = 1;

L
Linus Torvalds 已提交
2136
	/*
I
Ingo Molnar 已提交
2137
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2138
	 */
I
Ingo Molnar 已提交
2139 2140 2141
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2142
		goto out;
2143 2144 2145 2146 2147
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2148 2149
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2150
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2151 2152 2153
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2154 2155
	}

I
Ingo Molnar 已提交
2156
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2157
	pulled++;
I
Ingo Molnar 已提交
2158
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2159

2160 2161 2162 2163 2164
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2165 2166
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2167 2168
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2169 2170 2171 2172 2173 2174 2175 2176
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2177 2178 2179

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2180
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2181 2182 2183
	return pulled;
}

I
Ingo Molnar 已提交
2184
/*
P
Peter Williams 已提交
2185 2186 2187
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2188 2189 2190 2191
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2192
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2193 2194 2195 2196
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2197
	unsigned long total_load_moved = 0;
2198
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2199 2200

	do {
P
Peter Williams 已提交
2201 2202 2203
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2204
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2205
		class = class->next;
P
Peter Williams 已提交
2206
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2207

P
Peter Williams 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct sched_class *class;
2222
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2223 2224 2225

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2226 2227
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2228 2229 2230
			return 1;

	return 0;
I
Ingo Molnar 已提交
2231 2232
}

L
Linus Torvalds 已提交
2233 2234
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2235 2236
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2237 2238 2239
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2240 2241
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2242 2243 2244
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2245
	unsigned long max_pull;
2246 2247
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2248
	int load_idx;
2249 2250 2251 2252 2253 2254
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2255 2256

	max_load = this_load = total_load = total_pwr = 0;
2257 2258
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2259
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2260
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2261
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2262 2263 2264
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2265 2266

	do {
2267
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2268 2269
		int local_group;
		int i;
2270
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2271
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2272 2273 2274

		local_group = cpu_isset(this_cpu, group->cpumask);

2275 2276 2277
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2278
		/* Tally up the load of all CPUs in the group */
2279
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2280 2281

		for_each_cpu_mask(i, group->cpumask) {
2282 2283 2284 2285 2286 2287
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2288

2289
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2290 2291
				*sd_idle = 0;

L
Linus Torvalds 已提交
2292
			/* Bias balancing toward cpus of our domain */
2293 2294 2295 2296 2297 2298
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2299
				load = target_load(i, load_idx);
2300
			} else
N
Nick Piggin 已提交
2301
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2302 2303

			avg_load += load;
2304
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2305
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2306 2307
		}

2308 2309 2310
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2311 2312
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2313
		 */
2314 2315
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2316 2317 2318 2319
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2320
		total_load += avg_load;
2321
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2322 2323

		/* Adjust by relative CPU power of the group */
2324 2325
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2326

2327
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2328

L
Linus Torvalds 已提交
2329 2330 2331
		if (local_group) {
			this_load = avg_load;
			this = group;
2332 2333 2334
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2335
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2336 2337
			max_load = avg_load;
			busiest = group;
2338 2339
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2340
		}
2341 2342 2343 2344 2345 2346

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2347 2348 2349
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2350 2351 2352 2353 2354 2355 2356 2357 2358

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2359
		/*
2360 2361
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2362 2363
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2364
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2365
			goto group_next;
2366

I
Ingo Molnar 已提交
2367
		/*
2368
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2369 2370 2371 2372 2373
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2374 2375
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2376 2377
			group_min = group;
			min_nr_running = sum_nr_running;
2378 2379
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2380
		}
2381

I
Ingo Molnar 已提交
2382
		/*
2383
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2395
		}
2396 2397
group_next:
#endif
L
Linus Torvalds 已提交
2398 2399 2400
		group = group->next;
	} while (group != sd->groups);

2401
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2402 2403 2404 2405 2406 2407 2408 2409
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2410
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2434 2435

	/* Don't want to pull so many tasks that a group would go idle */
2436
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2437

L
Linus Torvalds 已提交
2438
	/* How much load to actually move to equalise the imbalance */
2439 2440
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2441 2442
			/ SCHED_LOAD_SCALE;

2443 2444 2445 2446 2447 2448
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2449
	if (*imbalance < busiest_load_per_task) {
2450
		unsigned long tmp, pwr_now, pwr_move;
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2462

I
Ingo Molnar 已提交
2463 2464
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2465
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2475 2476 2477 2478
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2479 2480 2481
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2482 2483
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2484
		if (max_load > tmp)
2485
			pwr_move += busiest->__cpu_power *
2486
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2487 2488

		/* Amount of load we'd add */
2489
		if (max_load * busiest->__cpu_power <
2490
				busiest_load_per_task * SCHED_LOAD_SCALE)
2491 2492
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2493
		else
2494 2495 2496 2497
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2498 2499 2500
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2501 2502
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2503 2504 2505 2506 2507
	}

	return busiest;

out_balanced:
2508
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2509
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2510
		goto ret;
L
Linus Torvalds 已提交
2511

2512 2513 2514 2515 2516
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2517
ret:
L
Linus Torvalds 已提交
2518 2519 2520 2521 2522 2523 2524
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2525
static struct rq *
I
Ingo Molnar 已提交
2526
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2527
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2528
{
2529
	struct rq *busiest = NULL, *rq;
2530
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2531 2532 2533
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2534
		unsigned long wl;
2535 2536 2537 2538

		if (!cpu_isset(i, *cpus))
			continue;

2539
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2540
		wl = weighted_cpuload(i);
2541

I
Ingo Molnar 已提交
2542
		if (rq->nr_running == 1 && wl > imbalance)
2543
			continue;
L
Linus Torvalds 已提交
2544

I
Ingo Molnar 已提交
2545 2546
		if (wl > max_load) {
			max_load = wl;
2547
			busiest = rq;
L
Linus Torvalds 已提交
2548 2549 2550 2551 2552 2553
		}
	}

	return busiest;
}

2554 2555 2556 2557 2558 2559
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2560 2561 2562 2563
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2564
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2565
			struct sched_domain *sd, enum cpu_idle_type idle,
2566
			int *balance)
L
Linus Torvalds 已提交
2567
{
P
Peter Williams 已提交
2568
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2569 2570
	struct sched_group *group;
	unsigned long imbalance;
2571
	struct rq *busiest;
2572
	cpumask_t cpus = CPU_MASK_ALL;
2573
	unsigned long flags;
N
Nick Piggin 已提交
2574

2575 2576 2577
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2578
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2579
	 * portraying it as CPU_NOT_IDLE.
2580
	 */
I
Ingo Molnar 已提交
2581
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2582
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2583
		sd_idle = 1;
L
Linus Torvalds 已提交
2584 2585 2586

	schedstat_inc(sd, lb_cnt[idle]);

2587 2588
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2589 2590
				   &cpus, balance);

2591
	if (*balance == 0)
2592 2593
		goto out_balanced;

L
Linus Torvalds 已提交
2594 2595 2596 2597 2598
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2599
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2600 2601 2602 2603 2604
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2605
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2606 2607 2608

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2609
	ld_moved = 0;
L
Linus Torvalds 已提交
2610 2611 2612 2613
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2614
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2615 2616
		 * correctly treated as an imbalance.
		 */
2617
		local_irq_save(flags);
N
Nick Piggin 已提交
2618
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2619
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2620
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2621
		double_rq_unlock(this_rq, busiest);
2622
		local_irq_restore(flags);
2623

2624 2625 2626
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2627
		if (ld_moved && this_cpu != smp_processor_id())
2628 2629
			resched_cpu(this_cpu);

2630
		/* All tasks on this runqueue were pinned by CPU affinity */
2631 2632 2633 2634
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2635
			goto out_balanced;
2636
		}
L
Linus Torvalds 已提交
2637
	}
2638

P
Peter Williams 已提交
2639
	if (!ld_moved) {
L
Linus Torvalds 已提交
2640 2641 2642 2643 2644
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2645
			spin_lock_irqsave(&busiest->lock, flags);
2646 2647 2648 2649 2650

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2651
				spin_unlock_irqrestore(&busiest->lock, flags);
2652 2653 2654 2655
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2656 2657 2658
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2659
				active_balance = 1;
L
Linus Torvalds 已提交
2660
			}
2661
			spin_unlock_irqrestore(&busiest->lock, flags);
2662
			if (active_balance)
L
Linus Torvalds 已提交
2663 2664 2665 2666 2667 2668
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2669
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2670
		}
2671
	} else
L
Linus Torvalds 已提交
2672 2673
		sd->nr_balance_failed = 0;

2674
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2675 2676
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2677 2678 2679 2680 2681 2682 2683 2684 2685
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2686 2687
	}

P
Peter Williams 已提交
2688
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2689
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2690
		return -1;
P
Peter Williams 已提交
2691
	return ld_moved;
L
Linus Torvalds 已提交
2692 2693 2694 2695

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2696
	sd->nr_balance_failed = 0;
2697 2698

out_one_pinned:
L
Linus Torvalds 已提交
2699
	/* tune up the balancing interval */
2700 2701
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2702 2703
		sd->balance_interval *= 2;

2704
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2705
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2706
		return -1;
L
Linus Torvalds 已提交
2707 2708 2709 2710 2711 2712 2713
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2714
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2715 2716
 * this_rq is locked.
 */
2717
static int
2718
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2719 2720
{
	struct sched_group *group;
2721
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2722
	unsigned long imbalance;
P
Peter Williams 已提交
2723
	int ld_moved = 0;
N
Nick Piggin 已提交
2724
	int sd_idle = 0;
2725
	int all_pinned = 0;
2726
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2727

2728 2729 2730 2731
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2732
	 * portraying it as CPU_NOT_IDLE.
2733 2734 2735
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2736
		sd_idle = 1;
L
Linus Torvalds 已提交
2737

I
Ingo Molnar 已提交
2738
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2739
redo:
I
Ingo Molnar 已提交
2740
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2741
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2742
	if (!group) {
I
Ingo Molnar 已提交
2743
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2744
		goto out_balanced;
L
Linus Torvalds 已提交
2745 2746
	}

I
Ingo Molnar 已提交
2747
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2748
				&cpus);
N
Nick Piggin 已提交
2749
	if (!busiest) {
I
Ingo Molnar 已提交
2750
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2751
		goto out_balanced;
L
Linus Torvalds 已提交
2752 2753
	}

N
Nick Piggin 已提交
2754 2755
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2756
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2757

P
Peter Williams 已提交
2758
	ld_moved = 0;
2759 2760 2761
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2762 2763
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2764
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2765 2766
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2767
		spin_unlock(&busiest->lock);
2768

2769
		if (unlikely(all_pinned)) {
2770 2771 2772 2773
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2774 2775
	}

P
Peter Williams 已提交
2776
	if (!ld_moved) {
I
Ingo Molnar 已提交
2777
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2778 2779
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2780 2781
			return -1;
	} else
2782
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2783

P
Peter Williams 已提交
2784
	return ld_moved;
2785 2786

out_balanced:
I
Ingo Molnar 已提交
2787
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2788
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2789
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2790
		return -1;
2791
	sd->nr_balance_failed = 0;
2792

2793
	return 0;
L
Linus Torvalds 已提交
2794 2795 2796 2797 2798 2799
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2800
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2801 2802
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2803 2804
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2805 2806

	for_each_domain(this_cpu, sd) {
2807 2808 2809 2810 2811 2812
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2813
			/* If we've pulled tasks over stop searching: */
2814
			pulled_task = load_balance_newidle(this_cpu,
2815 2816 2817 2818 2819 2820 2821
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2822
	}
I
Ingo Molnar 已提交
2823
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2824 2825 2826 2827 2828
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2829
	}
L
Linus Torvalds 已提交
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2840
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2841
{
2842
	int target_cpu = busiest_rq->push_cpu;
2843 2844
	struct sched_domain *sd;
	struct rq *target_rq;
2845

2846
	/* Is there any task to move? */
2847 2848 2849 2850
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2851 2852

	/*
2853 2854 2855
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2856
	 */
2857
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2858

2859 2860
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2861 2862
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2863 2864

	/* Search for an sd spanning us and the target CPU. */
2865
	for_each_domain(target_cpu, sd) {
2866
		if ((sd->flags & SD_LOAD_BALANCE) &&
2867
		    cpu_isset(busiest_cpu, sd->span))
2868
				break;
2869
	}
2870

2871 2872
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2873

P
Peter Williams 已提交
2874 2875
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2876 2877 2878 2879
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2880
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2881 2882
}

2883 2884 2885 2886 2887 2888 2889 2890 2891
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2892
/*
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2903
 *
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
2960 2961 2962 2963 2964
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
2965
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2966
{
2967 2968
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
2969 2970
	unsigned long interval;
	struct sched_domain *sd;
2971
	/* Earliest time when we have to do rebalance again */
2972
	unsigned long next_balance = jiffies + 60*HZ;
2973
	int update_next_balance = 0;
L
Linus Torvalds 已提交
2974

2975
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
2976 2977 2978 2979
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
2980
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
2981 2982 2983 2984 2985 2986
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
2987 2988 2989
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
2990

2991 2992 2993 2994 2995
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

2996
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
2997
			if (load_balance(cpu, rq, sd, idle, &balance)) {
2998 2999
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3000 3001 3002
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3003
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3004
			}
3005
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3006
		}
3007 3008 3009
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3010
		if (time_after(next_balance, sd->last_balance + interval)) {
3011
			next_balance = sd->last_balance + interval;
3012 3013
			update_next_balance = 1;
		}
3014 3015 3016 3017 3018 3019 3020 3021

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3022
	}
3023 3024 3025 3026 3027 3028 3029 3030

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3031 3032 3033 3034 3035 3036 3037 3038 3039
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3040 3041 3042 3043
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3044

I
Ingo Molnar 已提交
3045
	rebalance_domains(this_cpu, idle);
3046 3047 3048 3049 3050 3051 3052

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3053 3054
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3055 3056 3057 3058
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3059
		cpu_clear(this_cpu, cpus);
3060 3061 3062 3063 3064 3065 3066 3067 3068
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3069
			rebalance_domains(balance_cpu, CPU_IDLE);
3070 3071

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3072 3073
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3086
static inline void trigger_load_balance(struct rq *rq, int cpu)
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3138
}
I
Ingo Molnar 已提交
3139 3140 3141

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3142 3143 3144
/*
 * on UP we do not need to balance between CPUs:
 */
3145
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3146 3147
{
}
I
Ingo Molnar 已提交
3148 3149 3150 3151 3152 3153

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3154
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3155 3156 3157 3158 3159 3160
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3161 3162 3163 3164 3165 3166 3167
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3168 3169
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3170
 */
3171
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3172 3173
{
	unsigned long flags;
3174 3175
	u64 ns, delta_exec;
	struct rq *rq;
3176

3177 3178 3179
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3180 3181
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3182 3183 3184 3185
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3186

L
Linus Torvalds 已提交
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3221
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3251
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3274
	struct task_struct *curr = rq->curr;
3275
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3276 3277

	spin_lock(&rq->lock);
3278
	__update_rq_clock(rq);
3279 3280 3281 3282 3283 3284
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3285
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3286 3287 3288
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3289

3290
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3291 3292
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3293
#endif
L
Linus Torvalds 已提交
3294 3295 3296 3297 3298 3299 3300 3301 3302
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3303 3304
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3305 3306 3307 3308
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3309 3310
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3311 3312 3313 3314 3315 3316 3317 3318
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3319 3320
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3321 3322 3323
	/*
	 * Is the spinlock portion underflowing?
	 */
3324 3325 3326 3327
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3328 3329 3330 3331 3332 3333 3334
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3335
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3336
 */
I
Ingo Molnar 已提交
3337
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3338
{
I
Ingo Molnar 已提交
3339 3340 3341 3342 3343 3344 3345
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3346

I
Ingo Molnar 已提交
3347 3348 3349 3350 3351
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3352 3353 3354 3355 3356
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3357 3358 3359
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3360 3361
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3362 3363 3364 3365 3366 3367 3368
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3369
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3370 3371 3372
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3373 3374

	/*
I
Ingo Molnar 已提交
3375 3376
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3377
	 */
I
Ingo Molnar 已提交
3378
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3379
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3380 3381
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3382 3383
	}

I
Ingo Molnar 已提交
3384 3385
	class = sched_class_highest;
	for ( ; ; ) {
3386
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3396

I
Ingo Molnar 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3419 3420

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3421
	clear_tsk_need_resched(prev);
I
Ingo Molnar 已提交
3422
	__update_rq_clock(rq);
L
Linus Torvalds 已提交
3423 3424 3425

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3426
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3427
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3428
		} else {
3429
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3430
		}
I
Ingo Molnar 已提交
3431
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3432 3433
	}

I
Ingo Molnar 已提交
3434
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3435 3436
		idle_balance(cpu, rq);

3437
	prev->sched_class->put_prev_task(rq, prev);
3438
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3439 3440

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3441

L
Linus Torvalds 已提交
3442 3443 3444 3445 3446
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3447
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3448 3449 3450
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3451 3452 3453
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3454
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3455
	}
L
Linus Torvalds 已提交
3456 3457 3458 3459 3460 3461 3462 3463
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3464
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3479
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3507
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3519
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3549 3550
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3551
{
3552
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3568
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3569

3570
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3571 3572
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3573
		if (curr->func(curr, mode, sync, key) &&
3574
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3575 3576 3577 3578 3579 3580 3581 3582 3583
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3584
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3585 3586
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3587
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3606
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3618 3619
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3663

L
Linus Torvalds 已提交
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3782 3783 3784 3785 3786
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3787
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3788
}
L
Linus Torvalds 已提交
3789

I
Ingo Molnar 已提交
3790 3791 3792 3793 3794 3795 3796
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3797

I
Ingo Molnar 已提交
3798
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3799
{
I
Ingo Molnar 已提交
3800 3801 3802 3803
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3804 3805 3806

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3807
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3808
	schedule();
I
Ingo Molnar 已提交
3809
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3810 3811 3812
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3813
long __sched
I
Ingo Molnar 已提交
3814
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3815
{
I
Ingo Molnar 已提交
3816 3817 3818 3819
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3820 3821 3822

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3823
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3824
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3825
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3826 3827 3828 3829 3830

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3831
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3832
{
I
Ingo Molnar 已提交
3833 3834 3835 3836
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3837 3838 3839

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3840
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3841
	schedule();
I
Ingo Molnar 已提交
3842
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3843 3844 3845
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3846
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3847
{
I
Ingo Molnar 已提交
3848 3849 3850 3851
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3852 3853 3854

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3855
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3856
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3857
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3858 3859 3860 3861 3862

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3875
void rt_mutex_setprio(struct task_struct *p, int prio)
3876 3877
{
	unsigned long flags;
I
Ingo Molnar 已提交
3878
	int oldprio, on_rq;
3879
	struct rq *rq;
3880 3881 3882 3883

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3884
	update_rq_clock(rq);
3885

3886
	oldprio = p->prio;
I
Ingo Molnar 已提交
3887 3888
	on_rq = p->se.on_rq;
	if (on_rq)
3889
		dequeue_task(rq, p, 0);
I
Ingo Molnar 已提交
3890 3891 3892 3893 3894 3895

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3896 3897
	p->prio = prio;

I
Ingo Molnar 已提交
3898
	if (on_rq) {
3899
		enqueue_task(rq, p, 0);
3900 3901
		/*
		 * Reschedule if we are currently running on this runqueue and
3902 3903
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3904
		 */
3905 3906 3907
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3908 3909 3910
		} else {
			check_preempt_curr(rq, p);
		}
3911 3912 3913 3914 3915 3916
	}
	task_rq_unlock(rq, &flags);
}

#endif

3917
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3918
{
I
Ingo Molnar 已提交
3919
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3920
	unsigned long flags;
3921
	struct rq *rq;
L
Linus Torvalds 已提交
3922 3923 3924 3925 3926 3927 3928 3929

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3930
	update_rq_clock(rq);
L
Linus Torvalds 已提交
3931 3932 3933 3934
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3935
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3936
	 */
3937
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3938 3939 3940
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3941 3942
	on_rq = p->se.on_rq;
	if (on_rq) {
3943
		dequeue_task(rq, p, 0);
3944
		dec_load(rq, p);
3945
	}
L
Linus Torvalds 已提交
3946 3947

	p->static_prio = NICE_TO_PRIO(nice);
3948
	set_load_weight(p);
3949 3950 3951
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3952

I
Ingo Molnar 已提交
3953
	if (on_rq) {
3954
		enqueue_task(rq, p, 0);
3955
		inc_load(rq, p);
L
Linus Torvalds 已提交
3956
		/*
3957 3958
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3959
		 */
3960
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3961 3962 3963 3964 3965 3966 3967
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3968 3969 3970 3971 3972
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3973
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3974
{
3975 3976
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3977

M
Matt Mackall 已提交
3978 3979 3980 3981
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
3993
	long nice, retval;
L
Linus Torvalds 已提交
3994 3995 3996 3997 3998 3999

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4000 4001
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4002 4003 4004 4005 4006 4007 4008 4009 4010
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4011 4012 4013
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4032
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4033 4034 4035 4036 4037 4038 4039 4040
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4041
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4060
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4061 4062 4063 4064 4065 4066 4067 4068
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4069
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4070 4071 4072 4073 4074
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4075 4076
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4077
{
I
Ingo Molnar 已提交
4078
	BUG_ON(p->se.on_rq);
4079

L
Linus Torvalds 已提交
4080
	p->policy = policy;
I
Ingo Molnar 已提交
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4093
	p->rt_priority = prio;
4094 4095 4096
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4097
	set_load_weight(p);
L
Linus Torvalds 已提交
4098 4099 4100
}

/**
4101
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4102 4103 4104
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4105
 *
4106
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4107
 */
I
Ingo Molnar 已提交
4108 4109
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4110
{
I
Ingo Molnar 已提交
4111
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4112
	unsigned long flags;
4113
	struct rq *rq;
L
Linus Torvalds 已提交
4114

4115 4116
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4117 4118 4119 4120 4121
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4122 4123
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4124
		return -EINVAL;
L
Linus Torvalds 已提交
4125 4126
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4127 4128
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4129 4130
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4131
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4132
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4133
		return -EINVAL;
4134
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4135 4136
		return -EINVAL;

4137 4138 4139 4140
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4141
		if (rt_policy(policy)) {
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4158 4159 4160 4161 4162 4163
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4164

4165 4166 4167 4168 4169
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4170 4171 4172 4173

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4174 4175 4176 4177 4178
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4179 4180 4181 4182
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4183
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4184 4185 4186
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4187 4188
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4189 4190
		goto recheck;
	}
I
Ingo Molnar 已提交
4191
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4192
	on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
4193
	if (on_rq)
4194
		deactivate_task(rq, p, 0);
L
Linus Torvalds 已提交
4195
	oldprio = p->prio;
I
Ingo Molnar 已提交
4196 4197 4198
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4199 4200
		/*
		 * Reschedule if we are currently running on this runqueue and
4201 4202
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4203
		 */
4204 4205 4206
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4207 4208 4209
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4210
	}
4211 4212 4213
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4214 4215
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4216 4217 4218 4219
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4220 4221
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4222 4223 4224
{
	struct sched_param lparam;
	struct task_struct *p;
4225
	int retval;
L
Linus Torvalds 已提交
4226 4227 4228 4229 4230

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4231 4232 4233

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4234
	p = find_process_by_pid(pid);
4235 4236 4237
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4238

L
Linus Torvalds 已提交
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4251 4252 4253 4254
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4274
	struct task_struct *p;
L
Linus Torvalds 已提交
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4302
	struct task_struct *p;
L
Linus Torvalds 已提交
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4337 4338
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4339

4340
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4341 4342 4343 4344 4345
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4346
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4363 4364 4365 4366
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4367 4368 4369 4370 4371 4372
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4373
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4414
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4415 4416 4417
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4418
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4419 4420
EXPORT_SYMBOL(cpu_online_map);

4421
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4422
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4423 4424 4425 4426
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4427
	struct task_struct *p;
L
Linus Torvalds 已提交
4428 4429
	int retval;

4430
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4431 4432 4433 4434 4435 4436 4437
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4438 4439 4440 4441
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4442
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4443 4444 4445

out_unlock:
	read_unlock(&tasklist_lock);
4446
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4447

4448
	return retval;
L
Linus Torvalds 已提交
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4479 4480
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4481 4482 4483
 */
asmlinkage long sys_sched_yield(void)
{
4484
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4485 4486

	schedstat_inc(rq, yld_cnt);
4487
	current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4488 4489 4490 4491 4492 4493

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4494
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4495 4496 4497 4498 4499 4500 4501 4502
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4503
static void __cond_resched(void)
L
Linus Torvalds 已提交
4504
{
4505 4506 4507
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4508 4509 4510 4511 4512
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4513 4514 4515 4516 4517 4518 4519 4520 4521
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4522 4523
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4539
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4540
{
J
Jan Kara 已提交
4541 4542
	int ret = 0;

L
Linus Torvalds 已提交
4543 4544 4545
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4546
		ret = 1;
L
Linus Torvalds 已提交
4547 4548
		spin_lock(lock);
	}
4549
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4550
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4551 4552 4553
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4554
		ret = 1;
L
Linus Torvalds 已提交
4555 4556
		spin_lock(lock);
	}
J
Jan Kara 已提交
4557
	return ret;
L
Linus Torvalds 已提交
4558 4559 4560 4561 4562 4563 4564
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4565
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4566
		local_bh_enable();
L
Linus Torvalds 已提交
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4578
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4597
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4598

4599
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4600 4601 4602
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4603
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4604 4605 4606 4607 4608
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4609
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4610 4611
	long ret;

4612
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4613 4614 4615
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4616
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4637
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4638
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4662
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4663
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4680
	struct task_struct *p;
L
Linus Torvalds 已提交
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4697
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4698
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4699 4700 4701 4702 4703 4704 4705 4706 4707
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4708
static const char stat_nam[] = "RSDTtZX";
4709 4710

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4711 4712
{
	unsigned long free = 0;
4713
	unsigned state;
L
Linus Torvalds 已提交
4714 4715

	state = p->state ? __ffs(p->state) + 1 : 0;
4716 4717
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4718
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4719
	if (state == TASK_RUNNING)
4720
		printk(" running  ");
L
Linus Torvalds 已提交
4721
	else
4722
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4723 4724
#else
	if (state == TASK_RUNNING)
4725
		printk("  running task    ");
L
Linus Torvalds 已提交
4726 4727 4728 4729 4730
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4731
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4732 4733
		while (!*n)
			n++;
4734
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4735 4736
	}
#endif
4737
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4738 4739 4740 4741 4742

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4743
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4744
{
4745
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4746

4747 4748 4749
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4750
#else
4751 4752
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4753 4754 4755 4756 4757 4758 4759 4760
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4761
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4762
			show_task(p);
L
Linus Torvalds 已提交
4763 4764
	} while_each_thread(g, p);

4765 4766
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4767 4768 4769
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4770
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4771 4772 4773 4774 4775
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4776 4777
}

I
Ingo Molnar 已提交
4778 4779
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4780
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4781 4782
}

4783 4784 4785 4786 4787 4788 4789 4790
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4791
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4792
{
4793
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4794 4795
	unsigned long flags;

I
Ingo Molnar 已提交
4796 4797 4798
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4799
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4800
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4801
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4802 4803 4804

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4805 4806 4807
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4808 4809 4810 4811
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4812
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4813
#else
A
Al Viro 已提交
4814
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4815
#endif
I
Ingo Molnar 已提交
4816 4817 4818 4819
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4835
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4857
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4858
{
4859
	struct migration_req req;
L
Linus Torvalds 已提交
4860
	unsigned long flags;
4861
	struct rq *rq;
4862
	int ret = 0;
L
Linus Torvalds 已提交
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4885

L
Linus Torvalds 已提交
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4898 4899
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4900
 */
4901
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4902
{
4903
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4904
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4905 4906

	if (unlikely(cpu_is_offline(dest_cpu)))
4907
		return ret;
L
Linus Torvalds 已提交
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4920
	on_rq = p->se.on_rq;
4921
	if (on_rq)
4922
		deactivate_task(rq_src, p, 0);
4923

L
Linus Torvalds 已提交
4924
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4925 4926 4927
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4928
	}
4929
	ret = 1;
L
Linus Torvalds 已提交
4930 4931
out:
	double_rq_unlock(rq_src, rq_dest);
4932
	return ret;
L
Linus Torvalds 已提交
4933 4934 4935 4936 4937 4938 4939
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4940
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4941 4942
{
	int cpu = (long)data;
4943
	struct rq *rq;
L
Linus Torvalds 已提交
4944 4945 4946 4947 4948 4949

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4950
		struct migration_req *req;
L
Linus Torvalds 已提交
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
4973
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
4974 4975
		list_del_init(head->next);

N
Nick Piggin 已提交
4976 4977 4978
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
4997 4998 4999 5000
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5001
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5002
{
5003
	unsigned long flags;
L
Linus Torvalds 已提交
5004
	cpumask_t mask;
5005 5006
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5007

5008
restart:
L
Linus Torvalds 已提交
5009 5010
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5011
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5012 5013 5014 5015
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5016
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5017 5018 5019

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5020 5021 5022
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5023
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5024 5025 5026 5027 5028 5029

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5030
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5031 5032
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5033
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5034
	}
5035
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5036
		goto restart;
L
Linus Torvalds 已提交
5037 5038 5039 5040 5041 5042 5043 5044 5045
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5046
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5047
{
5048
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5062
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5063 5064 5065

	write_lock_irq(&tasklist_lock);

5066 5067
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5068 5069
			continue;

5070 5071 5072
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5073 5074 5075 5076

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5077 5078
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5079
 * It does so by boosting its priority to highest possible and adding it to
5080
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5081 5082 5083
 */
void sched_idle_next(void)
{
5084
	int this_cpu = smp_processor_id();
5085
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5086 5087 5088 5089
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5090
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5091

5092 5093 5094
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5095 5096 5097
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5098
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5099 5100

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5101
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5102 5103 5104 5105

	spin_unlock_irqrestore(&rq->lock, flags);
}

5106 5107
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5121
/* called under rq->lock with disabled interrupts */
5122
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5123
{
5124
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5125 5126

	/* Must be exiting, otherwise would be on tasklist. */
5127
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5128 5129

	/* Cannot have done final schedule yet: would have vanished. */
5130
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5131

5132
	get_task_struct(p);
L
Linus Torvalds 已提交
5133 5134 5135 5136 5137

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5138
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5139
	 */
5140
	spin_unlock(&rq->lock);
5141
	move_task_off_dead_cpu(dead_cpu, p);
5142
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5143

5144
	put_task_struct(p);
L
Linus Torvalds 已提交
5145 5146 5147 5148 5149
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5150
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5151
	struct task_struct *next;
5152

I
Ingo Molnar 已提交
5153 5154 5155
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5156
		update_rq_clock(rq);
5157
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5158 5159 5160
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5161

L
Linus Torvalds 已提交
5162 5163 5164 5165
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5166 5167 5168
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5169 5170
	{
		.procname	= "sched_domain",
5171
		.mode		= 0555,
5172
	},
5173 5174 5175 5176
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5177
	{
5178
		.ctl_name	= CTL_KERN,
5179
		.procname	= "kernel",
5180
		.mode		= 0555,
5181 5182
		.child		= sd_ctl_dir,
	},
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5198
set_table_entry(struct ctl_table *entry,
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
	struct ctl_table *table = sd_alloc_ctl_entry(14);

5214
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5215
		sizeof(long), 0644, proc_doulongvec_minmax);
5216
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5217
		sizeof(long), 0644, proc_doulongvec_minmax);
5218
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5219
		sizeof(int), 0644, proc_dointvec_minmax);
5220
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5221
		sizeof(int), 0644, proc_dointvec_minmax);
5222
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5223
		sizeof(int), 0644, proc_dointvec_minmax);
5224
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5225
		sizeof(int), 0644, proc_dointvec_minmax);
5226
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5227
		sizeof(int), 0644, proc_dointvec_minmax);
5228
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5229
		sizeof(int), 0644, proc_dointvec_minmax);
5230
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5231
		sizeof(int), 0644, proc_dointvec_minmax);
5232
	set_table_entry(&table[10], "cache_nice_tries",
5233 5234
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5235
	set_table_entry(&table[12], "flags", &sd->flags,
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5256
		entry->mode = 0555;
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5276
		entry->mode = 0555;
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5287 5288 5289 5290
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5291 5292
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5293 5294
{
	struct task_struct *p;
5295
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5296
	unsigned long flags;
5297
	struct rq *rq;
L
Linus Torvalds 已提交
5298 5299

	switch (action) {
5300 5301 5302 5303
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5304
	case CPU_UP_PREPARE:
5305
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5306
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5307 5308 5309 5310 5311
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5312
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5313 5314 5315
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5316

L
Linus Torvalds 已提交
5317
	case CPU_ONLINE:
5318
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5319 5320 5321
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5322

L
Linus Torvalds 已提交
5323 5324
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5325
	case CPU_UP_CANCELED_FROZEN:
5326 5327
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5328
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5329 5330
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5331 5332 5333
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5334

L
Linus Torvalds 已提交
5335
	case CPU_DEAD:
5336
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5337 5338 5339 5340 5341 5342
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5343
		update_rq_clock(rq);
5344
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5345
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5346 5347
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5348 5349 5350 5351 5352 5353
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5354
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5355 5356 5357
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5358 5359
			struct migration_req *req;

L
Linus Torvalds 已提交
5360
			req = list_entry(rq->migration_queue.next,
5361
					 struct migration_req, list);
L
Linus Torvalds 已提交
5362 5363 5364 5365 5366 5367
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5368 5369 5370
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5371 5372 5373 5374 5375 5376 5377
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5378
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5379 5380 5381 5382 5383 5384 5385
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5386
	int err;
5387 5388

	/* Start one for the boot CPU: */
5389 5390
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5391 5392
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5393

L
Linus Torvalds 已提交
5394 5395 5396 5397 5398
	return 0;
}
#endif

#ifdef CONFIG_SMP
5399 5400 5401 5402 5403

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5404
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5405 5406 5407 5408 5409
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5410 5411 5412 5413 5414
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5434 5435
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5436 5437 5438 5439 5440 5441
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5442 5443
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5444
		if (!cpu_isset(cpu, group->cpumask))
5445 5446
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5459
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5460
				printk("\n");
5461 5462
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5485 5486
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5487 5488 5489

		level++;
		sd = sd->parent;
5490 5491
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5492

5493 5494 5495
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5496 5497 5498 5499

	} while (sd);
}
#else
5500
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5501 5502
#endif

5503
static int sd_degenerate(struct sched_domain *sd)
5504 5505 5506 5507 5508 5509 5510 5511
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5512 5513 5514
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5528 5529
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5548 5549 5550
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5551 5552 5553 5554 5555 5556 5557
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5558 5559 5560 5561
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5562
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5563
{
5564
	struct rq *rq = cpu_rq(cpu);
5565 5566 5567 5568 5569 5570 5571
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5572
		if (sd_parent_degenerate(tmp, parent)) {
5573
			tmp->parent = parent->parent;
5574 5575 5576
			if (parent->parent)
				parent->parent->child = tmp;
		}
5577 5578
	}

5579
	if (sd && sd_degenerate(sd)) {
5580
		sd = sd->parent;
5581 5582 5583
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5584 5585 5586

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5587
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5588 5589 5590
}

/* cpus with isolated domains */
5591
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5609 5610 5611 5612
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5613 5614 5615 5616 5617
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5618
static void
5619 5620 5621
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5622 5623 5624 5625 5626 5627
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5628 5629
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5630 5631 5632 5633 5634 5635
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5636
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5637 5638

		for_each_cpu_mask(j, span) {
5639
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5654
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5655

5656
#ifdef CONFIG_NUMA
5657

5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5710 5711
	cpumask_t span, nodemask;
	int i;
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5722

5723 5724 5725 5726 5727 5728 5729 5730
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5731
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5732

5733
/*
5734
 * SMT sched-domains:
5735
 */
L
Linus Torvalds 已提交
5736 5737
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5738
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5739

5740 5741
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5742
{
5743 5744
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5745 5746 5747 5748
	return cpu;
}
#endif

5749 5750 5751
/*
 * multi-core sched-domains:
 */
5752 5753
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5754
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5755 5756 5757
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5758 5759
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5760
{
5761
	int group;
5762 5763
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5764 5765 5766 5767
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5768 5769
}
#elif defined(CONFIG_SCHED_MC)
5770 5771
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5772
{
5773 5774
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5775 5776 5777 5778
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5779
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5780
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5781

5782 5783
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5784
{
5785
	int group;
5786
#ifdef CONFIG_SCHED_MC
5787
	cpumask_t mask = cpu_coregroup_map(cpu);
5788
	cpus_and(mask, mask, *cpu_map);
5789
	group = first_cpu(mask);
5790
#elif defined(CONFIG_SCHED_SMT)
5791 5792
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5793
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5794
#else
5795
	group = cpu;
L
Linus Torvalds 已提交
5796
#endif
5797 5798 5799
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5800 5801 5802 5803
}

#ifdef CONFIG_NUMA
/*
5804 5805 5806
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5807
 */
5808
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5809
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5810

5811
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5812
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5813

5814 5815
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5816
{
5817 5818 5819 5820 5821 5822 5823 5824 5825
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5826
}
5827

5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5848
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5849 5850 5851 5852 5853
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5854 5855
#endif

5856
#ifdef CONFIG_NUMA
5857 5858 5859
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5860
	int cpu, i;
5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5891 5892 5893 5894 5895
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5896

5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5923 5924
	sd->groups->__cpu_power = 0;

5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5935
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5936 5937 5938 5939 5940 5941 5942 5943
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5944
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5945 5946 5947 5948
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5949
/*
5950 5951
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5952
 */
5953
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
5954 5955
{
	int i;
5956 5957
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
5958
	int sd_allnodes = 0;
5959 5960 5961 5962

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
5963
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5964
					   GFP_KERNEL);
5965 5966
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
5967
		return -ENOMEM;
5968 5969 5970
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
5971 5972

	/*
5973
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
5974
	 */
5975
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5976 5977 5978
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

5979
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5980 5981

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
5982 5983
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5984 5985 5986
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
5987
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5988
			p = sd;
5989
			sd_allnodes = 1;
5990 5991 5992
		} else
			p = NULL;

L
Linus Torvalds 已提交
5993 5994
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
5995 5996
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
5997 5998
		if (p)
			p->child = sd;
5999
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6000 6001 6002 6003 6004 6005 6006
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6007 6008
		if (p)
			p->child = sd;
6009
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6010

6011 6012 6013 6014 6015 6016 6017
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6018
		p->child = sd;
6019
		cpu_to_core_group(i, cpu_map, &sd->groups);
6020 6021
#endif

L
Linus Torvalds 已提交
6022 6023 6024 6025 6026
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6027
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6028
		sd->parent = p;
6029
		p->child = sd;
6030
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6031 6032 6033 6034 6035
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6036
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6037
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6038
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6039 6040 6041
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6042 6043
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6044 6045 6046
	}
#endif

6047 6048 6049 6050 6051 6052 6053
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6054 6055
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6056 6057 6058
	}
#endif

L
Linus Torvalds 已提交
6059 6060 6061 6062
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6063
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6064 6065 6066
		if (cpus_empty(nodemask))
			continue;

6067
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6068 6069 6070 6071
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6072
	if (sd_allnodes)
I
Ingo Molnar 已提交
6073 6074
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6075 6076 6077 6078 6079 6080 6081 6082 6083 6084

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6085 6086
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6087
			continue;
6088
		}
6089 6090 6091 6092

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6093
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6094 6095 6096 6097 6098
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6099 6100 6101
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6102

6103 6104 6105
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6106
		sg->__cpu_power = 0;
6107
		sg->cpumask = nodemask;
6108
		sg->next = sg;
6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6127 6128
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6129 6130 6131
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6132
				goto error;
6133
			}
6134
			sg->__cpu_power = 0;
6135
			sg->cpumask = tmp;
6136
			sg->next = prev->next;
6137 6138 6139 6140 6141
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6142 6143 6144
#endif

	/* Calculate CPU power for physical packages and nodes */
6145
#ifdef CONFIG_SCHED_SMT
6146
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6147 6148
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6149
		init_sched_groups_power(i, sd);
6150
	}
L
Linus Torvalds 已提交
6151
#endif
6152
#ifdef CONFIG_SCHED_MC
6153
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6154 6155
		struct sched_domain *sd = &per_cpu(core_domains, i);

6156
		init_sched_groups_power(i, sd);
6157 6158
	}
#endif
6159

6160
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6161 6162
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6163
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6164 6165
	}

6166
#ifdef CONFIG_NUMA
6167 6168
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6169

6170 6171
	if (sd_allnodes) {
		struct sched_group *sg;
6172

6173
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6174 6175
		init_numa_sched_groups_power(sg);
	}
6176 6177
#endif

L
Linus Torvalds 已提交
6178
	/* Attach the domains */
6179
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6180 6181 6182
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6183 6184
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6185 6186 6187 6188 6189
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6190 6191 6192

	return 0;

6193
#ifdef CONFIG_NUMA
6194 6195 6196
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6197
#endif
L
Linus Torvalds 已提交
6198
}
6199 6200 6201
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6202
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6203 6204
{
	cpumask_t cpu_default_map;
6205
	int err;
L
Linus Torvalds 已提交
6206

6207 6208 6209 6210 6211 6212 6213
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6214 6215 6216
	err = build_sched_domains(&cpu_default_map);

	return err;
6217 6218 6219
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6220
{
6221
	free_sched_groups(cpu_map);
6222
}
L
Linus Torvalds 已提交
6223

6224 6225 6226 6227
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6228
static void detach_destroy_domains(const cpumask_t *cpu_map)
6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6246
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6247 6248
{
	cpumask_t change_map;
6249
	int err = 0;
6250 6251 6252 6253 6254 6255 6256 6257

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6258 6259 6260 6261 6262
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6263 6264
}

6265
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6266
static int arch_reinit_sched_domains(void)
6267 6268 6269
{
	int err;

6270
	mutex_lock(&sched_hotcpu_mutex);
6271 6272
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6273
	mutex_unlock(&sched_hotcpu_mutex);
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6300 6301
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6302 6303 6304
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6305 6306
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6307 6308 6309 6310 6311 6312 6313
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6314 6315
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6316 6317 6318
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6339 6340
#endif

L
Linus Torvalds 已提交
6341 6342 6343
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6344
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6345 6346 6347 6348 6349 6350 6351
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6352
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6353
	case CPU_DOWN_PREPARE:
6354
	case CPU_DOWN_PREPARE_FROZEN:
6355
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6356 6357 6358
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6359
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6360
	case CPU_DOWN_FAILED:
6361
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6362
	case CPU_ONLINE:
6363
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6364
	case CPU_DEAD:
6365
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6366 6367 6368 6369 6370 6371 6372 6373 6374
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6375
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6376 6377 6378 6379 6380 6381

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6382 6383
	cpumask_t non_isolated_cpus;

6384
	mutex_lock(&sched_hotcpu_mutex);
6385
	arch_init_sched_domains(&cpu_online_map);
6386
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6387 6388
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6389
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6390 6391
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6392

6393 6394
	init_sched_domain_sysctl();

6395 6396 6397
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6409

L
Linus Torvalds 已提交
6410 6411 6412 6413 6414
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6415 6416 6417 6418 6419 6420 6421 6422
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6423 6424
void __init sched_init(void)
{
6425
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6426 6427 6428 6429 6430 6431 6432 6433
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6434

6435
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6436
		struct rt_prio_array *array;
6437
		struct rq *rq;
L
Linus Torvalds 已提交
6438 6439 6440

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6441
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6442
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6443 6444 6445 6446 6447 6448
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
L
Linus Torvalds 已提交
6449

I
Ingo Molnar 已提交
6450 6451
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6452
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6453
		rq->sd = NULL;
L
Linus Torvalds 已提交
6454
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6455
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6456
		rq->push_cpu = 0;
6457
		rq->cpu = i;
L
Linus Torvalds 已提交
6458 6459 6460 6461 6462
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6463 6464 6465 6466
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6467
		}
6468
		highest_cpu = i;
I
Ingo Molnar 已提交
6469 6470
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6471 6472
	}

6473
	set_load_weight(&init_task);
6474

6475 6476 6477 6478
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6479
#ifdef CONFIG_SMP
6480
	nr_cpu_ids = highest_cpu + 1;
6481 6482 6483
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6484 6485 6486 6487
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6501 6502 6503 6504
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6505 6506 6507 6508 6509
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6510
#ifdef in_atomic
L
Linus Torvalds 已提交
6511 6512 6513 6514 6515 6516 6517
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6518
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6519 6520 6521
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6522
		debug_show_held_locks(current);
6523 6524
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6535
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6536
	unsigned long flags;
6537
	struct rq *rq;
I
Ingo Molnar 已提交
6538
	int on_rq;
L
Linus Torvalds 已提交
6539 6540

	read_lock_irq(&tasklist_lock);
6541
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6542
		p->se.fair_key			= 0;
I
Ingo Molnar 已提交
6543 6544
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6545 6546 6547
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6548
#endif
I
Ingo Molnar 已提交
6549 6550 6551 6552 6553 6554 6555 6556 6557
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6558
			continue;
I
Ingo Molnar 已提交
6559
		}
L
Linus Torvalds 已提交
6560

6561 6562
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6563 6564 6565 6566 6567 6568 6569
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6570

I
Ingo Molnar 已提交
6571
		update_rq_clock(rq);
I
Ingo Molnar 已提交
6572
		on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
6573 6574
		if (on_rq)
			deactivate_task(rq, p, 0);
I
Ingo Molnar 已提交
6575 6576
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
I
Ingo Molnar 已提交
6577
			activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6578 6579
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6580 6581 6582
#ifdef CONFIG_SMP
 out_unlock:
#endif
6583 6584
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6585 6586
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6587 6588 6589 6590
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6609
struct task_struct *curr_task(int cpu)
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6629
void set_curr_task(int cpu, struct task_struct *p)
6630 6631 6632 6633 6634
{
	cpu_curr(cpu) = p;
}

#endif