sched.c 168.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
J
Jens Axboe 已提交
64
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
65

66
#include <asm/tlb.h>
L
Linus Torvalds 已提交
67

68 69 70 71 72 73 74 75 76 77
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
D
Dmitry Adamushko 已提交
99
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (1000000000 / HZ))
L
Linus Torvalds 已提交
100 101
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

134 135 136 137 138 139 140 141 142 143 144 145
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
146
/*
I
Ingo Molnar 已提交
147
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
148
 */
I
Ingo Molnar 已提交
149 150 151 152 153
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
154 155 156 157 158
#ifdef CONFIG_FAIR_GROUP_SCHED

struct cfs_rq;

/* task group related information */
159
struct task_group {
S
Srivatsa Vaddagiri 已提交
160 161 162 163 164
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
165 166
	/* spinlock to serialize modification to shares */
	spinlock_t lock;
S
Srivatsa Vaddagiri 已提交
167 168 169 170 171 172 173
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

174 175
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
176 177

/* Default task group.
I
Ingo Molnar 已提交
178
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
179
 */
180
struct task_group init_task_group = {
I
Ingo Molnar 已提交
181 182 183
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
184

185
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
186
# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
187
#else
I
Ingo Molnar 已提交
188
# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
189 190
#endif

191
static int init_task_group_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
192 193

/* return group to which a task belongs */
194
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
195
{
196
	struct task_group *tg;
197

198 199 200
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
#else
201
	tg  = &init_task_group;
202
#endif
203 204

	return tg;
S
Srivatsa Vaddagiri 已提交
205 206 207 208 209
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_cfs_rq(struct task_struct *p)
{
210 211
	p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
	p->se.parent = task_group(p)->se[task_cpu(p)];
S
Srivatsa Vaddagiri 已提交
212 213 214 215 216 217 218 219
}

#else

static inline void set_task_cfs_rq(struct task_struct *p) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
220 221 222 223 224 225
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
226
	u64 min_vruntime;
I
Ingo Molnar 已提交
227 228 229 230 231 232 233 234

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
235 236 237

	unsigned long nr_spread_over;

238
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
239 240 241 242 243 244 245 246 247 248
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
249
	struct task_group *tg;    /* group that "owns" this runqueue */
250
	struct rcu_head rcu;
I
Ingo Molnar 已提交
251 252
#endif
};
L
Linus Torvalds 已提交
253

I
Ingo Molnar 已提交
254 255 256 257 258 259 260
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
261 262 263 264 265 266 267
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
268
struct rq {
I
Ingo Molnar 已提交
269
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
270 271 272 273 274 275

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
276 277
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
278
	unsigned char idle_at_tick;
279 280 281
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
282
	struct load_weight load;	/* capture load from *all* tasks on this cpu */
I
Ingo Molnar 已提交
283 284 285 286 287 288
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
289
#endif
I
Ingo Molnar 已提交
290
	struct rt_rq  rt;
L
Linus Torvalds 已提交
291 292 293 294 295 296 297 298 299

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

300
	struct task_struct *curr, *idle;
301
	unsigned long next_balance;
L
Linus Torvalds 已提交
302
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
303 304 305 306 307

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
308 309
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
310
	u64 tick_timestamp;
I
Ingo Molnar 已提交
311

L
Linus Torvalds 已提交
312 313 314 315 316 317 318 319
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
320
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
321

322
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
323 324 325 326 327 328 329 330 331 332 333
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
334
	unsigned long yld_count;
L
Linus Torvalds 已提交
335 336 337

	/* schedule() stats */
	unsigned long sched_switch;
338
	unsigned long sched_count;
L
Linus Torvalds 已提交
339 340 341
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
342
	unsigned long ttwu_count;
L
Linus Torvalds 已提交
343
	unsigned long ttwu_local;
I
Ingo Molnar 已提交
344 345

	/* BKL stats */
346
	unsigned long bkl_count;
L
Linus Torvalds 已提交
347
#endif
348
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
349 350
};

351
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
352
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
353

I
Ingo Molnar 已提交
354 355 356 357 358
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

359 360 361 362 363 364 365 366 367
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
368
/*
I
Ingo Molnar 已提交
369 370
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
371
 */
I
Ingo Molnar 已提交
372
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
373 374 375 376 377 378
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
379 380 381
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
382 383 384 385 386 387 388 389 390 391
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
392 393 394 395 396
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
397 398 399 400 401 402 403 404 405 406
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
407
}
I
Ingo Molnar 已提交
408

I
Ingo Molnar 已提交
409 410 411 412
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
413 414
}

N
Nick Piggin 已提交
415 416
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
417
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
418 419 420 421
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
422 423
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
424 425 426 427 428 429

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
443 444
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_START_DEBIT		= 2,
445
	SCHED_FEAT_TREE_AVG             = 4,
446
	SCHED_FEAT_APPROX_AVG           = 8,
447
	SCHED_FEAT_WAKEUP_PREEMPT	= 16,
448
	SCHED_FEAT_PREEMPT_RESTRICT	= 32,
I
Ingo Molnar 已提交
449 450 451 452
};

const_debug unsigned int sysctl_sched_features =
		SCHED_FEAT_NEW_FAIR_SLEEPERS	*1 |
P
Peter Zijlstra 已提交
453
		SCHED_FEAT_START_DEBIT		*1 |
454
		SCHED_FEAT_TREE_AVG		*0 |
455
		SCHED_FEAT_APPROX_AVG		*0 |
456 457
		SCHED_FEAT_WAKEUP_PREEMPT	*1 |
		SCHED_FEAT_PREEMPT_RESTRICT	*1;
I
Ingo Molnar 已提交
458 459 460

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

461 462 463 464 465 466 467 468
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
469
	struct rq *rq;
470

471
	local_irq_save(flags);
I
Ingo Molnar 已提交
472 473 474
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
475
	local_irq_restore(flags);
476 477 478

	return now;
}
P
Paul E. McKenney 已提交
479
EXPORT_SYMBOL_GPL(cpu_clock);
480

L
Linus Torvalds 已提交
481
#ifndef prepare_arch_switch
482 483 484 485 486 487 488
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
489
static inline int task_running(struct rq *rq, struct task_struct *p)
490 491 492 493
{
	return rq->curr == p;
}

494
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
495 496 497
{
}

498
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
499
{
500 501 502 503
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
504 505 506 507 508 509 510
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

511 512 513 514
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
515
static inline int task_running(struct rq *rq, struct task_struct *p)
516 517 518 519 520 521 522 523
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

524
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

541
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
542 543 544 545 546 547 548 549 550 551 552 553
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
554
#endif
555 556
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
557

558 559 560 561
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
562
static inline struct rq *__task_rq_lock(struct task_struct *p)
563 564
	__acquires(rq->lock)
{
565 566 567 568 569
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
570 571 572 573
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
574 575 576 577 578
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
579
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
580 581
	__acquires(rq->lock)
{
582
	struct rq *rq;
L
Linus Torvalds 已提交
583

584 585 586 587 588 589
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
590 591 592 593
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
594
static void __task_rq_unlock(struct rq *rq)
595 596 597 598 599
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

600
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
601 602 603 604 605 606
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
607
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
608
 */
A
Alexey Dobriyan 已提交
609
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
610 611
	__acquires(rq->lock)
{
612
	struct rq *rq;
L
Linus Torvalds 已提交
613 614 615 616 617 618 619 620

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

621
/*
622
 * We are going deep-idle (irqs are disabled):
623
 */
624
void sched_clock_idle_sleep_event(void)
625
{
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
642

643 644 645 646 647 648 649 650 651 652 653
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
654
}
655
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
656

I
Ingo Molnar 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

709 710 711 712 713 714 715 716
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
717 718 719
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
720
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
721

722
static unsigned long
723 724 725 726 727 728
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
729
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
730 731 732 733 734

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
735
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
736
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
737 738
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
739
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
740

741
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
742 743 744 745 746 747 748 749
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

750
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
751 752 753 754
{
	lw->weight += inc;
}

755
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
756 757 758 759
{
	lw->weight -= dec;
}

760 761 762 763 764 765 766 767 768
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
769 770 771 772 773 774 775 776 777 778 779
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
780 781 782
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
783 784
 */
static const int prio_to_weight[40] = {
785 786 787 788 789 790 791 792
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
793 794
};

795 796 797 798 799 800 801
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
802
static const u32 prio_to_wmult[40] = {
803 804 805 806 807 808 809 810
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
811
};
812

I
Ingo Molnar 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
830
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
831 832 833

#include "sched_stats.h"
#include "sched_idletask.c"
834 835
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
836 837 838 839 840 841
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

842 843 844 845
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
846
 * total load (rq->load.weight) on the runqueue, while
847 848 849 850 851 852 853
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
854
 * This function is called /before/ updating rq->load
855 856
 * and when switching tasks.
 */
857
static inline void inc_load(struct rq *rq, const struct task_struct *p)
858
{
859
	update_load_add(&rq->load, p->se.load.weight);
860 861
}

862
static inline void dec_load(struct rq *rq, const struct task_struct *p)
863
{
864
	update_load_sub(&rq->load, p->se.load.weight);
865 866
}

867
static void inc_nr_running(struct task_struct *p, struct rq *rq)
868 869
{
	rq->nr_running++;
870
	inc_load(rq, p);
871 872
}

873
static void dec_nr_running(struct task_struct *p, struct rq *rq)
874 875
{
	rq->nr_running--;
876
	dec_load(rq, p);
877 878
}

879 880 881
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
882 883 884 885
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
886

I
Ingo Molnar 已提交
887 888 889 890 891 892 893 894
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
895

I
Ingo Molnar 已提交
896 897
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
898 899
}

900
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
901
{
I
Ingo Molnar 已提交
902
	sched_info_queued(p);
903
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
904
	p->se.on_rq = 1;
905 906
}

907
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
908
{
909
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
910
	p->se.on_rq = 0;
911 912
}

913
/*
I
Ingo Molnar 已提交
914
 * __normal_prio - return the priority that is based on the static prio
915 916 917
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
918
	return p->static_prio;
919 920
}

921 922 923 924 925 926 927
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
928
static inline int normal_prio(struct task_struct *p)
929 930 931
{
	int prio;

932
	if (task_has_rt_policy(p))
933 934 935 936 937 938 939 940 941 942 943 944 945
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
946
static int effective_prio(struct task_struct *p)
947 948 949 950 951 952 953 954 955 956 957 958
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
959
/*
I
Ingo Molnar 已提交
960
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
961
 */
I
Ingo Molnar 已提交
962
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
963
{
I
Ingo Molnar 已提交
964 965
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
966

967
	enqueue_task(rq, p, wakeup);
968
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
969 970 971 972 973
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
974
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
975
{
I
Ingo Molnar 已提交
976 977 978
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

979
	dequeue_task(rq, p, sleep);
980
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
981 982 983 984 985 986
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
987
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
988 989 990 991
{
	return cpu_curr(task_cpu(p)) == p;
}

992 993 994
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
995
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
996 997 998 999 1000 1001 1002
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
#endif
S
Srivatsa Vaddagiri 已提交
1003
	set_task_cfs_rq(p);
1004 1005
}

L
Linus Torvalds 已提交
1006
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1019 1020 1021 1022 1023
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1024 1025 1026 1027 1028 1029
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1030
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1031
{
I
Ingo Molnar 已提交
1032 1033
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1034 1035
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1036
	u64 clock_offset;
I
Ingo Molnar 已提交
1037 1038

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1039 1040 1041 1042

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1043 1044 1045 1046
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1047 1048 1049 1050 1051
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1052
#endif
1053 1054
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1055 1056

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1057 1058
}

1059
struct migration_req {
L
Linus Torvalds 已提交
1060 1061
	struct list_head list;

1062
	struct task_struct *task;
L
Linus Torvalds 已提交
1063 1064 1065
	int dest_cpu;

	struct completion done;
1066
};
L
Linus Torvalds 已提交
1067 1068 1069 1070 1071

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1072
static int
1073
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1074
{
1075
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1076 1077 1078 1079 1080

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1081
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1082 1083 1084 1085 1086 1087 1088 1089
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1090

L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1103
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1104 1105
{
	unsigned long flags;
I
Ingo Molnar 已提交
1106
	int running, on_rq;
1107
	struct rq *rq;
L
Linus Torvalds 已提交
1108

1109 1110 1111 1112 1113 1114 1115 1116
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1141

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1166

1167 1168 1169 1170 1171 1172 1173
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1189
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1201 1202
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1203 1204 1205 1206
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1207
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1208
{
1209
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1210
	unsigned long total = weighted_cpuload(cpu);
1211

1212
	if (type == 0)
I
Ingo Molnar 已提交
1213
		return total;
1214

I
Ingo Molnar 已提交
1215
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1216 1217 1218
}

/*
1219 1220
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1221
 */
A
Alexey Dobriyan 已提交
1222
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1223
{
1224
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1225
	unsigned long total = weighted_cpuload(cpu);
1226

N
Nick Piggin 已提交
1227
	if (type == 0)
I
Ingo Molnar 已提交
1228
		return total;
1229

I
Ingo Molnar 已提交
1230
	return max(rq->cpu_load[type-1], total);
1231 1232 1233 1234 1235 1236 1237
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1238
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1239
	unsigned long total = weighted_cpuload(cpu);
1240 1241
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1242
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1243 1244
}

N
Nick Piggin 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1262 1263
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1264
			continue;
1265

N
Nick Piggin 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1282 1283
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1284 1285 1286 1287 1288 1289 1290 1291

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1292
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1293 1294 1295 1296 1297 1298 1299

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1300
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1301
 */
I
Ingo Molnar 已提交
1302 1303
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1304
{
1305
	cpumask_t tmp;
N
Nick Piggin 已提交
1306 1307 1308 1309
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1310 1311 1312 1313
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1314
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1340

1341
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1342 1343 1344
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1345 1346
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1347 1348
		if (tmp->flags & flag)
			sd = tmp;
1349
	}
N
Nick Piggin 已提交
1350 1351 1352 1353

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1354 1355 1356 1357 1358 1359
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1360 1361 1362

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1363 1364 1365 1366
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1367

1368
		new_cpu = find_idlest_cpu(group, t, cpu);
1369 1370 1371 1372 1373
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1374

1375
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1402
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1403 1404 1405 1406 1407
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1418 1419 1420 1421
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1422
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1423
			for_each_cpu_mask(i, tmp) {
1424 1425 1426 1427 1428
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1429
					return i;
1430
				}
L
Linus Torvalds 已提交
1431
			}
I
Ingo Molnar 已提交
1432
		} else {
N
Nick Piggin 已提交
1433
			break;
I
Ingo Molnar 已提交
1434
		}
L
Linus Torvalds 已提交
1435 1436 1437 1438
	}
	return cpu;
}
#else
1439
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1459
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1460
{
1461
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1462 1463
	unsigned long flags;
	long old_state;
1464
	struct rq *rq;
L
Linus Torvalds 已提交
1465
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1466
	struct sched_domain *sd, *this_sd = NULL;
1467
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1468 1469 1470 1471 1472 1473 1474 1475
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1476
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1477 1478 1479
		goto out_running;

	cpu = task_cpu(p);
1480
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1481 1482 1483 1484 1485 1486
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1487 1488
	new_cpu = cpu;

1489
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1490 1491
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1492 1493 1494 1495 1496 1497 1498 1499
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1500 1501 1502
		}
	}

N
Nick Piggin 已提交
1503
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1504 1505 1506
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1507
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1508
	 */
N
Nick Piggin 已提交
1509 1510 1511
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1512

1513 1514
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1515 1516
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1517

N
Nick Piggin 已提交
1518 1519
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1520 1521
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1522 1523
			unsigned long tl_per_task;

1524
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1525
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1526

L
Linus Torvalds 已提交
1527
			/*
1528 1529 1530
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1531
			 */
1532
			if (sync)
I
Ingo Molnar 已提交
1533
				tl -= current->se.load.weight;
1534 1535

			if ((tl <= load &&
1536
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1537
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1538 1539 1540 1541 1542 1543
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1544
				schedstat_inc(p, se.nr_wakeups_affine);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1556
				schedstat_inc(p, se.nr_wakeups_passive);
1557 1558
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1573
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1574 1575 1576 1577 1578 1579 1580 1581
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1582 1583 1584 1585 1586 1587 1588 1589 1590
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1591
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1592
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1593 1594 1595 1596 1597 1598 1599 1600
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1601 1602
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1613
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1614 1615 1616 1617 1618 1619
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1620
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1621 1622 1623 1624 1625 1626 1627
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1628 1629 1630 1631 1632 1633 1634
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1635
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1636 1637 1638

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1639 1640 1641 1642 1643 1644
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1645
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1646
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1647
#endif
N
Nick Piggin 已提交
1648

I
Ingo Molnar 已提交
1649 1650
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1651

1652 1653 1654 1655
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1656 1657 1658 1659 1660 1661 1662
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1677
	set_task_cpu(p, cpu);
1678 1679 1680 1681 1682

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1683 1684
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1685

1686
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1687
	if (likely(sched_info_on()))
1688
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1689
#endif
1690
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1691 1692
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1693
#ifdef CONFIG_PREEMPT
1694
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1695
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1696
#endif
N
Nick Piggin 已提交
1697
	put_cpu();
L
Linus Torvalds 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1707
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1708 1709
{
	unsigned long flags;
I
Ingo Molnar 已提交
1710
	struct rq *rq;
L
Linus Torvalds 已提交
1711 1712

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1713
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1714
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1715 1716 1717

	p->prio = effective_prio(p);

1718
	if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
I
Ingo Molnar 已提交
1719
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1720 1721
	} else {
		/*
I
Ingo Molnar 已提交
1722 1723
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1724
		 */
1725
		p->sched_class->task_new(rq, p);
1726
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1727
	}
I
Ingo Molnar 已提交
1728 1729
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1730 1731
}

1732 1733 1734
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1735 1736
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1737 1738 1739 1740 1741 1742 1743 1744 1745
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1746
 * @notifier: notifier struct to unregister
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1790 1791 1792
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1793
 * @prev: the current task that is being switched out
1794 1795 1796 1797 1798 1799 1800 1801 1802
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1803 1804 1805
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1806
{
1807
	fire_sched_out_preempt_notifiers(prev, next);
1808 1809 1810 1811
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1812 1813
/**
 * finish_task_switch - clean up after a task-switch
1814
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1815 1816
 * @prev: the thread we just switched away from.
 *
1817 1818 1819 1820
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1821 1822 1823 1824 1825 1826
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1827
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1828 1829 1830
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1831
	long prev_state;
L
Linus Torvalds 已提交
1832 1833 1834 1835 1836

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1837
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1838 1839
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1840
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1841 1842 1843 1844 1845
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1846
	prev_state = prev->state;
1847 1848
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1849
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1850 1851
	if (mm)
		mmdrop(mm);
1852
	if (unlikely(prev_state == TASK_DEAD)) {
1853 1854 1855
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1856
		 */
1857
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1858
		put_task_struct(prev);
1859
	}
L
Linus Torvalds 已提交
1860 1861 1862 1863 1864 1865
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1866
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1867 1868
	__releases(rq->lock)
{
1869 1870
	struct rq *rq = this_rq();

1871 1872 1873 1874 1875
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1876 1877 1878 1879 1880 1881 1882 1883
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1884
static inline void
1885
context_switch(struct rq *rq, struct task_struct *prev,
1886
	       struct task_struct *next)
L
Linus Torvalds 已提交
1887
{
I
Ingo Molnar 已提交
1888
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1889

1890
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1891 1892
	mm = next->mm;
	oldmm = prev->active_mm;
1893 1894 1895 1896 1897 1898 1899
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1900
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1901 1902 1903 1904 1905 1906
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1907
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1908 1909 1910
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1911 1912 1913 1914 1915 1916 1917
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1918
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1919
#endif
L
Linus Torvalds 已提交
1920 1921 1922 1923

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1924 1925 1926 1927 1928 1929 1930
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1954
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1969 1970
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1971

1972
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1982
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1983 1984 1985 1986 1987
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2003
/*
I
Ingo Molnar 已提交
2004 2005
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2006
 */
I
Ingo Molnar 已提交
2007
static void update_cpu_load(struct rq *this_rq)
2008
{
2009
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2022 2023 2024 2025 2026 2027 2028
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2029 2030
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2031 2032
}

I
Ingo Molnar 已提交
2033 2034
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2035 2036 2037 2038 2039 2040
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2041
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2042 2043 2044
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2045
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2046 2047 2048 2049
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2050
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2051 2052 2053 2054 2055 2056 2057
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2058 2059
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2060 2061 2062 2063 2064 2065 2066 2067
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2068
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2082
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2083 2084 2085 2086
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2087 2088 2089 2090 2091
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2092
	if (unlikely(!spin_trylock(&busiest->lock))) {
2093
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2108
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2109
{
2110
	struct migration_req req;
L
Linus Torvalds 已提交
2111
	unsigned long flags;
2112
	struct rq *rq;
L
Linus Torvalds 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2123

L
Linus Torvalds 已提交
2124 2125 2126 2127 2128
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2129

L
Linus Torvalds 已提交
2130 2131 2132 2133 2134 2135 2136
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2137 2138
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2139 2140 2141 2142
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2143
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2144
	put_cpu();
N
Nick Piggin 已提交
2145 2146
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2147 2148 2149 2150 2151 2152
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2153 2154
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2155
{
2156
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2157
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2158
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2159 2160 2161 2162
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2163
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2164 2165 2166 2167 2168
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2169
static
2170
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2171
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2172
		     int *all_pinned)
L
Linus Torvalds 已提交
2173 2174 2175 2176 2177 2178 2179
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2180 2181
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2182
		return 0;
2183
	}
2184 2185
	*all_pinned = 0;

2186 2187
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2188
		return 0;
2189
	}
L
Linus Torvalds 已提交
2190

2191 2192 2193 2194 2195 2196
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2197 2198
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2199
#ifdef CONFIG_SCHEDSTATS
2200
		if (task_hot(p, rq->clock, sd)) {
2201
			schedstat_inc(sd, lb_hot_gained[idle]);
2202 2203
			schedstat_inc(p, se.nr_forced_migrations);
		}
2204 2205 2206 2207
#endif
		return 1;
	}

2208 2209
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2210
		return 0;
2211
	}
L
Linus Torvalds 已提交
2212 2213 2214
	return 1;
}

I
Ingo Molnar 已提交
2215
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2216
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2217
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2218
		      int *all_pinned, unsigned long *load_moved,
2219
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2220
{
I
Ingo Molnar 已提交
2221 2222 2223
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2224

2225
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2226 2227
		goto out;

2228 2229
	pinned = 1;

L
Linus Torvalds 已提交
2230
	/*
I
Ingo Molnar 已提交
2231
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2232
	 */
I
Ingo Molnar 已提交
2233 2234 2235
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2236
		goto out;
2237 2238 2239 2240 2241
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2242 2243
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2244
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2245 2246 2247
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2248 2249
	}

I
Ingo Molnar 已提交
2250
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2251
	pulled++;
I
Ingo Molnar 已提交
2252
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2253

2254 2255 2256 2257 2258
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2259 2260
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2261 2262
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2263 2264 2265 2266 2267 2268 2269 2270
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2271 2272 2273

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2274
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2275 2276 2277
	return pulled;
}

I
Ingo Molnar 已提交
2278
/*
P
Peter Williams 已提交
2279 2280 2281
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2282 2283 2284 2285
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2286
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2287 2288 2289
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2290
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2291
	unsigned long total_load_moved = 0;
2292
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2293 2294

	do {
P
Peter Williams 已提交
2295 2296 2297
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2298
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2299
		class = class->next;
P
Peter Williams 已提交
2300
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2301

P
Peter Williams 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2315
	const struct sched_class *class;
2316
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2317 2318 2319

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2320 2321
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2322 2323 2324
			return 1;

	return 0;
I
Ingo Molnar 已提交
2325 2326
}

L
Linus Torvalds 已提交
2327 2328
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2329 2330
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2331 2332 2333
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2334 2335
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2336 2337 2338
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2339
	unsigned long max_pull;
2340 2341
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2342
	int load_idx;
2343 2344 2345 2346 2347 2348
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2349 2350

	max_load = this_load = total_load = total_pwr = 0;
2351 2352
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2353
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2354
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2355
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2356 2357 2358
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2359 2360

	do {
2361
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2362 2363
		int local_group;
		int i;
2364
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2365
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2366 2367 2368

		local_group = cpu_isset(this_cpu, group->cpumask);

2369 2370 2371
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2372
		/* Tally up the load of all CPUs in the group */
2373
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2374 2375

		for_each_cpu_mask(i, group->cpumask) {
2376 2377 2378 2379 2380 2381
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2382

2383
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2384 2385
				*sd_idle = 0;

L
Linus Torvalds 已提交
2386
			/* Bias balancing toward cpus of our domain */
2387 2388 2389 2390 2391 2392
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2393
				load = target_load(i, load_idx);
2394
			} else
N
Nick Piggin 已提交
2395
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2396 2397

			avg_load += load;
2398
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2399
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2400 2401
		}

2402 2403 2404
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2405 2406
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2407
		 */
2408 2409
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2410 2411 2412 2413
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2414
		total_load += avg_load;
2415
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2416 2417

		/* Adjust by relative CPU power of the group */
2418 2419
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2420

2421
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2422

L
Linus Torvalds 已提交
2423 2424 2425
		if (local_group) {
			this_load = avg_load;
			this = group;
2426 2427 2428
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2429
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2430 2431
			max_load = avg_load;
			busiest = group;
2432 2433
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2434
		}
2435 2436 2437 2438 2439 2440

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2441 2442 2443
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2444 2445 2446 2447 2448 2449 2450 2451 2452

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2453
		/*
2454 2455
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2456 2457
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2458
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2459
			goto group_next;
2460

I
Ingo Molnar 已提交
2461
		/*
2462
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2463 2464 2465 2466 2467
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2468 2469
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2470 2471
			group_min = group;
			min_nr_running = sum_nr_running;
2472 2473
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2474
		}
2475

I
Ingo Molnar 已提交
2476
		/*
2477
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2489
		}
2490 2491
group_next:
#endif
L
Linus Torvalds 已提交
2492 2493 2494
		group = group->next;
	} while (group != sd->groups);

2495
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2496 2497 2498 2499 2500 2501 2502 2503
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2504
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2528 2529

	/* Don't want to pull so many tasks that a group would go idle */
2530
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2531

L
Linus Torvalds 已提交
2532
	/* How much load to actually move to equalise the imbalance */
2533 2534
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2535 2536
			/ SCHED_LOAD_SCALE;

2537 2538 2539 2540 2541 2542
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2543
	if (*imbalance < busiest_load_per_task) {
2544
		unsigned long tmp, pwr_now, pwr_move;
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2556

I
Ingo Molnar 已提交
2557 2558
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2559
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2560 2561 2562 2563 2564 2565 2566 2567 2568
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2569 2570 2571 2572
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2573 2574 2575
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2576 2577
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2578
		if (max_load > tmp)
2579
			pwr_move += busiest->__cpu_power *
2580
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2581 2582

		/* Amount of load we'd add */
2583
		if (max_load * busiest->__cpu_power <
2584
				busiest_load_per_task * SCHED_LOAD_SCALE)
2585 2586
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2587
		else
2588 2589 2590 2591
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2592 2593 2594
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2595 2596
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2597 2598 2599 2600 2601
	}

	return busiest;

out_balanced:
2602
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2603
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2604
		goto ret;
L
Linus Torvalds 已提交
2605

2606 2607 2608 2609 2610
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2611
ret:
L
Linus Torvalds 已提交
2612 2613 2614 2615 2616 2617 2618
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2619
static struct rq *
I
Ingo Molnar 已提交
2620
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2621
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2622
{
2623
	struct rq *busiest = NULL, *rq;
2624
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2625 2626 2627
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2628
		unsigned long wl;
2629 2630 2631 2632

		if (!cpu_isset(i, *cpus))
			continue;

2633
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2634
		wl = weighted_cpuload(i);
2635

I
Ingo Molnar 已提交
2636
		if (rq->nr_running == 1 && wl > imbalance)
2637
			continue;
L
Linus Torvalds 已提交
2638

I
Ingo Molnar 已提交
2639 2640
		if (wl > max_load) {
			max_load = wl;
2641
			busiest = rq;
L
Linus Torvalds 已提交
2642 2643 2644 2645 2646 2647
		}
	}

	return busiest;
}

2648 2649 2650 2651 2652 2653
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2654 2655 2656 2657
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2658
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2659
			struct sched_domain *sd, enum cpu_idle_type idle,
2660
			int *balance)
L
Linus Torvalds 已提交
2661
{
P
Peter Williams 已提交
2662
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2663 2664
	struct sched_group *group;
	unsigned long imbalance;
2665
	struct rq *busiest;
2666
	cpumask_t cpus = CPU_MASK_ALL;
2667
	unsigned long flags;
N
Nick Piggin 已提交
2668

2669 2670 2671
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2672
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2673
	 * portraying it as CPU_NOT_IDLE.
2674
	 */
I
Ingo Molnar 已提交
2675
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2676
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2677
		sd_idle = 1;
L
Linus Torvalds 已提交
2678

2679
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2680

2681 2682
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2683 2684
				   &cpus, balance);

2685
	if (*balance == 0)
2686 2687
		goto out_balanced;

L
Linus Torvalds 已提交
2688 2689 2690 2691 2692
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2693
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2694 2695 2696 2697 2698
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2699
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2700 2701 2702

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2703
	ld_moved = 0;
L
Linus Torvalds 已提交
2704 2705 2706 2707
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2708
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2709 2710
		 * correctly treated as an imbalance.
		 */
2711
		local_irq_save(flags);
N
Nick Piggin 已提交
2712
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2713
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2714
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2715
		double_rq_unlock(this_rq, busiest);
2716
		local_irq_restore(flags);
2717

2718 2719 2720
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2721
		if (ld_moved && this_cpu != smp_processor_id())
2722 2723
			resched_cpu(this_cpu);

2724
		/* All tasks on this runqueue were pinned by CPU affinity */
2725 2726 2727 2728
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2729
			goto out_balanced;
2730
		}
L
Linus Torvalds 已提交
2731
	}
2732

P
Peter Williams 已提交
2733
	if (!ld_moved) {
L
Linus Torvalds 已提交
2734 2735 2736 2737 2738
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2739
			spin_lock_irqsave(&busiest->lock, flags);
2740 2741 2742 2743 2744

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2745
				spin_unlock_irqrestore(&busiest->lock, flags);
2746 2747 2748 2749
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2750 2751 2752
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2753
				active_balance = 1;
L
Linus Torvalds 已提交
2754
			}
2755
			spin_unlock_irqrestore(&busiest->lock, flags);
2756
			if (active_balance)
L
Linus Torvalds 已提交
2757 2758 2759 2760 2761 2762
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2763
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2764
		}
2765
	} else
L
Linus Torvalds 已提交
2766 2767
		sd->nr_balance_failed = 0;

2768
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2769 2770
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2771 2772 2773 2774 2775 2776 2777 2778 2779
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2780 2781
	}

P
Peter Williams 已提交
2782
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2783
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2784
		return -1;
P
Peter Williams 已提交
2785
	return ld_moved;
L
Linus Torvalds 已提交
2786 2787 2788 2789

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2790
	sd->nr_balance_failed = 0;
2791 2792

out_one_pinned:
L
Linus Torvalds 已提交
2793
	/* tune up the balancing interval */
2794 2795
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2796 2797
		sd->balance_interval *= 2;

2798
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2799
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2800
		return -1;
L
Linus Torvalds 已提交
2801 2802 2803 2804 2805 2806 2807
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2808
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2809 2810
 * this_rq is locked.
 */
2811
static int
2812
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2813 2814
{
	struct sched_group *group;
2815
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2816
	unsigned long imbalance;
P
Peter Williams 已提交
2817
	int ld_moved = 0;
N
Nick Piggin 已提交
2818
	int sd_idle = 0;
2819
	int all_pinned = 0;
2820
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2821

2822 2823 2824 2825
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2826
	 * portraying it as CPU_NOT_IDLE.
2827 2828 2829
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2830
		sd_idle = 1;
L
Linus Torvalds 已提交
2831

2832
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2833
redo:
I
Ingo Molnar 已提交
2834
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2835
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2836
	if (!group) {
I
Ingo Molnar 已提交
2837
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2838
		goto out_balanced;
L
Linus Torvalds 已提交
2839 2840
	}

I
Ingo Molnar 已提交
2841
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2842
				&cpus);
N
Nick Piggin 已提交
2843
	if (!busiest) {
I
Ingo Molnar 已提交
2844
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2845
		goto out_balanced;
L
Linus Torvalds 已提交
2846 2847
	}

N
Nick Piggin 已提交
2848 2849
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2850
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2851

P
Peter Williams 已提交
2852
	ld_moved = 0;
2853 2854 2855
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2856 2857
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2858
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2859 2860
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2861
		spin_unlock(&busiest->lock);
2862

2863
		if (unlikely(all_pinned)) {
2864 2865 2866 2867
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2868 2869
	}

P
Peter Williams 已提交
2870
	if (!ld_moved) {
I
Ingo Molnar 已提交
2871
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2872 2873
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2874 2875
			return -1;
	} else
2876
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2877

P
Peter Williams 已提交
2878
	return ld_moved;
2879 2880

out_balanced:
I
Ingo Molnar 已提交
2881
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2882
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2883
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2884
		return -1;
2885
	sd->nr_balance_failed = 0;
2886

2887
	return 0;
L
Linus Torvalds 已提交
2888 2889 2890 2891 2892 2893
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2894
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2895 2896
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2897 2898
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2899 2900

	for_each_domain(this_cpu, sd) {
2901 2902 2903 2904 2905 2906
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2907
			/* If we've pulled tasks over stop searching: */
2908
			pulled_task = load_balance_newidle(this_cpu,
2909 2910 2911 2912 2913 2914 2915
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2916
	}
I
Ingo Molnar 已提交
2917
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2918 2919 2920 2921 2922
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2923
	}
L
Linus Torvalds 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2934
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2935
{
2936
	int target_cpu = busiest_rq->push_cpu;
2937 2938
	struct sched_domain *sd;
	struct rq *target_rq;
2939

2940
	/* Is there any task to move? */
2941 2942 2943 2944
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2945 2946

	/*
2947 2948 2949
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2950
	 */
2951
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2952

2953 2954
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2955 2956
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2957 2958

	/* Search for an sd spanning us and the target CPU. */
2959
	for_each_domain(target_cpu, sd) {
2960
		if ((sd->flags & SD_LOAD_BALANCE) &&
2961
		    cpu_isset(busiest_cpu, sd->span))
2962
				break;
2963
	}
2964

2965
	if (likely(sd)) {
2966
		schedstat_inc(sd, alb_count);
2967

P
Peter Williams 已提交
2968 2969
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2970 2971 2972 2973
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2974
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2975 2976
}

2977 2978 2979 2980 2981 2982 2983 2984 2985
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2986
/*
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2997
 *
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3054 3055 3056 3057 3058
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3059
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3060
{
3061 3062
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3063 3064
	unsigned long interval;
	struct sched_domain *sd;
3065
	/* Earliest time when we have to do rebalance again */
3066
	unsigned long next_balance = jiffies + 60*HZ;
3067
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3068

3069
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3070 3071 3072 3073
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3074
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3075 3076 3077 3078 3079 3080
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3081 3082 3083
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3084

3085 3086 3087 3088 3089
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3090
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3091
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3092 3093
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3094 3095 3096
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3097
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3098
			}
3099
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3100
		}
3101 3102 3103
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3104
		if (time_after(next_balance, sd->last_balance + interval)) {
3105
			next_balance = sd->last_balance + interval;
3106 3107
			update_next_balance = 1;
		}
3108 3109 3110 3111 3112 3113 3114 3115

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3116
	}
3117 3118 3119 3120 3121 3122 3123 3124

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3125 3126 3127 3128 3129 3130 3131 3132 3133
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3134 3135 3136 3137
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3138

I
Ingo Molnar 已提交
3139
	rebalance_domains(this_cpu, idle);
3140 3141 3142 3143 3144 3145 3146

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3147 3148
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3149 3150 3151 3152
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3153
		cpu_clear(this_cpu, cpus);
3154 3155 3156 3157 3158 3159 3160 3161 3162
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3163
			rebalance_domains(balance_cpu, CPU_IDLE);
3164 3165

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3166 3167
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3180
static inline void trigger_load_balance(struct rq *rq, int cpu)
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3232
}
I
Ingo Molnar 已提交
3233 3234 3235

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3236 3237 3238
/*
 * on UP we do not need to balance between CPUs:
 */
3239
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3240 3241
{
}
I
Ingo Molnar 已提交
3242 3243 3244 3245 3246 3247

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3248
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3249 3250 3251 3252 3253 3254
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3255 3256 3257 3258 3259 3260 3261
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3262 3263
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3264
 */
3265
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3266 3267
{
	unsigned long flags;
3268 3269
	u64 ns, delta_exec;
	struct rq *rq;
3270

3271 3272 3273
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3274 3275
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3276 3277 3278 3279
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3280

L
Linus Torvalds 已提交
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3315
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3345
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3368
	struct task_struct *curr = rq->curr;
3369
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3370 3371

	spin_lock(&rq->lock);
3372
	__update_rq_clock(rq);
3373 3374 3375 3376 3377 3378
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3379
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3380 3381 3382
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3383

3384
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3385 3386
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3387
#endif
L
Linus Torvalds 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3397 3398
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3399 3400 3401 3402
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3403 3404
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3405 3406 3407 3408 3409 3410 3411 3412
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3413 3414
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3415 3416 3417
	/*
	 * Is the spinlock portion underflowing?
	 */
3418 3419 3420 3421
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3422 3423 3424 3425 3426 3427 3428
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3429
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3430
 */
I
Ingo Molnar 已提交
3431
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3432
{
I
Ingo Molnar 已提交
3433 3434 3435 3436 3437 3438 3439
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3440

I
Ingo Molnar 已提交
3441 3442 3443 3444 3445
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3446 3447 3448 3449 3450
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3451 3452 3453
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3454 3455
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3456
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3457 3458
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3459 3460
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3461 3462
	}
#endif
I
Ingo Molnar 已提交
3463 3464 3465 3466 3467 3468
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3469
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3470
{
3471
	const struct sched_class *class;
I
Ingo Molnar 已提交
3472
	struct task_struct *p;
L
Linus Torvalds 已提交
3473 3474

	/*
I
Ingo Molnar 已提交
3475 3476
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3477
	 */
I
Ingo Molnar 已提交
3478
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3479
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3480 3481
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3482 3483
	}

I
Ingo Molnar 已提交
3484 3485
	class = sched_class_highest;
	for ( ; ; ) {
3486
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3487 3488 3489 3490 3491 3492 3493 3494 3495
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3496

I
Ingo Molnar 已提交
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3519

3520 3521 3522 3523
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3524
	__update_rq_clock(rq);
3525 3526
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3527 3528 3529

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3530
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3531
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3532
		} else {
3533
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3534
		}
I
Ingo Molnar 已提交
3535
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3536 3537
	}

I
Ingo Molnar 已提交
3538
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3539 3540
		idle_balance(cpu, rq);

3541
	prev->sched_class->put_prev_task(rq, prev);
3542
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3543 3544

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3545

L
Linus Torvalds 已提交
3546 3547 3548 3549 3550
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3551
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3552 3553 3554
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3555 3556 3557
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3558
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3559
	}
L
Linus Torvalds 已提交
3560 3561 3562 3563 3564 3565 3566 3567
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3568
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3583
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3584 3585
		return;

3586 3587 3588 3589 3590 3591 3592 3593
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3594
#ifdef CONFIG_PREEMPT_BKL
3595 3596
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3597
#endif
3598
		schedule();
L
Linus Torvalds 已提交
3599
#ifdef CONFIG_PREEMPT_BKL
3600
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3601
#endif
3602
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3603

3604 3605 3606 3607 3608 3609
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3610 3611 3612 3613
}
EXPORT_SYMBOL(preempt_schedule);

/*
3614
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3626
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3627 3628
	BUG_ON(ti->preempt_count || !irqs_disabled());

3629 3630 3631 3632 3633 3634 3635 3636
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3637
#ifdef CONFIG_PREEMPT_BKL
3638 3639
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3640
#endif
3641 3642 3643
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3644
#ifdef CONFIG_PREEMPT_BKL
3645
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3646
#endif
3647
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3648

3649 3650 3651 3652 3653 3654
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3655 3656 3657 3658
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3659 3660
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3661
{
3662
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3678
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3679

3680
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3681 3682
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3683
		if (curr->func(curr, mode, sync, key) &&
3684
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3685 3686 3687 3688 3689 3690 3691 3692 3693
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3694
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3695 3696
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3697
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3716
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3728 3729
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3770 3771
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3772 3773 3774 3775 3776 3777 3778
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3779 3780 3781 3782 3783 3784
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3785 3786 3787 3788 3789
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3790
				return timeout;
L
Linus Torvalds 已提交
3791 3792 3793 3794 3795 3796 3797 3798
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3799 3800
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3801 3802 3803 3804
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3805
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3806
	spin_unlock_irq(&x->wait.lock);
3807 3808
	return timeout;
}
L
Linus Torvalds 已提交
3809

3810 3811 3812
void fastcall __sched wait_for_completion(struct completion *x)
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3813
}
3814
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3815 3816

unsigned long fastcall __sched
3817
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3818
{
3819
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3820
}
3821
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3822

3823
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3824
{
3825
	return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3826
}
3827
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3828

3829 3830 3831
unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3832
{
3833
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3834
}
3835
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3836

3837 3838
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3839
{
I
Ingo Molnar 已提交
3840 3841 3842 3843
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3844

3845
	__set_current_state(state);
L
Linus Torvalds 已提交
3846

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3861 3862 3863
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3864
long __sched
I
Ingo Molnar 已提交
3865
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3866
{
3867
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3868 3869 3870
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3871
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3872
{
3873
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3874 3875 3876
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3877
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3878
{
3879
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3880 3881 3882
}
EXPORT_SYMBOL(sleep_on_timeout);

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3895
void rt_mutex_setprio(struct task_struct *p, int prio)
3896 3897
{
	unsigned long flags;
3898
	int oldprio, on_rq, running;
3899
	struct rq *rq;
3900 3901 3902 3903

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3904
	update_rq_clock(rq);
3905

3906
	oldprio = p->prio;
I
Ingo Molnar 已提交
3907
	on_rq = p->se.on_rq;
3908 3909
	running = task_running(rq, p);
	if (on_rq) {
3910
		dequeue_task(rq, p, 0);
3911 3912 3913
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
3914 3915 3916 3917 3918 3919

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3920 3921
	p->prio = prio;

I
Ingo Molnar 已提交
3922
	if (on_rq) {
3923 3924
		if (running)
			p->sched_class->set_curr_task(rq);
3925
		enqueue_task(rq, p, 0);
3926 3927
		/*
		 * Reschedule if we are currently running on this runqueue and
3928 3929
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3930
		 */
3931
		if (running) {
3932 3933
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3934 3935 3936
		} else {
			check_preempt_curr(rq, p);
		}
3937 3938 3939 3940 3941 3942
	}
	task_rq_unlock(rq, &flags);
}

#endif

3943
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3944
{
I
Ingo Molnar 已提交
3945
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3946
	unsigned long flags;
3947
	struct rq *rq;
L
Linus Torvalds 已提交
3948 3949 3950 3951 3952 3953 3954 3955

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3956
	update_rq_clock(rq);
L
Linus Torvalds 已提交
3957 3958 3959 3960
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3961
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3962
	 */
3963
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3964 3965 3966
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3967 3968
	on_rq = p->se.on_rq;
	if (on_rq) {
3969
		dequeue_task(rq, p, 0);
3970
		dec_load(rq, p);
3971
	}
L
Linus Torvalds 已提交
3972 3973

	p->static_prio = NICE_TO_PRIO(nice);
3974
	set_load_weight(p);
3975 3976 3977
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3978

I
Ingo Molnar 已提交
3979
	if (on_rq) {
3980
		enqueue_task(rq, p, 0);
3981
		inc_load(rq, p);
L
Linus Torvalds 已提交
3982
		/*
3983 3984
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3985
		 */
3986
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3987 3988 3989 3990 3991 3992 3993
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3994 3995 3996 3997 3998
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3999
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4000
{
4001 4002
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4003

M
Matt Mackall 已提交
4004 4005 4006 4007
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4019
	long nice, retval;
L
Linus Torvalds 已提交
4020 4021 4022 4023 4024 4025

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4026 4027
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4028 4029 4030 4031 4032 4033 4034 4035 4036
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4037 4038 4039
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4058
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4059 4060 4061 4062 4063 4064 4065 4066
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4067
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4086
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4087 4088 4089 4090 4091 4092 4093 4094
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4095
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4096 4097 4098 4099 4100
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4101 4102
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4103
{
I
Ingo Molnar 已提交
4104
	BUG_ON(p->se.on_rq);
4105

L
Linus Torvalds 已提交
4106
	p->policy = policy;
I
Ingo Molnar 已提交
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4119
	p->rt_priority = prio;
4120 4121 4122
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4123
	set_load_weight(p);
L
Linus Torvalds 已提交
4124 4125 4126
}

/**
4127
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4128 4129 4130
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4131
 *
4132
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4133
 */
I
Ingo Molnar 已提交
4134 4135
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4136
{
4137
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4138
	unsigned long flags;
4139
	struct rq *rq;
L
Linus Torvalds 已提交
4140

4141 4142
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4143 4144 4145 4146 4147
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4148 4149
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4150
		return -EINVAL;
L
Linus Torvalds 已提交
4151 4152
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4153 4154
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4155 4156
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4157
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4158
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4159
		return -EINVAL;
4160
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4161 4162
		return -EINVAL;

4163 4164 4165 4166
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4167
		if (rt_policy(policy)) {
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4184 4185 4186 4187 4188 4189
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4190

4191 4192 4193 4194 4195
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4196 4197 4198 4199

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4200 4201 4202 4203 4204
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4205 4206 4207 4208
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4209
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4210 4211 4212
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4213 4214
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4215 4216
		goto recheck;
	}
I
Ingo Molnar 已提交
4217
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4218
	on_rq = p->se.on_rq;
4219 4220
	running = task_running(rq, p);
	if (on_rq) {
4221
		deactivate_task(rq, p, 0);
4222 4223 4224
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4225

L
Linus Torvalds 已提交
4226
	oldprio = p->prio;
I
Ingo Molnar 已提交
4227
	__setscheduler(rq, p, policy, param->sched_priority);
4228

I
Ingo Molnar 已提交
4229
	if (on_rq) {
4230 4231
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4232
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4233 4234
		/*
		 * Reschedule if we are currently running on this runqueue and
4235 4236
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4237
		 */
4238
		if (running) {
4239 4240
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4241 4242 4243
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4244
	}
4245 4246 4247
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4248 4249
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4250 4251 4252 4253
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4254 4255
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4256 4257 4258
{
	struct sched_param lparam;
	struct task_struct *p;
4259
	int retval;
L
Linus Torvalds 已提交
4260 4261 4262 4263 4264

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4265 4266 4267

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4268
	p = find_process_by_pid(pid);
4269 4270 4271
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4272

L
Linus Torvalds 已提交
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4285 4286 4287 4288
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4308
	struct task_struct *p;
4309
	int retval;
L
Linus Torvalds 已提交
4310 4311

	if (pid < 0)
4312
		return -EINVAL;
L
Linus Torvalds 已提交
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4334
	struct task_struct *p;
4335
	int retval;
L
Linus Torvalds 已提交
4336 4337

	if (!param || pid < 0)
4338
		return -EINVAL;
L
Linus Torvalds 已提交
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4368 4369
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4370

4371
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4372 4373 4374 4375 4376
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4377
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4394 4395 4396 4397
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4398 4399 4400 4401 4402 4403
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4404
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4445
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4446 4447 4448
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4449
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4450 4451
EXPORT_SYMBOL(cpu_online_map);

4452
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4453
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4454 4455 4456 4457
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4458
	struct task_struct *p;
L
Linus Torvalds 已提交
4459 4460
	int retval;

4461
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4462 4463 4464 4465 4466 4467 4468
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4469 4470 4471 4472
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4473
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4474 4475 4476

out_unlock:
	read_unlock(&tasklist_lock);
4477
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4478

4479
	return retval;
L
Linus Torvalds 已提交
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4510 4511
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4512 4513 4514
 */
asmlinkage long sys_sched_yield(void)
{
4515
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4516

4517
	schedstat_inc(rq, yld_count);
4518
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4519 4520 4521 4522 4523 4524

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4525
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4526 4527 4528 4529 4530 4531 4532 4533
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4534
static void __cond_resched(void)
L
Linus Torvalds 已提交
4535
{
4536 4537 4538
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4539 4540 4541 4542 4543
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4544 4545 4546 4547 4548 4549 4550 4551 4552
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4553 4554
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4570
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4571
{
J
Jan Kara 已提交
4572 4573
	int ret = 0;

L
Linus Torvalds 已提交
4574 4575 4576
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4577
		ret = 1;
L
Linus Torvalds 已提交
4578 4579
		spin_lock(lock);
	}
4580
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4581
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4582 4583 4584
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4585
		ret = 1;
L
Linus Torvalds 已提交
4586 4587
		spin_lock(lock);
	}
J
Jan Kara 已提交
4588
	return ret;
L
Linus Torvalds 已提交
4589 4590 4591 4592 4593 4594 4595
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4596
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4597
		local_bh_enable();
L
Linus Torvalds 已提交
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4609
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4628
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4629

4630
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4631 4632 4633
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4634
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4635 4636 4637 4638 4639
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4640
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4641 4642
	long ret;

4643
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4644 4645 4646
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4647
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4668
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4669
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4693
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4694
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4711
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4712
	unsigned int time_slice;
4713
	int retval;
L
Linus Torvalds 已提交
4714 4715 4716
	struct timespec t;

	if (pid < 0)
4717
		return -EINVAL;
L
Linus Torvalds 已提交
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

D
Dmitry Adamushko 已提交
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
	if (p->policy == SCHED_FIFO)
		time_slice = 0;
	else if (p->policy == SCHED_RR)
		time_slice = DEF_TIMESLICE;
	else {
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
		time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4742
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4743
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4744 4745
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4746

L
Linus Torvalds 已提交
4747 4748 4749 4750 4751
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4752
static const char stat_nam[] = "RSDTtZX";
4753 4754

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4755 4756
{
	unsigned long free = 0;
4757
	unsigned state;
L
Linus Torvalds 已提交
4758 4759

	state = p->state ? __ffs(p->state) + 1 : 0;
4760 4761
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4762
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4763
	if (state == TASK_RUNNING)
4764
		printk(" running  ");
L
Linus Torvalds 已提交
4765
	else
4766
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4767 4768
#else
	if (state == TASK_RUNNING)
4769
		printk("  running task    ");
L
Linus Torvalds 已提交
4770 4771 4772 4773 4774
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4775
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4776 4777
		while (!*n)
			n++;
4778
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4779 4780
	}
#endif
4781
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4782 4783 4784 4785 4786

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4787
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4788
{
4789
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4790

4791 4792 4793
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4794
#else
4795 4796
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4797 4798 4799 4800 4801 4802 4803 4804
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4805
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4806
			show_task(p);
L
Linus Torvalds 已提交
4807 4808
	} while_each_thread(g, p);

4809 4810
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4811 4812 4813
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4814
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4815 4816 4817 4818 4819
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4820 4821
}

I
Ingo Molnar 已提交
4822 4823
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4824
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4825 4826
}

4827 4828 4829 4830 4831 4832 4833 4834
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4835
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4836
{
4837
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4838 4839
	unsigned long flags;

I
Ingo Molnar 已提交
4840 4841 4842
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4843
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4844
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4845
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4846 4847 4848

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4849 4850 4851
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4852 4853 4854 4855
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4856
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4857
#else
A
Al Viro 已提交
4858
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4859
#endif
I
Ingo Molnar 已提交
4860 4861 4862 4863
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4879
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4901
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4902
{
4903
	struct migration_req req;
L
Linus Torvalds 已提交
4904
	unsigned long flags;
4905
	struct rq *rq;
4906
	int ret = 0;
L
Linus Torvalds 已提交
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4929

L
Linus Torvalds 已提交
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4942 4943
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4944
 */
4945
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4946
{
4947
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4948
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4949 4950

	if (unlikely(cpu_is_offline(dest_cpu)))
4951
		return ret;
L
Linus Torvalds 已提交
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4964
	on_rq = p->se.on_rq;
4965
	if (on_rq)
4966
		deactivate_task(rq_src, p, 0);
4967

L
Linus Torvalds 已提交
4968
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4969 4970 4971
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4972
	}
4973
	ret = 1;
L
Linus Torvalds 已提交
4974 4975
out:
	double_rq_unlock(rq_src, rq_dest);
4976
	return ret;
L
Linus Torvalds 已提交
4977 4978 4979 4980 4981 4982 4983
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4984
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4985 4986
{
	int cpu = (long)data;
4987
	struct rq *rq;
L
Linus Torvalds 已提交
4988 4989 4990 4991 4992 4993

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4994
		struct migration_req *req;
L
Linus Torvalds 已提交
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5017
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5018 5019
		list_del_init(head->next);

N
Nick Piggin 已提交
5020 5021 5022
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5041 5042 5043 5044
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5045
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5046
{
5047
	unsigned long flags;
L
Linus Torvalds 已提交
5048
	cpumask_t mask;
5049 5050
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5051

5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
			rq = task_rq_lock(p, &flags);
			cpus_setall(p->cpus_allowed);
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5068

5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
			if (p->mm && printk_ratelimit())
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
				       p->pid, p->comm, dead_cpu);
		}
	} while (!__migrate_task(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5080 5081 5082 5083 5084 5085 5086 5087 5088
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5089
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5090
{
5091
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5105
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5106 5107 5108

	write_lock_irq(&tasklist_lock);

5109 5110
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5111 5112
			continue;

5113 5114 5115
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5116 5117 5118 5119

	write_unlock_irq(&tasklist_lock);
}

A
Alexey Dobriyan 已提交
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
/*
 * activate_idle_task - move idle task to the _front_ of runqueue.
 */
static void activate_idle_task(struct task_struct *p, struct rq *rq)
{
	update_rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;

	enqueue_task(rq, p, 0);
	inc_nr_running(p, rq);
}

I
Ingo Molnar 已提交
5134 5135
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5136
 * It does so by boosting its priority to highest possible and adding it to
5137
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5138 5139 5140
 */
void sched_idle_next(void)
{
5141
	int this_cpu = smp_processor_id();
5142
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5143 5144 5145 5146
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5147
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5148

5149 5150 5151
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5152 5153 5154
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5155
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5156 5157

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5158
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5159 5160 5161 5162

	spin_unlock_irqrestore(&rq->lock, flags);
}

5163 5164
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5178
/* called under rq->lock with disabled interrupts */
5179
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5180
{
5181
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5182 5183

	/* Must be exiting, otherwise would be on tasklist. */
5184
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5185 5186

	/* Cannot have done final schedule yet: would have vanished. */
5187
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5188

5189
	get_task_struct(p);
L
Linus Torvalds 已提交
5190 5191 5192 5193 5194

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5195
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5196
	 */
5197
	spin_unlock(&rq->lock);
5198
	move_task_off_dead_cpu(dead_cpu, p);
5199
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5200

5201
	put_task_struct(p);
L
Linus Torvalds 已提交
5202 5203 5204 5205 5206
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5207
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5208
	struct task_struct *next;
5209

I
Ingo Molnar 已提交
5210 5211 5212
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5213
		update_rq_clock(rq);
5214
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5215 5216 5217
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5218

L
Linus Torvalds 已提交
5219 5220 5221 5222
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5223 5224 5225
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5226 5227
	{
		.procname	= "sched_domain",
5228
		.mode		= 0555,
5229
	},
5230 5231 5232 5233
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5234
	{
5235
		.ctl_name	= CTL_KERN,
5236
		.procname	= "kernel",
5237
		.mode		= 0555,
5238 5239
		.child		= sd_ctl_dir,
	},
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5255
set_table_entry(struct ctl_table *entry,
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5269
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5270

5271
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5272
		sizeof(long), 0644, proc_doulongvec_minmax);
5273
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5274
		sizeof(long), 0644, proc_doulongvec_minmax);
5275
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5276
		sizeof(int), 0644, proc_dointvec_minmax);
5277
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5278
		sizeof(int), 0644, proc_dointvec_minmax);
5279
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5280
		sizeof(int), 0644, proc_dointvec_minmax);
5281
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5282
		sizeof(int), 0644, proc_dointvec_minmax);
5283
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5284
		sizeof(int), 0644, proc_dointvec_minmax);
5285
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5286
		sizeof(int), 0644, proc_dointvec_minmax);
5287
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5288
		sizeof(int), 0644, proc_dointvec_minmax);
5289
	set_table_entry(&table[9], "cache_nice_tries",
5290 5291
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5292
	set_table_entry(&table[10], "flags", &sd->flags,
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5313
		entry->mode = 0555;
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5333
		entry->mode = 0555;
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5344 5345 5346 5347
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5348 5349
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5350 5351
{
	struct task_struct *p;
5352
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5353
	unsigned long flags;
5354
	struct rq *rq;
L
Linus Torvalds 已提交
5355 5356

	switch (action) {
5357 5358 5359 5360
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5361
	case CPU_UP_PREPARE:
5362
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5363
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5364 5365 5366 5367 5368
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5369
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5370 5371 5372
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5373

L
Linus Torvalds 已提交
5374
	case CPU_ONLINE:
5375
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5376 5377 5378
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5379

L
Linus Torvalds 已提交
5380 5381
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5382
	case CPU_UP_CANCELED_FROZEN:
5383 5384
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5385
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5386 5387
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5388 5389 5390
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5391

L
Linus Torvalds 已提交
5392
	case CPU_DEAD:
5393
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5394 5395 5396 5397 5398 5399
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5400
		update_rq_clock(rq);
5401
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5402
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5403 5404
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5405 5406 5407 5408 5409 5410
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5411
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5412 5413 5414
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5415 5416
			struct migration_req *req;

L
Linus Torvalds 已提交
5417
			req = list_entry(rq->migration_queue.next,
5418
					 struct migration_req, list);
L
Linus Torvalds 已提交
5419 5420 5421 5422 5423 5424
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5425 5426 5427
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5428 5429 5430 5431 5432 5433 5434
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5435
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5436 5437 5438 5439 5440 5441 5442
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5443
	int err;
5444 5445

	/* Start one for the boot CPU: */
5446 5447
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5448 5449
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5450

L
Linus Torvalds 已提交
5451 5452 5453 5454 5455
	return 0;
}
#endif

#ifdef CONFIG_SMP
5456 5457 5458 5459 5460

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5461
#ifdef CONFIG_SCHED_DEBUG
L
Linus Torvalds 已提交
5462 5463 5464 5465
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5466 5467 5468 5469 5470
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5490 5491
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5492 5493 5494 5495 5496 5497
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5498 5499
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5500
		if (!cpu_isset(cpu, group->cpumask))
5501 5502
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5515
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5516
				printk("\n");
5517 5518
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
5519
				break;
L
Linus Torvalds 已提交
5520 5521 5522 5523 5524
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
5525
				break;
L
Linus Torvalds 已提交
5526 5527 5528 5529 5530
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
5531
				break;
L
Linus Torvalds 已提交
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5544 5545
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5546 5547 5548

		level++;
		sd = sd->parent;
5549 5550
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5551

5552 5553 5554
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5555 5556 5557 5558

	} while (sd);
}
#else
5559
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5560 5561
#endif

5562
static int sd_degenerate(struct sched_domain *sd)
5563 5564 5565 5566 5567 5568 5569 5570
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5571 5572 5573
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5587 5588
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5607 5608 5609
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5610 5611 5612 5613 5614 5615 5616
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5617 5618 5619 5620
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5621
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5622
{
5623
	struct rq *rq = cpu_rq(cpu);
5624 5625 5626 5627 5628 5629 5630
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5631
		if (sd_parent_degenerate(tmp, parent)) {
5632
			tmp->parent = parent->parent;
5633 5634 5635
			if (parent->parent)
				parent->parent->child = tmp;
		}
5636 5637
	}

5638
	if (sd && sd_degenerate(sd)) {
5639
		sd = sd->parent;
5640 5641 5642
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5643 5644 5645

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5646
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5647 5648 5649
}

/* cpus with isolated domains */
5650
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5665
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5666 5667

/*
5668 5669 5670 5671
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5672 5673 5674 5675 5676
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5677
static void
5678 5679 5680
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5681 5682 5683 5684 5685 5686
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5687 5688
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5689 5690 5691 5692 5693 5694
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5695
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5696 5697

		for_each_cpu_mask(j, span) {
5698
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5713
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5714

5715
#ifdef CONFIG_NUMA
5716

5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5769 5770
	cpumask_t span, nodemask;
	int i;
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5781

5782 5783 5784 5785 5786 5787 5788 5789
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5790
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5791

5792
/*
5793
 * SMT sched-domains:
5794
 */
L
Linus Torvalds 已提交
5795 5796
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5797
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5798

5799 5800
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5801
{
5802 5803
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5804 5805 5806 5807
	return cpu;
}
#endif

5808 5809 5810
/*
 * multi-core sched-domains:
 */
5811 5812
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5813
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5814 5815 5816
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5817 5818
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5819
{
5820
	int group;
5821 5822
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5823 5824 5825 5826
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5827 5828
}
#elif defined(CONFIG_SCHED_MC)
5829 5830
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5831
{
5832 5833
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5834 5835 5836 5837
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5838
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5839
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5840

5841 5842
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5843
{
5844
	int group;
5845
#ifdef CONFIG_SCHED_MC
5846
	cpumask_t mask = cpu_coregroup_map(cpu);
5847
	cpus_and(mask, mask, *cpu_map);
5848
	group = first_cpu(mask);
5849
#elif defined(CONFIG_SCHED_SMT)
5850 5851
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5852
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5853
#else
5854
	group = cpu;
L
Linus Torvalds 已提交
5855
#endif
5856 5857 5858
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5859 5860 5861 5862
}

#ifdef CONFIG_NUMA
/*
5863 5864 5865
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5866
 */
5867
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5868
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5869

5870
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5871
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5872

5873 5874
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5875
{
5876 5877 5878 5879 5880 5881 5882 5883 5884
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5885
}
5886

5887 5888 5889 5890 5891 5892 5893
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
5894 5895 5896
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
5897

5898 5899 5900 5901 5902 5903 5904 5905
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
5906

5907 5908 5909 5910
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
5911
}
L
Linus Torvalds 已提交
5912 5913
#endif

5914
#ifdef CONFIG_NUMA
5915 5916 5917
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5918
	int cpu, i;
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5949 5950 5951 5952 5953
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5954

5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5981 5982
	sd->groups->__cpu_power = 0;

5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5993
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5994 5995 5996 5997 5998 5999 6000 6001
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6002
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6003 6004 6005 6006
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6007
/*
6008 6009
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6010
 */
6011
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6012 6013
{
	int i;
6014 6015
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6016
	int sd_allnodes = 0;
6017 6018 6019 6020

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
6021
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6022
					   GFP_KERNEL);
6023 6024
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6025
		return -ENOMEM;
6026 6027 6028
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6029 6030

	/*
6031
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6032
	 */
6033
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6034 6035 6036
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6037
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6038 6039

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6040 6041
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6042 6043 6044
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6045
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6046
			p = sd;
6047
			sd_allnodes = 1;
6048 6049 6050
		} else
			p = NULL;

L
Linus Torvalds 已提交
6051 6052
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6053 6054
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6055 6056
		if (p)
			p->child = sd;
6057
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6058 6059 6060 6061 6062 6063 6064
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6065 6066
		if (p)
			p->child = sd;
6067
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6068

6069 6070 6071 6072 6073 6074 6075
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6076
		p->child = sd;
6077
		cpu_to_core_group(i, cpu_map, &sd->groups);
6078 6079
#endif

L
Linus Torvalds 已提交
6080 6081 6082 6083 6084
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6085
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6086
		sd->parent = p;
6087
		p->child = sd;
6088
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6089 6090 6091 6092 6093
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6094
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6095
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6096
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6097 6098 6099
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6100 6101
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6102 6103 6104
	}
#endif

6105 6106 6107 6108 6109 6110 6111
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6112 6113
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6114 6115 6116
	}
#endif

L
Linus Torvalds 已提交
6117 6118 6119 6120
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6121
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6122 6123 6124
		if (cpus_empty(nodemask))
			continue;

6125
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6126 6127 6128 6129
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6130
	if (sd_allnodes)
I
Ingo Molnar 已提交
6131 6132
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6133 6134 6135 6136 6137 6138 6139 6140 6141 6142

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6143 6144
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6145
			continue;
6146
		}
6147 6148 6149 6150

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6151
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6152 6153 6154 6155 6156
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6157 6158 6159
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6160

6161 6162 6163
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6164
		sg->__cpu_power = 0;
6165
		sg->cpumask = nodemask;
6166
		sg->next = sg;
6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6185 6186
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6187 6188 6189
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6190
				goto error;
6191
			}
6192
			sg->__cpu_power = 0;
6193
			sg->cpumask = tmp;
6194
			sg->next = prev->next;
6195 6196 6197 6198 6199
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6200 6201 6202
#endif

	/* Calculate CPU power for physical packages and nodes */
6203
#ifdef CONFIG_SCHED_SMT
6204
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6205 6206
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6207
		init_sched_groups_power(i, sd);
6208
	}
L
Linus Torvalds 已提交
6209
#endif
6210
#ifdef CONFIG_SCHED_MC
6211
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6212 6213
		struct sched_domain *sd = &per_cpu(core_domains, i);

6214
		init_sched_groups_power(i, sd);
6215 6216
	}
#endif
6217

6218
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6219 6220
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6221
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6222 6223
	}

6224
#ifdef CONFIG_NUMA
6225 6226
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6227

6228 6229
	if (sd_allnodes) {
		struct sched_group *sg;
6230

6231
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6232 6233
		init_numa_sched_groups_power(sg);
	}
6234 6235
#endif

L
Linus Torvalds 已提交
6236
	/* Attach the domains */
6237
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6238 6239 6240
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6241 6242
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6243 6244 6245 6246 6247
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6248 6249 6250

	return 0;

6251
#ifdef CONFIG_NUMA
6252 6253 6254
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6255
#endif
L
Linus Torvalds 已提交
6256
}
6257 6258 6259
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6260
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6261 6262
{
	cpumask_t cpu_default_map;
6263
	int err;
L
Linus Torvalds 已提交
6264

6265 6266 6267 6268 6269 6270 6271
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6272 6273 6274
	err = build_sched_domains(&cpu_default_map);

	return err;
6275 6276 6277
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6278
{
6279
	free_sched_groups(cpu_map);
6280
}
L
Linus Torvalds 已提交
6281

6282 6283 6284 6285
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6286
static void detach_destroy_domains(const cpumask_t *cpu_map)
6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6304
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6305 6306
{
	cpumask_t change_map;
6307
	int err = 0;
6308 6309 6310 6311 6312 6313 6314 6315

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6316 6317 6318 6319 6320
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6321 6322
}

6323
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6324
static int arch_reinit_sched_domains(void)
6325 6326 6327
{
	int err;

6328
	mutex_lock(&sched_hotcpu_mutex);
6329 6330
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6331
	mutex_unlock(&sched_hotcpu_mutex);
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6358 6359
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6360 6361 6362
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6363 6364
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6365 6366 6367 6368 6369 6370 6371
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6372 6373
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6374 6375 6376
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6397 6398
#endif

L
Linus Torvalds 已提交
6399 6400 6401
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6402
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6403 6404 6405 6406 6407 6408 6409
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6410
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6411
	case CPU_DOWN_PREPARE:
6412
	case CPU_DOWN_PREPARE_FROZEN:
6413
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6414 6415 6416
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6417
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6418
	case CPU_DOWN_FAILED:
6419
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6420
	case CPU_ONLINE:
6421
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6422
	case CPU_DEAD:
6423
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6424 6425 6426 6427 6428 6429 6430 6431 6432
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6433
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6434 6435 6436 6437 6438 6439

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6440 6441
	cpumask_t non_isolated_cpus;

6442
	mutex_lock(&sched_hotcpu_mutex);
6443
	arch_init_sched_domains(&cpu_online_map);
6444
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6445 6446
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6447
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6448 6449
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6450

6451 6452
	init_sched_domain_sysctl();

6453 6454 6455
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6467

L
Linus Torvalds 已提交
6468 6469 6470 6471 6472
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6473
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6474 6475 6476 6477 6478
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6479
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6480 6481
}

L
Linus Torvalds 已提交
6482 6483
void __init sched_init(void)
{
6484
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6485 6486
	int i, j;

6487
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6488
		struct rt_prio_array *array;
6489
		struct rq *rq;
L
Linus Torvalds 已提交
6490 6491 6492

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6493
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6494
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6495 6496 6497 6498
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6499 6500 6501 6502 6503 6504 6505
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6506
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6507
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6508 6509
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6510 6511 6512
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6513
			se->load.weight = init_task_group_load;
6514
			se->load.inv_weight =
6515
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6516 6517
			se->parent = NULL;
		}
6518
		init_task_group.shares = init_task_group_load;
6519
		spin_lock_init(&init_task_group.lock);
I
Ingo Molnar 已提交
6520
#endif
L
Linus Torvalds 已提交
6521

I
Ingo Molnar 已提交
6522 6523
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6524
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6525
		rq->sd = NULL;
L
Linus Torvalds 已提交
6526
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6527
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6528
		rq->push_cpu = 0;
6529
		rq->cpu = i;
L
Linus Torvalds 已提交
6530 6531 6532 6533 6534
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6535 6536 6537 6538
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6539
		}
6540
		highest_cpu = i;
I
Ingo Molnar 已提交
6541 6542
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6543 6544
	}

6545
	set_load_weight(&init_task);
6546

6547 6548 6549 6550
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6551
#ifdef CONFIG_SMP
6552
	nr_cpu_ids = highest_cpu + 1;
6553 6554 6555
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6556 6557 6558 6559
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6573 6574 6575 6576
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6577 6578 6579 6580 6581
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6582
#ifdef in_atomic
L
Linus Torvalds 已提交
6583 6584 6585 6586 6587 6588 6589
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6590
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6591 6592 6593
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6594
		debug_show_held_locks(current);
6595 6596
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6597 6598 6599 6600 6601 6602 6603 6604
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6619 6620
void normalize_rt_tasks(void)
{
6621
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6622
	unsigned long flags;
6623
	struct rq *rq;
L
Linus Torvalds 已提交
6624 6625

	read_lock_irq(&tasklist_lock);
6626
	do_each_thread(g, p) {
6627 6628 6629 6630 6631 6632
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6633 6634
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6635 6636 6637
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6638
#endif
I
Ingo Molnar 已提交
6639 6640 6641 6642 6643 6644 6645 6646 6647
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6648
			continue;
I
Ingo Molnar 已提交
6649
		}
L
Linus Torvalds 已提交
6650

6651 6652
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6653

6654
		normalize_task(rq, p);
6655

6656 6657
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6658 6659
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6660 6661 6662 6663
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6682
struct task_struct *curr_task(int cpu)
6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6702
void set_curr_task(int cpu, struct task_struct *p)
6703 6704 6705 6706 6707
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6708 6709 6710 6711

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6712
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6713
{
6714
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6715 6716
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6717
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6718 6719 6720 6721 6722 6723
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6724
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6725 6726
	if (!tg->cfs_rq)
		goto err;
6727
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6728 6729 6730 6731
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6732
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

6759 6760 6761 6762 6763
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
6764

6765
	tg->shares = NICE_0_LOAD;
6766
	spin_lock_init(&tg->lock);
S
Srivatsa Vaddagiri 已提交
6767

6768
	return tg;
S
Srivatsa Vaddagiri 已提交
6769 6770 6771

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6772
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
6773
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
6774
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
6775 6776
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
6777 6778 6779
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
6780 6781 6782 6783

	return ERR_PTR(-ENOMEM);
}

6784 6785
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6786
{
6787
	struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6788
	struct task_group *tg = cfs_rq->tg;
S
Srivatsa Vaddagiri 已提交
6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

6806
/* Destroy runqueue etc associated with a task group */
6807
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6808
{
6809 6810
	struct cfs_rq *cfs_rq;
	int i;
S
Srivatsa Vaddagiri 已提交
6811

6812 6813 6814 6815 6816 6817 6818 6819 6820
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	cfs_rq = tg->cfs_rq[0];

	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&cfs_rq->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
6821 6822
}

6823
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
6824 6825 6826
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
6827 6828
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	if (tsk->sched_class != &fair_sched_class)
		goto done;

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

6844
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
6845
		dequeue_task(rq, tsk, 0);
6846 6847 6848
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
6849 6850 6851

	set_task_cfs_rq(tsk);

6852 6853 6854
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
6855
		enqueue_task(rq, tsk, 0);
6856
	}
S
Srivatsa Vaddagiri 已提交
6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

6883
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
6884 6885 6886
{
	int i;

6887
	spin_lock(&tg->lock);
6888
	if (tg->shares == shares)
6889
		goto done;
S
Srivatsa Vaddagiri 已提交
6890

6891
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
6892
	for_each_possible_cpu(i)
6893
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
6894

6895 6896
done:
	spin_unlock(&tg->lock);
6897
	return 0;
S
Srivatsa Vaddagiri 已提交
6898 6899
}

6900 6901 6902 6903 6904
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
6905
#endif	/* CONFIG_FAIR_GROUP_SCHED */