sched.c 225.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

142 143
static inline int rt_policy(int policy)
{
144
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 146 147 148 149 150 151 152 153
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
154
/*
I
Ingo Molnar 已提交
155
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
156
 */
I
Ingo Molnar 已提交
157 158 159 160 161
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

162
struct rt_bandwidth {
I
Ingo Molnar 已提交
163 164 165 166 167
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
201 202
	spin_lock_init(&rt_b->rt_runtime_lock);

203 204 205
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
206
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
207 208
}

209 210 211
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
212 213 214 215 216 217
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

218
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 220 221 222 223 224 225 226 227 228 229 230
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 232
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
233 234 235 236 237 238 239 240 241 242 243
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

244 245 246 247 248 249
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

250
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
251

252 253
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
254 255
struct cfs_rq;

P
Peter Zijlstra 已提交
256 257
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
258
/* task group related information */
259
struct task_group {
260
#ifdef CONFIG_CGROUP_SCHED
261 262
	struct cgroup_subsys_state css;
#endif
263 264

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
265 266 267 268 269
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
270 271 272 273 274 275
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

276
	struct rt_bandwidth rt_bandwidth;
277
#endif
278

279
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
280
	struct list_head list;
P
Peter Zijlstra 已提交
281 282 283 284

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
285 286
};

D
Dhaval Giani 已提交
287
#ifdef CONFIG_USER_SCHED
288 289 290 291 292 293 294 295

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

296
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
297 298 299 300
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301
#endif /* CONFIG_FAIR_GROUP_SCHED */
302 303 304 305

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
307
#else /* !CONFIG_USER_SCHED */
308
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
309
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
310

311
/* task_group_lock serializes add/remove of task groups and also changes to
312 313
 * a task group's cpu shares.
 */
314
static DEFINE_SPINLOCK(task_group_lock);
315

316 317 318
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
319
#else /* !CONFIG_USER_SCHED */
320
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
321
#endif /* CONFIG_USER_SCHED */
322

323
/*
324 325 326 327
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
328 329 330
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
331
#define MIN_SHARES	2
332
#define MAX_SHARES	(1UL << 18)
333

334 335 336
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
337
/* Default task group.
I
Ingo Molnar 已提交
338
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
339
 */
340
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
341 342

/* return group to which a task belongs */
343
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
344
{
345
	struct task_group *tg;
346

347
#ifdef CONFIG_USER_SCHED
348
	tg = p->user->tg;
349
#elif defined(CONFIG_CGROUP_SCHED)
350 351
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
352
#else
I
Ingo Molnar 已提交
353
	tg = &init_task_group;
354
#endif
355
	return tg;
S
Srivatsa Vaddagiri 已提交
356 357 358
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
359
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
360
{
361
#ifdef CONFIG_FAIR_GROUP_SCHED
362 363
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
364
#endif
P
Peter Zijlstra 已提交
365

366
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
367 368
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
369
#endif
S
Srivatsa Vaddagiri 已提交
370 371 372 373
}

#else

P
Peter Zijlstra 已提交
374
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 376 377 378
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
379

380
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
381

I
Ingo Molnar 已提交
382 383 384 385 386 387
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
388
	u64 min_vruntime;
I
Ingo Molnar 已提交
389 390 391

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
392 393 394 395 396 397

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
398 399
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
400
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
401

P
Peter Zijlstra 已提交
402
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
403

404
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
405 406
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
407 408
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
409 410 411 412 413 414
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
415 416
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
417 418 419

#ifdef CONFIG_SMP
	/*
420
	 * the part of load.weight contributed by tasks
421
	 */
422
	unsigned long task_weight;
423

424 425 426 427 428 429 430
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
431

432 433 434 435
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
436 437 438 439 440

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
441
#endif
I
Ingo Molnar 已提交
442 443
#endif
};
L
Linus Torvalds 已提交
444

I
Ingo Molnar 已提交
445 446 447
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
448
	unsigned long rt_nr_running;
449
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
450 451
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
452
#ifdef CONFIG_SMP
453
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
454
	int overloaded;
P
Peter Zijlstra 已提交
455
#endif
P
Peter Zijlstra 已提交
456
	int rt_throttled;
P
Peter Zijlstra 已提交
457
	u64 rt_time;
P
Peter Zijlstra 已提交
458
	u64 rt_runtime;
I
Ingo Molnar 已提交
459
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
460
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
461

462
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
463 464
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
465 466 467 468 469
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
470 471
};

G
Gregory Haskins 已提交
472 473 474 475
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
476 477
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
478 479 480 481 482 483 484 485
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
486

I
Ingo Molnar 已提交
487
	/*
488 489 490 491
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
492
	atomic_t rto_count;
493 494 495
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
496 497
};

498 499 500 501
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
502 503 504 505
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
506 507 508 509 510 511 512
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
513
struct rq {
514 515
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
516 517 518 519 520 521

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
522 523
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524
	unsigned char idle_at_tick;
525
#ifdef CONFIG_NO_HZ
526
	unsigned long last_tick_seen;
527 528
	unsigned char in_nohz_recently;
#endif
529 530
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
531 532 533 534
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
535 536
	struct rt_rq rt;

I
Ingo Molnar 已提交
537
#ifdef CONFIG_FAIR_GROUP_SCHED
538 539
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
540 541
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
542
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
543 544 545 546 547 548 549 550 551 552
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

553
	struct task_struct *curr, *idle;
554
	unsigned long next_balance;
L
Linus Torvalds 已提交
555
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
556

557
	u64 clock;
I
Ingo Molnar 已提交
558

L
Linus Torvalds 已提交
559 560 561
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
562
	struct root_domain *rd;
L
Linus Torvalds 已提交
563 564 565 566 567
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
568 569
	/* cpu of this runqueue: */
	int cpu;
570
	int online;
L
Linus Torvalds 已提交
571

572
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
573

574
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
575 576 577
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
578
#ifdef CONFIG_SCHED_HRTICK
579 580 581 582
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
583 584 585
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
586 587 588 589 590
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
591 592 593 594
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
595 596

	/* schedule() stats */
597 598 599
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
600 601

	/* try_to_wake_up() stats */
602 603
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
604 605

	/* BKL stats */
606
	unsigned int bkl_count;
L
Linus Torvalds 已提交
607 608 609
#endif
};

610
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
611

612
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
613
{
614
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
615 616
}

617 618 619 620 621 622 623 624 625
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
626 627
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
629 630 631 632
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
633 634
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
635 636 637 638 639 640

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

641 642 643 644 645
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
646 647 648 649 650 651 652 653 654
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
673 674 675
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
676 677 678 679

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
680
enum {
P
Peter Zijlstra 已提交
681
#include "sched_features.h"
I
Ingo Molnar 已提交
682 683
};

P
Peter Zijlstra 已提交
684 685 686 687 688
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
689
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
690 691 692 693 694 695 696 697 698
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

699
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
700 701 702 703 704 705
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

706
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
734
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
764
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
807

808 809 810 811 812 813
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
814 815
/*
 * ratelimit for updating the group shares.
816
 * default: 0.25ms
P
Peter Zijlstra 已提交
817
 */
818
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
819

820 821 822 823 824 825 826
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
827
/*
P
Peter Zijlstra 已提交
828
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
829 830
 * default: 1s
 */
P
Peter Zijlstra 已提交
831
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
832

833 834
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
835 836 837 838 839
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
840

841 842 843 844 845 846 847
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
848
	if (sysctl_sched_rt_runtime < 0)
849 850 851 852
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
853

L
Linus Torvalds 已提交
854
#ifndef prepare_arch_switch
855 856 857 858 859 860
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

861 862 863 864 865
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

866
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
867
static inline int task_running(struct rq *rq, struct task_struct *p)
868
{
869
	return task_current(rq, p);
870 871
}

872
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 874 875
{
}

876
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
877
{
878 879 880 881
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
882 883 884 885 886 887 888
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

889 890 891 892
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
893
static inline int task_running(struct rq *rq, struct task_struct *p)
894 895 896 897
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
898
	return task_current(rq, p);
899 900 901
#endif
}

902
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

919
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
920 921 922 923 924 925 926 927 928 929 930 931
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
932
#endif
933 934
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
935

936 937 938 939
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
940
static inline struct rq *__task_rq_lock(struct task_struct *p)
941 942
	__acquires(rq->lock)
{
943 944 945 946 947
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
948 949 950 951
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
952 953
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
954
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
955 956
 * explicitly disabling preemption.
 */
957
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
958 959
	__acquires(rq->lock)
{
960
	struct rq *rq;
L
Linus Torvalds 已提交
961

962 963 964 965 966 967
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
968 969 970 971
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

972 973 974 975 976 977 978 979
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
980
static void __task_rq_unlock(struct rq *rq)
981 982 983 984 985
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

986
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
987 988 989 990 991 992
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
993
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
994
 */
A
Alexey Dobriyan 已提交
995
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
996 997
	__acquires(rq->lock)
{
998
	struct rq *rq;
L
Linus Torvalds 已提交
999 1000 1001 1002 1003 1004 1005 1006

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1028
	if (!cpu_active(cpu_of(rq)))
1029
		return 0;
P
Peter Zijlstra 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1050
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1051 1052 1053 1054 1055 1056
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1057
#ifdef CONFIG_SMP
1058 1059 1060 1061
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1062
{
1063
	struct rq *rq = arg;
1064

1065 1066 1067 1068
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1069 1070
}

1071 1072 1073 1074 1075 1076
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1077
{
1078 1079
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1080

1081
	hrtimer_set_expires(timer, time);
1082 1083 1084 1085 1086 1087 1088

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1103
		hrtick_clear(cpu_rq(cpu));
1104 1105 1106 1107 1108 1109
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1110
static __init void init_hrtick(void)
1111 1112 1113
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1124

A
Andrew Morton 已提交
1125
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1126 1127
{
}
1128
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1129

1130
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1131
{
1132 1133
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1134

1135 1136 1137 1138
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1139

1140 1141
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
1142
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
P
Peter Zijlstra 已提交
1143
}
A
Andrew Morton 已提交
1144
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1145 1146 1147 1148 1149 1150 1151 1152
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1153 1154 1155
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1156
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1157

I
Ingo Molnar 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1171
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1172 1173 1174 1175 1176
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1177
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1178 1179
		return;

1180
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1243
#endif /* CONFIG_NO_HZ */
1244

1245
#else /* !CONFIG_SMP */
1246
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1247 1248
{
	assert_spin_locked(&task_rq(p)->lock);
1249
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1250
}
1251
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1252

1253 1254 1255 1256 1257 1258 1259 1260
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1261 1262 1263
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1264
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1265

1266 1267 1268
/*
 * delta *= weight / lw
 */
1269
static unsigned long
1270 1271 1272 1273 1274
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1275 1276 1277 1278 1279 1280 1281
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1282 1283 1284 1285 1286

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1287
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1288
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1289 1290
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1291
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1292

1293
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1294 1295
}

1296
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1297 1298
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1299
	lw->inv_weight = 0;
1300 1301
}

1302
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1303 1304
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1305
	lw->inv_weight = 0;
1306 1307
}

1308 1309 1310 1311
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1312
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1313 1314 1315 1316
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1328 1329 1330
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1331 1332
 */
static const int prio_to_weight[40] = {
1333 1334 1335 1336 1337 1338 1339 1340
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1341 1342
};

1343 1344 1345 1346 1347 1348 1349
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1350
static const u32 prio_to_wmult[40] = {
1351 1352 1353 1354 1355 1356 1357 1358
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1359
};
1360

I
Ingo Molnar 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1386

1387 1388 1389 1390 1391 1392
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1403
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1404
typedef int (*tg_visitor)(struct task_group *, void *);
1405 1406 1407 1408 1409

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1410
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1411 1412
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1413
	int ret;
1414 1415 1416 1417

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1418 1419 1420
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1421 1422 1423 1424 1425 1426 1427
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1428 1429 1430
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1431 1432 1433 1434 1435

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1436
out_unlock:
1437
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1438 1439

	return ret;
1440 1441
}

P
Peter Zijlstra 已提交
1442 1443 1444
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1445
}
P
Peter Zijlstra 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1459 1460
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1461 1462 1463 1464 1465

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1466 1467 1468 1469 1470 1471 1472

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1473 1474
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1475
{
1476 1477 1478 1479
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1480
	if (!tg->se[cpu])
1481 1482
		return;

1483
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1495 1496 1497
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1498 1499 1500 1501 1502 1503
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1504
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1505
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1506

1507 1508 1509 1510
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1511

1512 1513 1514 1515 1516 1517
		spin_lock_irqsave(&rq->lock, flags);
		/*
		 * record the actual number of shares, not the boosted amount.
		 */
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
		tg->cfs_rq[cpu]->rq_weight = rq_weight;
1518

1519 1520 1521
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1522
}
1523 1524

/*
1525 1526 1527
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1528
 */
P
Peter Zijlstra 已提交
1529
static int tg_shares_up(struct task_group *tg, void *data)
1530
{
1531 1532
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1533
	struct sched_domain *sd = data;
1534
	int i;
1535

1536 1537 1538
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1539 1540
	}

1541 1542 1543 1544 1545
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1546

P
Peter Zijlstra 已提交
1547 1548 1549
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1550 1551
	for_each_cpu_mask(i, sd->span)
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1552 1553

	return 0;
1554 1555 1556
}

/*
1557 1558 1559
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1560
 */
P
Peter Zijlstra 已提交
1561
static int tg_load_down(struct task_group *tg, void *data)
1562
{
1563
	unsigned long load;
P
Peter Zijlstra 已提交
1564
	long cpu = (long)data;
1565

1566 1567 1568 1569 1570 1571 1572
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1573

1574
	tg->cfs_rq[cpu]->h_load = load;
1575

P
Peter Zijlstra 已提交
1576
	return 0;
1577 1578
}

1579
static void update_shares(struct sched_domain *sd)
1580
{
P
Peter Zijlstra 已提交
1581 1582 1583 1584 1585
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1586
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1587
	}
1588 1589
}

1590 1591 1592 1593 1594 1595 1596
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1597
static void update_h_load(long cpu)
1598
{
P
Peter Zijlstra 已提交
1599
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1600 1601 1602 1603
}

#else

1604
static inline void update_shares(struct sched_domain *sd)
1605 1606 1607
{
}

1608 1609 1610 1611
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1612 1613 1614 1615
#endif

#endif

V
Vegard Nossum 已提交
1616
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1617 1618
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1619
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1620 1621 1622
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1623
#endif
1624

I
Ingo Molnar 已提交
1625 1626
#include "sched_stats.h"
#include "sched_idletask.c"
1627 1628
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1629 1630 1631 1632 1633
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1634 1635
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1636

1637
static void inc_nr_running(struct rq *rq)
1638 1639 1640 1641
{
	rq->nr_running++;
}

1642
static void dec_nr_running(struct rq *rq)
1643 1644 1645 1646
{
	rq->nr_running--;
}

1647 1648 1649
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1650 1651 1652 1653
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1654

I
Ingo Molnar 已提交
1655 1656 1657 1658 1659 1660 1661 1662
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1663

I
Ingo Molnar 已提交
1664 1665
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1666 1667
}

1668 1669 1670 1671 1672 1673
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1674
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1675
{
I
Ingo Molnar 已提交
1676
	sched_info_queued(p);
1677
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1678
	p->se.on_rq = 1;
1679 1680
}

1681
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1682
{
1683 1684 1685 1686 1687 1688
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1689
	sched_info_dequeued(p);
1690
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1691
	p->se.on_rq = 0;
1692 1693
}

1694
/*
I
Ingo Molnar 已提交
1695
 * __normal_prio - return the priority that is based on the static prio
1696 1697 1698
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1699
	return p->static_prio;
1700 1701
}

1702 1703 1704 1705 1706 1707 1708
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1709
static inline int normal_prio(struct task_struct *p)
1710 1711 1712
{
	int prio;

1713
	if (task_has_rt_policy(p))
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1727
static int effective_prio(struct task_struct *p)
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1740
/*
I
Ingo Molnar 已提交
1741
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1742
 */
I
Ingo Molnar 已提交
1743
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1744
{
1745
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1746
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1747

1748
	enqueue_task(rq, p, wakeup);
1749
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1750 1751 1752 1753 1754
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1755
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1756
{
1757
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1758 1759
		rq->nr_uninterruptible++;

1760
	dequeue_task(rq, p, sleep);
1761
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1762 1763 1764 1765 1766 1767
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1768
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1769 1770 1771 1772
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1773 1774
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1775
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1776
#ifdef CONFIG_SMP
1777 1778 1779 1780 1781 1782
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1783 1784
	task_thread_info(p)->cpu = cpu;
#endif
1785 1786
}

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1799
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1800

1801 1802 1803 1804 1805 1806
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1807 1808 1809
/*
 * Is this task likely cache-hot:
 */
1810
static int
1811 1812 1813 1814
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1815 1816 1817
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1818 1819 1820
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1821 1822
		return 1;

1823 1824 1825
	if (p->sched_class != &fair_sched_class)
		return 0;

1826 1827 1828 1829 1830
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1831 1832 1833 1834 1835 1836
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1837
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1838
{
I
Ingo Molnar 已提交
1839 1840
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1841 1842
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1843
	u64 clock_offset;
I
Ingo Molnar 已提交
1844 1845

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1846 1847 1848 1849

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1850 1851 1852 1853
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1854 1855 1856 1857 1858
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1859
#endif
1860 1861
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1862 1863

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1864 1865
}

1866
struct migration_req {
L
Linus Torvalds 已提交
1867 1868
	struct list_head list;

1869
	struct task_struct *task;
L
Linus Torvalds 已提交
1870 1871 1872
	int dest_cpu;

	struct completion done;
1873
};
L
Linus Torvalds 已提交
1874 1875 1876 1877 1878

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1879
static int
1880
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1881
{
1882
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1883 1884 1885 1886 1887

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1888
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1889 1890 1891 1892 1893 1894 1895 1896
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1897

L
Linus Torvalds 已提交
1898 1899 1900 1901 1902 1903
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1904 1905 1906 1907 1908 1909 1910
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1911 1912 1913 1914 1915 1916
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1917
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1918 1919
{
	unsigned long flags;
I
Ingo Molnar 已提交
1920
	int running, on_rq;
R
Roland McGrath 已提交
1921
	unsigned long ncsw;
1922
	struct rq *rq;
L
Linus Torvalds 已提交
1923

1924 1925 1926 1927 1928 1929 1930 1931
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1932

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1944 1945 1946
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1947
			cpu_relax();
R
Roland McGrath 已提交
1948
		}
1949

1950 1951 1952 1953 1954 1955
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1956
		trace_sched_wait_task(rq, p);
1957 1958
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1959
		ncsw = 0;
1960
		if (!match_state || p->state == match_state)
1961
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1962
		task_rq_unlock(rq, &flags);
1963

R
Roland McGrath 已提交
1964 1965 1966 1967 1968 1969
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1980

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1994

1995 1996 1997 1998 1999 2000 2001
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2002 2003

	return ncsw;
L
Linus Torvalds 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2019
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2031 2032
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2033 2034 2035 2036
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2037
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2038
{
2039
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2040
	unsigned long total = weighted_cpuload(cpu);
2041

2042
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2043
		return total;
2044

I
Ingo Molnar 已提交
2045
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2046 2047 2048
}

/*
2049 2050
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2051
 */
A
Alexey Dobriyan 已提交
2052
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2053
{
2054
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2055
	unsigned long total = weighted_cpuload(cpu);
2056

2057
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2058
		return total;
2059

I
Ingo Molnar 已提交
2060
	return max(rq->cpu_load[type-1], total);
2061 2062
}

N
Nick Piggin 已提交
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2080 2081
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2082
			continue;
2083

N
Nick Piggin 已提交
2084 2085 2086 2087 2088
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2089
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2100 2101
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2102 2103 2104 2105 2106 2107 2108 2109

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2110
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2111 2112 2113 2114 2115 2116 2117

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2118
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2119
 */
I
Ingo Molnar 已提交
2120
static int
2121 2122
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2123 2124 2125 2126 2127
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2128
	/* Traverse only the allowed CPUs */
2129
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2130

2131
	for_each_cpu_mask_nr(i, *tmp) {
2132
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2158

2159
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2160 2161 2162
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2163 2164
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2165 2166
		if (tmp->flags & flag)
			sd = tmp;
2167
	}
N
Nick Piggin 已提交
2168

2169 2170 2171
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2172
	while (sd) {
2173
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2174
		struct sched_group *group;
2175 2176 2177 2178 2179 2180
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2181 2182 2183

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2184 2185 2186 2187
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2188

2189
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2190 2191 2192 2193 2194
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2195

2196
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2228
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2229
{
2230
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2231 2232
	unsigned long flags;
	long old_state;
2233
	struct rq *rq;
L
Linus Torvalds 已提交
2234

2235 2236 2237
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2254
	smp_wmb();
L
Linus Torvalds 已提交
2255 2256 2257 2258 2259
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2260
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2261 2262 2263
		goto out_running;

	cpu = task_cpu(p);
2264
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2265 2266 2267 2268 2269 2270
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2271 2272 2273
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2274 2275 2276 2277 2278 2279
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2280
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2281 2282 2283 2284 2285 2286
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2300
#endif /* CONFIG_SCHEDSTATS */
2301

L
Linus Torvalds 已提交
2302 2303
out_activate:
#endif /* CONFIG_SMP */
2304 2305 2306 2307 2308 2309 2310 2311 2312
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2313
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2314
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2315 2316 2317
	success = 1;

out_running:
2318
	trace_sched_wakeup(rq, p);
2319
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2320

L
Linus Torvalds 已提交
2321
	p->state = TASK_RUNNING;
2322 2323 2324 2325
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2326
out:
2327 2328
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2329 2330 2331 2332 2333
	task_rq_unlock(rq, &flags);

	return success;
}

2334
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2335
{
2336
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2337 2338 2339
}
EXPORT_SYMBOL(wake_up_process);

2340
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2341 2342 2343 2344 2345 2346 2347
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2348 2349 2350 2351 2352 2353 2354
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2355
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2356 2357
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2358 2359 2360

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2361 2362 2363 2364 2365 2366
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2367
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2368
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2369
#endif
N
Nick Piggin 已提交
2370

P
Peter Zijlstra 已提交
2371
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2372
	p->se.on_rq = 0;
2373
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2374

2375 2376 2377 2378
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2379 2380 2381 2382 2383 2384 2385
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2400
	set_task_cpu(p, cpu);
2401 2402 2403 2404 2405

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2406 2407
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2408

2409
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2410
	if (likely(sched_info_on()))
2411
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2412
#endif
2413
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2414 2415
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2416
#ifdef CONFIG_PREEMPT
2417
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2418
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2419
#endif
N
Nick Piggin 已提交
2420
	put_cpu();
L
Linus Torvalds 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2430
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2431 2432
{
	unsigned long flags;
I
Ingo Molnar 已提交
2433
	struct rq *rq;
L
Linus Torvalds 已提交
2434 2435

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2436
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2437
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2438 2439 2440

	p->prio = effective_prio(p);

2441
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2442
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2443 2444
	} else {
		/*
I
Ingo Molnar 已提交
2445 2446
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2447
		 */
2448
		p->sched_class->task_new(rq, p);
2449
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2450
	}
2451
	trace_sched_wakeup_new(rq, p);
2452
	check_preempt_curr(rq, p, 0);
2453 2454 2455 2456
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2457
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2458 2459
}

2460 2461 2462
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2463 2464
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2465 2466 2467 2468 2469 2470 2471 2472 2473
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2474
 * @notifier: notifier struct to unregister
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2504
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2516
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2517

2518 2519 2520
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2521
 * @prev: the current task that is being switched out
2522 2523 2524 2525 2526 2527 2528 2529 2530
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2531 2532 2533
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2534
{
2535
	fire_sched_out_preempt_notifiers(prev, next);
2536 2537 2538 2539
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2540 2541
/**
 * finish_task_switch - clean up after a task-switch
2542
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2543 2544
 * @prev: the thread we just switched away from.
 *
2545 2546 2547 2548
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2549 2550
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2551
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2552 2553 2554
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2555
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2556 2557 2558
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2559
	long prev_state;
L
Linus Torvalds 已提交
2560 2561 2562 2563 2564

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2565
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2566 2567
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2568
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2569 2570 2571 2572 2573
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2574
	prev_state = prev->state;
2575 2576
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2577 2578 2579 2580
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2581

2582
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2583 2584
	if (mm)
		mmdrop(mm);
2585
	if (unlikely(prev_state == TASK_DEAD)) {
2586 2587 2588
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2589
		 */
2590
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2591
		put_task_struct(prev);
2592
	}
L
Linus Torvalds 已提交
2593 2594 2595 2596 2597 2598
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2599
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2600 2601
	__releases(rq->lock)
{
2602 2603
	struct rq *rq = this_rq();

2604 2605 2606 2607 2608
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2609
	if (current->set_child_tid)
2610
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2611 2612 2613 2614 2615 2616
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2617
static inline void
2618
context_switch(struct rq *rq, struct task_struct *prev,
2619
	       struct task_struct *next)
L
Linus Torvalds 已提交
2620
{
I
Ingo Molnar 已提交
2621
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2622

2623
	prepare_task_switch(rq, prev, next);
2624
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2625 2626
	mm = next->mm;
	oldmm = prev->active_mm;
2627 2628 2629 2630 2631 2632 2633
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2634
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2635 2636 2637 2638 2639 2640
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2641
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2642 2643 2644
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2645 2646 2647 2648 2649 2650 2651
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2652
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2653
#endif
L
Linus Torvalds 已提交
2654 2655 2656 2657

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2658 2659 2660 2661 2662 2663 2664
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2688
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2703 2704
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2705

2706
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2716
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2717 2718 2719 2720 2721
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2737
/*
I
Ingo Molnar 已提交
2738 2739
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2740
 */
I
Ingo Molnar 已提交
2741
static void update_cpu_load(struct rq *this_rq)
2742
{
2743
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2756 2757 2758 2759 2760 2761 2762
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2763 2764
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2765 2766
}

I
Ingo Molnar 已提交
2767 2768
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2769 2770 2771 2772 2773 2774
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2775
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2776 2777 2778
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2779
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2780 2781 2782 2783
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2784
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2785
			spin_lock(&rq1->lock);
2786
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2787 2788
		} else {
			spin_lock(&rq2->lock);
2789
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2790 2791
		}
	}
2792 2793
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2794 2795 2796 2797 2798 2799 2800 2801
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2802
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2816
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2817 2818 2819 2820
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2821 2822
	int ret = 0;

2823 2824 2825 2826 2827
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2828
	if (unlikely(!spin_trylock(&busiest->lock))) {
2829
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2830 2831
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2832
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2833
			ret = 1;
L
Linus Torvalds 已提交
2834
		} else
2835
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2836
	}
S
Steven Rostedt 已提交
2837
	return ret;
L
Linus Torvalds 已提交
2838 2839
}

2840 2841 2842 2843 2844 2845 2846
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

L
Linus Torvalds 已提交
2847 2848 2849
/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2850
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2851 2852
 * the cpu_allowed mask is restored.
 */
2853
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2854
{
2855
	struct migration_req req;
L
Linus Torvalds 已提交
2856
	unsigned long flags;
2857
	struct rq *rq;
L
Linus Torvalds 已提交
2858 2859 2860

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2861
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2862 2863
		goto out;

2864
	trace_sched_migrate_task(rq, p, dest_cpu);
L
Linus Torvalds 已提交
2865 2866 2867 2868
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2869

L
Linus Torvalds 已提交
2870 2871 2872 2873 2874
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2875

L
Linus Torvalds 已提交
2876 2877 2878 2879 2880 2881 2882
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2883 2884
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2885 2886 2887 2888
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2889
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2890
	put_cpu();
N
Nick Piggin 已提交
2891 2892
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2893 2894 2895 2896 2897 2898
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2899 2900
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2901
{
2902
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2903
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2904
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2905 2906 2907 2908
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2909
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2910 2911 2912 2913 2914
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2915
static
2916
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2917
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2918
		     int *all_pinned)
L
Linus Torvalds 已提交
2919 2920 2921 2922 2923 2924 2925
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2926 2927
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2928
		return 0;
2929
	}
2930 2931
	*all_pinned = 0;

2932 2933
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2934
		return 0;
2935
	}
L
Linus Torvalds 已提交
2936

2937 2938 2939 2940 2941 2942
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2943 2944
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2945
#ifdef CONFIG_SCHEDSTATS
2946
		if (task_hot(p, rq->clock, sd)) {
2947
			schedstat_inc(sd, lb_hot_gained[idle]);
2948 2949
			schedstat_inc(p, se.nr_forced_migrations);
		}
2950 2951 2952 2953
#endif
		return 1;
	}

2954 2955
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2956
		return 0;
2957
	}
L
Linus Torvalds 已提交
2958 2959 2960
	return 1;
}

2961 2962 2963 2964 2965
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2966
{
2967
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2968 2969
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2970

2971
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2972 2973
		goto out;

2974 2975
	pinned = 1;

L
Linus Torvalds 已提交
2976
	/*
I
Ingo Molnar 已提交
2977
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2978
	 */
I
Ingo Molnar 已提交
2979 2980
	p = iterator->start(iterator->arg);
next:
2981
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2982
		goto out;
2983 2984

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2985 2986 2987
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2988 2989
	}

I
Ingo Molnar 已提交
2990
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2991
	pulled++;
I
Ingo Molnar 已提交
2992
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2993

2994
	/*
2995
	 * We only want to steal up to the prescribed amount of weighted load.
2996
	 */
2997
	if (rem_load_move > 0) {
2998 2999
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3000 3001
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3002 3003 3004
	}
out:
	/*
3005
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3006 3007 3008 3009
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3010 3011 3012

	if (all_pinned)
		*all_pinned = pinned;
3013 3014

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3015 3016
}

I
Ingo Molnar 已提交
3017
/*
P
Peter Williams 已提交
3018 3019 3020
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3021 3022 3023 3024
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3025
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3026 3027 3028
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3029
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3030
	unsigned long total_load_moved = 0;
3031
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3032 3033

	do {
P
Peter Williams 已提交
3034 3035
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3036
				max_load_move - total_load_moved,
3037
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3038
		class = class->next;
3039 3040 3041 3042

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3043
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3044

P
Peter Williams 已提交
3045 3046 3047
	return total_load_moved > 0;
}

3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3084
	const struct sched_class *class;
P
Peter Williams 已提交
3085 3086

	for (class = sched_class_highest; class; class = class->next)
3087
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3088 3089 3090
			return 1;

	return 0;
I
Ingo Molnar 已提交
3091 3092
}

L
Linus Torvalds 已提交
3093 3094
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3095 3096
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3097 3098 3099
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3100
		   unsigned long *imbalance, enum cpu_idle_type idle,
3101
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3102 3103 3104
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3105
	unsigned long max_pull;
3106 3107
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3108
	int load_idx, group_imb = 0;
3109 3110 3111 3112 3113 3114
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3115 3116

	max_load = this_load = total_load = total_pwr = 0;
3117 3118
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3119

I
Ingo Molnar 已提交
3120
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3121
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3122
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3123 3124 3125
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3126 3127

	do {
3128
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3129 3130
		int local_group;
		int i;
3131
		int __group_imb = 0;
3132
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3133
		unsigned long sum_nr_running, sum_weighted_load;
3134 3135
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3136 3137 3138

		local_group = cpu_isset(this_cpu, group->cpumask);

3139 3140 3141
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3142
		/* Tally up the load of all CPUs in the group */
3143
		sum_weighted_load = sum_nr_running = avg_load = 0;
3144 3145
		sum_avg_load_per_task = avg_load_per_task = 0;

3146 3147
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3148

3149
		for_each_cpu_mask_nr(i, group->cpumask) {
3150 3151 3152 3153 3154 3155
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3156

3157
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3158 3159
				*sd_idle = 0;

L
Linus Torvalds 已提交
3160
			/* Bias balancing toward cpus of our domain */
3161 3162 3163 3164 3165 3166
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3167
				load = target_load(i, load_idx);
3168
			} else {
N
Nick Piggin 已提交
3169
				load = source_load(i, load_idx);
3170 3171 3172 3173 3174
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3175 3176

			avg_load += load;
3177
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3178
			sum_weighted_load += weighted_cpuload(i);
3179 3180

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3181 3182
		}

3183 3184 3185
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3186 3187
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3188
		 */
3189 3190
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3191 3192 3193 3194
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3195
		total_load += avg_load;
3196
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3197 3198

		/* Adjust by relative CPU power of the group */
3199 3200
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3201

3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3216 3217
			__group_imb = 1;

3218
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3219

L
Linus Torvalds 已提交
3220 3221 3222
		if (local_group) {
			this_load = avg_load;
			this = group;
3223 3224 3225
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3226
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3227 3228
			max_load = avg_load;
			busiest = group;
3229 3230
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3231
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3232
		}
3233 3234 3235 3236 3237 3238

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3239 3240 3241
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3242 3243 3244 3245 3246 3247 3248 3249 3250

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3251
		/*
3252 3253
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3254 3255
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3256
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3257
			goto group_next;
3258

I
Ingo Molnar 已提交
3259
		/*
3260
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3261 3262 3263 3264 3265
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3266 3267
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3268 3269
			group_min = group;
			min_nr_running = sum_nr_running;
3270 3271
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3272
		}
3273

I
Ingo Molnar 已提交
3274
		/*
3275
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3287
		}
3288 3289
group_next:
#endif
L
Linus Torvalds 已提交
3290 3291 3292
		group = group->next;
	} while (group != sd->groups);

3293
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3294 3295 3296 3297 3298 3299 3300 3301
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3302
	busiest_load_per_task /= busiest_nr_running;
3303 3304 3305
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3306 3307 3308 3309 3310 3311 3312 3313
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3314
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3315 3316
	 * appear as very large values with unsigned longs.
	 */
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3329 3330

	/* Don't want to pull so many tasks that a group would go idle */
3331
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3332

L
Linus Torvalds 已提交
3333
	/* How much load to actually move to equalise the imbalance */
3334 3335
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3336 3337
			/ SCHED_LOAD_SCALE;

3338 3339 3340 3341 3342 3343
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3344
	if (*imbalance < busiest_load_per_task) {
3345
		unsigned long tmp, pwr_now, pwr_move;
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3356
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3357

3358
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3359
					busiest_load_per_task * imbn) {
3360
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3361 3362 3363 3364 3365 3366 3367 3368 3369
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3370 3371 3372 3373
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3374 3375 3376
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3377 3378
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3379
		if (max_load > tmp)
3380
			pwr_move += busiest->__cpu_power *
3381
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3382 3383

		/* Amount of load we'd add */
3384
		if (max_load * busiest->__cpu_power <
3385
				busiest_load_per_task * SCHED_LOAD_SCALE)
3386 3387
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3388
		else
3389 3390 3391 3392
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3393 3394 3395
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3396 3397
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3398 3399 3400 3401 3402
	}

	return busiest;

out_balanced:
3403
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3404
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3405
		goto ret;
L
Linus Torvalds 已提交
3406

3407 3408 3409 3410 3411
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3412
ret:
L
Linus Torvalds 已提交
3413 3414 3415 3416 3417 3418 3419
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3420
static struct rq *
I
Ingo Molnar 已提交
3421
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3422
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3423
{
3424
	struct rq *busiest = NULL, *rq;
3425
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3426 3427
	int i;

3428
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3429
		unsigned long wl;
3430 3431 3432 3433

		if (!cpu_isset(i, *cpus))
			continue;

3434
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3435
		wl = weighted_cpuload(i);
3436

I
Ingo Molnar 已提交
3437
		if (rq->nr_running == 1 && wl > imbalance)
3438
			continue;
L
Linus Torvalds 已提交
3439

I
Ingo Molnar 已提交
3440 3441
		if (wl > max_load) {
			max_load = wl;
3442
			busiest = rq;
L
Linus Torvalds 已提交
3443 3444 3445 3446 3447 3448
		}
	}

	return busiest;
}

3449 3450 3451 3452 3453 3454
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3455 3456 3457 3458
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3459
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3460
			struct sched_domain *sd, enum cpu_idle_type idle,
3461
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3462
{
P
Peter Williams 已提交
3463
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3464 3465
	struct sched_group *group;
	unsigned long imbalance;
3466
	struct rq *busiest;
3467
	unsigned long flags;
N
Nick Piggin 已提交
3468

3469 3470
	cpus_setall(*cpus);

3471 3472 3473
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3474
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3475
	 * portraying it as CPU_NOT_IDLE.
3476
	 */
I
Ingo Molnar 已提交
3477
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3478
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3479
		sd_idle = 1;
L
Linus Torvalds 已提交
3480

3481
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3482

3483
redo:
3484
	update_shares(sd);
3485
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3486
				   cpus, balance);
3487

3488
	if (*balance == 0)
3489 3490
		goto out_balanced;

L
Linus Torvalds 已提交
3491 3492 3493 3494 3495
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3496
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3497 3498 3499 3500 3501
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3502
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3503 3504 3505

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3506
	ld_moved = 0;
L
Linus Torvalds 已提交
3507 3508 3509 3510
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3511
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3512 3513
		 * correctly treated as an imbalance.
		 */
3514
		local_irq_save(flags);
N
Nick Piggin 已提交
3515
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3516
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3517
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3518
		double_rq_unlock(this_rq, busiest);
3519
		local_irq_restore(flags);
3520

3521 3522 3523
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3524
		if (ld_moved && this_cpu != smp_processor_id())
3525 3526
			resched_cpu(this_cpu);

3527
		/* All tasks on this runqueue were pinned by CPU affinity */
3528
		if (unlikely(all_pinned)) {
3529 3530
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3531
				goto redo;
3532
			goto out_balanced;
3533
		}
L
Linus Torvalds 已提交
3534
	}
3535

P
Peter Williams 已提交
3536
	if (!ld_moved) {
L
Linus Torvalds 已提交
3537 3538 3539 3540 3541
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3542
			spin_lock_irqsave(&busiest->lock, flags);
3543 3544 3545 3546 3547

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3548
				spin_unlock_irqrestore(&busiest->lock, flags);
3549 3550 3551 3552
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3553 3554 3555
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3556
				active_balance = 1;
L
Linus Torvalds 已提交
3557
			}
3558
			spin_unlock_irqrestore(&busiest->lock, flags);
3559
			if (active_balance)
L
Linus Torvalds 已提交
3560 3561 3562 3563 3564 3565
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3566
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3567
		}
3568
	} else
L
Linus Torvalds 已提交
3569 3570
		sd->nr_balance_failed = 0;

3571
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3572 3573
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3574 3575 3576 3577 3578 3579 3580 3581 3582
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3583 3584
	}

P
Peter Williams 已提交
3585
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3586
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3587 3588 3589
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3590 3591 3592 3593

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3594
	sd->nr_balance_failed = 0;
3595 3596

out_one_pinned:
L
Linus Torvalds 已提交
3597
	/* tune up the balancing interval */
3598 3599
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3600 3601
		sd->balance_interval *= 2;

3602
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3603
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3604 3605 3606 3607
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3608 3609
	if (ld_moved)
		update_shares(sd);
3610
	return ld_moved;
L
Linus Torvalds 已提交
3611 3612 3613 3614 3615 3616
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3617
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3618 3619
 * this_rq is locked.
 */
3620
static int
3621 3622
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3623 3624
{
	struct sched_group *group;
3625
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3626
	unsigned long imbalance;
P
Peter Williams 已提交
3627
	int ld_moved = 0;
N
Nick Piggin 已提交
3628
	int sd_idle = 0;
3629
	int all_pinned = 0;
3630 3631

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3632

3633 3634 3635 3636
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3637
	 * portraying it as CPU_NOT_IDLE.
3638 3639 3640
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3641
		sd_idle = 1;
L
Linus Torvalds 已提交
3642

3643
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3644
redo:
3645
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3646
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3647
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3648
	if (!group) {
I
Ingo Molnar 已提交
3649
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3650
		goto out_balanced;
L
Linus Torvalds 已提交
3651 3652
	}

3653
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3654
	if (!busiest) {
I
Ingo Molnar 已提交
3655
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3656
		goto out_balanced;
L
Linus Torvalds 已提交
3657 3658
	}

N
Nick Piggin 已提交
3659 3660
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3661
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3662

P
Peter Williams 已提交
3663
	ld_moved = 0;
3664 3665 3666
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3667 3668
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3669
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3670 3671
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3672
		double_unlock_balance(this_rq, busiest);
3673

3674
		if (unlikely(all_pinned)) {
3675 3676
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3677 3678
				goto redo;
		}
3679 3680
	}

P
Peter Williams 已提交
3681
	if (!ld_moved) {
I
Ingo Molnar 已提交
3682
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3683 3684
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3685 3686
			return -1;
	} else
3687
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3688

3689
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3690
	return ld_moved;
3691 3692

out_balanced:
I
Ingo Molnar 已提交
3693
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3694
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3695
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3696
		return -1;
3697
	sd->nr_balance_failed = 0;
3698

3699
	return 0;
L
Linus Torvalds 已提交
3700 3701 3702 3703 3704 3705
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3706
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3707 3708
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3709 3710
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3711
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3712 3713

	for_each_domain(this_cpu, sd) {
3714 3715 3716 3717 3718 3719
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3720
			/* If we've pulled tasks over stop searching: */
3721 3722
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3723 3724 3725 3726 3727 3728

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3729
	}
I
Ingo Molnar 已提交
3730
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3731 3732 3733 3734 3735
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3736
	}
L
Linus Torvalds 已提交
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3747
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3748
{
3749
	int target_cpu = busiest_rq->push_cpu;
3750 3751
	struct sched_domain *sd;
	struct rq *target_rq;
3752

3753
	/* Is there any task to move? */
3754 3755 3756 3757
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3758 3759

	/*
3760
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3761
	 * we need to fix it. Originally reported by
3762
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3763
	 */
3764
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3765

3766 3767
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3768 3769
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3770 3771

	/* Search for an sd spanning us and the target CPU. */
3772
	for_each_domain(target_cpu, sd) {
3773
		if ((sd->flags & SD_LOAD_BALANCE) &&
3774
		    cpu_isset(busiest_cpu, sd->span))
3775
				break;
3776
	}
3777

3778
	if (likely(sd)) {
3779
		schedstat_inc(sd, alb_count);
3780

P
Peter Williams 已提交
3781 3782
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3783 3784 3785 3786
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3787
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3788 3789
}

3790 3791 3792
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3793
	cpumask_t cpu_mask;
3794 3795 3796 3797 3798
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3799
/*
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3810
 *
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3830
		if (!cpu_active(cpu) &&
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3867 3868 3869 3870 3871
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3872
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3873
{
3874 3875
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3876 3877
	unsigned long interval;
	struct sched_domain *sd;
3878
	/* Earliest time when we have to do rebalance again */
3879
	unsigned long next_balance = jiffies + 60*HZ;
3880
	int update_next_balance = 0;
3881
	int need_serialize;
3882
	cpumask_t tmp;
L
Linus Torvalds 已提交
3883

3884
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3885 3886 3887 3888
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3889
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3890 3891 3892 3893 3894 3895
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3896 3897 3898
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3899
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3900

3901
		if (need_serialize) {
3902 3903 3904 3905
			if (!spin_trylock(&balancing))
				goto out;
		}

3906
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3907
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3908 3909
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3910 3911 3912
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3913
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3914
			}
3915
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3916
		}
3917
		if (need_serialize)
3918 3919
			spin_unlock(&balancing);
out:
3920
		if (time_after(next_balance, sd->last_balance + interval)) {
3921
			next_balance = sd->last_balance + interval;
3922 3923
			update_next_balance = 1;
		}
3924 3925 3926 3927 3928 3929 3930 3931

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3932
	}
3933 3934 3935 3936 3937 3938 3939 3940

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3941 3942 3943 3944 3945 3946 3947 3948 3949
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3950 3951 3952 3953
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3954

I
Ingo Molnar 已提交
3955
	rebalance_domains(this_cpu, idle);
3956 3957 3958 3959 3960 3961 3962

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3963 3964
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3965 3966 3967 3968
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3969
		cpu_clear(this_cpu, cpus);
3970
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3971 3972 3973 3974 3975 3976 3977 3978
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3979
			rebalance_domains(balance_cpu, CPU_IDLE);
3980 3981

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3982 3983
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3996
static inline void trigger_load_balance(struct rq *rq, int cpu)
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4023
			if (ilb < nr_cpu_ids)
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4048
}
I
Ingo Molnar 已提交
4049 4050 4051

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4052 4053 4054
/*
 * on UP we do not need to balance between CPUs:
 */
4055
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4056 4057
{
}
I
Ingo Molnar 已提交
4058

L
Linus Torvalds 已提交
4059 4060 4061 4062 4063 4064 4065
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4066 4067
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4068
 */
4069
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4070 4071
{
	unsigned long flags;
4072
	struct rq *rq;
4073
	u64 ns = 0;
4074

4075
	rq = task_rq_lock(p, &flags);
4076

4077
	if (task_current(rq, p)) {
4078 4079
		u64 delta_exec;

I
Ingo Molnar 已提交
4080 4081
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4082
		if ((s64)delta_exec > 0)
4083
			ns = delta_exec;
4084
	}
4085

4086
	task_rq_unlock(rq, &flags);
4087

L
Linus Torvalds 已提交
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);
4102
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4103 4104 4105 4106 4107 4108 4109

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4110 4111
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4112 4113
}

4114 4115 4116 4117 4118
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4119
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4120 4121 4122 4123 4124 4125 4126
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
4127
	account_group_user_time(p, cputime);
4128 4129 4130 4131 4132 4133
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4154
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4155 4156
	cputime64_t tmp;

4157 4158 4159 4160
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4161

L
Linus Torvalds 已提交
4162
	p->stime = cputime_add(p->stime, cputime);
4163
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4164 4165 4166 4167 4168 4169 4170

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4171
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4172
		cpustat->system = cputime64_add(cpustat->system, tmp);
4173
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4174 4175 4176 4177 4178 4179 4180
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4192 4193 4194 4195 4196 4197 4198 4199 4200
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4201
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4202 4203 4204

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
4205
		account_group_system_time(p, steal);
L
Linus Torvalds 已提交
4206 4207 4208 4209
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4210
	} else
L
Linus Torvalds 已提交
4211 4212 4213
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4284
	struct task_struct *curr = rq->curr;
4285 4286

	sched_clock_tick();
I
Ingo Molnar 已提交
4287 4288

	spin_lock(&rq->lock);
4289
	update_rq_clock(rq);
4290
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4291
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4292
	spin_unlock(&rq->lock);
4293

4294
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4295 4296
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4297
#endif
L
Linus Torvalds 已提交
4298 4299
}

4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4312

4313
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4314
{
4315
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4316 4317 4318
	/*
	 * Underflow?
	 */
4319 4320
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4321
#endif
L
Linus Torvalds 已提交
4322
	preempt_count() += val;
4323
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4324 4325 4326
	/*
	 * Spinlock count overflowing soon?
	 */
4327 4328
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4329 4330 4331
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4332 4333 4334
}
EXPORT_SYMBOL(add_preempt_count);

4335
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4336
{
4337
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4338 4339 4340
	/*
	 * Underflow?
	 */
4341 4342
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4343 4344 4345
	/*
	 * Is the spinlock portion underflowing?
	 */
4346 4347 4348
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4349
#endif
4350

4351 4352
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4353 4354 4355 4356 4357 4358 4359
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4360
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4361
 */
I
Ingo Molnar 已提交
4362
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4363
{
4364 4365 4366 4367 4368
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4369
	debug_show_held_locks(prev);
4370
	print_modules();
I
Ingo Molnar 已提交
4371 4372
	if (irqs_disabled())
		print_irqtrace_events(prev);
4373 4374 4375 4376 4377

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4378
}
L
Linus Torvalds 已提交
4379

I
Ingo Molnar 已提交
4380 4381 4382 4383 4384
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4385
	/*
I
Ingo Molnar 已提交
4386
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4387 4388 4389
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4390
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4391 4392
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4393 4394
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4395
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4396 4397
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4398 4399
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4400 4401
	}
#endif
I
Ingo Molnar 已提交
4402 4403 4404 4405 4406 4407
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4408
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4409
{
4410
	const struct sched_class *class;
I
Ingo Molnar 已提交
4411
	struct task_struct *p;
L
Linus Torvalds 已提交
4412 4413

	/*
I
Ingo Molnar 已提交
4414 4415
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4416
	 */
I
Ingo Molnar 已提交
4417
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4418
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4419 4420
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4421 4422
	}

I
Ingo Molnar 已提交
4423 4424
	class = sched_class_highest;
	for ( ; ; ) {
4425
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4426 4427 4428 4429 4430 4431 4432 4433 4434
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4435

I
Ingo Molnar 已提交
4436 4437 4438 4439 4440 4441
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4442
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4443
	struct rq *rq;
4444
	int cpu;
I
Ingo Molnar 已提交
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4458

4459
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4460
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4461

4462
	spin_lock_irq(&rq->lock);
4463
	update_rq_clock(rq);
4464
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4465 4466

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4467
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4468
			prev->state = TASK_RUNNING;
4469
		else
4470
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4471
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4472 4473
	}

4474 4475 4476 4477
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4478

I
Ingo Molnar 已提交
4479
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4480 4481
		idle_balance(cpu, rq);

4482
	prev->sched_class->put_prev_task(rq, prev);
4483
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4484 4485

	if (likely(prev != next)) {
4486 4487
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4488 4489 4490 4491
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4492
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4493 4494 4495 4496 4497 4498
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4499 4500 4501
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4502
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4503
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4504

L
Linus Torvalds 已提交
4505 4506 4507 4508 4509 4510 4511 4512
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4513
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4514
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4515 4516 4517 4518 4519
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4520

L
Linus Torvalds 已提交
4521 4522
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4523
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4524
	 */
N
Nick Piggin 已提交
4525
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4526 4527
		return;

4528 4529 4530 4531
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4532

4533 4534 4535 4536 4537 4538
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4539 4540 4541 4542
}
EXPORT_SYMBOL(preempt_schedule);

/*
4543
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4544 4545 4546 4547 4548 4549 4550
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4551

4552
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4553 4554
	BUG_ON(ti->preempt_count || !irqs_disabled());

4555 4556 4557 4558 4559 4560
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4561

4562 4563 4564 4565 4566 4567
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4568 4569 4570 4571
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4572 4573
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4574
{
4575
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4576 4577 4578 4579
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4580 4581
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4582 4583 4584
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4585
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4586 4587 4588 4589 4590
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4591
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4592

4593
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4594 4595
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4596
		if (curr->func(curr, mode, sync, key) &&
4597
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4598 4599 4600 4601 4602 4603 4604 4605 4606
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4607
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4608
 */
4609
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4610
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4623
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4624 4625 4626 4627 4628
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4629
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4641
void
I
Ingo Molnar 已提交
4642
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4659 4660 4661 4662 4663 4664 4665 4666 4667
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4668
void complete(struct completion *x)
L
Linus Torvalds 已提交
4669 4670 4671 4672 4673
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4674
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4675 4676 4677 4678
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4679 4680 4681 4682 4683 4684
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4685
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4686 4687 4688 4689 4690
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4691
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4692 4693 4694 4695
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4696 4697
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4698 4699 4700 4701 4702 4703 4704
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4705
			if (signal_pending_state(state, current)) {
4706 4707
				timeout = -ERESTARTSYS;
				break;
4708 4709
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4710 4711 4712
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4713
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4714
		__remove_wait_queue(&x->wait, &wait);
4715 4716
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4717 4718
	}
	x->done--;
4719
	return timeout ?: 1;
L
Linus Torvalds 已提交
4720 4721
}

4722 4723
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4724 4725 4726 4727
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4728
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4729
	spin_unlock_irq(&x->wait.lock);
4730 4731
	return timeout;
}
L
Linus Torvalds 已提交
4732

4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4743
void __sched wait_for_completion(struct completion *x)
4744 4745
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4746
}
4747
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4748

4749 4750 4751 4752 4753 4754 4755 4756 4757
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4758
unsigned long __sched
4759
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4760
{
4761
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4762
}
4763
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4764

4765 4766 4767 4768 4769 4770 4771
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4772
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4773
{
4774 4775 4776 4777
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4778
}
4779
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4780

4781 4782 4783 4784 4785 4786 4787 4788
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4789
unsigned long __sched
4790 4791
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4792
{
4793
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4794
}
4795
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4796

4797 4798 4799 4800 4801 4802 4803
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4804 4805 4806 4807 4808 4809 4810 4811 4812
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4859 4860
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4861
{
I
Ingo Molnar 已提交
4862 4863 4864 4865
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4866

4867
	__set_current_state(state);
L
Linus Torvalds 已提交
4868

4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4883 4884 4885
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4886
long __sched
I
Ingo Molnar 已提交
4887
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4888
{
4889
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4890 4891 4892
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4893
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4894
{
4895
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4896 4897 4898
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4899
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4900
{
4901
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4902 4903 4904
}
EXPORT_SYMBOL(sleep_on_timeout);

4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4917
void rt_mutex_setprio(struct task_struct *p, int prio)
4918 4919
{
	unsigned long flags;
4920
	int oldprio, on_rq, running;
4921
	struct rq *rq;
4922
	const struct sched_class *prev_class = p->sched_class;
4923 4924 4925 4926

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4927
	update_rq_clock(rq);
4928

4929
	oldprio = p->prio;
I
Ingo Molnar 已提交
4930
	on_rq = p->se.on_rq;
4931
	running = task_current(rq, p);
4932
	if (on_rq)
4933
		dequeue_task(rq, p, 0);
4934 4935
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4936 4937 4938 4939 4940 4941

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4942 4943
	p->prio = prio;

4944 4945
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4946
	if (on_rq) {
4947
		enqueue_task(rq, p, 0);
4948 4949

		check_class_changed(rq, p, prev_class, oldprio, running);
4950 4951 4952 4953 4954 4955
	}
	task_rq_unlock(rq, &flags);
}

#endif

4956
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4957
{
I
Ingo Molnar 已提交
4958
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4959
	unsigned long flags;
4960
	struct rq *rq;
L
Linus Torvalds 已提交
4961 4962 4963 4964 4965 4966 4967 4968

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4969
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4970 4971 4972 4973
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4974
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4975
	 */
4976
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4977 4978 4979
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4980
	on_rq = p->se.on_rq;
4981
	if (on_rq)
4982
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4983 4984

	p->static_prio = NICE_TO_PRIO(nice);
4985
	set_load_weight(p);
4986 4987 4988
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4989

I
Ingo Molnar 已提交
4990
	if (on_rq) {
4991
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4992
		/*
4993 4994
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4995
		 */
4996
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4997 4998 4999 5000 5001 5002 5003
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5004 5005 5006 5007 5008
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5009
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5010
{
5011 5012
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5013

M
Matt Mackall 已提交
5014 5015 5016 5017
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5029
	long nice, retval;
L
Linus Torvalds 已提交
5030 5031 5032 5033 5034 5035

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5036 5037
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5038 5039 5040 5041 5042 5043 5044 5045 5046
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5047 5048 5049
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5068
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5069 5070 5071 5072 5073 5074 5075 5076
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5077
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5078 5079 5080
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5081
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5096
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5097 5098 5099 5100 5101 5102 5103 5104
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5105
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5106
{
5107
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5108 5109 5110
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5111 5112
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5113
{
I
Ingo Molnar 已提交
5114
	BUG_ON(p->se.on_rq);
5115

L
Linus Torvalds 已提交
5116
	p->policy = policy;
I
Ingo Molnar 已提交
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5129
	p->rt_priority = prio;
5130 5131 5132
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5133
	set_load_weight(p);
L
Linus Torvalds 已提交
5134 5135
}

5136 5137
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5138
{
5139
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5140
	unsigned long flags;
5141
	const struct sched_class *prev_class = p->sched_class;
5142
	struct rq *rq;
L
Linus Torvalds 已提交
5143

5144 5145
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5146 5147 5148 5149 5150
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5151 5152
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5153
		return -EINVAL;
L
Linus Torvalds 已提交
5154 5155
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5156 5157
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5158 5159
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5160
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5161
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5162
		return -EINVAL;
5163
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5164 5165
		return -EINVAL;

5166 5167 5168
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5169
	if (user && !capable(CAP_SYS_NICE)) {
5170
		if (rt_policy(policy)) {
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5187 5188 5189 5190 5191 5192
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5193

5194 5195 5196 5197 5198
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5199

5200
	if (user) {
5201
#ifdef CONFIG_RT_GROUP_SCHED
5202 5203 5204 5205
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5206 5207
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5208
			return -EPERM;
5209 5210
#endif

5211 5212 5213 5214 5215
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5216 5217 5218 5219 5220
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5221 5222 5223 5224
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5225
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5226 5227 5228
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5229 5230
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5231 5232
		goto recheck;
	}
I
Ingo Molnar 已提交
5233
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5234
	on_rq = p->se.on_rq;
5235
	running = task_current(rq, p);
5236
	if (on_rq)
5237
		deactivate_task(rq, p, 0);
5238 5239
	if (running)
		p->sched_class->put_prev_task(rq, p);
5240

L
Linus Torvalds 已提交
5241
	oldprio = p->prio;
I
Ingo Molnar 已提交
5242
	__setscheduler(rq, p, policy, param->sched_priority);
5243

5244 5245
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5246 5247
	if (on_rq) {
		activate_task(rq, p, 0);
5248 5249

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5250
	}
5251 5252 5253
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5254 5255
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5256 5257
	return 0;
}
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5272 5273
EXPORT_SYMBOL_GPL(sched_setscheduler);

5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5291 5292
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5293 5294 5295
{
	struct sched_param lparam;
	struct task_struct *p;
5296
	int retval;
L
Linus Torvalds 已提交
5297 5298 5299 5300 5301

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5302 5303 5304

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5305
	p = find_process_by_pid(pid);
5306 5307 5308
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5309

L
Linus Torvalds 已提交
5310 5311 5312 5313 5314 5315 5316 5317 5318
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5319 5320
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5321
{
5322 5323 5324 5325
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5345
	struct task_struct *p;
5346
	int retval;
L
Linus Torvalds 已提交
5347 5348

	if (pid < 0)
5349
		return -EINVAL;
L
Linus Torvalds 已提交
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5371
	struct task_struct *p;
5372
	int retval;
L
Linus Torvalds 已提交
5373 5374

	if (!param || pid < 0)
5375
		return -EINVAL;
L
Linus Torvalds 已提交
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5402
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5403 5404
{
	cpumask_t cpus_allowed;
5405
	cpumask_t new_mask = *in_mask;
5406 5407
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5408

5409
	get_online_cpus();
L
Linus Torvalds 已提交
5410 5411 5412 5413 5414
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5415
		put_online_cpus();
L
Linus Torvalds 已提交
5416 5417 5418 5419 5420
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5421
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5432 5433 5434 5435
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5436
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5437
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5438
 again:
5439
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5440

P
Paul Menage 已提交
5441
	if (!retval) {
5442
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5453 5454
out_unlock:
	put_task_struct(p);
5455
	put_online_cpus();
L
Linus Torvalds 已提交
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5486
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5487 5488 5489 5490
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5491
	struct task_struct *p;
L
Linus Torvalds 已提交
5492 5493
	int retval;

5494
	get_online_cpus();
L
Linus Torvalds 已提交
5495 5496 5497 5498 5499 5500 5501
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5502 5503 5504 5505
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5506
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5507 5508 5509

out_unlock:
	read_unlock(&tasklist_lock);
5510
	put_online_cpus();
L
Linus Torvalds 已提交
5511

5512
	return retval;
L
Linus Torvalds 已提交
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5543 5544
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5545 5546 5547
 */
asmlinkage long sys_sched_yield(void)
{
5548
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5549

5550
	schedstat_inc(rq, yld_count);
5551
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5552 5553 5554 5555 5556 5557

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5558
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5559 5560 5561 5562 5563 5564 5565 5566
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5567
static void __cond_resched(void)
L
Linus Torvalds 已提交
5568
{
5569 5570 5571
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5572 5573 5574 5575 5576
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5577 5578 5579 5580 5581 5582 5583
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5584
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5585
{
5586 5587
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5588 5589 5590 5591 5592
		__cond_resched();
		return 1;
	}
	return 0;
}
5593
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5594 5595 5596 5597 5598

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5599
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5600 5601 5602
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5603
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5604
{
N
Nick Piggin 已提交
5605
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5606 5607
	int ret = 0;

N
Nick Piggin 已提交
5608
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5609
		spin_unlock(lock);
N
Nick Piggin 已提交
5610 5611 5612 5613
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5614
		ret = 1;
L
Linus Torvalds 已提交
5615 5616
		spin_lock(lock);
	}
J
Jan Kara 已提交
5617
	return ret;
L
Linus Torvalds 已提交
5618 5619 5620 5621 5622 5623 5624
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5625
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5626
		local_bh_enable();
L
Linus Torvalds 已提交
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5638
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5649
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5650 5651 5652 5653 5654 5655 5656
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5657
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5658

5659
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5660 5661 5662
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5663
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5664 5665 5666 5667 5668
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5669
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5670 5671
	long ret;

5672
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5673 5674 5675
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5676
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5697
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5698
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5722
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5723
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5740
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5741
	unsigned int time_slice;
5742
	int retval;
L
Linus Torvalds 已提交
5743 5744 5745
	struct timespec t;

	if (pid < 0)
5746
		return -EINVAL;
L
Linus Torvalds 已提交
5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5758 5759 5760 5761 5762 5763
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5764
		time_slice = DEF_TIMESLICE;
5765
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5766 5767 5768 5769 5770
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5771 5772
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5773 5774
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5775
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5776
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5777 5778
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5779

L
Linus Torvalds 已提交
5780 5781 5782 5783 5784
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5785
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5786

5787
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5788 5789
{
	unsigned long free = 0;
5790
	unsigned state;
L
Linus Torvalds 已提交
5791 5792

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5793
	printk(KERN_INFO "%-13.13s %c", p->comm,
5794
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5795
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5796
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5797
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5798
	else
I
Ingo Molnar 已提交
5799
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5800 5801
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5802
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5803
	else
I
Ingo Molnar 已提交
5804
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5805 5806 5807
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5808
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5809 5810
		while (!*n)
			n++;
5811
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5812 5813
	}
#endif
5814
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5815
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5816

5817
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5818 5819
}

I
Ingo Molnar 已提交
5820
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5821
{
5822
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5823

5824 5825 5826
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5827
#else
5828 5829
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5830 5831 5832 5833 5834 5835 5836 5837
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5838
		if (!state_filter || (p->state & state_filter))
5839
			sched_show_task(p);
L
Linus Torvalds 已提交
5840 5841
	} while_each_thread(g, p);

5842 5843
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5844 5845 5846
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5847
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5848 5849 5850 5851 5852
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5853 5854
}

I
Ingo Molnar 已提交
5855 5856
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5857
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5858 5859
}

5860 5861 5862 5863 5864 5865 5866 5867
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5868
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5869
{
5870
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5871 5872
	unsigned long flags;

5873 5874
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5875 5876 5877
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5878
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5879
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5880
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5881 5882

	rq->curr = rq->idle = idle;
5883 5884 5885
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5886 5887 5888
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5889 5890 5891
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5892
	task_thread_info(idle)->preempt_count = 0;
5893
#endif
I
Ingo Molnar 已提交
5894 5895 5896 5897
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5932 5933

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5934 5935
}

L
Linus Torvalds 已提交
5936 5937 5938 5939
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5940
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5959
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5960 5961
 * call is not atomic; no spinlocks may be held.
 */
5962
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5963
{
5964
	struct migration_req req;
L
Linus Torvalds 已提交
5965
	unsigned long flags;
5966
	struct rq *rq;
5967
	int ret = 0;
L
Linus Torvalds 已提交
5968 5969

	rq = task_rq_lock(p, &flags);
5970
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5971 5972 5973 5974
		ret = -EINVAL;
		goto out;
	}

5975 5976 5977 5978 5979 5980
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5981
	if (p->sched_class->set_cpus_allowed)
5982
		p->sched_class->set_cpus_allowed(p, new_mask);
5983
	else {
5984 5985
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5986 5987
	}

L
Linus Torvalds 已提交
5988
	/* Can the task run on the task's current CPU? If so, we're done */
5989
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5990 5991
		goto out;

5992
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5993 5994 5995 5996 5997 5998 5999 6000 6001
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6002

L
Linus Torvalds 已提交
6003 6004
	return ret;
}
6005
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6006 6007

/*
I
Ingo Molnar 已提交
6008
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6009 6010 6011 6012 6013 6014
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6015 6016
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6017
 */
6018
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6019
{
6020
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6021
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6022

6023
	if (unlikely(!cpu_active(dest_cpu)))
6024
		return ret;
L
Linus Torvalds 已提交
6025 6026 6027 6028 6029 6030 6031

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6032
		goto done;
L
Linus Torvalds 已提交
6033 6034
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
6035
		goto fail;
L
Linus Torvalds 已提交
6036

I
Ingo Molnar 已提交
6037
	on_rq = p->se.on_rq;
6038
	if (on_rq)
6039
		deactivate_task(rq_src, p, 0);
6040

L
Linus Torvalds 已提交
6041
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6042 6043
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6044
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6045
	}
L
Linus Torvalds 已提交
6046
done:
6047
	ret = 1;
L
Linus Torvalds 已提交
6048
fail:
L
Linus Torvalds 已提交
6049
	double_rq_unlock(rq_src, rq_dest);
6050
	return ret;
L
Linus Torvalds 已提交
6051 6052 6053 6054 6055 6056 6057
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6058
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6059 6060
{
	int cpu = (long)data;
6061
	struct rq *rq;
L
Linus Torvalds 已提交
6062 6063 6064 6065 6066 6067

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6068
		struct migration_req *req;
L
Linus Torvalds 已提交
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6091
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6092 6093
		list_del_init(head->next);

N
Nick Piggin 已提交
6094 6095 6096
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6126
/*
6127
 * Figure out where task on dead CPU should go, use force if necessary.
6128 6129
 * NOTE: interrupts should be disabled by the caller
 */
6130
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6131
{
6132
	unsigned long flags;
L
Linus Torvalds 已提交
6133
	cpumask_t mask;
6134 6135
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6136

6137 6138 6139 6140 6141 6142 6143
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6144
		if (dest_cpu >= nr_cpu_ids)
6145 6146 6147
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6148
		if (dest_cpu >= nr_cpu_ids) {
6149 6150 6151
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6152 6153 6154 6155
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6156
			 * cpuset_cpus_allowed() will not block. It must be
6157 6158
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6159
			rq = task_rq_lock(p, &flags);
6160
			p->cpus_allowed = cpus_allowed;
6161 6162
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6163

6164 6165 6166 6167 6168
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6169
			if (p->mm && printk_ratelimit()) {
6170 6171
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6172 6173
					task_pid_nr(p), p->comm, dead_cpu);
			}
6174
		}
6175
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6176 6177 6178 6179 6180 6181 6182 6183 6184
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6185
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6186
{
6187
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6201
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6202

6203
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6204

6205 6206
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6207 6208
			continue;

6209 6210 6211
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6212

6213
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6214 6215
}

I
Ingo Molnar 已提交
6216 6217
/*
 * Schedules idle task to be the next runnable task on current CPU.
6218 6219
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6220 6221 6222
 */
void sched_idle_next(void)
{
6223
	int this_cpu = smp_processor_id();
6224
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6225 6226 6227 6228
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6229
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6230

6231 6232 6233
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6234 6235 6236
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6237
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6238

6239 6240
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6241 6242 6243 6244

	spin_unlock_irqrestore(&rq->lock, flags);
}

6245 6246
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6260
/* called under rq->lock with disabled interrupts */
6261
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6262
{
6263
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6264 6265

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6266
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6267 6268

	/* Cannot have done final schedule yet: would have vanished. */
6269
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6270

6271
	get_task_struct(p);
L
Linus Torvalds 已提交
6272 6273 6274

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6275
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6276 6277
	 * fine.
	 */
6278
	spin_unlock_irq(&rq->lock);
6279
	move_task_off_dead_cpu(dead_cpu, p);
6280
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6281

6282
	put_task_struct(p);
L
Linus Torvalds 已提交
6283 6284 6285 6286 6287
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6288
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6289
	struct task_struct *next;
6290

I
Ingo Molnar 已提交
6291 6292 6293
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6294
		update_rq_clock(rq);
6295
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6296 6297
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6298
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6299
		migrate_dead(dead_cpu, next);
6300

L
Linus Torvalds 已提交
6301 6302 6303 6304
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6305 6306 6307
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6308 6309
	{
		.procname	= "sched_domain",
6310
		.mode		= 0555,
6311
	},
I
Ingo Molnar 已提交
6312
	{0, },
6313 6314 6315
};

static struct ctl_table sd_ctl_root[] = {
6316
	{
6317
		.ctl_name	= CTL_KERN,
6318
		.procname	= "kernel",
6319
		.mode		= 0555,
6320 6321
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6322
	{0, },
6323 6324 6325 6326 6327
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6328
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6329 6330 6331 6332

	return entry;
}

6333 6334
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6335
	struct ctl_table *entry;
6336

6337 6338 6339
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6340
	 * will always be set. In the lowest directory the names are
6341 6342 6343
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6344 6345
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6346 6347 6348
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6349 6350 6351 6352 6353

	kfree(*tablep);
	*tablep = NULL;
}

6354
static void
6355
set_table_entry(struct ctl_table *entry,
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6369
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6370

6371 6372 6373
	if (table == NULL)
		return NULL;

6374
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6375
		sizeof(long), 0644, proc_doulongvec_minmax);
6376
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6377
		sizeof(long), 0644, proc_doulongvec_minmax);
6378
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6379
		sizeof(int), 0644, proc_dointvec_minmax);
6380
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6381
		sizeof(int), 0644, proc_dointvec_minmax);
6382
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6383
		sizeof(int), 0644, proc_dointvec_minmax);
6384
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6385
		sizeof(int), 0644, proc_dointvec_minmax);
6386
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6387
		sizeof(int), 0644, proc_dointvec_minmax);
6388
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6389
		sizeof(int), 0644, proc_dointvec_minmax);
6390
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6391
		sizeof(int), 0644, proc_dointvec_minmax);
6392
	set_table_entry(&table[9], "cache_nice_tries",
6393 6394
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6395
	set_table_entry(&table[10], "flags", &sd->flags,
6396
		sizeof(int), 0644, proc_dointvec_minmax);
6397 6398 6399
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6400 6401 6402 6403

	return table;
}

6404
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6405 6406 6407 6408 6409 6410 6411 6412 6413
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6414 6415
	if (table == NULL)
		return NULL;
6416 6417 6418 6419 6420

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6421
		entry->mode = 0555;
6422 6423 6424 6425 6426 6427 6428 6429
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6430
static void register_sched_domain_sysctl(void)
6431 6432 6433 6434 6435
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6436 6437 6438
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6439 6440 6441
	if (entry == NULL)
		return;

6442
	for_each_online_cpu(i) {
6443 6444
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6445
		entry->mode = 0555;
6446
		entry->child = sd_alloc_ctl_cpu_table(i);
6447
		entry++;
6448
	}
6449 6450

	WARN_ON(sd_sysctl_header);
6451 6452
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6453

6454
/* may be called multiple times per register */
6455 6456
static void unregister_sched_domain_sysctl(void)
{
6457 6458
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6459
	sd_sysctl_header = NULL;
6460 6461
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6462
}
6463
#else
6464 6465 6466 6467
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6468 6469 6470 6471
{
}
#endif

6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6502 6503 6504 6505
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6506 6507
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6508 6509
{
	struct task_struct *p;
6510
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6511
	unsigned long flags;
6512
	struct rq *rq;
L
Linus Torvalds 已提交
6513 6514

	switch (action) {
6515

L
Linus Torvalds 已提交
6516
	case CPU_UP_PREPARE:
6517
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6518
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6519 6520 6521 6522 6523
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6524
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6525 6526 6527
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6528

L
Linus Torvalds 已提交
6529
	case CPU_ONLINE:
6530
	case CPU_ONLINE_FROZEN:
6531
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6532
		wake_up_process(cpu_rq(cpu)->migration_thread);
6533 6534 6535 6536 6537 6538

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6539 6540

			set_rq_online(rq);
6541 6542
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6543
		break;
6544

L
Linus Torvalds 已提交
6545 6546
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6547
	case CPU_UP_CANCELED_FROZEN:
6548 6549
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6550
		/* Unbind it from offline cpu so it can run. Fall thru. */
6551 6552
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6553 6554 6555
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6556

L
Linus Torvalds 已提交
6557
	case CPU_DEAD:
6558
	case CPU_DEAD_FROZEN:
6559
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6560 6561 6562 6563 6564
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6565
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6566
		update_rq_clock(rq);
6567
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6568
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6569 6570
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6571
		migrate_dead_tasks(cpu);
6572
		spin_unlock_irq(&rq->lock);
6573
		cpuset_unlock();
L
Linus Torvalds 已提交
6574 6575 6576
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6577 6578 6579 6580 6581
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6582 6583
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6584 6585
			struct migration_req *req;

L
Linus Torvalds 已提交
6586
			req = list_entry(rq->migration_queue.next,
6587
					 struct migration_req, list);
L
Linus Torvalds 已提交
6588 6589 6590 6591 6592
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6593

6594 6595
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6596 6597 6598 6599 6600
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6601
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6602 6603 6604
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6605 6606 6607 6608 6609 6610 6611 6612
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6613
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6614 6615 6616 6617
	.notifier_call = migration_call,
	.priority = 10
};

6618
static int __init migration_init(void)
L
Linus Torvalds 已提交
6619 6620
{
	void *cpu = (void *)(long)smp_processor_id();
6621
	int err;
6622 6623

	/* Start one for the boot CPU: */
6624 6625
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6626 6627
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6628 6629

	return err;
L
Linus Torvalds 已提交
6630
}
6631
early_initcall(migration_init);
L
Linus Torvalds 已提交
6632 6633 6634
#endif

#ifdef CONFIG_SMP
6635

6636
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6637

6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6660 6661
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6662
{
I
Ingo Molnar 已提交
6663
	struct sched_group *group = sd->groups;
6664
	char str[256];
L
Linus Torvalds 已提交
6665

6666
	cpulist_scnprintf(str, sizeof(str), sd->span);
6667
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6668 6669 6670 6671 6672 6673 6674 6675 6676

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6677 6678
	}

6679 6680
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6681 6682 6683 6684 6685 6686 6687 6688 6689

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6690

I
Ingo Molnar 已提交
6691
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6692
	do {
I
Ingo Molnar 已提交
6693 6694 6695
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6696 6697 6698
			break;
		}

I
Ingo Molnar 已提交
6699 6700 6701 6702 6703 6704
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6705

I
Ingo Molnar 已提交
6706 6707 6708 6709 6710
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6711

6712
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6713 6714 6715 6716
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6717

6718
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6719

6720
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6721
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6722

I
Ingo Molnar 已提交
6723 6724 6725
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6726

6727
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6728
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6729

6730
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6731 6732 6733 6734
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6735

I
Ingo Molnar 已提交
6736 6737
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6738
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6739
	int level = 0;
L
Linus Torvalds 已提交
6740

I
Ingo Molnar 已提交
6741 6742 6743 6744
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6745

I
Ingo Molnar 已提交
6746 6747
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6748 6749 6750 6751 6752 6753
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6754
	for (;;) {
6755
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6756
			break;
L
Linus Torvalds 已提交
6757 6758
		level++;
		sd = sd->parent;
6759
		if (!sd)
I
Ingo Molnar 已提交
6760 6761
			break;
	}
6762
	kfree(groupmask);
L
Linus Torvalds 已提交
6763
}
6764
#else /* !CONFIG_SCHED_DEBUG */
6765
# define sched_domain_debug(sd, cpu) do { } while (0)
6766
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6767

6768
static int sd_degenerate(struct sched_domain *sd)
6769 6770 6771 6772 6773 6774 6775 6776
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6777 6778 6779
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6793 6794
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6813 6814 6815
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6816 6817 6818 6819 6820 6821 6822
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6823 6824 6825 6826 6827 6828 6829 6830 6831
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6832 6833
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6834

6835 6836
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6837 6838 6839 6840 6841 6842 6843
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6844
	cpu_set(rq->cpu, rd->span);
6845
	if (cpu_isset(rq->cpu, cpu_online_map))
6846
		set_rq_online(rq);
G
Gregory Haskins 已提交
6847 6848 6849 6850

	spin_unlock_irqrestore(&rq->lock, flags);
}

6851
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6852 6853 6854
{
	memset(rd, 0, sizeof(*rd));

6855 6856
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6857 6858

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6859 6860 6861 6862
}

static void init_defrootdomain(void)
{
6863
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6864 6865 6866
	atomic_set(&def_root_domain.refcount, 1);
}

6867
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6868 6869 6870 6871 6872 6873 6874
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6875
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6876 6877 6878 6879

	return rd;
}

L
Linus Torvalds 已提交
6880
/*
I
Ingo Molnar 已提交
6881
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6882 6883
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6884 6885
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6886
{
6887
	struct rq *rq = cpu_rq(cpu);
6888 6889 6890
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6891
	for (tmp = sd; tmp; ) {
6892 6893 6894
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6895

6896
		if (sd_parent_degenerate(tmp, parent)) {
6897
			tmp->parent = parent->parent;
6898 6899
			if (parent->parent)
				parent->parent->child = tmp;
6900 6901
		} else
			tmp = tmp->parent;
6902 6903
	}

6904
	if (sd && sd_degenerate(sd)) {
6905
		sd = sd->parent;
6906 6907 6908
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6909 6910 6911

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6912
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6913
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6914 6915 6916
}

/* cpus with isolated domains */
6917
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6918 6919 6920 6921

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6922 6923
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6924 6925 6926 6927 6928 6929 6930 6931 6932

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6933
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6934 6935

/*
6936 6937 6938 6939
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6940 6941 6942 6943 6944
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6945
static void
6946
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6947
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6948 6949 6950
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6951 6952 6953 6954
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6955 6956
	cpus_clear(*covered);

6957
	for_each_cpu_mask_nr(i, *span) {
6958
		struct sched_group *sg;
6959
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6960 6961
		int j;

6962
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6963 6964
			continue;

6965
		cpus_clear(sg->cpumask);
6966
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6967

6968
		for_each_cpu_mask_nr(j, *span) {
6969
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6970 6971
				continue;

6972
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6984
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6985

6986
#ifdef CONFIG_NUMA
6987

6988 6989 6990 6991 6992
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6993
 * Find the next node to include in a given scheduling domain. Simply
6994 6995 6996 6997
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6998
static int find_next_best_node(int node, nodemask_t *used_nodes)
6999 7000 7001 7002 7003
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7004
	for (i = 0; i < nr_node_ids; i++) {
7005
		/* Start at @node */
7006
		n = (node + i) % nr_node_ids;
7007 7008 7009 7010 7011

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7012
		if (node_isset(n, *used_nodes))
7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7024
	node_set(best_node, *used_nodes);
7025 7026 7027 7028 7029 7030
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7031
 * @span: resulting cpumask
7032
 *
I
Ingo Molnar 已提交
7033
 * Given a node, construct a good cpumask for its sched_domain to span. It
7034 7035 7036
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7037
static void sched_domain_node_span(int node, cpumask_t *span)
7038
{
7039 7040
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
7041
	int i;
7042

7043
	cpus_clear(*span);
7044
	nodes_clear(used_nodes);
7045

7046
	cpus_or(*span, *span, *nodemask);
7047
	node_set(node, used_nodes);
7048 7049

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7050
		int next_node = find_next_best_node(node, &used_nodes);
7051

7052
		node_to_cpumask_ptr_next(nodemask, next_node);
7053
		cpus_or(*span, *span, *nodemask);
7054 7055
	}
}
7056
#endif /* CONFIG_NUMA */
7057

7058
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7059

7060
/*
7061
 * SMT sched-domains:
7062
 */
L
Linus Torvalds 已提交
7063 7064
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7065
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7066

I
Ingo Molnar 已提交
7067
static int
7068 7069
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7070
{
7071 7072
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
7073 7074
	return cpu;
}
7075
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7076

7077 7078 7079
/*
 * multi-core sched-domains:
 */
7080 7081
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
7082
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7083
#endif /* CONFIG_SCHED_MC */
7084 7085

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7086
static int
7087 7088
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7089
{
7090
	int group;
7091 7092 7093 7094

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7095 7096 7097
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7098 7099
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7100
static int
7101 7102
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7103
{
7104 7105
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7106 7107 7108 7109
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7110
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7111
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7112

I
Ingo Molnar 已提交
7113
static int
7114 7115
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7116
{
7117
	int group;
7118
#ifdef CONFIG_SCHED_MC
7119 7120 7121
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7122
#elif defined(CONFIG_SCHED_SMT)
7123 7124 7125
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7126
#else
7127
	group = cpu;
L
Linus Torvalds 已提交
7128
#endif
7129 7130 7131
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7132 7133 7134 7135
}

#ifdef CONFIG_NUMA
/*
7136 7137 7138
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7139
 */
7140
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7141
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7142

7143
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7144
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7145

7146
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7147
				 struct sched_group **sg, cpumask_t *nodemask)
7148
{
7149 7150
	int group;

7151 7152 7153
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7154 7155 7156 7157

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7158
}
7159

7160 7161 7162 7163 7164 7165 7166
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7167
	do {
7168
		for_each_cpu_mask_nr(j, sg->cpumask) {
7169
			struct sched_domain *sd;
7170

7171 7172 7173 7174 7175 7176 7177 7178
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7179

7180 7181 7182 7183
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7184
}
7185
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7186

7187
#ifdef CONFIG_NUMA
7188
/* Free memory allocated for various sched_group structures */
7189
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7190
{
7191
	int cpu, i;
7192

7193
	for_each_cpu_mask_nr(cpu, *cpu_map) {
7194 7195 7196 7197 7198 7199
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7200
		for (i = 0; i < nr_node_ids; i++) {
7201 7202
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7203 7204 7205
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7222
#else /* !CONFIG_NUMA */
7223
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7224 7225
{
}
7226
#endif /* CONFIG_NUMA */
7227

7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7254 7255
	sd->groups->__cpu_power = 0;

7256 7257 7258 7259 7260 7261 7262 7263 7264 7265
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7266
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7267 7268 7269 7270 7271 7272 7273 7274
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7275
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7276 7277 7278 7279
		group = group->next;
	} while (group != child->groups);
}

7280 7281 7282 7283 7284
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7285 7286 7287 7288 7289 7290
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7291
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7292

7293 7294 7295 7296 7297
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7298
	sd->level = SD_LV_##type;				\
7299
	SD_INIT_NAME(sd, type);					\
7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7348 7349 7350 7351
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7352 7353 7354 7355 7356 7357
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7383
/*
7384 7385
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7386
 */
7387 7388
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7389 7390
{
	int i;
G
Gregory Haskins 已提交
7391
	struct root_domain *rd;
7392 7393
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7394 7395
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7396
	int sd_allnodes = 0;
7397 7398 7399 7400

	/*
	 * Allocate the per-node list of sched groups
	 */
7401
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7402
				    GFP_KERNEL);
7403 7404
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7405
		return -ENOMEM;
7406 7407
	}
#endif
L
Linus Torvalds 已提交
7408

7409
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7410 7411
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7412 7413 7414
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7415 7416 7417
		return -ENOMEM;
	}

7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7437
	/*
7438
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7439
	 */
7440
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7441
		struct sched_domain *sd = NULL, *p;
7442
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7443

7444 7445
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7446 7447

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7448
		if (cpus_weight(*cpu_map) >
7449
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7450
			sd = &per_cpu(allnodes_domains, i);
7451
			SD_INIT(sd, ALLNODES);
7452
			set_domain_attribute(sd, attr);
7453
			sd->span = *cpu_map;
7454
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7455
			p = sd;
7456
			sd_allnodes = 1;
7457 7458 7459
		} else
			p = NULL;

L
Linus Torvalds 已提交
7460
		sd = &per_cpu(node_domains, i);
7461
		SD_INIT(sd, NODE);
7462
		set_domain_attribute(sd, attr);
7463
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7464
		sd->parent = p;
7465 7466
		if (p)
			p->child = sd;
7467
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7468 7469 7470 7471
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7472
		SD_INIT(sd, CPU);
7473
		set_domain_attribute(sd, attr);
7474
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7475
		sd->parent = p;
7476 7477
		if (p)
			p->child = sd;
7478
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7479

7480 7481 7482
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7483
		SD_INIT(sd, MC);
7484
		set_domain_attribute(sd, attr);
7485 7486 7487
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7488
		p->child = sd;
7489
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7490 7491
#endif

L
Linus Torvalds 已提交
7492 7493 7494
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7495
		SD_INIT(sd, SIBLING);
7496
		set_domain_attribute(sd, attr);
7497
		sd->span = per_cpu(cpu_sibling_map, i);
7498
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7499
		sd->parent = p;
7500
		p->child = sd;
7501
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7502 7503 7504 7505 7506
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7507
	for_each_cpu_mask_nr(i, *cpu_map) {
7508 7509 7510 7511 7512 7513
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7514 7515
			continue;

I
Ingo Molnar 已提交
7516
		init_sched_build_groups(this_sibling_map, cpu_map,
7517 7518
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7519 7520 7521
	}
#endif

7522 7523
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7524
	for_each_cpu_mask_nr(i, *cpu_map) {
7525 7526 7527 7528 7529 7530
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7531
			continue;
7532

I
Ingo Molnar 已提交
7533
		init_sched_build_groups(this_core_map, cpu_map,
7534 7535
					&cpu_to_core_group,
					send_covered, tmpmask);
7536 7537 7538
	}
#endif

L
Linus Torvalds 已提交
7539
	/* Set up physical groups */
7540
	for (i = 0; i < nr_node_ids; i++) {
7541 7542
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7543

7544 7545 7546
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7547 7548
			continue;

7549 7550 7551
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7552 7553 7554 7555
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7556 7557 7558 7559 7560 7561 7562
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7563

7564
	for (i = 0; i < nr_node_ids; i++) {
7565 7566
		/* Set up node groups */
		struct sched_group *sg, *prev;
7567 7568 7569
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7570 7571
		int j;

7572 7573 7574 7575 7576
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7577
			sched_group_nodes[i] = NULL;
7578
			continue;
7579
		}
7580

7581
		sched_domain_node_span(i, domainspan);
7582
		cpus_and(*domainspan, *domainspan, *cpu_map);
7583

7584
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7585 7586 7587 7588 7589
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7590
		sched_group_nodes[i] = sg;
7591
		for_each_cpu_mask_nr(j, *nodemask) {
7592
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7593

7594 7595 7596
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7597
		sg->__cpu_power = 0;
7598
		sg->cpumask = *nodemask;
7599
		sg->next = sg;
7600
		cpus_or(*covered, *covered, *nodemask);
7601 7602
		prev = sg;

7603
		for (j = 0; j < nr_node_ids; j++) {
7604
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7605
			int n = (i + j) % nr_node_ids;
7606
			node_to_cpumask_ptr(pnodemask, n);
7607

7608 7609 7610 7611
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7612 7613
				break;

7614 7615
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7616 7617
				continue;

7618 7619
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7620 7621 7622
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7623
				goto error;
7624
			}
7625
			sg->__cpu_power = 0;
7626
			sg->cpumask = *tmpmask;
7627
			sg->next = prev->next;
7628
			cpus_or(*covered, *covered, *tmpmask);
7629 7630 7631 7632
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7633 7634 7635
#endif

	/* Calculate CPU power for physical packages and nodes */
7636
#ifdef CONFIG_SCHED_SMT
7637
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7638 7639
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7640
		init_sched_groups_power(i, sd);
7641
	}
L
Linus Torvalds 已提交
7642
#endif
7643
#ifdef CONFIG_SCHED_MC
7644
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7645 7646
		struct sched_domain *sd = &per_cpu(core_domains, i);

7647
		init_sched_groups_power(i, sd);
7648 7649
	}
#endif
7650

7651
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7652 7653
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7654
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7655 7656
	}

7657
#ifdef CONFIG_NUMA
7658
	for (i = 0; i < nr_node_ids; i++)
7659
		init_numa_sched_groups_power(sched_group_nodes[i]);
7660

7661 7662
	if (sd_allnodes) {
		struct sched_group *sg;
7663

7664 7665
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7666 7667
		init_numa_sched_groups_power(sg);
	}
7668 7669
#endif

L
Linus Torvalds 已提交
7670
	/* Attach the domains */
7671
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7672 7673 7674
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7675 7676
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7677 7678 7679
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7680
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7681
	}
7682

7683
	SCHED_CPUMASK_FREE((void *)allmasks);
7684 7685
	return 0;

7686
#ifdef CONFIG_NUMA
7687
error:
7688 7689
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7690
	kfree(rd);
7691
	return -ENOMEM;
7692
#endif
L
Linus Torvalds 已提交
7693
}
P
Paul Jackson 已提交
7694

7695 7696 7697 7698 7699
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7700 7701
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7702 7703
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7704 7705 7706 7707 7708 7709 7710 7711

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7712 7713 7714 7715
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7716
/*
I
Ingo Molnar 已提交
7717
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7718 7719
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7720
 */
7721
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7722
{
7723 7724
	int err;

7725
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7726 7727 7728 7729 7730
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7731
	dattr_cur = NULL;
7732
	err = build_sched_domains(doms_cur);
7733
	register_sched_domain_sysctl();
7734 7735

	return err;
7736 7737
}

7738 7739
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7740
{
7741
	free_sched_groups(cpu_map, tmpmask);
7742
}
L
Linus Torvalds 已提交
7743

7744 7745 7746 7747
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7748
static void detach_destroy_domains(const cpumask_t *cpu_map)
7749
{
7750
	cpumask_t tmpmask;
7751 7752
	int i;

7753 7754
	unregister_sched_domain_sysctl();

7755
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7756
		cpu_attach_domain(NULL, &def_root_domain, i);
7757
	synchronize_sched();
7758
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7759 7760
}

7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7777 7778
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7779
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7780 7781 7782 7783
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7784 7785 7786
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7787 7788 7789
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7790 7791
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7792 7793
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
7794
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7795
 *
7796 7797 7798 7799
 * If doms_new==NULL it will be replaced with cpu_online_map.
 * ndoms_new==0 is a special case for destroying existing domains.
 * It will not create the default domain.
 *
P
Paul Jackson 已提交
7800 7801
 * Call with hotplug lock held
 */
7802 7803
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7804
{
7805
	int i, j, n;
P
Paul Jackson 已提交
7806

7807
	mutex_lock(&sched_domains_mutex);
7808

7809 7810 7811
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7812
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7813 7814 7815

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7816
		for (j = 0; j < n; j++) {
7817 7818
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7819 7820 7821 7822 7823 7824 7825 7826
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7827 7828 7829 7830 7831 7832 7833
	if (doms_new == NULL) {
		ndoms_cur = 0;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
		dattr_new = NULL;
	}

P
Paul Jackson 已提交
7834 7835 7836
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7837 7838
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7839 7840 7841
				goto match2;
		}
		/* no match - add a new doms_new */
7842 7843
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7844 7845 7846 7847 7848 7849 7850
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7851
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7852
	doms_cur = doms_new;
7853
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7854
	ndoms_cur = ndoms_new;
7855 7856

	register_sched_domain_sysctl();
7857

7858
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7859 7860
}

7861
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7862
int arch_reinit_sched_domains(void)
7863
{
7864
	get_online_cpus();
7865 7866 7867 7868

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7869
	rebuild_sched_domains();
7870
	put_online_cpus();
7871

7872
	return 0;
7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7893 7894
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7895 7896 7897
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7898
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7899
					    const char *buf, size_t count)
7900 7901 7902
{
	return sched_power_savings_store(buf, count, 0);
}
7903 7904 7905
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7906 7907 7908
#endif

#ifdef CONFIG_SCHED_SMT
7909 7910
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7911 7912 7913
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7914
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7915
					     const char *buf, size_t count)
7916 7917 7918
{
	return sched_power_savings_store(buf, count, 1);
}
7919 7920
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7940
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7941

7942
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7943
/*
7944 7945
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7946 7947 7948
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7949 7950 7951 7952 7953 7954
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
7955
		partition_sched_domains(1, NULL, NULL);
7956 7957 7958 7959 7960 7961 7962 7963 7964 7965
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7966
{
P
Peter Zijlstra 已提交
7967 7968
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7969 7970
	switch (action) {
	case CPU_DOWN_PREPARE:
7971
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7972
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7973 7974 7975
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7976
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7977
	case CPU_ONLINE:
7978
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7979
		enable_runtime(cpu_rq(cpu));
7980 7981
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7982 7983 7984 7985 7986 7987 7988
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7989 7990
	cpumask_t non_isolated_cpus;

7991 7992 7993 7994 7995
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7996
	get_online_cpus();
7997
	mutex_lock(&sched_domains_mutex);
7998
	arch_init_sched_domains(&cpu_online_map);
7999
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
8000 8001
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
8002
	mutex_unlock(&sched_domains_mutex);
8003
	put_online_cpus();
8004 8005

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8006 8007
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8008 8009 8010 8011 8012
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8013
	init_hrtick();
8014 8015

	/* Move init over to a non-isolated CPU */
8016
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8017
		BUG();
I
Ingo Molnar 已提交
8018
	sched_init_granularity();
L
Linus Torvalds 已提交
8019 8020 8021 8022
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8023
	sched_init_granularity();
L
Linus Torvalds 已提交
8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8034
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8035 8036
{
	cfs_rq->tasks_timeline = RB_ROOT;
8037
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8038 8039 8040
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8041
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8042 8043
}

P
Peter Zijlstra 已提交
8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8057
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8058 8059
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8060 8061 8062 8063 8064 8065 8066
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8067 8068
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8069

8070
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8071
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8072 8073
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8074 8075
}

P
Peter Zijlstra 已提交
8076
#ifdef CONFIG_FAIR_GROUP_SCHED
8077 8078 8079
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8080
{
8081
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8082 8083 8084 8085 8086 8087 8088
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8089 8090 8091 8092
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8093 8094 8095 8096 8097
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8098 8099
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8100
	se->load.inv_weight = 0;
8101
	se->parent = parent;
P
Peter Zijlstra 已提交
8102
}
8103
#endif
P
Peter Zijlstra 已提交
8104

8105
#ifdef CONFIG_RT_GROUP_SCHED
8106 8107 8108
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8109
{
8110 8111
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8112 8113 8114 8115
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8116
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8117 8118 8119 8120
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8121 8122 8123
	if (!rt_se)
		return;

8124 8125 8126 8127 8128
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8129
	rt_se->my_q = rt_rq;
8130
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8131 8132 8133 8134
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8135 8136
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8137
	int i, j;
8138 8139 8140 8141 8142 8143 8144
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8145 8146 8147
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8148 8149 8150 8151 8152 8153
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8154
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8155 8156 8157 8158 8159 8160 8161

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8162 8163 8164 8165 8166 8167 8168

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8169 8170
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8171 8172 8173 8174 8175
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8176 8177 8178 8179 8180 8181 8182 8183
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8184 8185
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8186
	}
I
Ingo Molnar 已提交
8187

G
Gregory Haskins 已提交
8188 8189 8190 8191
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8192 8193 8194 8195 8196 8197
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8198 8199 8200
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8201 8202
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8203

8204
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8205
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8206 8207 8208 8209 8210 8211
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8212 8213
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8214

8215
	for_each_possible_cpu(i) {
8216
		struct rq *rq;
L
Linus Torvalds 已提交
8217 8218 8219

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8220
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8221
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8222
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8223
#ifdef CONFIG_FAIR_GROUP_SCHED
8224
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8225
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8246
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8247
#elif defined CONFIG_USER_SCHED
8248 8249
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8261
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8262
				&per_cpu(init_cfs_rq, i),
8263 8264
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8265

8266
#endif
D
Dhaval Giani 已提交
8267 8268 8269
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8270
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8271
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8272
#ifdef CONFIG_CGROUP_SCHED
8273
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8274
#elif defined CONFIG_USER_SCHED
8275
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8276
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8277
				&per_cpu(init_rt_rq, i),
8278 8279
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8280
#endif
I
Ingo Molnar 已提交
8281
#endif
L
Linus Torvalds 已提交
8282

I
Ingo Molnar 已提交
8283 8284
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8285
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8286
		rq->sd = NULL;
G
Gregory Haskins 已提交
8287
		rq->rd = NULL;
L
Linus Torvalds 已提交
8288
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8289
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8290
		rq->push_cpu = 0;
8291
		rq->cpu = i;
8292
		rq->online = 0;
L
Linus Torvalds 已提交
8293 8294
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8295
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8296
#endif
P
Peter Zijlstra 已提交
8297
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8298 8299 8300
		atomic_set(&rq->nr_iowait, 0);
	}

8301
	set_load_weight(&init_task);
8302

8303 8304 8305 8306
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8307
#ifdef CONFIG_SMP
8308
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8309 8310
#endif

8311 8312 8313 8314
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8328 8329 8330 8331
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8332 8333

	scheduler_running = 1;
L
Linus Torvalds 已提交
8334 8335 8336 8337 8338
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8339
#ifdef in_atomic
L
Linus Torvalds 已提交
8340 8341
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8361 8362 8363 8364 8365 8366
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8367 8368 8369
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8370

8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8382 8383
void normalize_rt_tasks(void)
{
8384
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8385
	unsigned long flags;
8386
	struct rq *rq;
L
Linus Torvalds 已提交
8387

8388
	read_lock_irqsave(&tasklist_lock, flags);
8389
	do_each_thread(g, p) {
8390 8391 8392 8393 8394 8395
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8396 8397
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8398 8399 8400
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8401
#endif
I
Ingo Molnar 已提交
8402 8403 8404 8405 8406 8407 8408 8409

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8410
			continue;
I
Ingo Molnar 已提交
8411
		}
L
Linus Torvalds 已提交
8412

8413
		spin_lock(&p->pi_lock);
8414
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8415

8416
		normalize_task(rq, p);
8417

8418
		__task_rq_unlock(rq);
8419
		spin_unlock(&p->pi_lock);
8420 8421
	} while_each_thread(g, p);

8422
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8423 8424 8425
}

#endif /* CONFIG_MAGIC_SYSRQ */
8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8444
struct task_struct *curr_task(int cpu)
8445 8446 8447 8448 8449 8450 8451 8452 8453 8454
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8455 8456
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8457 8458 8459 8460 8461 8462 8463
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8464
void set_curr_task(int cpu, struct task_struct *p)
8465 8466 8467 8468 8469
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8470

8471 8472
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8487 8488
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8489 8490
{
	struct cfs_rq *cfs_rq;
8491
	struct sched_entity *se, *parent_se;
8492
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8493 8494
	int i;

8495
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8496 8497
	if (!tg->cfs_rq)
		goto err;
8498
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8499 8500
	if (!tg->se)
		goto err;
8501 8502

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8503 8504

	for_each_possible_cpu(i) {
8505
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8506

P
Peter Zijlstra 已提交
8507 8508
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8509 8510 8511
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8512 8513
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8514 8515 8516
		if (!se)
			goto err;

8517 8518
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8537
#else /* !CONFG_FAIR_GROUP_SCHED */
8538 8539 8540 8541
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8542 8543
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8555
#endif /* CONFIG_FAIR_GROUP_SCHED */
8556 8557

#ifdef CONFIG_RT_GROUP_SCHED
8558 8559 8560 8561
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8562 8563
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8575 8576
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8577 8578
{
	struct rt_rq *rt_rq;
8579
	struct sched_rt_entity *rt_se, *parent_se;
8580 8581 8582
	struct rq *rq;
	int i;

8583
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8584 8585
	if (!tg->rt_rq)
		goto err;
8586
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8587 8588 8589
	if (!tg->rt_se)
		goto err;

8590 8591
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8592 8593 8594 8595

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8596 8597 8598 8599
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8600

P
Peter Zijlstra 已提交
8601 8602 8603 8604
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8605

8606 8607
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8608 8609
	}

8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8626
#else /* !CONFIG_RT_GROUP_SCHED */
8627 8628 8629 8630
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8631 8632
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8644
#endif /* CONFIG_RT_GROUP_SCHED */
8645

8646
#ifdef CONFIG_GROUP_SCHED
8647 8648 8649 8650 8651 8652 8653 8654
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8655
struct task_group *sched_create_group(struct task_group *parent)
8656 8657 8658 8659 8660 8661 8662 8663 8664
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8665
	if (!alloc_fair_sched_group(tg, parent))
8666 8667
		goto err;

8668
	if (!alloc_rt_sched_group(tg, parent))
8669 8670
		goto err;

8671
	spin_lock_irqsave(&task_group_lock, flags);
8672
	for_each_possible_cpu(i) {
8673 8674
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8675
	}
P
Peter Zijlstra 已提交
8676
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8677 8678 8679 8680 8681

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8682
	list_add_rcu(&tg->siblings, &parent->children);
8683
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8684

8685
	return tg;
S
Srivatsa Vaddagiri 已提交
8686 8687

err:
P
Peter Zijlstra 已提交
8688
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8689 8690 8691
	return ERR_PTR(-ENOMEM);
}

8692
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8693
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8694 8695
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8696
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8697 8698
}

8699
/* Destroy runqueue etc associated with a task group */
8700
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8701
{
8702
	unsigned long flags;
8703
	int i;
S
Srivatsa Vaddagiri 已提交
8704

8705
	spin_lock_irqsave(&task_group_lock, flags);
8706
	for_each_possible_cpu(i) {
8707 8708
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8709
	}
P
Peter Zijlstra 已提交
8710
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8711
	list_del_rcu(&tg->siblings);
8712
	spin_unlock_irqrestore(&task_group_lock, flags);
8713 8714

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8715
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8716 8717
}

8718
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8719 8720 8721
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8722 8723
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8724 8725 8726 8727 8728 8729 8730 8731 8732
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8733
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8734 8735
	on_rq = tsk->se.on_rq;

8736
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8737
		dequeue_task(rq, tsk, 0);
8738 8739
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8740

P
Peter Zijlstra 已提交
8741
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8742

P
Peter Zijlstra 已提交
8743 8744 8745 8746 8747
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8748 8749 8750
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8751
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8752 8753 8754

	task_rq_unlock(rq, &flags);
}
8755
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8756

8757
#ifdef CONFIG_FAIR_GROUP_SCHED
8758
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8759 8760 8761 8762 8763
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8764
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8765 8766 8767
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8768
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8769

8770
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8771
		enqueue_entity(cfs_rq, se, 0);
8772
}
8773

8774 8775 8776 8777 8778 8779 8780 8781 8782
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8783 8784
}

8785 8786
static DEFINE_MUTEX(shares_mutex);

8787
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8788 8789
{
	int i;
8790
	unsigned long flags;
8791

8792 8793 8794 8795 8796 8797
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8798 8799
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8800 8801
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8802

8803
	mutex_lock(&shares_mutex);
8804
	if (tg->shares == shares)
8805
		goto done;
S
Srivatsa Vaddagiri 已提交
8806

8807
	spin_lock_irqsave(&task_group_lock, flags);
8808 8809
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8810
	list_del_rcu(&tg->siblings);
8811
	spin_unlock_irqrestore(&task_group_lock, flags);
8812 8813 8814 8815 8816 8817 8818 8819

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8820
	tg->shares = shares;
8821 8822 8823 8824 8825
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8826
		set_se_shares(tg->se[i], shares);
8827
	}
S
Srivatsa Vaddagiri 已提交
8828

8829 8830 8831 8832
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8833
	spin_lock_irqsave(&task_group_lock, flags);
8834 8835
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8836
	list_add_rcu(&tg->siblings, &tg->parent->children);
8837
	spin_unlock_irqrestore(&task_group_lock, flags);
8838
done:
8839
	mutex_unlock(&shares_mutex);
8840
	return 0;
S
Srivatsa Vaddagiri 已提交
8841 8842
}

8843 8844 8845 8846
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8847
#endif
8848

8849
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8850
/*
P
Peter Zijlstra 已提交
8851
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8852
 */
P
Peter Zijlstra 已提交
8853 8854 8855 8856 8857
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8858
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8859

P
Peter Zijlstra 已提交
8860
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8861 8862
}

P
Peter Zijlstra 已提交
8863 8864
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8865
{
P
Peter Zijlstra 已提交
8866
	struct task_struct *g, *p;
8867

P
Peter Zijlstra 已提交
8868 8869 8870 8871
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8872

P
Peter Zijlstra 已提交
8873 8874
	return 0;
}
8875

P
Peter Zijlstra 已提交
8876 8877 8878 8879 8880
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8881

P
Peter Zijlstra 已提交
8882 8883 8884 8885 8886 8887
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8888

P
Peter Zijlstra 已提交
8889 8890
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8891

P
Peter Zijlstra 已提交
8892 8893 8894
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8895 8896
	}

8897 8898 8899 8900 8901
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8902

8903 8904 8905
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8906 8907
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8908

P
Peter Zijlstra 已提交
8909
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8910

8911 8912 8913 8914 8915
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8916

8917 8918 8919
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8920 8921 8922
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8923

P
Peter Zijlstra 已提交
8924 8925 8926 8927
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8928

P
Peter Zijlstra 已提交
8929
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8930
	}
P
Peter Zijlstra 已提交
8931

P
Peter Zijlstra 已提交
8932 8933 8934 8935
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8936 8937
}

P
Peter Zijlstra 已提交
8938
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8939
{
P
Peter Zijlstra 已提交
8940 8941 8942 8943 8944 8945 8946
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8947 8948
}

8949 8950
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8951
{
P
Peter Zijlstra 已提交
8952
	int i, err = 0;
P
Peter Zijlstra 已提交
8953 8954

	mutex_lock(&rt_constraints_mutex);
8955
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8956 8957
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8958
		goto unlock;
P
Peter Zijlstra 已提交
8959 8960

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8961 8962
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8963 8964 8965 8966 8967 8968 8969 8970 8971

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8972
 unlock:
8973
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8974 8975 8976
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8977 8978
}

8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8991 8992 8993 8994
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8995
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8996 8997
		return -1;

8998
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8999 9000 9001
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9002 9003 9004 9005 9006 9007 9008 9009

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9010 9011 9012
	if (rt_period == 0)
		return -EINVAL;

9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9027
	u64 runtime, period;
9028 9029
	int ret = 0;

9030 9031 9032
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9033 9034 9035 9036 9037 9038 9039 9040
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9041

9042
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9043
	read_lock(&tasklist_lock);
9044
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9045
	read_unlock(&tasklist_lock);
9046 9047 9048 9049
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9050
#else /* !CONFIG_RT_GROUP_SCHED */
9051 9052
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9053 9054 9055
	unsigned long flags;
	int i;

9056 9057 9058
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9059 9060 9061 9062 9063 9064 9065 9066 9067 9068
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9069 9070
	return 0;
}
9071
#endif /* CONFIG_RT_GROUP_SCHED */
9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9102

9103
#ifdef CONFIG_CGROUP_SCHED
9104 9105

/* return corresponding task_group object of a cgroup */
9106
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9107
{
9108 9109
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9110 9111 9112
}

static struct cgroup_subsys_state *
9113
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9114
{
9115
	struct task_group *tg, *parent;
9116

9117
	if (!cgrp->parent) {
9118 9119 9120 9121
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9122 9123
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9124 9125 9126 9127 9128 9129
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9130 9131
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9132
{
9133
	struct task_group *tg = cgroup_tg(cgrp);
9134 9135 9136 9137

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9138 9139 9140
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9141
{
9142 9143
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9144
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9145 9146
		return -EINVAL;
#else
9147 9148 9149
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9150
#endif
9151 9152 9153 9154 9155

	return 0;
}

static void
9156
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9157 9158 9159 9160 9161
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9162
#ifdef CONFIG_FAIR_GROUP_SCHED
9163
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9164
				u64 shareval)
9165
{
9166
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9167 9168
}

9169
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9170
{
9171
	struct task_group *tg = cgroup_tg(cgrp);
9172 9173 9174

	return (u64) tg->shares;
}
9175
#endif /* CONFIG_FAIR_GROUP_SCHED */
9176

9177
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9178
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9179
				s64 val)
P
Peter Zijlstra 已提交
9180
{
9181
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9182 9183
}

9184
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9185
{
9186
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9187
}
9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9199
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9200

9201
static struct cftype cpu_files[] = {
9202
#ifdef CONFIG_FAIR_GROUP_SCHED
9203 9204
	{
		.name = "shares",
9205 9206
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9207
	},
9208 9209
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9210
	{
P
Peter Zijlstra 已提交
9211
		.name = "rt_runtime_us",
9212 9213
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9214
	},
9215 9216
	{
		.name = "rt_period_us",
9217 9218
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9219
	},
9220
#endif
9221 9222 9223 9224
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9225
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9226 9227 9228
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9229 9230 9231 9232 9233 9234 9235
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9236 9237 9238
	.early_init	= 1,
};

9239
#endif	/* CONFIG_CGROUP_SCHED */
9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9260
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9261
{
9262
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9275
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9292
static void
9293
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9294
{
9295
	struct cpuacct *ca = cgroup_ca(cgrp);
9296 9297 9298 9299 9300 9301

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9302
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9303
{
9304
	struct cpuacct *ca = cgroup_ca(cgrp);
9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9346 9347 9348
static struct cftype files[] = {
	{
		.name = "usage",
9349 9350
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9351 9352 9353
	},
};

9354
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9355
{
9356
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */