sched.c 158.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
25
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
26 27 28 29
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
30
#include <linux/capability.h>
L
Linus Torvalds 已提交
31 32
#include <linux/completion.h>
#include <linux/kernel_stat.h>
33
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
37
#include <linux/freezer.h>
38
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/times.h>
52
#include <linux/tsacct_kern.h>
53
#include <linux/kprobes.h>
54
#include <linux/delayacct.h>
55
#include <linux/reciprocal_div.h>
56
#include <linux/unistd.h>
L
Linus Torvalds 已提交
57

58
#include <asm/tlb.h>
L
Linus Torvalds 已提交
59

60 61 62 63 64 65 66 67 68 69
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
94 95 96
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
97 98 99 100 101 102 103 104 105
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
106

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
128 129 130
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

131
/*
I
Ingo Molnar 已提交
132
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
133 134
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
135
static unsigned int static_prio_timeslice(int static_prio)
136
{
I
Ingo Molnar 已提交
137 138 139 140 141 142 143
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
144 145
}

146 147 148 149 150 151 152 153 154 155 156 157
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
158
/*
I
Ingo Molnar 已提交
159
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
160
 */
I
Ingo Molnar 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
203

I
Ingo Molnar 已提交
204 205 206 207 208 209 210
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
211 212 213 214 215 216 217
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
218
struct rq {
I
Ingo Molnar 已提交
219
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
220 221 222 223 224 225

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
226 227
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
228
	unsigned char idle_at_tick;
229 230 231
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
232 233 234 235 236 237 238
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
239
#endif
I
Ingo Molnar 已提交
240
	struct rt_rq  rt;
L
Linus Torvalds 已提交
241 242 243 244 245 246 247 248 249

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

250
	struct task_struct *curr, *idle;
251
	unsigned long next_balance;
L
Linus Torvalds 已提交
252
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
253 254 255 256 257 258 259 260 261

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
	unsigned int clock_unstable_events;

	struct sched_class *load_balance_class;

L
Linus Torvalds 已提交
262 263 264 265 266 267 268 269
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
270
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
271

272
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
295
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
296 297
};

298
static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
299
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
300

I
Ingo Molnar 已提交
301 302 303 304 305
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

306 307 308 309 310 311 312 313 314
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/*
 * Per-runqueue clock, as finegrained as the platform can give us:
 */
static unsigned long long __rq_clock(struct rq *rq)
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
		if (unlikely(delta > 2*TICK_NSEC)) {
			clock++;
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;

	return clock;
}

static inline unsigned long long rq_clock(struct rq *rq)
{
	int this_cpu = smp_processor_id();

	if (this_cpu == cpu_of(rq))
		return __rq_clock(rq);

	return rq->clock;
}

N
Nick Piggin 已提交
361 362
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
363
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
364 365 366 367
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
368 369
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
370 371 372 373 374 375

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
376 377 378 379 380 381 382 383 384 385 386 387
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
388
#ifndef prepare_arch_switch
389 390 391 392 393 394 395
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
396
static inline int task_running(struct rq *rq, struct task_struct *p)
397 398 399 400
{
	return rq->curr == p;
}

401
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
402 403 404
{
}

405
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
406
{
407 408 409 410
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
411 412 413 414 415 416 417
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

418 419 420 421
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
422
static inline int task_running(struct rq *rq, struct task_struct *p)
423 424 425 426 427 428 429 430
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

431
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

448
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
449 450 451 452 453 454 455 456 457 458 459 460
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
461
#endif
462 463
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
464

465 466 467 468
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
469
static inline struct rq *__task_rq_lock(struct task_struct *p)
470 471
	__acquires(rq->lock)
{
472
	struct rq *rq;
473 474 475 476 477 478 479 480 481 482 483

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
484 485 486 487 488
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
489
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
490 491
	__acquires(rq->lock)
{
492
	struct rq *rq;
L
Linus Torvalds 已提交
493 494 495 496 497 498 499 500 501 502 503 504

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

505
static inline void __task_rq_unlock(struct rq *rq)
506 507 508 509 510
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

511
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
512 513 514 515 516 517
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
518
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
519
 */
520
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
521 522
	__acquires(rq->lock)
{
523
	struct rq *rq;
L
Linus Torvalds 已提交
524 525 526 527 528 529 530 531

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

532 533 534 535 536 537 538 539 540 541 542 543 544 545
/*
 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
 */
void sched_clock_unstable_event(void)
{
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(current, &flags);
	rq->prev_clock_raw = sched_clock();
	rq->clock_unstable_events++;
	task_rq_unlock(rq, &flags);
}

I
Ingo Molnar 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

static inline unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
		lw->inv_weight = WMULT_CONST / lw->weight;

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST)) {
		tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
				>> (WMULT_SHIFT/2);
	} else {
		tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
	}

	return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

static void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static void __update_curr_load(struct rq *rq, struct load_stat *ls)
{
	if (rq->curr != rq->idle && ls->load.weight) {
		ls->delta_exec += ls->delta_stat;
		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
		ls->delta_stat = 0;
	}
}

/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
static void update_curr_load(struct rq *rq, u64 now)
{
	struct load_stat *ls = &rq->ls;
	u64 start;

	start = ls->load_update_start;
	ls->load_update_start = now;
	ls->delta_stat += now - start;
	/*
	 * Stagger updates to ls->delta_fair. Very frequent updates
	 * can be expensive.
	 */
	if (ls->delta_stat >= sysctl_sched_stat_granularity)
		__update_curr_load(rq, ls);
}

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

/*
 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
 * If static_prio_timeslice() is ever changed to break this assumption then
 * this code will need modification
 */
#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
I
Ingo Molnar 已提交
715
#define load_weight(lp) \
716 717
	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
#define PRIO_TO_LOAD_WEIGHT(prio) \
I
Ingo Molnar 已提交
718
	load_weight(static_prio_timeslice(prio))
719
#define RTPRIO_TO_LOAD_WEIGHT(rp) \
I
Ingo Molnar 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))

#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage.
 */
static const int prio_to_weight[40] = {
/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
/* -10 */  9537,  7629,  6103,  4883,  3906,  3125,  2500,  2000,  1600,  1280,
/*   0 */  NICE_0_LOAD /* 1024 */,
/*   1 */          819,   655,   524,   419,   336,   268,   215,   172,   137,
/*  10 */   110,    87,    70,    56,    45,    36,    29,    23,    18,    15,
};

static const u32 prio_to_wmult[40] = {
	48356,   60446,   75558,   94446,  118058,  147573,
	184467,  230589,  288233,  360285,  450347,
	562979,  703746,  879575, 1099582, 1374389,
	717986, 2147483, 2684354, 3355443, 4194304,
	244160, 6557201, 8196502, 10250518, 12782640,
	16025997, 19976592, 24970740, 31350126, 39045157,
	49367440, 61356675, 76695844, 95443717, 119304647,
	148102320, 186737708, 238609294, 286331153,
};
753

754
static inline void
I
Ingo Molnar 已提交
755
inc_load(struct rq *rq, const struct task_struct *p, u64 now)
756
{
I
Ingo Molnar 已提交
757 758
	update_curr_load(rq, now);
	update_load_add(&rq->ls.load, p->se.load.weight);
759 760
}

761
static inline void
I
Ingo Molnar 已提交
762
dec_load(struct rq *rq, const struct task_struct *p, u64 now)
763
{
I
Ingo Molnar 已提交
764 765
	update_curr_load(rq, now);
	update_load_sub(&rq->ls.load, p->se.load.weight);
766 767
}

I
Ingo Molnar 已提交
768
static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
769 770
{
	rq->nr_running++;
I
Ingo Molnar 已提交
771
	inc_load(rq, p, now);
772 773
}

I
Ingo Molnar 已提交
774
static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
775 776
{
	rq->nr_running--;
I
Ingo Molnar 已提交
777
	dec_load(rq, p, now);
778 779
}

I
Ingo Molnar 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator);

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

810 811
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
812 813 814
	task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
	p->se.wait_runtime = 0;

815
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
816 817 818 819
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
820

I
Ingo Molnar 已提交
821 822 823 824 825 826 827 828
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
829

I
Ingo Molnar 已提交
830 831
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
832 833
}

I
Ingo Molnar 已提交
834 835
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
836
{
I
Ingo Molnar 已提交
837 838 839
	sched_info_queued(p);
	p->sched_class->enqueue_task(rq, p, wakeup, now);
	p->se.on_rq = 1;
840 841
}

I
Ingo Molnar 已提交
842 843
static void
dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
844
{
I
Ingo Molnar 已提交
845 846
	p->sched_class->dequeue_task(rq, p, sleep, now);
	p->se.on_rq = 0;
847 848
}

849
/*
I
Ingo Molnar 已提交
850
 * __normal_prio - return the priority that is based on the static prio
851 852 853
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
854
	return p->static_prio;
855 856
}

857 858 859 860 861 862 863
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
864
static inline int normal_prio(struct task_struct *p)
865 866 867
{
	int prio;

868
	if (task_has_rt_policy(p))
869 870 871 872 873 874 875 876 877 878 879 880 881
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
882
static int effective_prio(struct task_struct *p)
883 884 885 886 887 888 889 890 891 892 893 894
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
895
/*
I
Ingo Molnar 已提交
896
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
897
 */
I
Ingo Molnar 已提交
898
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
899
{
I
Ingo Molnar 已提交
900
	u64 now = rq_clock(rq);
901

I
Ingo Molnar 已提交
902 903
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
904

I
Ingo Molnar 已提交
905 906
	enqueue_task(rq, p, wakeup, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
907 908 909
}

/*
I
Ingo Molnar 已提交
910
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
911
 */
I
Ingo Molnar 已提交
912
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
913
{
I
Ingo Molnar 已提交
914
	u64 now = rq_clock(rq);
L
Linus Torvalds 已提交
915

I
Ingo Molnar 已提交
916 917
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
918

I
Ingo Molnar 已提交
919 920
	enqueue_task(rq, p, 0, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
921 922 923 924 925
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
I
Ingo Molnar 已提交
926
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
927
{
I
Ingo Molnar 已提交
928 929 930 931 932 933 934
	u64 now = rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep, now);
	dec_nr_running(p, rq, now);
L
Linus Torvalds 已提交
935 936 937 938 939 940
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
941
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
942 943 944 945
{
	return cpu_curr(task_cpu(p)) == p;
}

946 947 948
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
949 950 951 952 953 954 955 956 957
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
958 959
}

L
Linus Torvalds 已提交
960
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
961

I
Ingo Molnar 已提交
962
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
963
{
I
Ingo Molnar 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
	fair_clock_offset = old_rq->cfs.fair_clock -
						 new_rq->cfs.fair_clock;
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
983 984
}

985
struct migration_req {
L
Linus Torvalds 已提交
986 987
	struct list_head list;

988
	struct task_struct *task;
L
Linus Torvalds 已提交
989 990 991
	int dest_cpu;

	struct completion done;
992
};
L
Linus Torvalds 已提交
993 994 995 996 997

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
998
static int
999
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1000
{
1001
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1002 1003 1004 1005 1006

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1007
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1008 1009 1010 1011 1012 1013 1014 1015
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1016

L
Linus Torvalds 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1029
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1030 1031
{
	unsigned long flags;
I
Ingo Molnar 已提交
1032
	int running, on_rq;
1033
	struct rq *rq;
L
Linus Torvalds 已提交
1034 1035

repeat:
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1063
	rq = task_rq_lock(p, &flags);
1064
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1065
	on_rq = p->se.on_rq;
1066 1067 1068 1069 1070 1071 1072 1073 1074
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1075 1076 1077
		cpu_relax();
		goto repeat;
	}
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1088
	if (unlikely(on_rq)) {
1089 1090 1091 1092 1093 1094 1095 1096 1097
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1113
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1125 1126
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1127 1128 1129 1130
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1131
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1132
{
1133
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1134
	unsigned long total = weighted_cpuload(cpu);
1135

1136
	if (type == 0)
I
Ingo Molnar 已提交
1137
		return total;
1138

I
Ingo Molnar 已提交
1139
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1140 1141 1142
}

/*
1143 1144
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1145
 */
N
Nick Piggin 已提交
1146
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1147
{
1148
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1149
	unsigned long total = weighted_cpuload(cpu);
1150

N
Nick Piggin 已提交
1151
	if (type == 0)
I
Ingo Molnar 已提交
1152
		return total;
1153

I
Ingo Molnar 已提交
1154
	return max(rq->cpu_load[type-1], total);
1155 1156 1157 1158 1159 1160 1161
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1162
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1163
	unsigned long total = weighted_cpuload(cpu);
1164 1165
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1166
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1167 1168
}

N
Nick Piggin 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1186 1187 1188 1189
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1206 1207
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1208 1209 1210 1211 1212 1213 1214 1215

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1216
nextgroup:
N
Nick Piggin 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1226
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1227
 */
I
Ingo Molnar 已提交
1228 1229
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1230
{
1231
	cpumask_t tmp;
N
Nick Piggin 已提交
1232 1233 1234 1235
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1236 1237 1238 1239
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1240
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1266

1267
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1268 1269 1270
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1271 1272
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1273 1274
		if (tmp->flags & flag)
			sd = tmp;
1275
	}
N
Nick Piggin 已提交
1276 1277 1278 1279

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1280 1281 1282 1283 1284 1285
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1286 1287 1288

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1289 1290 1291 1292
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1293

1294
		new_cpu = find_idlest_cpu(group, t, cpu);
1295 1296 1297 1298 1299
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1300

1301
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1328
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1329 1330 1331 1332 1333
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1344 1345 1346 1347
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1348
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1349 1350 1351 1352
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1353
		} else {
N
Nick Piggin 已提交
1354
			break;
I
Ingo Molnar 已提交
1355
		}
L
Linus Torvalds 已提交
1356 1357 1358 1359
	}
	return cpu;
}
#else
1360
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1380
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1381 1382 1383 1384
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1385
	struct rq *rq;
L
Linus Torvalds 已提交
1386
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1387
	struct sched_domain *sd, *this_sd = NULL;
1388
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1389 1390 1391 1392 1393 1394 1395 1396
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1397
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1407 1408
	new_cpu = cpu;

L
Linus Torvalds 已提交
1409 1410 1411
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1412 1413 1414 1415 1416 1417 1418 1419
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1420 1421 1422
		}
	}

N
Nick Piggin 已提交
1423
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1424 1425 1426
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1427
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1428
	 */
N
Nick Piggin 已提交
1429 1430 1431
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1432

1433 1434
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1435 1436
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1437

N
Nick Piggin 已提交
1438 1439
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1440 1441
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1442 1443 1444
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1445

L
Linus Torvalds 已提交
1446
			/*
1447 1448 1449
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1450
			 */
1451
			if (sync)
I
Ingo Molnar 已提交
1452
				tl -= current->se.load.weight;
1453 1454

			if ((tl <= load &&
1455
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1456
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1490
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1491 1492 1493 1494 1495 1496 1497 1498
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1499
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1500 1501 1502 1503 1504 1505 1506 1507
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1508 1509
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1520
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1521 1522 1523 1524 1525 1526
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1527
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1528 1529 1530 1531 1532 1533 1534
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.wait_start		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
	p->se.delta_exec		= 0;
	p->se.delta_fair_run		= 0;
	p->se.delta_fair_sleep		= 0;
	p->se.wait_runtime		= 0;
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.sleep_start_fair		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
N
Nick Piggin 已提交
1559

I
Ingo Molnar 已提交
1560 1561
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1562

L
Linus Torvalds 已提交
1563 1564 1565 1566 1567 1568 1569
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1585 1586 1587 1588 1589 1590

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1591
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1592
	if (likely(sched_info_on()))
1593
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1594
#endif
1595
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1596 1597
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1598
#ifdef CONFIG_PREEMPT
1599
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1600
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1601
#endif
N
Nick Piggin 已提交
1602
	put_cpu();
L
Linus Torvalds 已提交
1603 1604
}

I
Ingo Molnar 已提交
1605 1606 1607 1608 1609 1610
/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
unsigned int __read_mostly sysctl_sched_child_runs_first = 1;

L
Linus Torvalds 已提交
1611 1612 1613 1614 1615 1616 1617
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1618
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1619 1620
{
	unsigned long flags;
I
Ingo Molnar 已提交
1621 1622
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1623 1624

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1625
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1626
	this_cpu = smp_processor_id(); /* parent's CPU */
L
Linus Torvalds 已提交
1627 1628 1629

	p->prio = effective_prio(p);

I
Ingo Molnar 已提交
1630 1631 1632
	if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
			task_cpu(p) != this_cpu || !current->se.on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1633 1634
	} else {
		/*
I
Ingo Molnar 已提交
1635 1636
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1637
		 */
I
Ingo Molnar 已提交
1638
		p->sched_class->task_new(rq, p);
L
Linus Torvalds 已提交
1639
	}
I
Ingo Molnar 已提交
1640 1641
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1642 1643
}

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1656
static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1657 1658 1659 1660 1661
{
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1662 1663
/**
 * finish_task_switch - clean up after a task-switch
1664
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1665 1666
 * @prev: the thread we just switched away from.
 *
1667 1668 1669 1670
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1671 1672 1673 1674 1675 1676
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1677
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1678 1679 1680
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1681
	long prev_state;
L
Linus Torvalds 已提交
1682 1683 1684 1685 1686

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1687
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1688 1689
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1690
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1691 1692 1693 1694 1695
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1696
	prev_state = prev->state;
1697 1698
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
L
Linus Torvalds 已提交
1699 1700
	if (mm)
		mmdrop(mm);
1701
	if (unlikely(prev_state == TASK_DEAD)) {
1702 1703 1704
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1705
		 */
1706
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1707
		put_task_struct(prev);
1708
	}
L
Linus Torvalds 已提交
1709 1710 1711 1712 1713 1714
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1715
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1716 1717
	__releases(rq->lock)
{
1718 1719
	struct rq *rq = this_rq();

1720 1721 1722 1723 1724
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1725 1726 1727 1728 1729 1730 1731 1732
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1733
static inline void
1734
context_switch(struct rq *rq, struct task_struct *prev,
1735
	       struct task_struct *next)
L
Linus Torvalds 已提交
1736
{
I
Ingo Molnar 已提交
1737
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1738

I
Ingo Molnar 已提交
1739 1740 1741
	prepare_task_switch(rq, next);
	mm = next->mm;
	oldmm = prev->active_mm;
1742 1743 1744 1745 1746 1747 1748
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1749
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1750 1751 1752 1753 1754 1755
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1756
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1757 1758 1759
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1760 1761 1762 1763 1764 1765 1766
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1767
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1768
#endif
L
Linus Torvalds 已提交
1769 1770 1771 1772

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1773 1774 1775 1776 1777 1778 1779
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1803
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1818 1819
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1820

1821
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1831
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1832 1833 1834 1835 1836
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1852
/*
I
Ingo Molnar 已提交
1853 1854
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1855
 */
I
Ingo Molnar 已提交
1856
static void update_cpu_load(struct rq *this_rq)
1857
{
I
Ingo Molnar 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
	unsigned long total_load = this_rq->ls.load.weight;
	unsigned long this_load =  total_load;
	struct load_stat *ls = &this_rq->ls;
	u64 now = __rq_clock(this_rq);
	int i, scale;

	this_rq->nr_load_updates++;
	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
		goto do_avg;

	/* Update delta_fair/delta_exec fields first */
	update_curr_load(this_rq, now);

	fair_delta64 = ls->delta_fair + 1;
	ls->delta_fair = 0;

	exec_delta64 = ls->delta_exec + 1;
	ls->delta_exec = 0;

	sample_interval64 = now - ls->load_update_last;
	ls->load_update_last = now;

	if ((s64)sample_interval64 < (s64)TICK_NSEC)
		sample_interval64 = TICK_NSEC;

	if (exec_delta64 > sample_interval64)
		exec_delta64 = sample_interval64;

	idle_delta64 = sample_interval64 - exec_delta64;

	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);

	this_load = (unsigned long)tmp64;

do_avg:

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;

		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
1907 1908
}

I
Ingo Molnar 已提交
1909 1910
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
1911 1912 1913 1914 1915 1916
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
1917
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1918 1919 1920
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
1921
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
1922 1923 1924 1925
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
1926
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
1942
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
1956
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
1957 1958 1959 1960
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1961 1962 1963 1964 1965
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
1966
	if (unlikely(!spin_trylock(&busiest->lock))) {
1967
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
1982
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
1983
{
1984
	struct migration_req req;
L
Linus Torvalds 已提交
1985
	unsigned long flags;
1986
	struct rq *rq;
L
Linus Torvalds 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
1997

L
Linus Torvalds 已提交
1998 1999 2000 2001 2002
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2003

L
Linus Torvalds 已提交
2004 2005 2006 2007 2008 2009 2010
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2011 2012
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2013 2014 2015 2016
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2017
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2018
	put_cpu();
N
Nick Piggin 已提交
2019 2020
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2021 2022 2023 2024 2025 2026
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2027 2028
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2029
{
I
Ingo Molnar 已提交
2030
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2031
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2032
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2033 2034 2035 2036
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2037
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2038 2039 2040 2041 2042
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2043
static
2044
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2045
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2046
		     int *all_pinned)
L
Linus Torvalds 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2056 2057 2058 2059
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2060 2061

	/*
I
Ingo Molnar 已提交
2062
	 * Aggressive migration if too many balance attempts have failed:
L
Linus Torvalds 已提交
2063
	 */
I
Ingo Molnar 已提交
2064
	if (sd->nr_balance_failed > sd->cache_nice_tries)
L
Linus Torvalds 已提交
2065 2066 2067 2068 2069
		return 1;

	return 1;
}

I
Ingo Molnar 已提交
2070
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2071
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2072
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2073 2074 2075
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2076
{
I
Ingo Molnar 已提交
2077 2078 2079
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2080

2081
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2082 2083
		goto out;

2084 2085
	pinned = 1;

L
Linus Torvalds 已提交
2086
	/*
I
Ingo Molnar 已提交
2087
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2088
	 */
I
Ingo Molnar 已提交
2089 2090 2091
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2092
		goto out;
2093 2094 2095 2096 2097
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2098 2099 2100 2101
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
	if (skip_for_load && p->prio < this_best_prio)
		skip_for_load = !best_prio_seen && p->prio == best_prio;
2102
	if (skip_for_load ||
I
Ingo Molnar 已提交
2103
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2104

I
Ingo Molnar 已提交
2105 2106 2107
		best_prio_seen |= p->prio == best_prio;
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2108 2109
	}

I
Ingo Molnar 已提交
2110
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2111
	pulled++;
I
Ingo Molnar 已提交
2112
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2113

2114 2115 2116 2117 2118
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
I
Ingo Molnar 已提交
2119 2120 2121 2122
		if (p->prio < this_best_prio)
			this_best_prio = p->prio;
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2123 2124 2125 2126 2127 2128 2129 2130
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2131 2132 2133

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2134
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2135 2136 2137
	return pulled;
}

I
Ingo Molnar 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
/*
 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
 * load from busiest to this_rq, as part of a balancing operation within
 * "domain". Returns the number of tasks moved.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;

	do {
		nr_moved = class->load_balance(this_rq, this_cpu, busiest,
				max_nr_move, (unsigned long)rem_load_move,
				sd, idle, all_pinned, &load_moved);
		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;
		class = class->next;
	} while (class && max_nr_move && rem_load_move > 0);

	return total_nr_moved;
}

L
Linus Torvalds 已提交
2167 2168
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2169 2170
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2171 2172 2173
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2174 2175
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2176 2177 2178
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2179
	unsigned long max_pull;
2180 2181
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2182
	int load_idx;
2183 2184 2185 2186 2187 2188
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2189 2190

	max_load = this_load = total_load = total_pwr = 0;
2191 2192
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2193
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2194
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2195
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2196 2197 2198
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2199 2200

	do {
2201
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2202 2203
		int local_group;
		int i;
2204
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2205
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2206 2207 2208

		local_group = cpu_isset(this_cpu, group->cpumask);

2209 2210 2211
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2212
		/* Tally up the load of all CPUs in the group */
2213
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2214 2215

		for_each_cpu_mask(i, group->cpumask) {
2216 2217 2218 2219 2220 2221
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2222

N
Nick Piggin 已提交
2223 2224 2225
			if (*sd_idle && !idle_cpu(i))
				*sd_idle = 0;

L
Linus Torvalds 已提交
2226
			/* Bias balancing toward cpus of our domain */
2227 2228 2229 2230 2231 2232
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2233
				load = target_load(i, load_idx);
2234
			} else
N
Nick Piggin 已提交
2235
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2236 2237

			avg_load += load;
2238
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2239
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2240 2241
		}

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
		 * domains.
		 */
		if (local_group && balance_cpu != this_cpu && balance) {
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2252
		total_load += avg_load;
2253
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2254 2255

		/* Adjust by relative CPU power of the group */
2256 2257
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2258

2259
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2260

L
Linus Torvalds 已提交
2261 2262 2263
		if (local_group) {
			this_load = avg_load;
			this = group;
2264 2265 2266
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2267
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2268 2269
			max_load = avg_load;
			busiest = group;
2270 2271
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2272
		}
2273 2274 2275 2276 2277 2278

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2279 2280 2281
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2282 2283 2284 2285 2286 2287 2288 2289 2290

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2291
		/*
2292 2293
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2294 2295
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2296
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2297
			goto group_next;
2298

I
Ingo Molnar 已提交
2299
		/*
2300
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2301 2302 2303 2304 2305
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2306 2307
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2308 2309
			group_min = group;
			min_nr_running = sum_nr_running;
2310 2311
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2312
		}
2313

I
Ingo Molnar 已提交
2314
		/*
2315
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2327
		}
2328 2329
group_next:
#endif
L
Linus Torvalds 已提交
2330 2331 2332
		group = group->next;
	} while (group != sd->groups);

2333
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2334 2335 2336 2337 2338 2339 2340 2341
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2342
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2366 2367

	/* Don't want to pull so many tasks that a group would go idle */
2368
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2369

L
Linus Torvalds 已提交
2370
	/* How much load to actually move to equalise the imbalance */
2371 2372
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2373 2374
			/ SCHED_LOAD_SCALE;

2375 2376 2377 2378 2379 2380
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
I
Ingo Molnar 已提交
2381
	if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2382
		unsigned long tmp, pwr_now, pwr_move;
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2394

I
Ingo Molnar 已提交
2395 2396
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2397
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2398 2399 2400 2401 2402 2403 2404 2405 2406
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2407 2408 2409 2410
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2411 2412 2413
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2414 2415
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2416
		if (max_load > tmp)
2417
			pwr_move += busiest->__cpu_power *
2418
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2419 2420

		/* Amount of load we'd add */
2421
		if (max_load * busiest->__cpu_power <
2422
				busiest_load_per_task * SCHED_LOAD_SCALE)
2423 2424
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2425
		else
2426 2427 2428 2429
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2430 2431 2432 2433 2434 2435
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2436
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2437 2438 2439 2440 2441
	}

	return busiest;

out_balanced:
2442
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2443
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2444
		goto ret;
L
Linus Torvalds 已提交
2445

2446 2447 2448 2449 2450
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2451
ret:
L
Linus Torvalds 已提交
2452 2453 2454 2455 2456 2457 2458
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2459
static struct rq *
I
Ingo Molnar 已提交
2460
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2461
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2462
{
2463
	struct rq *busiest = NULL, *rq;
2464
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2465 2466 2467
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2468
		unsigned long wl;
2469 2470 2471 2472

		if (!cpu_isset(i, *cpus))
			continue;

2473
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2474
		wl = weighted_cpuload(i);
2475

I
Ingo Molnar 已提交
2476
		if (rq->nr_running == 1 && wl > imbalance)
2477
			continue;
L
Linus Torvalds 已提交
2478

I
Ingo Molnar 已提交
2479 2480
		if (wl > max_load) {
			max_load = wl;
2481
			busiest = rq;
L
Linus Torvalds 已提交
2482 2483 2484 2485 2486 2487
		}
	}

	return busiest;
}

2488 2489 2490 2491 2492 2493
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

2494 2495 2496 2497 2498
static inline unsigned long minus_1_or_zero(unsigned long n)
{
	return n > 0 ? n - 1 : 0;
}

L
Linus Torvalds 已提交
2499 2500 2501 2502
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2503
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2504
			struct sched_domain *sd, enum cpu_idle_type idle,
2505
			int *balance)
L
Linus Torvalds 已提交
2506
{
2507
	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2508 2509
	struct sched_group *group;
	unsigned long imbalance;
2510
	struct rq *busiest;
2511
	cpumask_t cpus = CPU_MASK_ALL;
2512
	unsigned long flags;
N
Nick Piggin 已提交
2513

2514 2515 2516
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2517
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2518
	 * portraying it as CPU_NOT_IDLE.
2519
	 */
I
Ingo Molnar 已提交
2520
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2521
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2522
		sd_idle = 1;
L
Linus Torvalds 已提交
2523 2524 2525

	schedstat_inc(sd, lb_cnt[idle]);

2526 2527
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2528 2529
				   &cpus, balance);

2530
	if (*balance == 0)
2531 2532
		goto out_balanced;

L
Linus Torvalds 已提交
2533 2534 2535 2536 2537
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2538
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2539 2540 2541 2542 2543
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2544
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. nr_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
2556
		local_irq_save(flags);
N
Nick Piggin 已提交
2557
		double_rq_lock(this_rq, busiest);
L
Linus Torvalds 已提交
2558
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2559 2560
				      minus_1_or_zero(busiest->nr_running),
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2561
		double_rq_unlock(this_rq, busiest);
2562
		local_irq_restore(flags);
2563

2564 2565 2566 2567 2568 2569
		/*
		 * some other cpu did the load balance for us.
		 */
		if (nr_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

2570
		/* All tasks on this runqueue were pinned by CPU affinity */
2571 2572 2573 2574
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2575
			goto out_balanced;
2576
		}
L
Linus Torvalds 已提交
2577
	}
2578

L
Linus Torvalds 已提交
2579 2580 2581 2582 2583 2584
	if (!nr_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2585
			spin_lock_irqsave(&busiest->lock, flags);
2586 2587 2588 2589 2590

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2591
				spin_unlock_irqrestore(&busiest->lock, flags);
2592 2593 2594 2595
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2596 2597 2598
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2599
				active_balance = 1;
L
Linus Torvalds 已提交
2600
			}
2601
			spin_unlock_irqrestore(&busiest->lock, flags);
2602
			if (active_balance)
L
Linus Torvalds 已提交
2603 2604 2605 2606 2607 2608
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2609
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2610
		}
2611
	} else
L
Linus Torvalds 已提交
2612 2613
		sd->nr_balance_failed = 0;

2614
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2615 2616
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2617 2618 2619 2620 2621 2622 2623 2624 2625
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2626 2627
	}

2628
	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2629
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2630
		return -1;
L
Linus Torvalds 已提交
2631 2632 2633 2634 2635
	return nr_moved;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2636
	sd->nr_balance_failed = 0;
2637 2638

out_one_pinned:
L
Linus Torvalds 已提交
2639
	/* tune up the balancing interval */
2640 2641
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2642 2643
		sd->balance_interval *= 2;

2644
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2645
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2646
		return -1;
L
Linus Torvalds 已提交
2647 2648 2649 2650 2651 2652 2653
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2654
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2655 2656
 * this_rq is locked.
 */
2657
static int
2658
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2659 2660
{
	struct sched_group *group;
2661
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2662 2663
	unsigned long imbalance;
	int nr_moved = 0;
N
Nick Piggin 已提交
2664
	int sd_idle = 0;
2665
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2666

2667 2668 2669 2670
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2671
	 * portraying it as CPU_NOT_IDLE.
2672 2673 2674
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2675
		sd_idle = 1;
L
Linus Torvalds 已提交
2676

I
Ingo Molnar 已提交
2677
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2678
redo:
I
Ingo Molnar 已提交
2679
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2680
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2681
	if (!group) {
I
Ingo Molnar 已提交
2682
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2683
		goto out_balanced;
L
Linus Torvalds 已提交
2684 2685
	}

I
Ingo Molnar 已提交
2686
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2687
				&cpus);
N
Nick Piggin 已提交
2688
	if (!busiest) {
I
Ingo Molnar 已提交
2689
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2690
		goto out_balanced;
L
Linus Torvalds 已提交
2691 2692
	}

N
Nick Piggin 已提交
2693 2694
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2695
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2696 2697 2698 2699 2700 2701

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2702
					minus_1_or_zero(busiest->nr_running),
I
Ingo Molnar 已提交
2703
					imbalance, sd, CPU_NEWLY_IDLE, NULL);
2704
		spin_unlock(&busiest->lock);
2705 2706 2707 2708 2709 2710

		if (!nr_moved) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2711 2712
	}

N
Nick Piggin 已提交
2713
	if (!nr_moved) {
I
Ingo Molnar 已提交
2714
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2715 2716
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2717 2718
			return -1;
	} else
2719
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2720 2721

	return nr_moved;
2722 2723

out_balanced:
I
Ingo Molnar 已提交
2724
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2725
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2726
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2727
		return -1;
2728
	sd->nr_balance_failed = 0;
2729

2730
	return 0;
L
Linus Torvalds 已提交
2731 2732 2733 2734 2735 2736
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2737
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2738 2739
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2740 2741
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2742 2743

	for_each_domain(this_cpu, sd) {
2744 2745 2746 2747 2748 2749
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2750
			/* If we've pulled tasks over stop searching: */
2751
			pulled_task = load_balance_newidle(this_cpu,
2752 2753 2754 2755 2756 2757 2758
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2759
	}
I
Ingo Molnar 已提交
2760
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2761 2762 2763 2764 2765
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2766
	}
L
Linus Torvalds 已提交
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2777
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2778
{
2779
	int target_cpu = busiest_rq->push_cpu;
2780 2781
	struct sched_domain *sd;
	struct rq *target_rq;
2782

2783
	/* Is there any task to move? */
2784 2785 2786 2787
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2788 2789

	/*
2790 2791 2792
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2793
	 */
2794
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2795

2796 2797 2798 2799
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2800
	for_each_domain(target_cpu, sd) {
2801
		if ((sd->flags & SD_LOAD_BALANCE) &&
2802
		    cpu_isset(busiest_cpu, sd->span))
2803
				break;
2804
	}
2805

2806 2807
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2808

2809
		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
I
Ingo Molnar 已提交
2810
			       RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
2811 2812 2813 2814 2815
			       NULL))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2816
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2817 2818
}

2819 2820 2821 2822 2823 2824 2825 2826 2827
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2828
/*
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2839
 *
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
2896 2897 2898 2899 2900
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
2901
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2902
{
2903 2904
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
2905 2906
	unsigned long interval;
	struct sched_domain *sd;
2907
	/* Earliest time when we have to do rebalance again */
2908
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
2909

2910
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
2911 2912 2913 2914
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
2915
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
2916 2917 2918 2919 2920 2921
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
2922 2923 2924
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
2925

2926 2927 2928 2929 2930
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

2931
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
2932
			if (load_balance(cpu, rq, sd, idle, &balance)) {
2933 2934
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
2935 2936 2937
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
2938
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
2939
			}
2940
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
2941
		}
2942 2943 2944
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
2945 2946
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
2947 2948 2949 2950 2951 2952 2953 2954

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
2955
	}
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
2966 2967 2968 2969
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
2970

I
Ingo Molnar 已提交
2971
	rebalance_domains(this_cpu, idle);
2972 2973 2974 2975 2976 2977 2978

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
2979 2980
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
2981 2982 2983 2984
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
2985
		cpu_clear(this_cpu, cpus);
2986 2987 2988 2989 2990 2991 2992 2993 2994
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

I
Ingo Molnar 已提交
2995
			rebalance_domains(balance_cpu, SCHED_IDLE);
2996 2997

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
2998 2999
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3012
static inline void trigger_load_balance(struct rq *rq, int cpu)
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3064
}
I
Ingo Molnar 已提交
3065 3066 3067

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3068 3069 3070
/*
 * on UP we do not need to balance between CPUs:
 */
3071
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3072 3073
{
}
I
Ingo Molnar 已提交
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator)
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3088 3089 3090 3091 3092 3093 3094
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3095 3096
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3097
 */
3098
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3099 3100
{
	unsigned long flags;
3101 3102
	u64 ns, delta_exec;
	struct rq *rq;
3103

3104 3105 3106 3107 3108 3109 3110 3111
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
		delta_exec = rq_clock(rq) - p->se.exec_start;
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3112

L
Linus Torvalds 已提交
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3147
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3177
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3200 3201 3202 3203 3204 3205 3206
	struct task_struct *curr = rq->curr;

	spin_lock(&rq->lock);
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	update_cpu_load(rq);
	spin_unlock(&rq->lock);
3207

3208
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3209 3210
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3211
#endif
L
Linus Torvalds 已提交
3212 3213 3214 3215 3216 3217 3218 3219 3220
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3221 3222
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3223 3224 3225 3226
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3227 3228
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3229 3230 3231 3232 3233 3234 3235 3236
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3237 3238
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3239 3240 3241
	/*
	 * Is the spinlock portion underflowing?
	 */
3242 3243 3244 3245
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3246 3247 3248 3249 3250 3251 3252
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3253
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3254
 */
I
Ingo Molnar 已提交
3255
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3256
{
I
Ingo Molnar 已提交
3257 3258 3259 3260 3261 3262 3263
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3264

I
Ingo Molnar 已提交
3265 3266 3267 3268 3269
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3270 3271 3272 3273 3274
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3275 3276 3277
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3278 3279
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3291 3292

	/*
I
Ingo Molnar 已提交
3293 3294
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3295
	 */
I
Ingo Molnar 已提交
3296 3297 3298 3299
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
		p = fair_sched_class.pick_next_task(rq, now);
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3300 3301
	}

I
Ingo Molnar 已提交
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
	class = sched_class_highest;
	for ( ; ; ) {
		p = class->pick_next_task(rq, now);
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3314

I
Ingo Molnar 已提交
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	u64 now;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3338 3339

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3340
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3341 3342 3343

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3344
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3345
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3346 3347
		} else {
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3348
		}
I
Ingo Molnar 已提交
3349
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3350 3351
	}

I
Ingo Molnar 已提交
3352
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3353 3354
		idle_balance(cpu, rq);

I
Ingo Molnar 已提交
3355 3356 3357
	now = __rq_clock(rq);
	prev->sched_class->put_prev_task(rq, prev, now);
	next = pick_next_task(rq, prev, now);
L
Linus Torvalds 已提交
3358 3359

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3360

L
Linus Torvalds 已提交
3361 3362 3363 3364 3365
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3366
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3367 3368 3369
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3370 3371 3372
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3373
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3374
	}
L
Linus Torvalds 已提交
3375 3376 3377 3378 3379 3380 3381 3382
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3383
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3398
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3426
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3438
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3468 3469
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3470
{
3471
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3490 3491 3492
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3493
		if (curr->func(curr, mode, sync, key) &&
3494
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3495 3496 3497 3498 3499 3500 3501 3502 3503
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3504
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3505 3506
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3507
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3526
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3538 3539
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3583

L
Linus Torvalds 已提交
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3702 3703 3704 3705 3706
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3707
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3708
}
L
Linus Torvalds 已提交
3709

I
Ingo Molnar 已提交
3710 3711 3712 3713 3714 3715 3716
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3717

I
Ingo Molnar 已提交
3718
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3719
{
I
Ingo Molnar 已提交
3720 3721 3722 3723
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3724 3725 3726

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3727
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3728
	schedule();
I
Ingo Molnar 已提交
3729
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3730 3731 3732
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3733
long __sched
I
Ingo Molnar 已提交
3734
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3735
{
I
Ingo Molnar 已提交
3736 3737 3738 3739
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3740 3741 3742

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3743
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3744
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3745
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3746 3747 3748 3749 3750

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3751
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3752
{
I
Ingo Molnar 已提交
3753 3754 3755 3756
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3757 3758 3759

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3760
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3761
	schedule();
I
Ingo Molnar 已提交
3762
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3763 3764 3765
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3766
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3767
{
I
Ingo Molnar 已提交
3768 3769 3770 3771
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3772 3773 3774

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3775
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3776
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3777
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3778 3779 3780 3781 3782

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3795
void rt_mutex_setprio(struct task_struct *p, int prio)
3796 3797
{
	unsigned long flags;
I
Ingo Molnar 已提交
3798
	int oldprio, on_rq;
3799
	struct rq *rq;
I
Ingo Molnar 已提交
3800
	u64 now;
3801 3802 3803 3804

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3805
	now = rq_clock(rq);
3806

3807
	oldprio = p->prio;
I
Ingo Molnar 已提交
3808 3809 3810 3811 3812 3813 3814 3815 3816
	on_rq = p->se.on_rq;
	if (on_rq)
		dequeue_task(rq, p, 0, now);

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3817 3818
	p->prio = prio;

I
Ingo Molnar 已提交
3819 3820
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
3821 3822
		/*
		 * Reschedule if we are currently running on this runqueue and
3823 3824
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3825
		 */
3826 3827 3828
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3829 3830 3831
		} else {
			check_preempt_curr(rq, p);
		}
3832 3833 3834 3835 3836 3837
	}
	task_rq_unlock(rq, &flags);
}

#endif

3838
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3839
{
I
Ingo Molnar 已提交
3840
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3841
	unsigned long flags;
3842
	struct rq *rq;
I
Ingo Molnar 已提交
3843
	u64 now;
L
Linus Torvalds 已提交
3844 3845 3846 3847 3848 3849 3850 3851

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3852
	now = rq_clock(rq);
L
Linus Torvalds 已提交
3853 3854 3855 3856
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3857
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3858
	 */
3859
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3860 3861 3862
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3863 3864 3865 3866
	on_rq = p->se.on_rq;
	if (on_rq) {
		dequeue_task(rq, p, 0, now);
		dec_load(rq, p, now);
3867
	}
L
Linus Torvalds 已提交
3868 3869

	p->static_prio = NICE_TO_PRIO(nice);
3870
	set_load_weight(p);
3871 3872 3873
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3874

I
Ingo Molnar 已提交
3875 3876 3877
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
		inc_load(rq, p, now);
L
Linus Torvalds 已提交
3878
		/*
3879 3880
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3881
		 */
3882
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3883 3884 3885 3886 3887 3888 3889
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3890 3891 3892 3893 3894
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3895
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3896
{
3897 3898
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3899

M
Matt Mackall 已提交
3900 3901 3902 3903
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
3915
	long nice, retval;
L
Linus Torvalds 已提交
3916 3917 3918 3919 3920 3921

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3922 3923
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3924 3925 3926 3927 3928 3929 3930 3931 3932
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3933 3934 3935
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3954
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3955 3956 3957 3958 3959 3960 3961 3962
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3963
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3982
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3983 3984 3985 3986 3987 3988 3989 3990
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
3991
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3992 3993 3994 3995 3996
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3997 3998
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3999
{
I
Ingo Molnar 已提交
4000
	BUG_ON(p->se.on_rq);
4001

L
Linus Torvalds 已提交
4002
	p->policy = policy;
I
Ingo Molnar 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4015
	p->rt_priority = prio;
4016 4017 4018
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4019
	set_load_weight(p);
L
Linus Torvalds 已提交
4020 4021 4022
}

/**
4023
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4024 4025 4026
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4027
 *
4028
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4029
 */
I
Ingo Molnar 已提交
4030 4031
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4032
{
I
Ingo Molnar 已提交
4033
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4034
	unsigned long flags;
4035
	struct rq *rq;
L
Linus Torvalds 已提交
4036

4037 4038
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4039 4040 4041 4042 4043
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4044 4045
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4046
		return -EINVAL;
L
Linus Torvalds 已提交
4047 4048
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4049 4050
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4051 4052
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4053
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4054
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4055
		return -EINVAL;
4056
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4057 4058
		return -EINVAL;

4059 4060 4061 4062
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4063
		if (rt_policy(policy)) {
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4080 4081 4082 4083 4084 4085
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4086

4087 4088 4089 4090 4091
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4092 4093 4094 4095

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4096 4097 4098 4099 4100
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4101 4102 4103 4104
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4105
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4106 4107 4108
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4109 4110
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4111 4112
		goto recheck;
	}
I
Ingo Molnar 已提交
4113 4114 4115
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
L
Linus Torvalds 已提交
4116
	oldprio = p->prio;
I
Ingo Molnar 已提交
4117 4118 4119
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4120 4121
		/*
		 * Reschedule if we are currently running on this runqueue and
4122 4123
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4124
		 */
4125 4126 4127
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4128 4129 4130
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4131
	}
4132 4133 4134
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4135 4136
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4137 4138 4139 4140
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4141 4142
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4143 4144 4145
{
	struct sched_param lparam;
	struct task_struct *p;
4146
	int retval;
L
Linus Torvalds 已提交
4147 4148 4149 4150 4151

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4152 4153 4154

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4155
	p = find_process_by_pid(pid);
4156 4157 4158
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4159

L
Linus Torvalds 已提交
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4172 4173 4174 4175
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4195
	struct task_struct *p;
L
Linus Torvalds 已提交
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4223
	struct task_struct *p;
L
Linus Torvalds 已提交
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4258 4259
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4260

4261
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4262 4263 4264 4265 4266
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4267
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4284 4285 4286 4287
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4288 4289 4290 4291 4292 4293
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4294
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4335
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4336 4337 4338
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4339
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4340 4341
EXPORT_SYMBOL(cpu_online_map);

4342
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4343
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4344 4345 4346 4347
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4348
	struct task_struct *p;
L
Linus Torvalds 已提交
4349 4350
	int retval;

4351
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4352 4353 4354 4355 4356 4357 4358
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4359 4360 4361 4362
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4363
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4364 4365 4366

out_unlock:
	read_unlock(&tasklist_lock);
4367
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
	if (retval)
		return retval;

	return 0;
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4402 4403
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4404 4405 4406
 */
asmlinkage long sys_sched_yield(void)
{
4407
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4408 4409

	schedstat_inc(rq, yld_cnt);
I
Ingo Molnar 已提交
4410
	if (unlikely(rq->nr_running == 1))
L
Linus Torvalds 已提交
4411
		schedstat_inc(rq, yld_act_empty);
I
Ingo Molnar 已提交
4412 4413
	else
		current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4414 4415 4416 4417 4418 4419

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4420
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4421 4422 4423 4424 4425 4426 4427 4428
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4429
static void __cond_resched(void)
L
Linus Torvalds 已提交
4430
{
4431 4432 4433
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4434 4435 4436 4437 4438
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4439 4440 4441 4442 4443 4444 4445 4446 4447
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4448 4449
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4465
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4466
{
J
Jan Kara 已提交
4467 4468
	int ret = 0;

L
Linus Torvalds 已提交
4469 4470 4471
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4472
		ret = 1;
L
Linus Torvalds 已提交
4473 4474
		spin_lock(lock);
	}
4475
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4476
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4477 4478 4479
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4480
		ret = 1;
L
Linus Torvalds 已提交
4481 4482
		spin_lock(lock);
	}
J
Jan Kara 已提交
4483
	return ret;
L
Linus Torvalds 已提交
4484 4485 4486 4487 4488 4489 4490
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4491
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4492
		local_bh_enable();
L
Linus Torvalds 已提交
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4504
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4523
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4524

4525
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4526 4527 4528
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4529
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4530 4531 4532 4533 4534
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4535
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4536 4537
	long ret;

4538
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4539 4540 4541
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4542
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4563
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4564
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4588
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4589
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4606
	struct task_struct *p;
L
Linus Torvalds 已提交
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4623
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4624
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4625 4626 4627 4628 4629 4630 4631 4632 4633
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4634
static const char stat_nam[] = "RSDTtZX";
4635 4636

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4637 4638
{
	unsigned long free = 0;
4639
	unsigned state;
L
Linus Torvalds 已提交
4640 4641

	state = p->state ? __ffs(p->state) + 1 : 0;
4642 4643
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
#if (BITS_PER_LONG == 32)
	if (state == TASK_RUNNING)
		printk(" running ");
	else
		printk(" %08lX ", thread_saved_pc(p));
#else
	if (state == TASK_RUNNING)
		printk("  running task   ");
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4657
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4658 4659
		while (!*n)
			n++;
4660
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4661 4662
	}
#endif
4663
	printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4664 4665 4666 4667 4668 4669 4670 4671 4672
	if (!p->mm)
		printk(" (L-TLB)\n");
	else
		printk(" (NOTLB)\n");

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4673
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4674
{
4675
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4676 4677 4678

#if (BITS_PER_LONG == 32)
	printk("\n"
4679 4680
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4681 4682
#else
	printk("\n"
4683 4684
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4685 4686 4687 4688 4689 4690 4691 4692
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4693
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4694
			show_task(p);
L
Linus Torvalds 已提交
4695 4696
	} while_each_thread(g, p);

4697 4698
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4699 4700 4701
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4702
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4703 4704 4705 4706 4707
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4708 4709
}

I
Ingo Molnar 已提交
4710 4711
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4712
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4713 4714
}

4715 4716 4717 4718 4719 4720 4721 4722
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4723
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4724
{
4725
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4726 4727
	unsigned long flags;

I
Ingo Molnar 已提交
4728 4729 4730
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4731
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4732
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4733
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4734 4735 4736

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4737 4738 4739
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4740 4741 4742 4743
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4744
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4745
#else
A
Al Viro 已提交
4746
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4747
#endif
I
Ingo Molnar 已提交
4748 4749 4750 4751
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long gran_limit = 10000000;

	sysctl_sched_granularity *= factor;
	if (sysctl_sched_granularity > gran_limit)
		sysctl_sched_granularity = gran_limit;

	sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
	sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
}

L
Linus Torvalds 已提交
4785 4786 4787 4788
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4789
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4811
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4812
{
4813
	struct migration_req req;
L
Linus Torvalds 已提交
4814
	unsigned long flags;
4815
	struct rq *rq;
4816
	int ret = 0;
L
Linus Torvalds 已提交
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4839

L
Linus Torvalds 已提交
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4852 4853
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4854
 */
4855
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4856
{
4857
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4858
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4859 4860

	if (unlikely(cpu_is_offline(dest_cpu)))
4861
		return ret;
L
Linus Torvalds 已提交
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4874 4875 4876
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq_src, p, 0);
L
Linus Torvalds 已提交
4877
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4878 4879 4880
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4881
	}
4882
	ret = 1;
L
Linus Torvalds 已提交
4883 4884
out:
	double_rq_unlock(rq_src, rq_dest);
4885
	return ret;
L
Linus Torvalds 已提交
4886 4887 4888 4889 4890 4891 4892
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4893
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4894 4895
{
	int cpu = (long)data;
4896
	struct rq *rq;
L
Linus Torvalds 已提交
4897 4898 4899 4900 4901 4902

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4903
		struct migration_req *req;
L
Linus Torvalds 已提交
4904 4905
		struct list_head *head;

4906
		try_to_freeze();
L
Linus Torvalds 已提交
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
4928
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
4929 4930
		list_del_init(head->next);

N
Nick Piggin 已提交
4931 4932 4933
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
4952 4953 4954 4955
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
4956
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
4957
{
4958
	unsigned long flags;
L
Linus Torvalds 已提交
4959
	cpumask_t mask;
4960 4961
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
4962

4963
restart:
L
Linus Torvalds 已提交
4964 4965
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
4966
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
4967 4968 4969 4970
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
4971
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
4972 4973 4974

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
4975 4976 4977
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
4978
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4979 4980 4981 4982 4983 4984

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
4985
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
4986 4987
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
4988
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
4989
	}
4990
	if (!__migrate_task(p, dead_cpu, dest_cpu))
4991
		goto restart;
L
Linus Torvalds 已提交
4992 4993 4994 4995 4996 4997 4998 4999 5000
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5001
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5002
{
5003
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5017
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5018 5019 5020

	write_lock_irq(&tasklist_lock);

5021 5022
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5023 5024
			continue;

5025 5026 5027
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5028 5029 5030 5031

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5032 5033
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5034
 * It does so by boosting its priority to highest possible and adding it to
5035
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5036 5037 5038
 */
void sched_idle_next(void)
{
5039
	int this_cpu = smp_processor_id();
5040
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5041 5042 5043 5044
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5045
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5046

5047 5048 5049
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5050 5051 5052
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5053
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5054 5055

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5056
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5057 5058 5059 5060

	spin_unlock_irqrestore(&rq->lock, flags);
}

5061 5062
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5076
/* called under rq->lock with disabled interrupts */
5077
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5078
{
5079
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5080 5081

	/* Must be exiting, otherwise would be on tasklist. */
5082
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5083 5084

	/* Cannot have done final schedule yet: would have vanished. */
5085
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5086

5087
	get_task_struct(p);
L
Linus Torvalds 已提交
5088 5089 5090 5091 5092

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5093
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5094
	 */
5095
	spin_unlock(&rq->lock);
5096
	move_task_off_dead_cpu(dead_cpu, p);
5097
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5098

5099
	put_task_struct(p);
L
Linus Torvalds 已提交
5100 5101 5102 5103 5104
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5105
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5106
	struct task_struct *next;
5107

I
Ingo Molnar 已提交
5108 5109 5110 5111 5112 5113 5114
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
		next = pick_next_task(rq, rq->curr, rq_clock(rq));
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
L
Linus Torvalds 已提交
5115 5116 5117 5118 5119 5120 5121 5122
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5123 5124
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5125 5126
{
	struct task_struct *p;
5127
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5128
	unsigned long flags;
5129
	struct rq *rq;
L
Linus Torvalds 已提交
5130 5131

	switch (action) {
5132 5133 5134 5135
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5136
	case CPU_UP_PREPARE:
5137
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5138
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5139 5140 5141 5142 5143 5144
		if (IS_ERR(p))
			return NOTIFY_BAD;
		p->flags |= PF_NOFREEZE;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5145
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5146 5147 5148
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5149

L
Linus Torvalds 已提交
5150
	case CPU_ONLINE:
5151
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5152 5153 5154
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5155

L
Linus Torvalds 已提交
5156 5157
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5158
	case CPU_UP_CANCELED_FROZEN:
5159 5160
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5161
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5162 5163
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5164 5165 5166
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5167

L
Linus Torvalds 已提交
5168
	case CPU_DEAD:
5169
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5170 5171 5172 5173 5174 5175
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5176
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5177
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5178 5179
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5180 5181 5182 5183 5184 5185
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5186
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5187 5188 5189
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5190 5191
			struct migration_req *req;

L
Linus Torvalds 已提交
5192
			req = list_entry(rq->migration_queue.next,
5193
					 struct migration_req, list);
L
Linus Torvalds 已提交
5194 5195 5196 5197 5198 5199
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5200 5201 5202
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5203 5204 5205 5206 5207 5208 5209
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5210
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5211 5212 5213 5214 5215 5216 5217
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5218
	int err;
5219 5220

	/* Start one for the boot CPU: */
5221 5222
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5223 5224
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5225

L
Linus Torvalds 已提交
5226 5227 5228 5229 5230
	return 0;
}
#endif

#ifdef CONFIG_SMP
5231 5232 5233 5234 5235

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5236
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5237 5238 5239 5240 5241
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5242 5243 5244 5245 5246
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5266 5267
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5268 5269 5270 5271 5272 5273
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5274 5275
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5276
		if (!cpu_isset(cpu, group->cpumask))
5277 5278
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5291
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5292
				printk("\n");
5293 5294
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5317 5318
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5319 5320 5321

		level++;
		sd = sd->parent;
5322 5323
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5324

5325 5326 5327
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5328 5329 5330 5331

	} while (sd);
}
#else
5332
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5333 5334
#endif

5335
static int sd_degenerate(struct sched_domain *sd)
5336 5337 5338 5339 5340 5341 5342 5343
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5344 5345 5346
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5360 5361
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5380 5381 5382
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5383 5384 5385 5386 5387 5388 5389
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5390 5391 5392 5393
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5394
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5395
{
5396
	struct rq *rq = cpu_rq(cpu);
5397 5398 5399 5400 5401 5402 5403
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5404
		if (sd_parent_degenerate(tmp, parent)) {
5405
			tmp->parent = parent->parent;
5406 5407 5408
			if (parent->parent)
				parent->parent->child = tmp;
		}
5409 5410
	}

5411
	if (sd && sd_degenerate(sd)) {
5412
		sd = sd->parent;
5413 5414 5415
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5416 5417 5418

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5419
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5420 5421 5422
}

/* cpus with isolated domains */
5423
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5441 5442 5443 5444
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5445 5446 5447 5448 5449
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5450
static void
5451 5452 5453
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5454 5455 5456 5457 5458 5459
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5460 5461
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5462 5463 5464 5465 5466 5467
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5468
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5469 5470

		for_each_cpu_mask(j, span) {
5471
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5486
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5487

5488
#ifdef CONFIG_NUMA
5489

5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5542 5543
	cpumask_t span, nodemask;
	int i;
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5554

5555 5556 5557 5558 5559 5560 5561 5562
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5563
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5564

5565
/*
5566
 * SMT sched-domains:
5567
 */
L
Linus Torvalds 已提交
5568 5569
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5570
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5571

5572 5573
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5574
{
5575 5576
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5577 5578 5579 5580
	return cpu;
}
#endif

5581 5582 5583
/*
 * multi-core sched-domains:
 */
5584 5585
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5586
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5587 5588 5589
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5590 5591
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5592
{
5593
	int group;
5594 5595
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5596 5597 5598 5599
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5600 5601
}
#elif defined(CONFIG_SCHED_MC)
5602 5603
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5604
{
5605 5606
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5607 5608 5609 5610
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5611
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5612
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5613

5614 5615
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5616
{
5617
	int group;
5618
#ifdef CONFIG_SCHED_MC
5619
	cpumask_t mask = cpu_coregroup_map(cpu);
5620
	cpus_and(mask, mask, *cpu_map);
5621
	group = first_cpu(mask);
5622
#elif defined(CONFIG_SCHED_SMT)
5623 5624
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5625
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5626
#else
5627
	group = cpu;
L
Linus Torvalds 已提交
5628
#endif
5629 5630 5631
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5632 5633 5634 5635
}

#ifdef CONFIG_NUMA
/*
5636 5637 5638
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5639
 */
5640
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5641
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5642

5643
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5644
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5645

5646 5647
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5648
{
5649 5650 5651 5652 5653 5654 5655 5656 5657
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5658
}
5659

5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5680
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5681 5682 5683 5684 5685
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5686 5687
#endif

5688
#ifdef CONFIG_NUMA
5689 5690 5691
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5692
	int cpu, i;
5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5723 5724 5725 5726 5727
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5728

5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5755 5756
	sd->groups->__cpu_power = 0;

5757 5758 5759 5760 5761 5762 5763 5764 5765 5766
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5767
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5768 5769 5770 5771 5772 5773 5774 5775
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5776
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5777 5778 5779 5780
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5781
/*
5782 5783
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5784
 */
5785
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
5786 5787
{
	int i;
5788 5789
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
5790
	int sd_allnodes = 0;
5791 5792 5793 5794

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
5795
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5796
					   GFP_KERNEL);
5797 5798
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
5799
		return -ENOMEM;
5800 5801 5802
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
5803 5804

	/*
5805
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
5806
	 */
5807
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5808 5809 5810
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

5811
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5812 5813

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
5814 5815
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5816 5817 5818
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
5819
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5820
			p = sd;
5821
			sd_allnodes = 1;
5822 5823 5824
		} else
			p = NULL;

L
Linus Torvalds 已提交
5825 5826
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
5827 5828
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
5829 5830
		if (p)
			p->child = sd;
5831
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
5832 5833 5834 5835 5836 5837 5838
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
5839 5840
		if (p)
			p->child = sd;
5841
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
5842

5843 5844 5845 5846 5847 5848 5849
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
5850
		p->child = sd;
5851
		cpu_to_core_group(i, cpu_map, &sd->groups);
5852 5853
#endif

L
Linus Torvalds 已提交
5854 5855 5856 5857 5858
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
5859
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
5860
		sd->parent = p;
5861
		p->child = sd;
5862
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
5863 5864 5865 5866 5867
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
5868
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5869
		cpumask_t this_sibling_map = cpu_sibling_map[i];
5870
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
5871 5872 5873
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
5874 5875
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
5876 5877 5878
	}
#endif

5879 5880 5881 5882 5883 5884 5885
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
5886 5887
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
5888 5889 5890
	}
#endif

L
Linus Torvalds 已提交
5891 5892 5893 5894
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

5895
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5896 5897 5898
		if (cpus_empty(nodemask))
			continue;

5899
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
5900 5901 5902 5903
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
5904
	if (sd_allnodes)
I
Ingo Molnar 已提交
5905 5906
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
5917 5918
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
5919
			continue;
5920
		}
5921 5922 5923 5924

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

5925
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
5926 5927 5928 5929 5930
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
5931 5932 5933
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
5934

5935 5936 5937
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
5938
		sg->__cpu_power = 0;
5939
		sg->cpumask = nodemask;
5940
		sg->next = sg;
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

5959 5960
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
5961 5962 5963
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
5964
				goto error;
5965
			}
5966
			sg->__cpu_power = 0;
5967
			sg->cpumask = tmp;
5968
			sg->next = prev->next;
5969 5970 5971 5972 5973
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
5974 5975 5976
#endif

	/* Calculate CPU power for physical packages and nodes */
5977
#ifdef CONFIG_SCHED_SMT
5978
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
5979 5980
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

5981
		init_sched_groups_power(i, sd);
5982
	}
L
Linus Torvalds 已提交
5983
#endif
5984
#ifdef CONFIG_SCHED_MC
5985
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
5986 5987
		struct sched_domain *sd = &per_cpu(core_domains, i);

5988
		init_sched_groups_power(i, sd);
5989 5990
	}
#endif
5991

5992
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
5993 5994
		struct sched_domain *sd = &per_cpu(phys_domains, i);

5995
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
5996 5997
	}

5998
#ifdef CONFIG_NUMA
5999 6000
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6001

6002 6003
	if (sd_allnodes) {
		struct sched_group *sg;
6004

6005
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6006 6007
		init_numa_sched_groups_power(sg);
	}
6008 6009
#endif

L
Linus Torvalds 已提交
6010
	/* Attach the domains */
6011
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6012 6013 6014
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6015 6016
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6017 6018 6019 6020 6021
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6022 6023 6024

	return 0;

6025
#ifdef CONFIG_NUMA
6026 6027 6028
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6029
#endif
L
Linus Torvalds 已提交
6030
}
6031 6032 6033
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6034
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6035 6036
{
	cpumask_t cpu_default_map;
6037
	int err;
L
Linus Torvalds 已提交
6038

6039 6040 6041 6042 6043 6044 6045
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6046 6047 6048
	err = build_sched_domains(&cpu_default_map);

	return err;
6049 6050 6051
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6052
{
6053
	free_sched_groups(cpu_map);
6054
}
L
Linus Torvalds 已提交
6055

6056 6057 6058 6059
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6060
static void detach_destroy_domains(const cpumask_t *cpu_map)
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6078
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6079 6080
{
	cpumask_t change_map;
6081
	int err = 0;
6082 6083 6084 6085 6086 6087 6088 6089

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6090 6091 6092 6093 6094
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6095 6096
}

6097 6098 6099 6100 6101
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6102
	mutex_lock(&sched_hotcpu_mutex);
6103 6104
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6105
	mutex_unlock(&sched_hotcpu_mutex);
6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6130

6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6150 6151
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6164 6165
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6166 6167 6168 6169 6170 6171 6172
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6173 6174 6175
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6176
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6177 6178 6179 6180 6181 6182 6183
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6184
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6185
	case CPU_DOWN_PREPARE:
6186
	case CPU_DOWN_PREPARE_FROZEN:
6187
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6188 6189 6190
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6191
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6192
	case CPU_DOWN_FAILED:
6193
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6194
	case CPU_ONLINE:
6195
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6196
	case CPU_DEAD:
6197
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6198 6199 6200 6201 6202 6203 6204 6205 6206
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6207
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6208 6209 6210 6211 6212 6213

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6214 6215
	cpumask_t non_isolated_cpus;

6216
	mutex_lock(&sched_hotcpu_mutex);
6217
	arch_init_sched_domains(&cpu_online_map);
6218
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6219 6220
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6221
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6222 6223
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6224 6225 6226 6227

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6228
	sched_init_granularity();
L
Linus Torvalds 已提交
6229 6230 6231 6232
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6233
	sched_init_granularity();
L
Linus Torvalds 已提交
6234 6235 6236 6237 6238 6239 6240
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6241

L
Linus Torvalds 已提交
6242 6243 6244 6245 6246
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6247 6248 6249 6250 6251 6252 6253 6254 6255
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6256 6257
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6258
	u64 now = sched_clock();
6259
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6260 6261 6262 6263 6264 6265 6266 6267
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6268

6269
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6270
		struct rt_prio_array *array;
6271
		struct rq *rq;
L
Linus Torvalds 已提交
6272 6273 6274

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6275
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6276
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6277 6278 6279 6280 6281 6282 6283 6284
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
		rq->ls.load_update_last = now;
		rq->ls.load_update_start = now;
L
Linus Torvalds 已提交
6285

I
Ingo Molnar 已提交
6286 6287
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6288
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6289
		rq->sd = NULL;
L
Linus Torvalds 已提交
6290
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6291
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6292
		rq->push_cpu = 0;
6293
		rq->cpu = i;
L
Linus Torvalds 已提交
6294 6295 6296 6297 6298
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6299 6300 6301 6302
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6303
		}
6304
		highest_cpu = i;
I
Ingo Molnar 已提交
6305 6306
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6307 6308
	}

6309
	set_load_weight(&init_task);
6310

6311
#ifdef CONFIG_SMP
6312
	nr_cpu_ids = highest_cpu + 1;
6313 6314 6315
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6316 6317 6318 6319
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6333 6334 6335 6336
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6337 6338 6339 6340 6341
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6342
#ifdef in_atomic
L
Linus Torvalds 已提交
6343 6344 6345 6346 6347 6348 6349
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6350
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6351 6352 6353
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6354
		debug_show_held_locks(current);
6355 6356
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6367
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6368
	unsigned long flags;
6369
	struct rq *rq;
I
Ingo Molnar 已提交
6370
	int on_rq;
L
Linus Torvalds 已提交
6371 6372

	read_lock_irq(&tasklist_lock);
6373
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
		p->se.wait_start_fair		= 0;
		p->se.wait_start		= 0;
		p->se.exec_start		= 0;
		p->se.sleep_start		= 0;
		p->se.sleep_start_fair		= 0;
		p->se.block_start		= 0;
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6392
			continue;
I
Ingo Molnar 已提交
6393
		}
L
Linus Torvalds 已提交
6394

6395 6396
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6397 6398 6399 6400 6401 6402 6403
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6404

I
Ingo Molnar 已提交
6405 6406 6407 6408 6409 6410
		on_rq = p->se.on_rq;
		if (on_rq)
			deactivate_task(task_rq(p), p, 0);
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
			activate_task(task_rq(p), p, 0);
L
Linus Torvalds 已提交
6411 6412
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6413 6414 6415
#ifdef CONFIG_SMP
 out_unlock:
#endif
6416 6417
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6418 6419
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6420 6421 6422 6423
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6442
struct task_struct *curr_task(int cpu)
6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6462
void set_curr_task(int cpu, struct task_struct *p)
6463 6464 6465 6466 6467
{
	cpu_curr(cpu) = p;
}

#endif