sched.c 223.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76

77 78 79 80 81 82 83
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
84
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
85 86
}

L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
106
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
107
 */
108
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
109

I
Ingo Molnar 已提交
110 111 112
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
113 114 115
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
116
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
117 118 119
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
120

121 122 123 124 125
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

147 148 149 150 151 152 153 154 155 156 157 158
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
159
/*
I
Ingo Molnar 已提交
160
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
161
 */
I
Ingo Molnar 已提交
162 163 164 165 166
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

167
struct rt_bandwidth {
I
Ingo Molnar 已提交
168 169 170 171 172
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
206 207
	spin_lock_init(&rt_b->rt_runtime_lock);

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

245 246 247 248 249 250
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

251
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
252

253 254
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
255 256
struct cfs_rq;

P
Peter Zijlstra 已提交
257 258
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
259
/* task group related information */
260
struct task_group {
261
#ifdef CONFIG_CGROUP_SCHED
262 263
	struct cgroup_subsys_state css;
#endif
264 265

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
266 267 268 269 270
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
271 272 273 274 275 276
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

277
	struct rt_bandwidth rt_bandwidth;
278
#endif
279

280
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
281
	struct list_head list;
P
Peter Zijlstra 已提交
282 283 284 285

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
286 287
};

D
Dhaval Giani 已提交
288
#ifdef CONFIG_USER_SCHED
289 290 291 292 293 294 295 296

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

297
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
298 299 300 301
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
302 303 304 305 306 307
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
#endif
308 309
#else
#define root_task_group init_task_group
D
Dhaval Giani 已提交
310
#endif
P
Peter Zijlstra 已提交
311

312
/* task_group_lock serializes add/remove of task groups and also changes to
313 314
 * a task group's cpu shares.
 */
315
static DEFINE_SPINLOCK(task_group_lock);
316

317 318 319 320 321 322 323
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

324 325
#define MIN_SHARES	2

326 327 328
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
329
/* Default task group.
I
Ingo Molnar 已提交
330
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
331
 */
332
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
333 334

/* return group to which a task belongs */
335
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
336
{
337
	struct task_group *tg;
338

339
#ifdef CONFIG_USER_SCHED
340
	tg = p->user->tg;
341
#elif defined(CONFIG_CGROUP_SCHED)
342 343
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
344
#else
I
Ingo Molnar 已提交
345
	tg = &init_task_group;
346
#endif
347
	return tg;
S
Srivatsa Vaddagiri 已提交
348 349 350
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
351
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
352
{
353
#ifdef CONFIG_FAIR_GROUP_SCHED
354 355
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
356
#endif
P
Peter Zijlstra 已提交
357

358
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
359 360
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
361
#endif
S
Srivatsa Vaddagiri 已提交
362 363 364 365
}

#else

P
Peter Zijlstra 已提交
366
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
367

368
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
369

I
Ingo Molnar 已提交
370 371 372 373 374 375
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
376
	u64 min_vruntime;
I
Ingo Molnar 已提交
377 378 379

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
380 381 382 383 384 385

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
386 387
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
388
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
389 390 391

	unsigned long nr_spread_over;

392
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
393 394
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
395 396
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
397 398 399 400 401 402
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
403 404
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

#ifdef CONFIG_SMP
	unsigned long task_weight;
	unsigned long shares;
	/*
	 * We need space to build a sched_domain wide view of the full task
	 * group tree, in order to avoid depending on dynamic memory allocation
	 * during the load balancing we place this in the per cpu task group
	 * hierarchy. This limits the load balancing to one instance per cpu,
	 * but more should not be needed anyway.
	 */
	struct aggregate_struct {
		/*
		 *   load = weight(cpus) * f(tg)
		 *
		 * Where f(tg) is the recursive weight fraction assigned to
		 * this group.
		 */
		unsigned long load;

		/*
		 * part of the group weight distributed to this span.
		 */
		unsigned long shares;

		/*
		 * The sum of all runqueue weights within this span.
		 */
		unsigned long rq_weight;

		/*
		 * Weight contributed by tasks; this is the part we can
		 * influence by moving tasks around.
		 */
		unsigned long task_weight;
	} aggregate;
#endif
I
Ingo Molnar 已提交
442 443
#endif
};
L
Linus Torvalds 已提交
444

I
Ingo Molnar 已提交
445 446 447
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
448
	unsigned long rt_nr_running;
449
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
450 451
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
452
#ifdef CONFIG_SMP
453
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
454
	int overloaded;
P
Peter Zijlstra 已提交
455
#endif
P
Peter Zijlstra 已提交
456
	int rt_throttled;
P
Peter Zijlstra 已提交
457
	u64 rt_time;
P
Peter Zijlstra 已提交
458
	u64 rt_runtime;
I
Ingo Molnar 已提交
459
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
460
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
461

462
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
463 464
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
465 466 467 468 469
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
470 471
};

G
Gregory Haskins 已提交
472 473 474 475
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
476 477
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
478 479 480 481 482 483 484 485
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
486

I
Ingo Molnar 已提交
487
	/*
488 489 490 491
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
492
	atomic_t rto_count;
G
Gregory Haskins 已提交
493 494
};

495 496 497 498
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
499 500 501 502
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
503 504 505 506 507 508 509
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
510
struct rq {
511 512
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
513 514 515 516 517 518

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
519 520
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
521
	unsigned char idle_at_tick;
522
#ifdef CONFIG_NO_HZ
523
	unsigned long last_tick_seen;
524 525
	unsigned char in_nohz_recently;
#endif
526 527
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
528 529 530 531
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
532 533
	struct rt_rq rt;

I
Ingo Molnar 已提交
534
#ifdef CONFIG_FAIR_GROUP_SCHED
535 536
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
537 538
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
539
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
540 541 542 543 544 545 546 547 548 549
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

550
	struct task_struct *curr, *idle;
551
	unsigned long next_balance;
L
Linus Torvalds 已提交
552
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
553 554 555 556

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

557
	unsigned int clock_warps, clock_overflows, clock_underflows;
558 559
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
560
	u64 tick_timestamp;
I
Ingo Molnar 已提交
561

L
Linus Torvalds 已提交
562 563 564
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
565
	struct root_domain *rd;
L
Linus Torvalds 已提交
566 567 568 569 570
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
571 572
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
573

574
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
575 576 577
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
578 579 580 581 582 583
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
584 585 586 587 588
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
589 590 591 592
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
593 594

	/* schedule() stats */
595 596 597
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
598 599

	/* try_to_wake_up() stats */
600 601
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
602 603

	/* BKL stats */
604
	unsigned int bkl_count;
L
Linus Torvalds 已提交
605
#endif
606
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
607 608
};

609
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
610

I
Ingo Molnar 已提交
611 612 613 614 615
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

616 617 618 619 620 621 622 623 624
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
#ifdef CONFIG_NO_HZ
static inline bool nohz_on(int cpu)
{
	return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
}

static inline u64 max_skipped_ticks(struct rq *rq)
{
	return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
	rq->last_tick_seen = jiffies;
}
#else
static inline u64 max_skipped_ticks(struct rq *rq)
{
	return 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
}
#endif

I
Ingo Molnar 已提交
651
/*
I
Ingo Molnar 已提交
652 653
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
654
 */
I
Ingo Molnar 已提交
655
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
656 657 658 659 660 661
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
662 663 664
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
665 666 667 668 669 670 671 672 673 674
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
675 676 677 678 679 680
		u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
		u64 max_time = rq->tick_timestamp + max_jump;

		if (unlikely(clock + delta > max_time)) {
			if (clock < max_time)
				clock = max_time;
681 682
			else
				clock++;
I
Ingo Molnar 已提交
683 684 685 686 687 688 689 690 691 692
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
693
}
I
Ingo Molnar 已提交
694

I
Ingo Molnar 已提交
695 696 697 698
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
699 700
}

N
Nick Piggin 已提交
701 702
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
703
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
704 705 706 707
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
708 709
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
710 711 712 713 714 715

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
716 717 718 719 720 721 722 723 724 725 726 727
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
728 729 730 731

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
732
enum {
P
Peter Zijlstra 已提交
733
#include "sched_features.h"
I
Ingo Molnar 已提交
734 735
};

P
Peter Zijlstra 已提交
736 737 738 739 740
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
741
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
742 743 744 745 746 747 748 749 750
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

751
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
752 753 754 755 756 757
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

758
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
786
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
816
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
859

860 861 862 863 864 865
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
866
/*
P
Peter Zijlstra 已提交
867
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
868 869
 * default: 1s
 */
P
Peter Zijlstra 已提交
870
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
871

872 873
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
874 875 876 877 878
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
879

880 881 882 883 884 885 886 887 888 889 890 891
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
892

893
unsigned long long time_sync_thresh = 100000;
894 895 896 897

static DEFINE_PER_CPU(unsigned long long, time_offset);
static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);

898
/*
899 900 901 902
 * Global lock which we take every now and then to synchronize
 * the CPUs time. This method is not warp-safe, but it's good
 * enough to synchronize slowly diverging time sources and thus
 * it's good enough for tracing:
903
 */
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
static DEFINE_SPINLOCK(time_sync_lock);
static unsigned long long prev_global_time;

static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
{
	unsigned long flags;

	spin_lock_irqsave(&time_sync_lock, flags);

	if (time < prev_global_time) {
		per_cpu(time_offset, cpu) += prev_global_time - time;
		time = prev_global_time;
	} else {
		prev_global_time = time;
	}

	spin_unlock_irqrestore(&time_sync_lock, flags);

	return time;
}

static unsigned long long __cpu_clock(int cpu)
926 927 928
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
929
	struct rq *rq;
930

931 932 933 934
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
935 936 937 938 939 940
	if (unlikely(!scheduler_running))
		return 0;

	local_irq_save(flags);
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
I
Ingo Molnar 已提交
941
	now = rq->clock;
942
	local_irq_restore(flags);
943 944 945

	return now;
}
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long prev_cpu_time, time, delta_time;

	prev_cpu_time = per_cpu(prev_cpu_time, cpu);
	time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
	delta_time = time-prev_cpu_time;

	if (unlikely(delta_time > time_sync_thresh))
		time = __sync_cpu_clock(time, cpu);

	return time;
}
P
Paul E. McKenney 已提交
964
EXPORT_SYMBOL_GPL(cpu_clock);
965

L
Linus Torvalds 已提交
966
#ifndef prepare_arch_switch
967 968 969 970 971 972
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

973 974 975 976 977
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

978
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
979
static inline int task_running(struct rq *rq, struct task_struct *p)
980
{
981
	return task_current(rq, p);
982 983
}

984
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
985 986 987
{
}

988
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
989
{
990 991 992 993
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
994 995 996 997 998 999 1000
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

1001 1002 1003 1004
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
1005
static inline int task_running(struct rq *rq, struct task_struct *p)
1006 1007 1008 1009
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
1010
	return task_current(rq, p);
1011 1012 1013
#endif
}

1014
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

1031
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
1044
#endif
1045 1046
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
1047

1048 1049 1050 1051
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
1052
static inline struct rq *__task_rq_lock(struct task_struct *p)
1053 1054
	__acquires(rq->lock)
{
1055 1056 1057 1058 1059
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
1060 1061 1062 1063
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
1064 1065
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
1066
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
1067 1068
 * explicitly disabling preemption.
 */
1069
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
1070 1071
	__acquires(rq->lock)
{
1072
	struct rq *rq;
L
Linus Torvalds 已提交
1073

1074 1075 1076 1077 1078 1079
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1080 1081 1082 1083
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
1084
static void __task_rq_unlock(struct rq *rq)
1085 1086 1087 1088 1089
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1090
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1097
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1098
 */
A
Alexey Dobriyan 已提交
1099
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1100 1101
	__acquires(rq->lock)
{
1102
	struct rq *rq;
L
Linus Torvalds 已提交
1103 1104 1105 1106 1107 1108 1109 1110

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

1111
/*
1112
 * We are going deep-idle (irqs are disabled):
1113
 */
1114
void sched_clock_idle_sleep_event(void)
1115
{
1116 1117
	struct rq *rq = cpu_rq(smp_processor_id());

1118
	WARN_ON(!irqs_disabled());
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
1133

1134
	WARN_ON(!irqs_disabled());
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
1146
	touch_softlockup_watchdog();
1147
}
1148
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1149

P
Peter Zijlstra 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
1185
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1197 1198
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1374 1375 1376 1377

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1378 1379
#endif

I
Ingo Molnar 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1393
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1394 1395 1396 1397 1398
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1399
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1400 1401
		return;

P
Peter Zijlstra 已提交
1402
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
#endif

I
Ingo Molnar 已提交
1467
#else
P
Peter Zijlstra 已提交
1468
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1469 1470
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1471
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1472 1473 1474
}
#endif

1475 1476 1477 1478 1479 1480 1481 1482
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1483 1484 1485
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1486
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1487

1488 1489 1490
/*
 * delta *= weight / lw
 */
1491
static unsigned long
1492 1493 1494 1495 1496
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1497 1498
	if (!lw->inv_weight)
		lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
1499 1500 1501 1502 1503

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1504
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1505
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1506 1507
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1508
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1509

1510
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1511 1512
}

1513
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1514 1515
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1516
	lw->inv_weight = 0;
1517 1518
}

1519
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1520 1521
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1522
	lw->inv_weight = 0;
1523 1524
}

1525 1526 1527 1528
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1529
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1530 1531 1532 1533
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1545 1546 1547
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1548 1549
 */
static const int prio_to_weight[40] = {
1550 1551 1552 1553 1554 1555 1556 1557
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1558 1559
};

1560 1561 1562 1563 1564 1565 1566
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1567
static const u32 prio_to_wmult[40] = {
1568 1569 1570 1571 1572 1573 1574 1575
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1576
};
1577

I
Ingo Molnar 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1603

1604 1605 1606 1607 1608 1609
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1620 1621 1622 1623 1624
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

#ifdef CONFIG_FAIR_GROUP_SCHED

/*
 * Group load balancing.
 *
 * We calculate a few balance domain wide aggregate numbers; load and weight.
 * Given the pictures below, and assuming each item has equal weight:
 *
 *         root          1 - thread
 *         / | \         A - group
 *        A  1  B
 *       /|\   / \
 *      C 2 D 3   4
 *      |   |
 *      5   6
 *
 * load:
 *    A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
 *    which equals 1/9-th of the total load.
 *
 * shares:
 *    The weight of this group on the selected cpus.
 *
 * rq_weight:
 *    Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
 *    B would get 2.
 *
 * task_weight:
 *    Part of the rq_weight contributed by tasks; all groups except B would
 *    get 1, B gets 2.
 */

static inline struct aggregate_struct *
aggregate(struct task_group *tg, struct sched_domain *sd)
{
	return &tg->cfs_rq[sd->first_cpu]->aggregate;
}

typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
static
void aggregate_walk_tree(aggregate_func down, aggregate_func up,
			 struct sched_domain *sd)
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
	(*down)(parent, sd);
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
	(*up)(parent, sd);

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

/*
 * Calculate the aggregate runqueue weight.
 */
static
void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long rq_weight = 0;
	unsigned long task_weight = 0;
	int i;

	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		task_weight += tg->cfs_rq[i]->task_weight;
	}

	aggregate(tg, sd)->rq_weight = rq_weight;
	aggregate(tg, sd)->task_weight = task_weight;
}

/*
 * Compute the weight of this group on the given cpus.
 */
static
void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long shares = 0;
	int i;

	for_each_cpu_mask(i, sd->span)
		shares += tg->cfs_rq[i]->shares;

1727 1728
	if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
		shares = tg->shares;
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

	aggregate(tg, sd)->shares = shares;
}

/*
 * Compute the load fraction assigned to this group, relies on the aggregate
 * weight and this group's parent's load, i.e. top-down.
 */
static
void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long load;

	if (!tg->parent) {
		int i;

		load = 0;
		for_each_cpu_mask(i, sd->span)
			load += cpu_rq(i)->load.weight;

	} else {
		load = aggregate(tg->parent, sd)->load;

		/*
		 * shares is our weight in the parent's rq so
		 * shares/parent->rq_weight gives our fraction of the load
		 */
		load *= aggregate(tg, sd)->shares;
		load /= aggregate(tg->parent, sd)->rq_weight + 1;
	}

	aggregate(tg, sd)->load = load;
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
__update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
			  int tcpu)
{
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

	if (!tg->se[tcpu])
		return;

	rq_weight = tg->cfs_rq[tcpu]->load.weight;

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
	shares = aggregate(tg, sd)->shares * rq_weight;
	shares /= aggregate(tg, sd)->rq_weight + 1;

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
	tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;

	__set_se_shares(tg->se[tcpu], shares);
}

/*
 * Re-adjust the weights on the cpu the task came from and on the cpu the
 * task went to.
 */
static void
__move_group_shares(struct task_group *tg, struct sched_domain *sd,
		    int scpu, int dcpu)
{
	unsigned long shares;

	shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;

	__update_group_shares_cpu(tg, sd, scpu);
	__update_group_shares_cpu(tg, sd, dcpu);

	/*
	 * ensure we never loose shares due to rounding errors in the
	 * above redistribution.
	 */
	shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
	if (shares)
		tg->cfs_rq[dcpu]->shares += shares;
}

/*
 * Because changing a group's shares changes the weight of the super-group
 * we need to walk up the tree and change all shares until we hit the root.
 */
static void
move_group_shares(struct task_group *tg, struct sched_domain *sd,
		  int scpu, int dcpu)
{
	while (tg) {
		__move_group_shares(tg, sd, scpu, dcpu);
		tg = tg->parent;
	}
}

static
void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long shares = aggregate(tg, sd)->shares;
	int i;

	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		__update_group_shares_cpu(tg, sd, i);
		spin_unlock_irqrestore(&rq->lock, flags);
	}

	aggregate_group_shares(tg, sd);

	/*
	 * ensure we never loose shares due to rounding errors in the
	 * above redistribution.
	 */
	shares -= aggregate(tg, sd)->shares;
	if (shares) {
		tg->cfs_rq[sd->first_cpu]->shares += shares;
		aggregate(tg, sd)->shares += shares;
	}
}

/*
 * Calculate the accumulative weight and recursive load of each task group
 * while walking down the tree.
 */
static
void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
{
	aggregate_group_weight(tg, sd);
	aggregate_group_shares(tg, sd);
	aggregate_group_load(tg, sd);
}

/*
 * Rebalance the cpu shares while walking back up the tree.
 */
static
void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
{
	aggregate_group_set_shares(tg, sd);
}

static DEFINE_PER_CPU(spinlock_t, aggregate_lock);

static void __init init_aggregate(void)
{
	int i;

	for_each_possible_cpu(i)
		spin_lock_init(&per_cpu(aggregate_lock, i));
}

static int get_aggregate(struct sched_domain *sd)
{
	if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
		return 0;

	aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
	return 1;
}

static void put_aggregate(struct sched_domain *sd)
{
	spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
}

static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
	cfs_rq->shares = shares;
}

#else

static inline void init_aggregate(void)
{
}

static inline int get_aggregate(struct sched_domain *sd)
{
	return 0;
}

static inline void put_aggregate(struct sched_domain *sd)
{
}
#endif

#else /* CONFIG_SMP */

#ifdef CONFIG_FAIR_GROUP_SCHED
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
}
#endif

1951 1952
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1953 1954
#include "sched_stats.h"
#include "sched_idletask.c"
1955 1956
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1957 1958 1959 1960 1961 1962
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1963
static void inc_nr_running(struct rq *rq)
1964 1965 1966 1967
{
	rq->nr_running++;
}

1968
static void dec_nr_running(struct rq *rq)
1969 1970 1971 1972
{
	rq->nr_running--;
}

1973 1974 1975
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1976 1977 1978 1979
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1980

I
Ingo Molnar 已提交
1981 1982 1983 1984 1985 1986 1987 1988
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1989

I
Ingo Molnar 已提交
1990 1991
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1992 1993
}

1994
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1995
{
I
Ingo Molnar 已提交
1996
	sched_info_queued(p);
1997
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1998
	p->se.on_rq = 1;
1999 2000
}

2001
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
2002
{
2003
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
2004
	p->se.on_rq = 0;
2005 2006
}

2007
/*
I
Ingo Molnar 已提交
2008
 * __normal_prio - return the priority that is based on the static prio
2009 2010 2011
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
2012
	return p->static_prio;
2013 2014
}

2015 2016 2017 2018 2019 2020 2021
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
2022
static inline int normal_prio(struct task_struct *p)
2023 2024 2025
{
	int prio;

2026
	if (task_has_rt_policy(p))
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2040
static int effective_prio(struct task_struct *p)
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2053
/*
I
Ingo Molnar 已提交
2054
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
2055
 */
I
Ingo Molnar 已提交
2056
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
2057
{
2058
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
2059
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
2060

2061
	enqueue_task(rq, p, wakeup);
2062
	inc_nr_running(rq);
L
Linus Torvalds 已提交
2063 2064 2065 2066 2067
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
2068
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
2069
{
2070
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
2071 2072
		rq->nr_uninterruptible++;

2073
	dequeue_task(rq, p, sleep);
2074
	dec_nr_running(rq);
L
Linus Torvalds 已提交
2075 2076 2077 2078 2079 2080
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2081
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2082 2083 2084 2085
{
	return cpu_curr(task_cpu(p)) == p;
}

2086 2087 2088
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
2089
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
2090 2091 2092 2093
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
2094
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
2095
#ifdef CONFIG_SMP
2096 2097 2098 2099 2100 2101
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
2102 2103
	task_thread_info(p)->cpu = cpu;
#endif
2104 2105
}

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2118
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
2119

2120 2121 2122
/*
 * Is this task likely cache-hot:
 */
2123
static int
2124 2125 2126 2127
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2128 2129 2130
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
2131
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
2132 2133
		return 1;

2134 2135 2136
	if (p->sched_class != &fair_sched_class)
		return 0;

2137 2138 2139 2140 2141
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2142 2143 2144 2145 2146 2147
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2148
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2149
{
I
Ingo Molnar 已提交
2150 2151
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2152 2153
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2154
	u64 clock_offset;
I
Ingo Molnar 已提交
2155 2156

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2157 2158 2159 2160

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2161 2162 2163 2164
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2165 2166 2167 2168 2169
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
2170
#endif
2171 2172
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2173 2174

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2175 2176
}

2177
struct migration_req {
L
Linus Torvalds 已提交
2178 2179
	struct list_head list;

2180
	struct task_struct *task;
L
Linus Torvalds 已提交
2181 2182 2183
	int dest_cpu;

	struct completion done;
2184
};
L
Linus Torvalds 已提交
2185 2186 2187 2188 2189

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2190
static int
2191
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2192
{
2193
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2194 2195 2196 2197 2198

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2199
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2200 2201 2202 2203 2204 2205 2206 2207
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2208

L
Linus Torvalds 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
2221
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
2222 2223
{
	unsigned long flags;
I
Ingo Molnar 已提交
2224
	int running, on_rq;
2225
	struct rq *rq;
L
Linus Torvalds 已提交
2226

2227 2228 2229 2230 2231 2232 2233 2234
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2235

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
2249

2250 2251 2252 2253 2254 2255 2256 2257 2258
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
2259

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2270

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2284

2285 2286 2287 2288 2289 2290 2291
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2307
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2319 2320
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2321 2322 2323 2324
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2325
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2326
{
2327
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2328
	unsigned long total = weighted_cpuload(cpu);
2329

2330
	if (type == 0)
I
Ingo Molnar 已提交
2331
		return total;
2332

I
Ingo Molnar 已提交
2333
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2334 2335 2336
}

/*
2337 2338
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2339
 */
A
Alexey Dobriyan 已提交
2340
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2341
{
2342
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2343
	unsigned long total = weighted_cpuload(cpu);
2344

N
Nick Piggin 已提交
2345
	if (type == 0)
I
Ingo Molnar 已提交
2346
		return total;
2347

I
Ingo Molnar 已提交
2348
	return max(rq->cpu_load[type-1], total);
2349 2350 2351 2352 2353
}

/*
 * Return the average load per task on the cpu's run queue
 */
2354
static unsigned long cpu_avg_load_per_task(int cpu)
2355
{
2356
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2357
	unsigned long total = weighted_cpuload(cpu);
2358 2359
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
2360
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2361 2362
}

N
Nick Piggin 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2380 2381
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2382
			continue;
2383

N
Nick Piggin 已提交
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2400 2401
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2402 2403 2404 2405 2406 2407 2408 2409

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2410
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2411 2412 2413 2414 2415 2416 2417

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2418
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2419
 */
I
Ingo Molnar 已提交
2420
static int
2421 2422
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2423 2424 2425 2426 2427
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2428
	/* Traverse only the allowed CPUs */
2429
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2430

2431
	for_each_cpu_mask(i, *tmp) {
2432
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2458

2459
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2460 2461 2462
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2463 2464
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2465 2466
		if (tmp->flags & flag)
			sd = tmp;
2467
	}
N
Nick Piggin 已提交
2468 2469

	while (sd) {
2470
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2471
		struct sched_group *group;
2472 2473 2474 2475 2476 2477
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2478 2479 2480

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2481 2482 2483 2484
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2485

2486
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2487 2488 2489 2490 2491
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2492

2493
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2525
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2526
{
2527
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2528 2529
	unsigned long flags;
	long old_state;
2530
	struct rq *rq;
L
Linus Torvalds 已提交
2531

2532 2533 2534
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2535
	smp_wmb();
L
Linus Torvalds 已提交
2536 2537 2538 2539 2540
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2541
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2542 2543 2544
		goto out_running;

	cpu = task_cpu(p);
2545
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2546 2547 2548 2549 2550 2551
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2552 2553 2554
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2555 2556 2557 2558 2559 2560
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2561
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2562 2563 2564 2565 2566 2567
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
2583 2584
out_activate:
#endif /* CONFIG_SMP */
2585 2586 2587 2588 2589 2590 2591 2592 2593
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2594
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2595
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2596 2597 2598
	success = 1;

out_running:
I
Ingo Molnar 已提交
2599 2600
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2601
	p->state = TASK_RUNNING;
2602 2603 2604 2605
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2606 2607 2608 2609 2610 2611
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2612
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2613
{
2614
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2615 2616 2617
}
EXPORT_SYMBOL(wake_up_process);

2618
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2619 2620 2621 2622 2623 2624 2625
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2626 2627 2628 2629 2630 2631 2632
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2633
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2634 2635
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2636 2637 2638

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2639 2640 2641 2642 2643 2644
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2645
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2646
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2647
#endif
N
Nick Piggin 已提交
2648

P
Peter Zijlstra 已提交
2649
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2650
	p->se.on_rq = 0;
2651
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2652

2653 2654 2655 2656
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2657 2658 2659 2660 2661 2662 2663
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2678
	set_task_cpu(p, cpu);
2679 2680 2681 2682 2683

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2684 2685
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2686

2687
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2688
	if (likely(sched_info_on()))
2689
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2690
#endif
2691
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2692 2693
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2694
#ifdef CONFIG_PREEMPT
2695
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2696
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2697
#endif
N
Nick Piggin 已提交
2698
	put_cpu();
L
Linus Torvalds 已提交
2699 2700 2701 2702 2703 2704 2705 2706 2707
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2708
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2709 2710
{
	unsigned long flags;
I
Ingo Molnar 已提交
2711
	struct rq *rq;
L
Linus Torvalds 已提交
2712 2713

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2714
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2715
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2716 2717 2718

	p->prio = effective_prio(p);

2719
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2720
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2721 2722
	} else {
		/*
I
Ingo Molnar 已提交
2723 2724
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2725
		 */
2726
		p->sched_class->task_new(rq, p);
2727
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2728
	}
I
Ingo Molnar 已提交
2729
	check_preempt_curr(rq, p);
2730 2731 2732 2733
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2734
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2735 2736
}

2737 2738 2739
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2740 2741
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2742 2743 2744 2745 2746 2747 2748 2749 2750
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2751
 * @notifier: notifier struct to unregister
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2795 2796 2797
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2798
 * @prev: the current task that is being switched out
2799 2800 2801 2802 2803 2804 2805 2806 2807
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2808 2809 2810
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2811
{
2812
	fire_sched_out_preempt_notifiers(prev, next);
2813 2814 2815 2816
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2817 2818
/**
 * finish_task_switch - clean up after a task-switch
2819
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2820 2821
 * @prev: the thread we just switched away from.
 *
2822 2823 2824 2825
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2826 2827
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2828
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2829 2830 2831
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2832
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2833 2834 2835
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2836
	long prev_state;
L
Linus Torvalds 已提交
2837 2838 2839 2840 2841

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2842
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2843 2844
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2845
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2846 2847 2848 2849 2850
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2851
	prev_state = prev->state;
2852 2853
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2854 2855 2856 2857
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2858

2859
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2860 2861
	if (mm)
		mmdrop(mm);
2862
	if (unlikely(prev_state == TASK_DEAD)) {
2863 2864 2865
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2866
		 */
2867
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2868
		put_task_struct(prev);
2869
	}
L
Linus Torvalds 已提交
2870 2871 2872 2873 2874 2875
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2876
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2877 2878
	__releases(rq->lock)
{
2879 2880
	struct rq *rq = this_rq();

2881 2882 2883 2884 2885
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2886
	if (current->set_child_tid)
2887
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2888 2889 2890 2891 2892 2893
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2894
static inline void
2895
context_switch(struct rq *rq, struct task_struct *prev,
2896
	       struct task_struct *next)
L
Linus Torvalds 已提交
2897
{
I
Ingo Molnar 已提交
2898
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2899

2900
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2901 2902
	mm = next->mm;
	oldmm = prev->active_mm;
2903 2904 2905 2906 2907 2908 2909
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2910
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915 2916
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2917
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2918 2919 2920
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2921 2922 2923 2924 2925 2926 2927
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2928
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2929
#endif
L
Linus Torvalds 已提交
2930 2931 2932 2933

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2934 2935 2936 2937 2938 2939 2940
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2964
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2979 2980
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2981

2982
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2992
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2993 2994 2995 2996 2997
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

3013
/*
I
Ingo Molnar 已提交
3014 3015
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3016
 */
I
Ingo Molnar 已提交
3017
static void update_cpu_load(struct rq *this_rq)
3018
{
3019
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3032 3033 3034 3035 3036 3037 3038
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3039 3040
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3041 3042
}

I
Ingo Molnar 已提交
3043 3044
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3045 3046 3047 3048 3049 3050
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3051
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3052 3053 3054
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3055
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3056 3057 3058 3059
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3060
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3061 3062 3063 3064 3065 3066 3067
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
3068 3069
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3070 3071 3072 3073 3074 3075 3076 3077
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3078
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
3092
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
3093 3094 3095 3096
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
3097 3098
	int ret = 0;

3099 3100 3101 3102 3103
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
3104
	if (unlikely(!spin_trylock(&busiest->lock))) {
3105
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
3106 3107 3108
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
3109
			ret = 1;
L
Linus Torvalds 已提交
3110 3111 3112
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
3113
	return ret;
L
Linus Torvalds 已提交
3114 3115 3116 3117 3118
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3119
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3120 3121
 * the cpu_allowed mask is restored.
 */
3122
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3123
{
3124
	struct migration_req req;
L
Linus Torvalds 已提交
3125
	unsigned long flags;
3126
	struct rq *rq;
L
Linus Torvalds 已提交
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3137

L
Linus Torvalds 已提交
3138 3139 3140 3141 3142
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3143

L
Linus Torvalds 已提交
3144 3145 3146 3147 3148 3149 3150
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3151 3152
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3153 3154 3155 3156
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3157
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3158
	put_cpu();
N
Nick Piggin 已提交
3159 3160
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3161 3162 3163 3164 3165 3166
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3167 3168
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3169
{
3170
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3171
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3172
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3173 3174 3175 3176
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
3177
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
3178 3179 3180 3181 3182
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3183
static
3184
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3185
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3186
		     int *all_pinned)
L
Linus Torvalds 已提交
3187 3188 3189 3190 3191 3192 3193
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3194 3195
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3196
		return 0;
3197
	}
3198 3199
	*all_pinned = 0;

3200 3201
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3202
		return 0;
3203
	}
L
Linus Torvalds 已提交
3204

3205 3206 3207 3208 3209 3210
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3211 3212
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
3213
#ifdef CONFIG_SCHEDSTATS
3214
		if (task_hot(p, rq->clock, sd)) {
3215
			schedstat_inc(sd, lb_hot_gained[idle]);
3216 3217
			schedstat_inc(p, se.nr_forced_migrations);
		}
3218 3219 3220 3221
#endif
		return 1;
	}

3222 3223
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
3224
		return 0;
3225
	}
L
Linus Torvalds 已提交
3226 3227 3228
	return 1;
}

3229 3230 3231 3232 3233
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3234
{
3235
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
3236 3237
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3238

3239
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3240 3241
		goto out;

3242 3243
	pinned = 1;

L
Linus Torvalds 已提交
3244
	/*
I
Ingo Molnar 已提交
3245
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3246
	 */
I
Ingo Molnar 已提交
3247 3248
	p = iterator->start(iterator->arg);
next:
3249
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3250
		goto out;
3251
	/*
3252
	 * To help distribute high priority tasks across CPUs we don't
3253 3254 3255
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
3256 3257
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
3258
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
3259 3260 3261
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3262 3263
	}

I
Ingo Molnar 已提交
3264
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3265
	pulled++;
I
Ingo Molnar 已提交
3266
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3267

3268
	/*
3269
	 * We only want to steal up to the prescribed amount of weighted load.
3270
	 */
3271
	if (rem_load_move > 0) {
3272 3273
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3274 3275
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3276 3277 3278
	}
out:
	/*
3279
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3280 3281 3282 3283
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3284 3285 3286

	if (all_pinned)
		*all_pinned = pinned;
3287 3288

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3289 3290
}

I
Ingo Molnar 已提交
3291
/*
P
Peter Williams 已提交
3292 3293 3294
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3295 3296 3297 3298
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3299
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3300 3301 3302
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3303
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3304
	unsigned long total_load_moved = 0;
3305
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3306 3307

	do {
P
Peter Williams 已提交
3308 3309
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3310
				max_load_move - total_load_moved,
3311
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3312
		class = class->next;
P
Peter Williams 已提交
3313
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3314

P
Peter Williams 已提交
3315 3316 3317
	return total_load_moved > 0;
}

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3354
	const struct sched_class *class;
P
Peter Williams 已提交
3355 3356

	for (class = sched_class_highest; class; class = class->next)
3357
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3358 3359 3360
			return 1;

	return 0;
I
Ingo Molnar 已提交
3361 3362
}

L
Linus Torvalds 已提交
3363 3364
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3365 3366
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3367 3368 3369
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3370
		   unsigned long *imbalance, enum cpu_idle_type idle,
3371
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3372 3373 3374
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3375
	unsigned long max_pull;
3376 3377
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3378
	int load_idx, group_imb = 0;
3379 3380 3381 3382 3383 3384
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3385 3386

	max_load = this_load = total_load = total_pwr = 0;
3387 3388
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
3389
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3390
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3391
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3392 3393 3394
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3395 3396

	do {
3397
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3398 3399
		int local_group;
		int i;
3400
		int __group_imb = 0;
3401
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3402
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
3403 3404 3405

		local_group = cpu_isset(this_cpu, group->cpumask);

3406 3407 3408
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3409
		/* Tally up the load of all CPUs in the group */
3410
		sum_weighted_load = sum_nr_running = avg_load = 0;
3411 3412
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3413 3414

		for_each_cpu_mask(i, group->cpumask) {
3415 3416 3417 3418 3419 3420
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3421

3422
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3423 3424
				*sd_idle = 0;

L
Linus Torvalds 已提交
3425
			/* Bias balancing toward cpus of our domain */
3426 3427 3428 3429 3430 3431
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3432
				load = target_load(i, load_idx);
3433
			} else {
N
Nick Piggin 已提交
3434
				load = source_load(i, load_idx);
3435 3436 3437 3438 3439
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3440 3441

			avg_load += load;
3442
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3443
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
3444 3445
		}

3446 3447 3448
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3449 3450
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3451
		 */
3452 3453
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3454 3455 3456 3457
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3458
		total_load += avg_load;
3459
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3460 3461

		/* Adjust by relative CPU power of the group */
3462 3463
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3464

3465 3466 3467
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

3468
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3469

L
Linus Torvalds 已提交
3470 3471 3472
		if (local_group) {
			this_load = avg_load;
			this = group;
3473 3474 3475
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3476
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3477 3478
			max_load = avg_load;
			busiest = group;
3479 3480
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3481
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3482
		}
3483 3484 3485 3486 3487 3488

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3489 3490 3491
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3492 3493 3494 3495 3496 3497 3498 3499 3500

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3501
		/*
3502 3503
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3504 3505
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3506
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3507
			goto group_next;
3508

I
Ingo Molnar 已提交
3509
		/*
3510
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3511 3512 3513 3514 3515
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3516 3517
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3518 3519
			group_min = group;
			min_nr_running = sum_nr_running;
3520 3521
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3522
		}
3523

I
Ingo Molnar 已提交
3524
		/*
3525
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3537
		}
3538 3539
group_next:
#endif
L
Linus Torvalds 已提交
3540 3541 3542
		group = group->next;
	} while (group != sd->groups);

3543
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3544 3545 3546 3547 3548 3549 3550 3551
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3552
	busiest_load_per_task /= busiest_nr_running;
3553 3554 3555
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3556 3557 3558 3559 3560 3561 3562 3563
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3564
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3565 3566
	 * appear as very large values with unsigned longs.
	 */
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3579 3580

	/* Don't want to pull so many tasks that a group would go idle */
3581
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3582

L
Linus Torvalds 已提交
3583
	/* How much load to actually move to equalise the imbalance */
3584 3585
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3586 3587
			/ SCHED_LOAD_SCALE;

3588 3589 3590 3591 3592 3593
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3594
	if (*imbalance < busiest_load_per_task) {
3595
		unsigned long tmp, pwr_now, pwr_move;
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3607

I
Ingo Molnar 已提交
3608 3609
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3610
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3620 3621 3622 3623
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3624 3625 3626
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3627 3628
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3629
		if (max_load > tmp)
3630
			pwr_move += busiest->__cpu_power *
3631
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3632 3633

		/* Amount of load we'd add */
3634
		if (max_load * busiest->__cpu_power <
3635
				busiest_load_per_task * SCHED_LOAD_SCALE)
3636 3637
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3638
		else
3639 3640 3641 3642
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3643 3644 3645
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3646 3647
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3648 3649 3650 3651 3652
	}

	return busiest;

out_balanced:
3653
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3654
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3655
		goto ret;
L
Linus Torvalds 已提交
3656

3657 3658 3659 3660 3661
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3662
ret:
L
Linus Torvalds 已提交
3663 3664 3665 3666 3667 3668 3669
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3670
static struct rq *
I
Ingo Molnar 已提交
3671
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3672
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3673
{
3674
	struct rq *busiest = NULL, *rq;
3675
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3676 3677 3678
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3679
		unsigned long wl;
3680 3681 3682 3683

		if (!cpu_isset(i, *cpus))
			continue;

3684
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3685
		wl = weighted_cpuload(i);
3686

I
Ingo Molnar 已提交
3687
		if (rq->nr_running == 1 && wl > imbalance)
3688
			continue;
L
Linus Torvalds 已提交
3689

I
Ingo Molnar 已提交
3690 3691
		if (wl > max_load) {
			max_load = wl;
3692
			busiest = rq;
L
Linus Torvalds 已提交
3693 3694 3695 3696 3697 3698
		}
	}

	return busiest;
}

3699 3700 3701 3702 3703 3704
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3705 3706 3707 3708
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3709
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3710
			struct sched_domain *sd, enum cpu_idle_type idle,
3711
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3712
{
P
Peter Williams 已提交
3713
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3714 3715
	struct sched_group *group;
	unsigned long imbalance;
3716
	struct rq *busiest;
3717
	unsigned long flags;
3718
	int unlock_aggregate;
N
Nick Piggin 已提交
3719

3720 3721
	cpus_setall(*cpus);

3722 3723
	unlock_aggregate = get_aggregate(sd);

3724 3725 3726
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3727
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3728
	 * portraying it as CPU_NOT_IDLE.
3729
	 */
I
Ingo Molnar 已提交
3730
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3731
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3732
		sd_idle = 1;
L
Linus Torvalds 已提交
3733

3734
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3735

3736 3737
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3738
				   cpus, balance);
3739

3740
	if (*balance == 0)
3741 3742
		goto out_balanced;

L
Linus Torvalds 已提交
3743 3744 3745 3746 3747
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3748
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3749 3750 3751 3752 3753
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3754
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3755 3756 3757

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3758
	ld_moved = 0;
L
Linus Torvalds 已提交
3759 3760 3761 3762
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3763
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3764 3765
		 * correctly treated as an imbalance.
		 */
3766
		local_irq_save(flags);
N
Nick Piggin 已提交
3767
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3768
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3769
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3770
		double_rq_unlock(this_rq, busiest);
3771
		local_irq_restore(flags);
3772

3773 3774 3775
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3776
		if (ld_moved && this_cpu != smp_processor_id())
3777 3778
			resched_cpu(this_cpu);

3779
		/* All tasks on this runqueue were pinned by CPU affinity */
3780
		if (unlikely(all_pinned)) {
3781 3782
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3783
				goto redo;
3784
			goto out_balanced;
3785
		}
L
Linus Torvalds 已提交
3786
	}
3787

P
Peter Williams 已提交
3788
	if (!ld_moved) {
L
Linus Torvalds 已提交
3789 3790 3791 3792 3793
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3794
			spin_lock_irqsave(&busiest->lock, flags);
3795 3796 3797 3798 3799

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3800
				spin_unlock_irqrestore(&busiest->lock, flags);
3801 3802 3803 3804
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3805 3806 3807
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3808
				active_balance = 1;
L
Linus Torvalds 已提交
3809
			}
3810
			spin_unlock_irqrestore(&busiest->lock, flags);
3811
			if (active_balance)
L
Linus Torvalds 已提交
3812 3813 3814 3815 3816 3817
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3818
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3819
		}
3820
	} else
L
Linus Torvalds 已提交
3821 3822
		sd->nr_balance_failed = 0;

3823
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3824 3825
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3826 3827 3828 3829 3830 3831 3832 3833 3834
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3835 3836
	}

P
Peter Williams 已提交
3837
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3838
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3839 3840 3841
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3842 3843 3844 3845

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3846
	sd->nr_balance_failed = 0;
3847 3848

out_one_pinned:
L
Linus Torvalds 已提交
3849
	/* tune up the balancing interval */
3850 3851
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3852 3853
		sd->balance_interval *= 2;

3854
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3855
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3856 3857 3858 3859 3860 3861 3862
		ld_moved = -1;
	else
		ld_moved = 0;
out:
	if (unlock_aggregate)
		put_aggregate(sd);
	return ld_moved;
L
Linus Torvalds 已提交
3863 3864 3865 3866 3867 3868
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3869
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3870 3871
 * this_rq is locked.
 */
3872
static int
3873 3874
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3875 3876
{
	struct sched_group *group;
3877
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3878
	unsigned long imbalance;
P
Peter Williams 已提交
3879
	int ld_moved = 0;
N
Nick Piggin 已提交
3880
	int sd_idle = 0;
3881
	int all_pinned = 0;
3882 3883

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3884

3885 3886 3887 3888
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3889
	 * portraying it as CPU_NOT_IDLE.
3890 3891 3892
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3893
		sd_idle = 1;
L
Linus Torvalds 已提交
3894

3895
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3896
redo:
I
Ingo Molnar 已提交
3897
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3898
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3899
	if (!group) {
I
Ingo Molnar 已提交
3900
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3901
		goto out_balanced;
L
Linus Torvalds 已提交
3902 3903
	}

3904
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3905
	if (!busiest) {
I
Ingo Molnar 已提交
3906
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3907
		goto out_balanced;
L
Linus Torvalds 已提交
3908 3909
	}

N
Nick Piggin 已提交
3910 3911
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3912
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3913

P
Peter Williams 已提交
3914
	ld_moved = 0;
3915 3916 3917
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3918 3919
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3920
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3921 3922
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3923
		spin_unlock(&busiest->lock);
3924

3925
		if (unlikely(all_pinned)) {
3926 3927
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3928 3929
				goto redo;
		}
3930 3931
	}

P
Peter Williams 已提交
3932
	if (!ld_moved) {
I
Ingo Molnar 已提交
3933
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3934 3935
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3936 3937
			return -1;
	} else
3938
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3939

P
Peter Williams 已提交
3940
	return ld_moved;
3941 3942

out_balanced:
I
Ingo Molnar 已提交
3943
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3944
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3945
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3946
		return -1;
3947
	sd->nr_balance_failed = 0;
3948

3949
	return 0;
L
Linus Torvalds 已提交
3950 3951 3952 3953 3954 3955
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3956
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3957 3958
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3959 3960
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3961
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3962 3963

	for_each_domain(this_cpu, sd) {
3964 3965 3966 3967 3968 3969
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3970
			/* If we've pulled tasks over stop searching: */
3971 3972
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3973 3974 3975 3976 3977 3978

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3979
	}
I
Ingo Molnar 已提交
3980
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3981 3982 3983 3984 3985
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3986
	}
L
Linus Torvalds 已提交
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3997
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3998
{
3999
	int target_cpu = busiest_rq->push_cpu;
4000 4001
	struct sched_domain *sd;
	struct rq *target_rq;
4002

4003
	/* Is there any task to move? */
4004 4005 4006 4007
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4008 4009

	/*
4010
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4011
	 * we need to fix it. Originally reported by
4012
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4013
	 */
4014
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4015

4016 4017
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4018 4019
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4020 4021

	/* Search for an sd spanning us and the target CPU. */
4022
	for_each_domain(target_cpu, sd) {
4023
		if ((sd->flags & SD_LOAD_BALANCE) &&
4024
		    cpu_isset(busiest_cpu, sd->span))
4025
				break;
4026
	}
4027

4028
	if (likely(sd)) {
4029
		schedstat_inc(sd, alb_count);
4030

P
Peter Williams 已提交
4031 4032
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4033 4034 4035 4036
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4037
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
4038 4039
}

4040 4041 4042
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
4043
	cpumask_t cpu_mask;
4044 4045 4046 4047 4048
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

4049
/*
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4060
 *
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4117 4118 4119 4120 4121
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4122
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4123
{
4124 4125
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4126 4127
	unsigned long interval;
	struct sched_domain *sd;
4128
	/* Earliest time when we have to do rebalance again */
4129
	unsigned long next_balance = jiffies + 60*HZ;
4130
	int update_next_balance = 0;
4131
	cpumask_t tmp;
L
Linus Torvalds 已提交
4132

4133
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4134 4135 4136 4137
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4138
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4139 4140 4141 4142 4143 4144
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4145 4146 4147
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
4148

4149 4150 4151 4152 4153
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

4154
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4155
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
4156 4157
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4158 4159 4160
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4161
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4162
			}
4163
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4164
		}
4165 4166 4167
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
4168
		if (time_after(next_balance, sd->last_balance + interval)) {
4169
			next_balance = sd->last_balance + interval;
4170 4171
			update_next_balance = 1;
		}
4172 4173 4174 4175 4176 4177 4178 4179

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4180
	}
4181 4182 4183 4184 4185 4186 4187 4188

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4189 4190 4191 4192 4193 4194 4195 4196 4197
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4198 4199 4200 4201
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4202

I
Ingo Molnar 已提交
4203
	rebalance_domains(this_cpu, idle);
4204 4205 4206 4207 4208 4209 4210

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4211 4212
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4213 4214 4215 4216
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
4217
		cpu_clear(this_cpu, cpus);
4218 4219 4220 4221 4222 4223 4224 4225 4226
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4227
			rebalance_domains(balance_cpu, CPU_IDLE);
4228 4229

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4230 4231
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4244
static inline void trigger_load_balance(struct rq *rq, int cpu)
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4271
			if (ilb < nr_cpu_ids)
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4296
}
I
Ingo Molnar 已提交
4297 4298 4299

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4300 4301 4302
/*
 * on UP we do not need to balance between CPUs:
 */
4303
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4304 4305
{
}
I
Ingo Molnar 已提交
4306

L
Linus Torvalds 已提交
4307 4308 4309 4310 4311 4312 4313
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4314 4315
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4316
 */
4317
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4318 4319
{
	unsigned long flags;
4320 4321
	u64 ns, delta_exec;
	struct rq *rq;
4322

4323 4324
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4325
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4326 4327
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4328 4329 4330 4331
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4332

L
Linus Torvalds 已提交
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4356 4357 4358 4359 4360
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4361
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4395
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4396 4397
	cputime64_t tmp;

4398 4399 4400 4401
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4402

L
Linus Torvalds 已提交
4403 4404 4405 4406 4407 4408 4409 4410
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4411
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4412
		cpustat->system = cputime64_add(cpustat->system, tmp);
4413
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4414 4415 4416 4417 4418 4419 4420
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4432 4433 4434 4435 4436 4437 4438 4439 4440
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4441
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4442 4443 4444 4445 4446 4447 4448

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4449
	} else
L
Linus Torvalds 已提交
4450 4451 4452
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4464
	struct task_struct *curr = rq->curr;
4465
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
4466 4467

	spin_lock(&rq->lock);
4468
	__update_rq_clock(rq);
4469 4470 4471
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
4472
	if (unlikely(rq->clock < next_tick)) {
4473
		rq->clock = next_tick;
4474 4475
		rq->clock_underflows++;
	}
4476
	rq->tick_timestamp = rq->clock;
4477
	update_last_tick_seen(rq);
4478
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4479
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4480
	spin_unlock(&rq->lock);
4481

4482
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4483 4484
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4485
#endif
L
Linus Torvalds 已提交
4486 4487 4488 4489
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4490
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4491 4492 4493 4494
{
	/*
	 * Underflow?
	 */
4495 4496
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4497 4498 4499 4500
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4501 4502
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4503 4504 4505
}
EXPORT_SYMBOL(add_preempt_count);

4506
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4507 4508 4509 4510
{
	/*
	 * Underflow?
	 */
4511 4512
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4513 4514 4515
	/*
	 * Is the spinlock portion underflowing?
	 */
4516 4517 4518 4519
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4520 4521 4522 4523 4524 4525 4526
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4527
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4528
 */
I
Ingo Molnar 已提交
4529
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4530
{
4531 4532 4533 4534 4535
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4536 4537 4538
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
4539 4540 4541 4542 4543

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4544
}
L
Linus Torvalds 已提交
4545

I
Ingo Molnar 已提交
4546 4547 4548 4549 4550
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4551
	/*
I
Ingo Molnar 已提交
4552
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4553 4554 4555
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
4556 4557 4558
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4559 4560
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4561
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4562 4563
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4564 4565
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4566 4567
	}
#endif
I
Ingo Molnar 已提交
4568 4569 4570 4571 4572 4573
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4574
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4575
{
4576
	const struct sched_class *class;
I
Ingo Molnar 已提交
4577
	struct task_struct *p;
L
Linus Torvalds 已提交
4578 4579

	/*
I
Ingo Molnar 已提交
4580 4581
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4582
	 */
I
Ingo Molnar 已提交
4583
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4584
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4585 4586
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4587 4588
	}

I
Ingo Molnar 已提交
4589 4590
	class = sched_class_highest;
	for ( ; ; ) {
4591
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4592 4593 4594 4595 4596 4597 4598 4599 4600
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4601

I
Ingo Molnar 已提交
4602 4603 4604 4605 4606 4607
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4608
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4624

P
Peter Zijlstra 已提交
4625 4626
	hrtick_clear(rq);

4627 4628 4629 4630
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
4631
	__update_rq_clock(rq);
4632 4633
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4634 4635 4636

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4637
				signal_pending(prev))) {
L
Linus Torvalds 已提交
4638
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4639
		} else {
4640
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
4641
		}
I
Ingo Molnar 已提交
4642
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4643 4644
	}

4645 4646 4647 4648
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4649

I
Ingo Molnar 已提交
4650
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4651 4652
		idle_balance(cpu, rq);

4653
	prev->sched_class->put_prev_task(rq, prev);
4654
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4655 4656

	if (likely(prev != next)) {
4657 4658
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4659 4660 4661 4662
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4663
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4664 4665 4666 4667 4668 4669
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4670 4671 4672
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4673 4674 4675
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4676
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4677

L
Linus Torvalds 已提交
4678 4679 4680 4681 4682 4683 4684 4685
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4686
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4687
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4688 4689 4690 4691 4692 4693 4694
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4695

L
Linus Torvalds 已提交
4696 4697
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4698
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4699
	 */
N
Nick Piggin 已提交
4700
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4701 4702
		return;

4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		schedule();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4716

4717 4718 4719 4720 4721 4722
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4723 4724 4725 4726
}
EXPORT_SYMBOL(preempt_schedule);

/*
4727
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4728 4729 4730 4731 4732 4733 4734 4735 4736
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4737

4738
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4739 4740
	BUG_ON(ti->preempt_count || !irqs_disabled());

4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		local_irq_enable();
		schedule();
		local_irq_disable();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4756

4757 4758 4759 4760 4761 4762
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4763 4764 4765 4766
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4767 4768
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4769
{
4770
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4771 4772 4773 4774
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4775 4776
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4777 4778 4779
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4780
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4781 4782 4783 4784 4785
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4786
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4787

4788
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4789 4790
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4791
		if (curr->func(curr, mode, sync, key) &&
4792
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4793 4794 4795 4796 4797 4798 4799 4800 4801
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4802
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4803
 */
4804
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4805
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4818
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4819 4820 4821 4822 4823
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4824
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4836
void
I
Ingo Molnar 已提交
4837
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4854
void complete(struct completion *x)
L
Linus Torvalds 已提交
4855 4856 4857 4858 4859
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4860
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4861 4862 4863 4864
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4865
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4866 4867 4868 4869 4870
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4871
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4872 4873 4874 4875
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4876 4877
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4878 4879 4880 4881 4882 4883 4884
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4885 4886 4887 4888
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4889 4890 4891 4892
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4893 4894 4895 4896 4897
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4898
				return timeout;
L
Linus Torvalds 已提交
4899 4900 4901 4902 4903 4904 4905 4906
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4907 4908
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4909 4910 4911 4912
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4913
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4914
	spin_unlock_irq(&x->wait.lock);
4915 4916
	return timeout;
}
L
Linus Torvalds 已提交
4917

4918
void __sched wait_for_completion(struct completion *x)
4919 4920
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4921
}
4922
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4923

4924
unsigned long __sched
4925
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4926
{
4927
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4928
}
4929
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4930

4931
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4932
{
4933 4934 4935 4936
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4937
}
4938
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4939

4940
unsigned long __sched
4941 4942
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4943
{
4944
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4945
}
4946
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4947

M
Matthew Wilcox 已提交
4948 4949 4950 4951 4952 4953 4954 4955 4956
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4957 4958
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4959
{
I
Ingo Molnar 已提交
4960 4961 4962 4963
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4964

4965
	__set_current_state(state);
L
Linus Torvalds 已提交
4966

4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4981 4982 4983
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4984
long __sched
I
Ingo Molnar 已提交
4985
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4986
{
4987
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4988 4989 4990
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4991
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4992
{
4993
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4994 4995 4996
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4997
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4998
{
4999
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5000 5001 5002
}
EXPORT_SYMBOL(sleep_on_timeout);

5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5015
void rt_mutex_setprio(struct task_struct *p, int prio)
5016 5017
{
	unsigned long flags;
5018
	int oldprio, on_rq, running;
5019
	struct rq *rq;
5020
	const struct sched_class *prev_class = p->sched_class;
5021 5022 5023 5024

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5025
	update_rq_clock(rq);
5026

5027
	oldprio = p->prio;
I
Ingo Molnar 已提交
5028
	on_rq = p->se.on_rq;
5029
	running = task_current(rq, p);
5030
	if (on_rq)
5031
		dequeue_task(rq, p, 0);
5032 5033
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5034 5035 5036 5037 5038 5039

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5040 5041
	p->prio = prio;

5042 5043
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5044
	if (on_rq) {
5045
		enqueue_task(rq, p, 0);
5046 5047

		check_class_changed(rq, p, prev_class, oldprio, running);
5048 5049 5050 5051 5052 5053
	}
	task_rq_unlock(rq, &flags);
}

#endif

5054
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5055
{
I
Ingo Molnar 已提交
5056
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5057
	unsigned long flags;
5058
	struct rq *rq;
L
Linus Torvalds 已提交
5059 5060 5061 5062 5063 5064 5065 5066

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5067
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5068 5069 5070 5071
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5072
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5073
	 */
5074
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5075 5076 5077
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5078
	on_rq = p->se.on_rq;
5079
	if (on_rq)
5080
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5081 5082

	p->static_prio = NICE_TO_PRIO(nice);
5083
	set_load_weight(p);
5084 5085 5086
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5087

I
Ingo Molnar 已提交
5088
	if (on_rq) {
5089
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5090
		/*
5091 5092
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5093
		 */
5094
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5095 5096 5097 5098 5099 5100 5101
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5102 5103 5104 5105 5106
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5107
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5108
{
5109 5110
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5111

M
Matt Mackall 已提交
5112 5113 5114 5115
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5127
	long nice, retval;
L
Linus Torvalds 已提交
5128 5129 5130 5131 5132 5133

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5134 5135
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5136 5137 5138 5139 5140 5141 5142 5143 5144
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5145 5146 5147
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5166
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5167 5168 5169 5170 5171 5172 5173 5174
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5175
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5176 5177 5178
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5179
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5194
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5195 5196 5197 5198 5199 5200 5201 5202
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5203
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5204
{
5205
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5206 5207 5208
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5209 5210
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5211
{
I
Ingo Molnar 已提交
5212
	BUG_ON(p->se.on_rq);
5213

L
Linus Torvalds 已提交
5214
	p->policy = policy;
I
Ingo Molnar 已提交
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5227
	p->rt_priority = prio;
5228 5229 5230
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5231
	set_load_weight(p);
L
Linus Torvalds 已提交
5232 5233 5234
}

/**
5235
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
5236 5237 5238
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
5239
 *
5240
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
5241
 */
I
Ingo Molnar 已提交
5242 5243
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
5244
{
5245
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5246
	unsigned long flags;
5247
	const struct sched_class *prev_class = p->sched_class;
5248
	struct rq *rq;
L
Linus Torvalds 已提交
5249

5250 5251
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5252 5253 5254 5255 5256
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5257 5258
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5259
		return -EINVAL;
L
Linus Torvalds 已提交
5260 5261
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5262 5263
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5264 5265
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5266
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5267
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5268
		return -EINVAL;
5269
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5270 5271
		return -EINVAL;

5272 5273 5274 5275
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
5276
		if (rt_policy(policy)) {
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5293 5294 5295 5296 5297 5298
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5299

5300 5301 5302 5303 5304
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5305

5306 5307 5308 5309 5310
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
5311
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5312 5313 5314
		return -EPERM;
#endif

L
Linus Torvalds 已提交
5315 5316 5317
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
5318 5319 5320 5321 5322
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5323 5324 5325 5326
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5327
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5328 5329 5330
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5331 5332
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5333 5334
		goto recheck;
	}
I
Ingo Molnar 已提交
5335
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5336
	on_rq = p->se.on_rq;
5337
	running = task_current(rq, p);
5338
	if (on_rq)
5339
		deactivate_task(rq, p, 0);
5340 5341
	if (running)
		p->sched_class->put_prev_task(rq, p);
5342

L
Linus Torvalds 已提交
5343
	oldprio = p->prio;
I
Ingo Molnar 已提交
5344
	__setscheduler(rq, p, policy, param->sched_priority);
5345

5346 5347
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5348 5349
	if (on_rq) {
		activate_task(rq, p, 0);
5350 5351

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5352
	}
5353 5354 5355
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5356 5357
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5358 5359 5360 5361
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
5362 5363
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5364 5365 5366
{
	struct sched_param lparam;
	struct task_struct *p;
5367
	int retval;
L
Linus Torvalds 已提交
5368 5369 5370 5371 5372

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5373 5374 5375

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5376
	p = find_process_by_pid(pid);
5377 5378 5379
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5380

L
Linus Torvalds 已提交
5381 5382 5383 5384 5385 5386 5387 5388 5389
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5390 5391
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5392
{
5393 5394 5395 5396
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5416
	struct task_struct *p;
5417
	int retval;
L
Linus Torvalds 已提交
5418 5419

	if (pid < 0)
5420
		return -EINVAL;
L
Linus Torvalds 已提交
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5442
	struct task_struct *p;
5443
	int retval;
L
Linus Torvalds 已提交
5444 5445

	if (!param || pid < 0)
5446
		return -EINVAL;
L
Linus Torvalds 已提交
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5473
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5474 5475
{
	cpumask_t cpus_allowed;
5476
	cpumask_t new_mask = *in_mask;
5477 5478
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5479

5480
	get_online_cpus();
L
Linus Torvalds 已提交
5481 5482 5483 5484 5485
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5486
		put_online_cpus();
L
Linus Torvalds 已提交
5487 5488 5489 5490 5491
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5492
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5503 5504 5505 5506
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5507
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5508
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5509
 again:
5510
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5511

P
Paul Menage 已提交
5512
	if (!retval) {
5513
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5524 5525
out_unlock:
	put_task_struct(p);
5526
	put_online_cpus();
L
Linus Torvalds 已提交
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5557
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5558 5559 5560 5561 5562 5563 5564 5565 5566
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

5567
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
5568 5569 5570
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
5571
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5572 5573
EXPORT_SYMBOL(cpu_online_map);

5574
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5575
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
5576 5577 5578 5579
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5580
	struct task_struct *p;
L
Linus Torvalds 已提交
5581 5582
	int retval;

5583
	get_online_cpus();
L
Linus Torvalds 已提交
5584 5585 5586 5587 5588 5589 5590
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5591 5592 5593 5594
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5595
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5596 5597 5598

out_unlock:
	read_unlock(&tasklist_lock);
5599
	put_online_cpus();
L
Linus Torvalds 已提交
5600

5601
	return retval;
L
Linus Torvalds 已提交
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5632 5633
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5634 5635 5636
 */
asmlinkage long sys_sched_yield(void)
{
5637
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5638

5639
	schedstat_inc(rq, yld_count);
5640
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5641 5642 5643 5644 5645 5646

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5647
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5648 5649 5650 5651 5652 5653 5654 5655
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5656
static void __cond_resched(void)
L
Linus Torvalds 已提交
5657
{
5658 5659 5660
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5661 5662 5663 5664 5665
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5666 5667 5668 5669 5670 5671 5672
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5673 5674
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5675
{
5676 5677
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5678 5679 5680 5681 5682
		__cond_resched();
		return 1;
	}
	return 0;
}
5683 5684
EXPORT_SYMBOL(_cond_resched);
#endif
L
Linus Torvalds 已提交
5685 5686 5687 5688 5689

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5690
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5691 5692 5693
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5694
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5695
{
N
Nick Piggin 已提交
5696
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5697 5698
	int ret = 0;

N
Nick Piggin 已提交
5699
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5700
		spin_unlock(lock);
N
Nick Piggin 已提交
5701 5702 5703 5704
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5705
		ret = 1;
L
Linus Torvalds 已提交
5706 5707
		spin_lock(lock);
	}
J
Jan Kara 已提交
5708
	return ret;
L
Linus Torvalds 已提交
5709 5710 5711 5712 5713 5714 5715
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5716
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5717
		local_bh_enable();
L
Linus Torvalds 已提交
5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5729
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5740
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5741 5742 5743 5744 5745 5746 5747
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5748
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5749

5750
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5751 5752 5753
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5754
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5755 5756 5757 5758 5759
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5760
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5761 5762
	long ret;

5763
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5764 5765 5766
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5767
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5788
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5789
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5813
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5814
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5831
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5832
	unsigned int time_slice;
5833
	int retval;
L
Linus Torvalds 已提交
5834 5835 5836
	struct timespec t;

	if (pid < 0)
5837
		return -EINVAL;
L
Linus Torvalds 已提交
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5849 5850 5851 5852 5853 5854
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5855
		time_slice = DEF_TIMESLICE;
5856
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5857 5858 5859 5860 5861
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5862 5863
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5864 5865
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5866
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5867
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5868 5869
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5870

L
Linus Torvalds 已提交
5871 5872 5873 5874 5875
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5876
static const char stat_nam[] = "RSDTtZX";
5877

5878
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5879 5880
{
	unsigned long free = 0;
5881
	unsigned state;
L
Linus Torvalds 已提交
5882 5883

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5884
	printk(KERN_INFO "%-13.13s %c", p->comm,
5885
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5886
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5887
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5888
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5889
	else
I
Ingo Molnar 已提交
5890
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5891 5892
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5893
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5894
	else
I
Ingo Molnar 已提交
5895
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5896 5897 5898
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5899
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5900 5901
		while (!*n)
			n++;
5902
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5903 5904
	}
#endif
5905
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5906
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5907

5908
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5909 5910
}

I
Ingo Molnar 已提交
5911
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5912
{
5913
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5914

5915 5916 5917
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5918
#else
5919 5920
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5921 5922 5923 5924 5925 5926 5927 5928
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5929
		if (!state_filter || (p->state & state_filter))
5930
			sched_show_task(p);
L
Linus Torvalds 已提交
5931 5932
	} while_each_thread(g, p);

5933 5934
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5935 5936 5937
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5938
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5939 5940 5941 5942 5943
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5944 5945
}

I
Ingo Molnar 已提交
5946 5947
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5948
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5949 5950
}

5951 5952 5953 5954 5955 5956 5957 5958
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5959
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5960
{
5961
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5962 5963
	unsigned long flags;

I
Ingo Molnar 已提交
5964 5965 5966
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5967
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5968
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5969
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5970 5971 5972

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5973 5974 5975
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5976 5977 5978
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5979
	task_thread_info(idle)->preempt_count = 0;
5980

I
Ingo Molnar 已提交
5981 5982 5983 5984
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
6021 6022 6023 6024
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6025
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6044
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6045 6046
 * call is not atomic; no spinlocks may be held.
 */
6047
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
6048
{
6049
	struct migration_req req;
L
Linus Torvalds 已提交
6050
	unsigned long flags;
6051
	struct rq *rq;
6052
	int ret = 0;
L
Linus Torvalds 已提交
6053 6054

	rq = task_rq_lock(p, &flags);
6055
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
6056 6057 6058 6059
		ret = -EINVAL;
		goto out;
	}

6060
	if (p->sched_class->set_cpus_allowed)
6061
		p->sched_class->set_cpus_allowed(p, new_mask);
6062
	else {
6063 6064
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
6065 6066
	}

L
Linus Torvalds 已提交
6067
	/* Can the task run on the task's current CPU? If so, we're done */
6068
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
6069 6070
		goto out;

6071
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
6072 6073 6074 6075 6076 6077 6078 6079 6080
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6081

L
Linus Torvalds 已提交
6082 6083
	return ret;
}
6084
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6085 6086

/*
I
Ingo Molnar 已提交
6087
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6088 6089 6090 6091 6092 6093
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6094 6095
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6096
 */
6097
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6098
{
6099
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6100
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6101 6102

	if (unlikely(cpu_is_offline(dest_cpu)))
6103
		return ret;
L
Linus Torvalds 已提交
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
6116
	on_rq = p->se.on_rq;
6117
	if (on_rq)
6118
		deactivate_task(rq_src, p, 0);
6119

L
Linus Torvalds 已提交
6120
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6121 6122 6123
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
6124
	}
6125
	ret = 1;
L
Linus Torvalds 已提交
6126 6127
out:
	double_rq_unlock(rq_src, rq_dest);
6128
	return ret;
L
Linus Torvalds 已提交
6129 6130 6131 6132 6133 6134 6135
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6136
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6137 6138
{
	int cpu = (long)data;
6139
	struct rq *rq;
L
Linus Torvalds 已提交
6140 6141 6142 6143 6144 6145

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6146
		struct migration_req *req;
L
Linus Torvalds 已提交
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6169
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6170 6171
		list_del_init(head->next);

N
Nick Piggin 已提交
6172 6173 6174
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6204
/*
6205
 * Figure out where task on dead CPU should go, use force if necessary.
6206 6207
 * NOTE: interrupts should be disabled by the caller
 */
6208
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6209
{
6210
	unsigned long flags;
L
Linus Torvalds 已提交
6211
	cpumask_t mask;
6212 6213
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6214

6215 6216 6217 6218 6219 6220 6221
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6222
		if (dest_cpu >= nr_cpu_ids)
6223 6224 6225
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6226
		if (dest_cpu >= nr_cpu_ids) {
6227 6228 6229
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6230 6231 6232 6233
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6234
			 * cpuset_cpus_allowed() will not block. It must be
6235 6236
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6237
			rq = task_rq_lock(p, &flags);
6238
			p->cpus_allowed = cpus_allowed;
6239 6240
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6241

6242 6243 6244 6245 6246
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6247
			if (p->mm && printk_ratelimit()) {
6248 6249
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6250 6251
					task_pid_nr(p), p->comm, dead_cpu);
			}
6252
		}
6253
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6254 6255 6256 6257 6258 6259 6260 6261 6262
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6263
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6264
{
6265
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6279
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6280

6281
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6282

6283 6284
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6285 6286
			continue;

6287 6288 6289
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6290

6291
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6292 6293
}

I
Ingo Molnar 已提交
6294 6295
/*
 * Schedules idle task to be the next runnable task on current CPU.
6296 6297
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6298 6299 6300
 */
void sched_idle_next(void)
{
6301
	int this_cpu = smp_processor_id();
6302
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6303 6304 6305 6306
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6307
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6308

6309 6310 6311
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6312 6313 6314
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6315
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6316

6317 6318
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6319 6320 6321 6322

	spin_unlock_irqrestore(&rq->lock, flags);
}

6323 6324
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6338
/* called under rq->lock with disabled interrupts */
6339
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6340
{
6341
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6342 6343

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6344
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6345 6346

	/* Cannot have done final schedule yet: would have vanished. */
6347
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6348

6349
	get_task_struct(p);
L
Linus Torvalds 已提交
6350 6351 6352

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6353
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6354 6355
	 * fine.
	 */
6356
	spin_unlock_irq(&rq->lock);
6357
	move_task_off_dead_cpu(dead_cpu, p);
6358
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6359

6360
	put_task_struct(p);
L
Linus Torvalds 已提交
6361 6362 6363 6364 6365
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6366
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6367
	struct task_struct *next;
6368

I
Ingo Molnar 已提交
6369 6370 6371
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6372
		update_rq_clock(rq);
6373
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6374 6375 6376
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
6377

L
Linus Torvalds 已提交
6378 6379 6380 6381
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6382 6383 6384
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6385 6386
	{
		.procname	= "sched_domain",
6387
		.mode		= 0555,
6388
	},
I
Ingo Molnar 已提交
6389
	{0, },
6390 6391 6392
};

static struct ctl_table sd_ctl_root[] = {
6393
	{
6394
		.ctl_name	= CTL_KERN,
6395
		.procname	= "kernel",
6396
		.mode		= 0555,
6397 6398
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6399
	{0, },
6400 6401 6402 6403 6404
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6405
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6406 6407 6408 6409

	return entry;
}

6410 6411
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6412
	struct ctl_table *entry;
6413

6414 6415 6416
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6417
	 * will always be set. In the lowest directory the names are
6418 6419 6420
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6421 6422
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6423 6424 6425
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6426 6427 6428 6429 6430

	kfree(*tablep);
	*tablep = NULL;
}

6431
static void
6432
set_table_entry(struct ctl_table *entry,
6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6446
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6447

6448 6449 6450
	if (table == NULL)
		return NULL;

6451
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6452
		sizeof(long), 0644, proc_doulongvec_minmax);
6453
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6454
		sizeof(long), 0644, proc_doulongvec_minmax);
6455
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6456
		sizeof(int), 0644, proc_dointvec_minmax);
6457
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6458
		sizeof(int), 0644, proc_dointvec_minmax);
6459
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6460
		sizeof(int), 0644, proc_dointvec_minmax);
6461
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6462
		sizeof(int), 0644, proc_dointvec_minmax);
6463
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6464
		sizeof(int), 0644, proc_dointvec_minmax);
6465
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6466
		sizeof(int), 0644, proc_dointvec_minmax);
6467
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6468
		sizeof(int), 0644, proc_dointvec_minmax);
6469
	set_table_entry(&table[9], "cache_nice_tries",
6470 6471
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6472
	set_table_entry(&table[10], "flags", &sd->flags,
6473
		sizeof(int), 0644, proc_dointvec_minmax);
6474
	/* &table[11] is terminator */
6475 6476 6477 6478

	return table;
}

6479
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6480 6481 6482 6483 6484 6485 6486 6487 6488
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6489 6490
	if (table == NULL)
		return NULL;
6491 6492 6493 6494 6495

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6496
		entry->mode = 0555;
6497 6498 6499 6500 6501 6502 6503 6504
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6505
static void register_sched_domain_sysctl(void)
6506 6507 6508 6509 6510
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6511 6512 6513
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6514 6515 6516
	if (entry == NULL)
		return;

6517
	for_each_online_cpu(i) {
6518 6519
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6520
		entry->mode = 0555;
6521
		entry->child = sd_alloc_ctl_cpu_table(i);
6522
		entry++;
6523
	}
6524 6525

	WARN_ON(sd_sysctl_header);
6526 6527
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6528

6529
/* may be called multiple times per register */
6530 6531
static void unregister_sched_domain_sysctl(void)
{
6532 6533
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6534
	sd_sysctl_header = NULL;
6535 6536
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6537
}
6538
#else
6539 6540 6541 6542
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6543 6544 6545 6546
{
}
#endif

L
Linus Torvalds 已提交
6547 6548 6549 6550
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6551 6552
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6553 6554
{
	struct task_struct *p;
6555
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6556
	unsigned long flags;
6557
	struct rq *rq;
L
Linus Torvalds 已提交
6558 6559

	switch (action) {
6560

L
Linus Torvalds 已提交
6561
	case CPU_UP_PREPARE:
6562
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6563
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6564 6565 6566 6567 6568
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6569
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6570 6571 6572
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6573

L
Linus Torvalds 已提交
6574
	case CPU_ONLINE:
6575
	case CPU_ONLINE_FROZEN:
6576
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6577
		wake_up_process(cpu_rq(cpu)->migration_thread);
6578 6579 6580 6581 6582 6583 6584 6585 6586

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6587
		break;
6588

L
Linus Torvalds 已提交
6589 6590
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6591
	case CPU_UP_CANCELED_FROZEN:
6592 6593
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6594
		/* Unbind it from offline cpu so it can run. Fall thru. */
6595 6596
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6597 6598 6599
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6600

L
Linus Torvalds 已提交
6601
	case CPU_DEAD:
6602
	case CPU_DEAD_FROZEN:
6603
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6604 6605 6606 6607 6608
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6609
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6610
		update_rq_clock(rq);
6611
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6612
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6613 6614
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6615
		migrate_dead_tasks(cpu);
6616
		spin_unlock_irq(&rq->lock);
6617
		cpuset_unlock();
L
Linus Torvalds 已提交
6618 6619 6620
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6621 6622 6623 6624 6625
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6626 6627
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6628 6629
			struct migration_req *req;

L
Linus Torvalds 已提交
6630
			req = list_entry(rq->migration_queue.next,
6631
					 struct migration_req, list);
L
Linus Torvalds 已提交
6632 6633 6634 6635 6636
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6637

6638 6639
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6640 6641 6642 6643 6644 6645 6646 6647 6648
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6649 6650 6651 6652 6653 6654 6655 6656
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6657
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6658 6659 6660 6661
	.notifier_call = migration_call,
	.priority = 10
};

6662
void __init migration_init(void)
L
Linus Torvalds 已提交
6663 6664
{
	void *cpu = (void *)(long)smp_processor_id();
6665
	int err;
6666 6667

	/* Start one for the boot CPU: */
6668 6669
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6670 6671 6672 6673 6674 6675
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6676

6677
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6678

6679 6680
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6681
{
I
Ingo Molnar 已提交
6682
	struct sched_group *group = sd->groups;
6683
	char str[256];
L
Linus Torvalds 已提交
6684

6685
	cpulist_scnprintf(str, sizeof(str), sd->span);
6686
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6687 6688 6689 6690 6691 6692 6693 6694 6695

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6696 6697
	}

I
Ingo Molnar 已提交
6698 6699 6700 6701 6702 6703 6704 6705 6706 6707
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6708

I
Ingo Molnar 已提交
6709
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6710
	do {
I
Ingo Molnar 已提交
6711 6712 6713
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6714 6715 6716
			break;
		}

I
Ingo Molnar 已提交
6717 6718 6719 6720 6721 6722
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6723

I
Ingo Molnar 已提交
6724 6725 6726 6727 6728
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6729

6730
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6731 6732 6733 6734
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6735

6736
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6737

6738
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6739
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6740

I
Ingo Molnar 已提交
6741 6742 6743
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6744

6745
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6746
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6747

6748
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6749 6750 6751 6752
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6753

I
Ingo Molnar 已提交
6754 6755
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6756
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6757
	int level = 0;
L
Linus Torvalds 已提交
6758

I
Ingo Molnar 已提交
6759 6760 6761 6762
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6763

I
Ingo Molnar 已提交
6764 6765
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6766 6767 6768 6769 6770 6771
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6772
	for (;;) {
6773
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6774
			break;
L
Linus Torvalds 已提交
6775 6776
		level++;
		sd = sd->parent;
6777
		if (!sd)
I
Ingo Molnar 已提交
6778 6779
			break;
	}
6780
	kfree(groupmask);
L
Linus Torvalds 已提交
6781 6782
}
#else
6783
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6784 6785
#endif

6786
static int sd_degenerate(struct sched_domain *sd)
6787 6788 6789 6790 6791 6792 6793 6794
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6795 6796 6797
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6811 6812
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6831 6832 6833
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6834 6835 6836 6837 6838 6839 6840
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6841 6842 6843 6844 6845 6846 6847 6848 6849 6850
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6851
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6852 6853
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6854
		}
G
Gregory Haskins 已提交
6855

6856 6857 6858
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6859 6860 6861 6862 6863 6864 6865
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6866
	cpu_set(rq->cpu, rd->span);
6867 6868
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);
6869

I
Ingo Molnar 已提交
6870
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6871 6872
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6873
	}
G
Gregory Haskins 已提交
6874 6875 6876 6877

	spin_unlock_irqrestore(&rq->lock, flags);
}

6878
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6879 6880 6881
{
	memset(rd, 0, sizeof(*rd));

6882 6883
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6884 6885 6886 6887
}

static void init_defrootdomain(void)
{
6888
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6889 6890 6891
	atomic_set(&def_root_domain.refcount, 1);
}

6892
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6893 6894 6895 6896 6897 6898 6899
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6900
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6901 6902 6903 6904

	return rd;
}

L
Linus Torvalds 已提交
6905
/*
I
Ingo Molnar 已提交
6906
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6907 6908
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6909 6910
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6911
{
6912
	struct rq *rq = cpu_rq(cpu);
6913 6914 6915 6916 6917 6918 6919
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6920
		if (sd_parent_degenerate(tmp, parent)) {
6921
			tmp->parent = parent->parent;
6922 6923 6924
			if (parent->parent)
				parent->parent->child = tmp;
		}
6925 6926
	}

6927
	if (sd && sd_degenerate(sd)) {
6928
		sd = sd->parent;
6929 6930 6931
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6932 6933 6934

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6935
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6936
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6937 6938 6939
}

/* cpus with isolated domains */
6940
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6955
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6956 6957

/*
6958 6959 6960 6961
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6962 6963 6964 6965 6966
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6967
static void
6968
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6969
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6970 6971 6972
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6973 6974 6975 6976
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6977 6978 6979
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6980
		struct sched_group *sg;
6981
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6982 6983
		int j;

6984
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6985 6986
			continue;

6987
		cpus_clear(sg->cpumask);
6988
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6989

6990 6991
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6992 6993
				continue;

6994
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7006
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7007

7008
#ifdef CONFIG_NUMA
7009

7010 7011 7012 7013 7014
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7015
 * Find the next node to include in a given scheduling domain. Simply
7016 7017 7018 7019
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7020
static int find_next_best_node(int node, nodemask_t *used_nodes)
7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7034
		if (node_isset(n, *used_nodes))
7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7046
	node_set(best_node, *used_nodes);
7047 7048 7049 7050 7051 7052
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7053
 * @span: resulting cpumask
7054
 *
I
Ingo Molnar 已提交
7055
 * Given a node, construct a good cpumask for its sched_domain to span. It
7056 7057 7058
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7059
static void sched_domain_node_span(int node, cpumask_t *span)
7060
{
7061 7062
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
7063
	int i;
7064

7065
	cpus_clear(*span);
7066
	nodes_clear(used_nodes);
7067

7068
	cpus_or(*span, *span, *nodemask);
7069
	node_set(node, used_nodes);
7070 7071

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7072
		int next_node = find_next_best_node(node, &used_nodes);
7073

7074
		node_to_cpumask_ptr_next(nodemask, next_node);
7075
		cpus_or(*span, *span, *nodemask);
7076 7077 7078 7079
	}
}
#endif

7080
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7081

7082
/*
7083
 * SMT sched-domains:
7084
 */
L
Linus Torvalds 已提交
7085 7086
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7087
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7088

I
Ingo Molnar 已提交
7089
static int
7090 7091
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7092
{
7093 7094
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
7095 7096 7097 7098
	return cpu;
}
#endif

7099 7100 7101
/*
 * multi-core sched-domains:
 */
7102 7103
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
7104
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7105 7106 7107
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7108
static int
7109 7110
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7111
{
7112
	int group;
7113 7114 7115 7116

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7117 7118 7119
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7120 7121
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7122
static int
7123 7124
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7125
{
7126 7127
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7128 7129 7130 7131
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7132
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7133
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7134

I
Ingo Molnar 已提交
7135
static int
7136 7137
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7138
{
7139
	int group;
7140
#ifdef CONFIG_SCHED_MC
7141 7142 7143
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7144
#elif defined(CONFIG_SCHED_SMT)
7145 7146 7147
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7148
#else
7149
	group = cpu;
L
Linus Torvalds 已提交
7150
#endif
7151 7152 7153
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7154 7155 7156 7157
}

#ifdef CONFIG_NUMA
/*
7158 7159 7160
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7161
 */
7162
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7163
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7164

7165
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7166
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7167

7168
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7169
				 struct sched_group **sg, cpumask_t *nodemask)
7170
{
7171 7172
	int group;

7173 7174 7175
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7176 7177 7178 7179

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7180
}
7181

7182 7183 7184 7185 7186 7187 7188
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7189 7190 7191
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
7192

7193 7194 7195 7196 7197 7198 7199 7200
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7201

7202 7203 7204 7205
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7206
}
L
Linus Torvalds 已提交
7207 7208
#endif

7209
#ifdef CONFIG_NUMA
7210
/* Free memory allocated for various sched_group structures */
7211
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7212
{
7213
	int cpu, i;
7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7225 7226 7227
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7244
#else
7245
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7246 7247 7248
{
}
#endif
7249

7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7276 7277
	sd->groups->__cpu_power = 0;

7278 7279 7280 7281 7282 7283 7284 7285 7286 7287
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7288
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7289 7290 7291 7292 7293 7294 7295 7296
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7297
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7298 7299 7300 7301
		group = group->next;
	} while (group != child->groups);
}

7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7313
	sd->level = SD_LV_##type;				\
7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
	default_relax_domain_level = simple_strtoul(str, NULL, 0);
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7392
/*
7393 7394
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7395
 */
7396 7397
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7398 7399
{
	int i;
G
Gregory Haskins 已提交
7400
	struct root_domain *rd;
7401 7402
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7403 7404
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7405
	int sd_allnodes = 0;
7406 7407 7408 7409

	/*
	 * Allocate the per-node list of sched groups
	 */
7410
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7411
				    GFP_KERNEL);
7412 7413
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7414
		return -ENOMEM;
7415 7416
	}
#endif
L
Linus Torvalds 已提交
7417

7418
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7419 7420
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7421 7422 7423
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7424 7425 7426
		return -ENOMEM;
	}

7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7446
	/*
7447
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7448
	 */
7449
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7450
		struct sched_domain *sd = NULL, *p;
7451
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7452

7453 7454
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7455 7456

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7457
		if (cpus_weight(*cpu_map) >
7458
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7459
			sd = &per_cpu(allnodes_domains, i);
7460
			SD_INIT(sd, ALLNODES);
7461
			set_domain_attribute(sd, attr);
7462
			sd->span = *cpu_map;
7463
			sd->first_cpu = first_cpu(sd->span);
7464
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7465
			p = sd;
7466
			sd_allnodes = 1;
7467 7468 7469
		} else
			p = NULL;

L
Linus Torvalds 已提交
7470
		sd = &per_cpu(node_domains, i);
7471
		SD_INIT(sd, NODE);
7472
		set_domain_attribute(sd, attr);
7473
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7474
		sd->first_cpu = first_cpu(sd->span);
7475
		sd->parent = p;
7476 7477
		if (p)
			p->child = sd;
7478
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7479 7480 7481 7482
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7483
		SD_INIT(sd, CPU);
7484
		set_domain_attribute(sd, attr);
7485
		sd->span = *nodemask;
7486
		sd->first_cpu = first_cpu(sd->span);
L
Linus Torvalds 已提交
7487
		sd->parent = p;
7488 7489
		if (p)
			p->child = sd;
7490
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7491

7492 7493 7494
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7495
		SD_INIT(sd, MC);
7496
		set_domain_attribute(sd, attr);
7497
		sd->span = cpu_coregroup_map(i);
7498
		sd->first_cpu = first_cpu(sd->span);
7499 7500
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7501
		p->child = sd;
7502
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7503 7504
#endif

L
Linus Torvalds 已提交
7505 7506 7507
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7508
		SD_INIT(sd, SIBLING);
7509
		set_domain_attribute(sd, attr);
7510
		sd->span = per_cpu(cpu_sibling_map, i);
7511
		sd->first_cpu = first_cpu(sd->span);
7512
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7513
		sd->parent = p;
7514
		p->child = sd;
7515
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7516 7517 7518 7519 7520
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7521
	for_each_cpu_mask(i, *cpu_map) {
7522 7523 7524 7525 7526 7527
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7528 7529
			continue;

I
Ingo Molnar 已提交
7530
		init_sched_build_groups(this_sibling_map, cpu_map,
7531 7532
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7533 7534 7535
	}
#endif

7536 7537 7538
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7539 7540 7541 7542 7543 7544
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7545
			continue;
7546

I
Ingo Molnar 已提交
7547
		init_sched_build_groups(this_core_map, cpu_map,
7548 7549
					&cpu_to_core_group,
					send_covered, tmpmask);
7550 7551 7552
	}
#endif

L
Linus Torvalds 已提交
7553 7554
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7555 7556
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7557

7558 7559 7560
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7561 7562
			continue;

7563 7564 7565
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7566 7567 7568 7569
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7570 7571 7572 7573 7574 7575 7576
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7577 7578 7579 7580

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7581 7582 7583
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7584 7585
		int j;

7586 7587 7588 7589 7590
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7591
			sched_group_nodes[i] = NULL;
7592
			continue;
7593
		}
7594

7595
		sched_domain_node_span(i, domainspan);
7596
		cpus_and(*domainspan, *domainspan, *cpu_map);
7597

7598
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7599 7600 7601 7602 7603
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7604
		sched_group_nodes[i] = sg;
7605
		for_each_cpu_mask(j, *nodemask) {
7606
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7607

7608 7609 7610
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7611
		sg->__cpu_power = 0;
7612
		sg->cpumask = *nodemask;
7613
		sg->next = sg;
7614
		cpus_or(*covered, *covered, *nodemask);
7615 7616 7617
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7618
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7619
			int n = (i + j) % MAX_NUMNODES;
7620
			node_to_cpumask_ptr(pnodemask, n);
7621

7622 7623 7624 7625
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7626 7627
				break;

7628 7629
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7630 7631
				continue;

7632 7633
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7634 7635 7636
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7637
				goto error;
7638
			}
7639
			sg->__cpu_power = 0;
7640
			sg->cpumask = *tmpmask;
7641
			sg->next = prev->next;
7642
			cpus_or(*covered, *covered, *tmpmask);
7643 7644 7645 7646
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7647 7648 7649
#endif

	/* Calculate CPU power for physical packages and nodes */
7650
#ifdef CONFIG_SCHED_SMT
7651
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7652 7653
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7654
		init_sched_groups_power(i, sd);
7655
	}
L
Linus Torvalds 已提交
7656
#endif
7657
#ifdef CONFIG_SCHED_MC
7658
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7659 7660
		struct sched_domain *sd = &per_cpu(core_domains, i);

7661
		init_sched_groups_power(i, sd);
7662 7663
	}
#endif
7664

7665
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7666 7667
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7668
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7669 7670
	}

7671
#ifdef CONFIG_NUMA
7672 7673
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7674

7675 7676
	if (sd_allnodes) {
		struct sched_group *sg;
7677

7678 7679
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7680 7681
		init_numa_sched_groups_power(sg);
	}
7682 7683
#endif

L
Linus Torvalds 已提交
7684
	/* Attach the domains */
7685
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7686 7687 7688
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7689 7690
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7691 7692 7693
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7694
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7695
	}
7696

7697
	SCHED_CPUMASK_FREE((void *)allmasks);
7698 7699
	return 0;

7700
#ifdef CONFIG_NUMA
7701
error:
7702 7703
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7704
	return -ENOMEM;
7705
#endif
L
Linus Torvalds 已提交
7706
}
P
Paul Jackson 已提交
7707

7708 7709 7710 7711 7712
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7713 7714
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
7715 7716
static struct sched_domain_attr *dattr_cur;	/* attribues of custom domains
						   in 'doms_cur' */
P
Paul Jackson 已提交
7717 7718 7719 7720 7721 7722 7723 7724

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7725 7726 7727 7728
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7729
/*
I
Ingo Molnar 已提交
7730
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7731 7732
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7733
 */
7734
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7735
{
7736 7737
	int err;

7738
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7739 7740 7741 7742 7743
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7744
	dattr_cur = NULL;
7745
	err = build_sched_domains(doms_cur);
7746
	register_sched_domain_sysctl();
7747 7748

	return err;
7749 7750
}

7751 7752
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7753
{
7754
	free_sched_groups(cpu_map, tmpmask);
7755
}
L
Linus Torvalds 已提交
7756

7757 7758 7759 7760
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7761
static void detach_destroy_domains(const cpumask_t *cpu_map)
7762
{
7763
	cpumask_t tmpmask;
7764 7765
	int i;

7766 7767
	unregister_sched_domain_sysctl();

7768
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7769
		cpu_attach_domain(NULL, &def_root_domain, i);
7770
	synchronize_sched();
7771
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7772 7773
}

7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7790 7791
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7792
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7793 7794 7795 7796
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7797 7798 7799
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7800 7801 7802
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7803 7804
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7805 7806 7807 7808 7809 7810
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7811 7812
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7813 7814 7815
{
	int i, j;

7816
	mutex_lock(&sched_domains_mutex);
7817

7818 7819 7820
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7821 7822 7823 7824
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7825
		dattr_new = NULL;
P
Paul Jackson 已提交
7826 7827 7828 7829 7830
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7831 7832
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7844 7845
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7846 7847 7848
				goto match2;
		}
		/* no match - add a new doms_new */
7849 7850
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7851 7852 7853 7854 7855 7856 7857
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7858
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7859
	doms_cur = doms_new;
7860
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7861
	ndoms_cur = ndoms_new;
7862 7863

	register_sched_domain_sysctl();
7864

7865
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7866 7867
}

7868
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7869
int arch_reinit_sched_domains(void)
7870 7871 7872
{
	int err;

7873
	get_online_cpus();
7874
	mutex_lock(&sched_domains_mutex);
7875 7876
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
7877
	mutex_unlock(&sched_domains_mutex);
7878
	put_online_cpus();
7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7905 7906
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7907 7908 7909
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7910 7911
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7912 7913 7914 7915 7916 7917 7918
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7919 7920
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7921 7922 7923
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7944 7945
#endif

L
Linus Torvalds 已提交
7946
/*
I
Ingo Molnar 已提交
7947
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7948
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7949
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7950 7951 7952 7953 7954 7955 7956
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7957
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7958
	case CPU_DOWN_PREPARE:
7959
	case CPU_DOWN_PREPARE_FROZEN:
7960
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7961 7962 7963
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7964
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7965
	case CPU_DOWN_FAILED:
7966
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7967
	case CPU_ONLINE:
7968
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7969
	case CPU_DEAD:
7970
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7971 7972 7973 7974 7975 7976 7977 7978 7979
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7980
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7981 7982 7983 7984 7985 7986

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7987 7988
	cpumask_t non_isolated_cpus;

7989 7990 7991 7992 7993
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7994
	get_online_cpus();
7995
	mutex_lock(&sched_domains_mutex);
7996
	arch_init_sched_domains(&cpu_online_map);
7997
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7998 7999
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
8000
	mutex_unlock(&sched_domains_mutex);
8001
	put_online_cpus();
L
Linus Torvalds 已提交
8002 8003
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8004
	init_hrtick();
8005 8006

	/* Move init over to a non-isolated CPU */
8007
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8008
		BUG();
I
Ingo Molnar 已提交
8009
	sched_init_granularity();
L
Linus Torvalds 已提交
8010 8011 8012 8013
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8014
	sched_init_granularity();
L
Linus Torvalds 已提交
8015 8016 8017 8018 8019 8020 8021 8022 8023 8024
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8025
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8026 8027
{
	cfs_rq->tasks_timeline = RB_ROOT;
8028
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8029 8030 8031
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8032
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8033 8034
}

P
Peter Zijlstra 已提交
8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8048
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8049 8050
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8051 8052 8053 8054 8055 8056 8057
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8058 8059
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8060

8061
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8062
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8063 8064
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8065 8066
}

P
Peter Zijlstra 已提交
8067
#ifdef CONFIG_FAIR_GROUP_SCHED
8068 8069 8070
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8071
{
8072
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8073 8074 8075 8076 8077 8078 8079
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8080 8081 8082 8083
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8084 8085 8086 8087 8088
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8089 8090
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8091
	se->load.inv_weight = 0;
8092
	se->parent = parent;
P
Peter Zijlstra 已提交
8093
}
8094
#endif
P
Peter Zijlstra 已提交
8095

8096
#ifdef CONFIG_RT_GROUP_SCHED
8097 8098 8099
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8100
{
8101 8102
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8103 8104 8105 8106
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8107
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8108 8109 8110 8111
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8112 8113 8114
	if (!rt_se)
		return;

8115 8116 8117 8118 8119
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8120 8121
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
8122
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8123 8124 8125 8126
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8127 8128
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8129
	int i, j;
8130 8131 8132 8133 8134 8135 8136
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8137 8138 8139
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8140 8141 8142 8143 8144 8145
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8146
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8147 8148 8149 8150 8151 8152 8153

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8154 8155 8156 8157 8158 8159 8160 8161

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
8162 8163 8164 8165 8166 8167
#endif
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8168 8169 8170 8171 8172 8173 8174 8175 8176
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
8177 8178
#endif
	}
I
Ingo Molnar 已提交
8179

G
Gregory Haskins 已提交
8180
#ifdef CONFIG_SMP
8181
	init_aggregate();
G
Gregory Haskins 已提交
8182 8183 8184
	init_defrootdomain();
#endif

8185 8186 8187 8188 8189 8190
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8191 8192 8193 8194
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
#endif
8195 8196
#endif

8197
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8198
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8199 8200 8201 8202 8203 8204 8205
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
#endif
P
Peter Zijlstra 已提交
8206 8207
#endif

8208
	for_each_possible_cpu(i) {
8209
		struct rq *rq;
L
Linus Torvalds 已提交
8210 8211 8212

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
8213
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
8214
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8215
		rq->clock = 1;
8216
		update_last_tick_seen(rq);
I
Ingo Molnar 已提交
8217
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8218
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8219
#ifdef CONFIG_FAIR_GROUP_SCHED
8220
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8221
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8242
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8243
#elif defined CONFIG_USER_SCHED
8244 8245
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8257
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8258
				&per_cpu(init_cfs_rq, i),
8259 8260
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8261

8262
#endif
D
Dhaval Giani 已提交
8263 8264 8265
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8266
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8267
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8268
#ifdef CONFIG_CGROUP_SCHED
8269
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8270
#elif defined CONFIG_USER_SCHED
8271
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8272
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8273
				&per_cpu(init_rt_rq, i),
8274 8275
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8276
#endif
I
Ingo Molnar 已提交
8277
#endif
L
Linus Torvalds 已提交
8278

I
Ingo Molnar 已提交
8279 8280
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8281
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8282
		rq->sd = NULL;
G
Gregory Haskins 已提交
8283
		rq->rd = NULL;
L
Linus Torvalds 已提交
8284
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8285
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8286
		rq->push_cpu = 0;
8287
		rq->cpu = i;
L
Linus Torvalds 已提交
8288 8289
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8290
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8291
#endif
P
Peter Zijlstra 已提交
8292
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8293 8294 8295
		atomic_set(&rq->nr_iowait, 0);
	}

8296
	set_load_weight(&init_task);
8297

8298 8299 8300 8301
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8302 8303 8304 8305
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

8306 8307 8308 8309
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8323 8324 8325 8326
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8327 8328

	scheduler_running = 1;
L
Linus Torvalds 已提交
8329 8330 8331 8332 8333
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8334
#ifdef in_atomic
L
Linus Torvalds 已提交
8335 8336 8337 8338 8339 8340 8341
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8342
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8343 8344 8345
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8346
		debug_show_held_locks(current);
8347 8348
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8349 8350 8351 8352 8353 8354 8355 8356
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8371 8372
void normalize_rt_tasks(void)
{
8373
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8374
	unsigned long flags;
8375
	struct rq *rq;
L
Linus Torvalds 已提交
8376

8377
	read_lock_irqsave(&tasklist_lock, flags);
8378
	do_each_thread(g, p) {
8379 8380 8381 8382 8383 8384
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8385 8386
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8387 8388 8389
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8390
#endif
I
Ingo Molnar 已提交
8391 8392 8393 8394 8395 8396 8397 8398 8399
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8400
			continue;
I
Ingo Molnar 已提交
8401
		}
L
Linus Torvalds 已提交
8402

8403
		spin_lock(&p->pi_lock);
8404
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8405

8406
		normalize_task(rq, p);
8407

8408
		__task_rq_unlock(rq);
8409
		spin_unlock(&p->pi_lock);
8410 8411
	} while_each_thread(g, p);

8412
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8413 8414 8415
}

#endif /* CONFIG_MAGIC_SYSRQ */
8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8434
struct task_struct *curr_task(int cpu)
8435 8436 8437 8438 8439 8440 8441 8442 8443 8444
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8445 8446
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8447 8448 8449 8450 8451 8452 8453
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8454
void set_curr_task(int cpu, struct task_struct *p)
8455 8456 8457 8458 8459
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8460

8461 8462
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8477 8478
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8479 8480
{
	struct cfs_rq *cfs_rq;
8481
	struct sched_entity *se, *parent_se;
8482
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8483 8484
	int i;

8485
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8486 8487
	if (!tg->cfs_rq)
		goto err;
8488
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8489 8490
	if (!tg->se)
		goto err;
8491 8492

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8493 8494

	for_each_possible_cpu(i) {
8495
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8496

P
Peter Zijlstra 已提交
8497 8498
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8499 8500 8501
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8502 8503
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8504 8505 8506
		if (!se)
			goto err;

8507 8508
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8532 8533
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8545 8546 8547
#endif

#ifdef CONFIG_RT_GROUP_SCHED
8548 8549 8550 8551
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8552 8553
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8565 8566
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8567 8568
{
	struct rt_rq *rt_rq;
8569
	struct sched_rt_entity *rt_se, *parent_se;
8570 8571 8572
	struct rq *rq;
	int i;

8573
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8574 8575
	if (!tg->rt_rq)
		goto err;
8576
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8577 8578 8579
	if (!tg->rt_se)
		goto err;

8580 8581
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8582 8583 8584 8585

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8586 8587 8588 8589
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8590

P
Peter Zijlstra 已提交
8591 8592 8593 8594
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8595

8596 8597
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8598 8599
	}

8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8621 8622
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

8636
#ifdef CONFIG_GROUP_SCHED
8637 8638 8639 8640 8641 8642 8643 8644
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8645
struct task_group *sched_create_group(struct task_group *parent)
8646 8647 8648 8649 8650 8651 8652 8653 8654
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8655
	if (!alloc_fair_sched_group(tg, parent))
8656 8657
		goto err;

8658
	if (!alloc_rt_sched_group(tg, parent))
8659 8660
		goto err;

8661
	spin_lock_irqsave(&task_group_lock, flags);
8662
	for_each_possible_cpu(i) {
8663 8664
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8665
	}
P
Peter Zijlstra 已提交
8666
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8667 8668 8669 8670 8671 8672

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8673
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8674

8675
	return tg;
S
Srivatsa Vaddagiri 已提交
8676 8677

err:
P
Peter Zijlstra 已提交
8678
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8679 8680 8681
	return ERR_PTR(-ENOMEM);
}

8682
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8683
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8684 8685
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8686
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8687 8688
}

8689
/* Destroy runqueue etc associated with a task group */
8690
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8691
{
8692
	unsigned long flags;
8693
	int i;
S
Srivatsa Vaddagiri 已提交
8694

8695
	spin_lock_irqsave(&task_group_lock, flags);
8696
	for_each_possible_cpu(i) {
8697 8698
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8699
	}
P
Peter Zijlstra 已提交
8700
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8701
	list_del_rcu(&tg->siblings);
8702
	spin_unlock_irqrestore(&task_group_lock, flags);
8703 8704

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8705
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8706 8707
}

8708
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8709 8710 8711
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8712 8713
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8714 8715 8716 8717 8718 8719 8720 8721 8722
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8723
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8724 8725
	on_rq = tsk->se.on_rq;

8726
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8727
		dequeue_task(rq, tsk, 0);
8728 8729
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8730

P
Peter Zijlstra 已提交
8731
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8732

P
Peter Zijlstra 已提交
8733 8734 8735 8736 8737
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8738 8739 8740
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8741
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8742 8743 8744

	task_rq_unlock(rq, &flags);
}
8745
#endif
S
Srivatsa Vaddagiri 已提交
8746

8747
#ifdef CONFIG_FAIR_GROUP_SCHED
8748
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8749 8750 8751 8752 8753
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8754
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8755 8756 8757
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8758
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8759

8760
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8761
		enqueue_entity(cfs_rq, se, 0);
8762
}
8763

8764 8765 8766 8767 8768 8769 8770 8771 8772
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8773 8774
}

8775 8776
static DEFINE_MUTEX(shares_mutex);

8777
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8778 8779
{
	int i;
8780
	unsigned long flags;
8781

8782 8783 8784 8785 8786 8787
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8788 8789 8790 8791 8792
	/*
	 * A weight of 0 or 1 can cause arithmetics problems.
	 * (The default weight is 1024 - so there's no practical
	 *  limitation from this.)
	 */
8793 8794
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8795

8796
	mutex_lock(&shares_mutex);
8797
	if (tg->shares == shares)
8798
		goto done;
S
Srivatsa Vaddagiri 已提交
8799

8800
	spin_lock_irqsave(&task_group_lock, flags);
8801 8802
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8803
	list_del_rcu(&tg->siblings);
8804
	spin_unlock_irqrestore(&task_group_lock, flags);
8805 8806 8807 8808 8809 8810 8811 8812

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8813
	tg->shares = shares;
8814 8815 8816 8817 8818 8819 8820
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
		set_se_shares(tg->se[i], shares/nr_cpu_ids);
	}
S
Srivatsa Vaddagiri 已提交
8821

8822 8823 8824 8825
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8826
	spin_lock_irqsave(&task_group_lock, flags);
8827 8828
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8829
	list_add_rcu(&tg->siblings, &tg->parent->children);
8830
	spin_unlock_irqrestore(&task_group_lock, flags);
8831
done:
8832
	mutex_unlock(&shares_mutex);
8833
	return 0;
S
Srivatsa Vaddagiri 已提交
8834 8835
}

8836 8837 8838 8839
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8840
#endif
8841

8842
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8843
/*
P
Peter Zijlstra 已提交
8844
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8845
 */
P
Peter Zijlstra 已提交
8846 8847 8848 8849 8850 8851 8852
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8853
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8854 8855
}

8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
	struct task_group *tgi, *parent = tg->parent;
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

	return total + to_ratio(period, runtime) <
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8888
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8889 8890 8891
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8892
	unsigned long global_ratio =
8893
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8894 8895

	rcu_read_lock();
P
Peter Zijlstra 已提交
8896 8897 8898
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8899

8900 8901
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8902 8903
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8904

P
Peter Zijlstra 已提交
8905
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8906
}
8907
#endif
P
Peter Zijlstra 已提交
8908

8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8920 8921
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8922
{
P
Peter Zijlstra 已提交
8923
	int i, err = 0;
P
Peter Zijlstra 已提交
8924 8925

	mutex_lock(&rt_constraints_mutex);
8926
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8927
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8928 8929 8930
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8931 8932 8933 8934
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8935 8936

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8937 8938
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8939 8940 8941 8942 8943 8944 8945 8946 8947

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8948
 unlock:
8949
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8950 8951 8952
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8953 8954
}

8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8967 8968 8969 8970
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8971
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8972 8973
		return -1;

8974
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8975 8976 8977
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(NULL, 1, 0))
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
#else
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9025 9026
	return 0;
}
9027
#endif
9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9058

9059
#ifdef CONFIG_CGROUP_SCHED
9060 9061

/* return corresponding task_group object of a cgroup */
9062
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9063
{
9064 9065
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9066 9067 9068
}

static struct cgroup_subsys_state *
9069
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9070
{
9071
	struct task_group *tg, *parent;
9072

9073
	if (!cgrp->parent) {
9074
		/* This is early initialization for the top cgroup */
9075
		init_task_group.css.cgroup = cgrp;
9076 9077 9078
		return &init_task_group.css;
	}

9079 9080
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9081 9082 9083 9084
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
9085
	tg->css.cgroup = cgrp;
9086 9087 9088 9089

	return &tg->css;
}

I
Ingo Molnar 已提交
9090 9091
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9092
{
9093
	struct task_group *tg = cgroup_tg(cgrp);
9094 9095 9096 9097

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9098 9099 9100
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9101
{
9102 9103
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9104
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9105 9106
		return -EINVAL;
#else
9107 9108 9109
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9110
#endif
9111 9112 9113 9114 9115

	return 0;
}

static void
9116
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9117 9118 9119 9120 9121
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9122
#ifdef CONFIG_FAIR_GROUP_SCHED
9123
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9124
				u64 shareval)
9125
{
9126
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9127 9128
}

9129
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9130
{
9131
	struct task_group *tg = cgroup_tg(cgrp);
9132 9133 9134

	return (u64) tg->shares;
}
9135
#endif
9136

9137
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9138
static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9139
				s64 val)
P
Peter Zijlstra 已提交
9140
{
9141
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9142 9143
}

9144
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9145
{
9146
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9147
}
9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9159
#endif
P
Peter Zijlstra 已提交
9160

9161
static struct cftype cpu_files[] = {
9162
#ifdef CONFIG_FAIR_GROUP_SCHED
9163 9164
	{
		.name = "shares",
9165 9166
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9167
	},
9168 9169
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9170
	{
P
Peter Zijlstra 已提交
9171
		.name = "rt_runtime_us",
9172 9173
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9174
	},
9175 9176
	{
		.name = "rt_period_us",
9177 9178
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9179
	},
9180
#endif
9181 9182 9183 9184
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9185
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9186 9187 9188
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9189 9190 9191 9192 9193 9194 9195
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9196 9197 9198
	.early_init	= 1,
};

9199
#endif	/* CONFIG_CGROUP_SCHED */
9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9220
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9221
{
9222
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9235
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9252
static void
9253
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9254
{
9255
	struct cpuacct *ca = cgroup_ca(cgrp);
9256 9257 9258 9259 9260 9261

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9262
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9263
{
9264
	struct cpuacct *ca = cgroup_ca(cgrp);
9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9306 9307 9308
static struct cftype files[] = {
	{
		.name = "usage",
9309 9310
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9311 9312 9313
	},
};

9314
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9315
{
9316
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */