sched.c 187.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46
#include <linux/blkdev.h>
#include <linux/delay.h>
47
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
57
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
58 59
#include <linux/syscalls.h>
#include <linux/times.h>
60
#include <linux/tsacct_kern.h>
61
#include <linux/kprobes.h>
62
#include <linux/delayacct.h>
63
#include <linux/reciprocal_div.h>
64
#include <linux/unistd.h>
J
Jens Axboe 已提交
65
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
66

67
#include <asm/tlb.h>
68
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
69

70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
77
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 79
}

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
101 102
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
103

I
Ingo Molnar 已提交
104 105 106
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
107 108 109
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
110
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
111 112 113
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

136 137 138 139 140 141 142 143 144 145 146 147
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
148
/*
I
Ingo Molnar 已提交
149
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
150
 */
I
Ingo Molnar 已提交
151 152 153 154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
156 157
#ifdef CONFIG_FAIR_GROUP_SCHED

158 159
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
160 161 162
struct cfs_rq;

/* task group related information */
163
struct task_group {
164 165 166
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
167 168 169 170
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

	/*
	 * shares assigned to a task group governs how much of cpu bandwidth
	 * is allocated to the group. The more shares a group has, the more is
	 * the cpu bandwidth allocated to it.
	 *
	 * For ex, lets say that there are three task groups, A, B and C which
	 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
	 * cpu bandwidth allocated by the scheduler to task groups A, B and C
	 * should be:
	 *
	 *	Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
	 *	Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
	 * 	Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
	 *
	 * The weight assigned to a task group's schedulable entities on every
	 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
	 * group's shares. For ex: lets say that task group A has been
	 * assigned shares of 1000 and there are two CPUs in a system. Then,
	 *
	 *  tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
	 *
	 * Note: It's not necessary that each of a task's group schedulable
	 * 	 entity have the same weight on all CPUs. If the group
	 * 	 has 2 of its tasks on CPU0 and 1 task on CPU1, then a
	 * 	 better distribution of weight could be:
	 *
	 *	tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
	 *	tg_A->se[1]->load.weight = 1/2 * 2000 =  667
	 *
	 * rebalance_shares() is responsible for distributing the shares of a
	 * task groups like this among the group's schedulable entities across
	 * cpus.
	 *
	 */
S
Srivatsa Vaddagiri 已提交
206
	unsigned long shares;
207

208
	struct rcu_head rcu;
S
Srivatsa Vaddagiri 已提交
209 210 211 212 213 214 215
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

216 217
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
218

219 220 221 222 223
/* task_group_mutex serializes add/remove of task groups and also changes to
 * a task group's cpu shares.
 */
static DEFINE_MUTEX(task_group_mutex);

224 225 226
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

227 228 229 230 231 232 233 234
#ifdef CONFIG_SMP
/* kernel thread that runs rebalance_shares() periodically */
static struct task_struct *lb_monitor_task;
static int load_balance_monitor(void *unused);
#endif

static void set_se_shares(struct sched_entity *se, unsigned long shares);

S
Srivatsa Vaddagiri 已提交
235
/* Default task group.
I
Ingo Molnar 已提交
236
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
237
 */
238
struct task_group init_task_group = {
I
Ingo Molnar 已提交
239 240 241
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
242

243
#ifdef CONFIG_FAIR_USER_SCHED
244
# define INIT_TASK_GROUP_LOAD	2*NICE_0_LOAD
245
#else
246
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
247 248
#endif

249 250
#define MIN_GROUP_SHARES       2

251
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
S
Srivatsa Vaddagiri 已提交
252 253

/* return group to which a task belongs */
254
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
255
{
256
	struct task_group *tg;
257

258 259
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
260 261 262
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
263
#else
I
Ingo Molnar 已提交
264
	tg = &init_task_group;
265
#endif
266
	return tg;
S
Srivatsa Vaddagiri 已提交
267 268 269
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
270
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
271
{
272 273
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
S
Srivatsa Vaddagiri 已提交
274 275
}

276 277 278 279 280 281 282 283 284 285
static inline void lock_task_group_list(void)
{
	mutex_lock(&task_group_mutex);
}

static inline void unlock_task_group_list(void)
{
	mutex_unlock(&task_group_mutex);
}

286 287 288 289 290 291 292 293 294 295
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
296 297
#else

298
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
299 300
static inline void lock_task_group_list(void) { }
static inline void unlock_task_group_list(void) { }
301 302
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
303 304 305

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
306 307 308 309 310 311
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
312
	u64 min_vruntime;
I
Ingo Molnar 已提交
313 314 315 316 317 318 319 320

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
321 322 323

	unsigned long nr_spread_over;

324
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
325 326
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
327 328
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
329 330 331 332 333 334
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
335 336
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
337 338
#endif
};
L
Linus Torvalds 已提交
339

I
Ingo Molnar 已提交
340 341 342 343 344
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
345
	unsigned long rt_nr_running;
346 347
	/* highest queued rt task prio */
	int highest_prio;
I
Ingo Molnar 已提交
348 349
};

L
Linus Torvalds 已提交
350 351 352 353 354 355 356
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
357
struct rq {
358 359
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
360 361 362 363 364 365

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
366 367
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
368
	unsigned char idle_at_tick;
369 370 371
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
372 373
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
374 375 376 377 378
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
379 380
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
381
#endif
I
Ingo Molnar 已提交
382
	struct rt_rq rt;
L
Linus Torvalds 已提交
383 384 385 386 387 388 389 390 391

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

392
	struct task_struct *curr, *idle;
393
	unsigned long next_balance;
L
Linus Torvalds 已提交
394
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
395 396 397 398 399

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
400 401
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
402
	u64 tick_timestamp;
I
Ingo Molnar 已提交
403

L
Linus Torvalds 已提交
404 405 406 407 408 409 410 411
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
412 413
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
414

415
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
416 417 418 419 420 421 422 423
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
424 425 426 427
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
428 429

	/* schedule() stats */
430 431 432
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
433 434

	/* try_to_wake_up() stats */
435 436
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
437 438

	/* BKL stats */
439
	unsigned int bkl_count;
L
Linus Torvalds 已提交
440
#endif
441
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
442 443
};

444
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
445

I
Ingo Molnar 已提交
446 447 448 449 450
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

451 452 453 454 455 456 457 458 459
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
460
/*
I
Ingo Molnar 已提交
461 462
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
463
 */
I
Ingo Molnar 已提交
464
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
465 466 467 468 469 470
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
471 472 473
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
474 475 476 477 478 479 480 481 482 483
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
484 485 486 487 488
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
489 490 491 492 493 494 495 496 497 498
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
499
}
I
Ingo Molnar 已提交
500

I
Ingo Molnar 已提交
501 502 503 504
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
505 506
}

N
Nick Piggin 已提交
507 508
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
509
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
510 511 512 513
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
514 515
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
516 517 518 519 520 521

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
535
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
536 537
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
538 539
	SCHED_FEAT_TREE_AVG		= 8,
	SCHED_FEAT_APPROX_AVG		= 16,
I
Ingo Molnar 已提交
540 541 542
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
543
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
544
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
545 546
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
I
Ingo Molnar 已提交
547
		SCHED_FEAT_APPROX_AVG		* 0;
I
Ingo Molnar 已提交
548 549 550

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

551 552 553 554 555 556
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

557 558 559 560 561 562 563 564
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
565
	struct rq *rq;
566

567
	local_irq_save(flags);
I
Ingo Molnar 已提交
568
	rq = cpu_rq(cpu);
569 570 571 572 573 574
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
	if (rq->idle)
		update_rq_clock(rq);
I
Ingo Molnar 已提交
575
	now = rq->clock;
576
	local_irq_restore(flags);
577 578 579

	return now;
}
P
Paul E. McKenney 已提交
580
EXPORT_SYMBOL_GPL(cpu_clock);
581

L
Linus Torvalds 已提交
582
#ifndef prepare_arch_switch
583 584 585 586 587 588
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

589 590 591 592 593
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

594
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
595
static inline int task_running(struct rq *rq, struct task_struct *p)
596
{
597
	return task_current(rq, p);
598 599
}

600
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
601 602 603
{
}

604
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
605
{
606 607 608 609
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
610 611 612 613 614 615 616
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

617 618 619 620
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
621
static inline int task_running(struct rq *rq, struct task_struct *p)
622 623 624 625
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
626
	return task_current(rq, p);
627 628 629
#endif
}

630
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

647
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
648 649 650 651 652 653 654 655 656 657 658 659
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
660
#endif
661 662
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
663

664 665 666 667
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
668
static inline struct rq *__task_rq_lock(struct task_struct *p)
669 670
	__acquires(rq->lock)
{
671 672 673 674 675
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
676 677 678 679
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
680 681
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
682
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
683 684
 * explicitly disabling preemption.
 */
685
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
686 687
	__acquires(rq->lock)
{
688
	struct rq *rq;
L
Linus Torvalds 已提交
689

690 691 692 693 694 695
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
696 697 698 699
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
700
static void __task_rq_unlock(struct rq *rq)
701 702 703 704 705
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

706
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
707 708 709 710 711 712
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
713
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
714
 */
A
Alexey Dobriyan 已提交
715
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
716 717
	__acquires(rq->lock)
{
718
	struct rq *rq;
L
Linus Torvalds 已提交
719 720 721 722 723 724 725 726

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

727
/*
728
 * We are going deep-idle (irqs are disabled):
729
 */
730
void sched_clock_idle_sleep_event(void)
731
{
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
748

749
	touch_softlockup_watchdog();
750 751 752 753 754 755 756 757 758 759 760
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
761
}
762
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
763

I
Ingo Molnar 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

816 817 818 819 820 821 822 823
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
824 825 826
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
827
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
828

829
static unsigned long
830 831 832 833 834 835
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
836
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
837 838 839 840 841

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
842
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
843
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
844 845
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
846
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
847

848
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
849 850 851 852 853 854 855 856
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

857
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
858 859 860 861
{
	lw->weight += inc;
}

862
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
863 864 865 866
{
	lw->weight -= dec;
}

867 868 869 870
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
871
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
872 873 874 875
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
876 877 878 879 880 881 882 883 884 885 886
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
887 888 889
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
890 891
 */
static const int prio_to_weight[40] = {
892 893 894 895 896 897 898 899
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
900 901
};

902 903 904 905 906 907 908
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
909
static const u32 prio_to_wmult[40] = {
910 911 912 913 914 915 916 917
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
918
};
919

I
Ingo Molnar 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

933 934 935 936 937 938 939 940 941 942 943 944
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
945

946 947 948 949 950 951
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

952 953 954 955 956 957 958 959 960 961
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
962 963
#include "sched_stats.h"
#include "sched_idletask.c"
964 965
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
966 967 968 969 970 971
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

972
static void inc_nr_running(struct task_struct *p, struct rq *rq)
973 974 975 976
{
	rq->nr_running++;
}

977
static void dec_nr_running(struct task_struct *p, struct rq *rq)
978 979 980 981
{
	rq->nr_running--;
}

982 983 984
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
985 986 987 988
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
989

I
Ingo Molnar 已提交
990 991 992 993 994 995 996 997
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
998

I
Ingo Molnar 已提交
999 1000
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1001 1002
}

1003
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1004
{
I
Ingo Molnar 已提交
1005
	sched_info_queued(p);
1006
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1007
	p->se.on_rq = 1;
1008 1009
}

1010
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1011
{
1012
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1013
	p->se.on_rq = 0;
1014 1015
}

1016
/*
I
Ingo Molnar 已提交
1017
 * __normal_prio - return the priority that is based on the static prio
1018 1019 1020
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1021
	return p->static_prio;
1022 1023
}

1024 1025 1026 1027 1028 1029 1030
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1031
static inline int normal_prio(struct task_struct *p)
1032 1033 1034
{
	int prio;

1035
	if (task_has_rt_policy(p))
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1049
static int effective_prio(struct task_struct *p)
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1062
/*
I
Ingo Molnar 已提交
1063
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1064
 */
I
Ingo Molnar 已提交
1065
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1066
{
I
Ingo Molnar 已提交
1067 1068
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1069

1070
	enqueue_task(rq, p, wakeup);
1071
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1072 1073 1074 1075 1076
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1077
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1078
{
I
Ingo Molnar 已提交
1079 1080 1081
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

1082
	dequeue_task(rq, p, sleep);
1083
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1084 1085 1086 1087 1088 1089
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1090
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1091 1092 1093 1094
{
	return cpu_curr(task_cpu(p)) == p;
}

1095 1096 1097
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1098
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1099 1100 1101 1102
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
1103
	set_task_cfs_rq(p, cpu);
I
Ingo Molnar 已提交
1104
#ifdef CONFIG_SMP
1105 1106 1107 1108 1109 1110
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1111 1112
	task_thread_info(p)->cpu = cpu;
#endif
1113 1114
}

L
Linus Torvalds 已提交
1115
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1128 1129 1130 1131 1132
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1133 1134 1135 1136 1137 1138
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1139
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1140
{
I
Ingo Molnar 已提交
1141 1142
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1143 1144
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1145
	u64 clock_offset;
I
Ingo Molnar 已提交
1146 1147

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1148 1149 1150 1151

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1152 1153 1154 1155
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1156 1157 1158 1159 1160
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1161
#endif
1162 1163
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1164 1165

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1166 1167
}

1168
struct migration_req {
L
Linus Torvalds 已提交
1169 1170
	struct list_head list;

1171
	struct task_struct *task;
L
Linus Torvalds 已提交
1172 1173 1174
	int dest_cpu;

	struct completion done;
1175
};
L
Linus Torvalds 已提交
1176 1177 1178 1179 1180

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1181
static int
1182
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1183
{
1184
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1185 1186 1187 1188 1189

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1190
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1191 1192 1193 1194 1195 1196 1197 1198
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1199

L
Linus Torvalds 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1212
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1213 1214
{
	unsigned long flags;
I
Ingo Molnar 已提交
1215
	int running, on_rq;
1216
	struct rq *rq;
L
Linus Torvalds 已提交
1217

1218 1219 1220 1221 1222 1223 1224 1225
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1240

1241 1242 1243 1244 1245 1246 1247 1248 1249
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1275

1276 1277 1278 1279 1280 1281 1282
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1298
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1310 1311
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1312 1313 1314 1315
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1316
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1317
{
1318
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1319
	unsigned long total = weighted_cpuload(cpu);
1320

1321
	if (type == 0)
I
Ingo Molnar 已提交
1322
		return total;
1323

I
Ingo Molnar 已提交
1324
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1325 1326 1327
}

/*
1328 1329
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1330
 */
A
Alexey Dobriyan 已提交
1331
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1332
{
1333
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1334
	unsigned long total = weighted_cpuload(cpu);
1335

N
Nick Piggin 已提交
1336
	if (type == 0)
I
Ingo Molnar 已提交
1337
		return total;
1338

I
Ingo Molnar 已提交
1339
	return max(rq->cpu_load[type-1], total);
1340 1341 1342 1343 1344 1345 1346
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1347
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1348
	unsigned long total = weighted_cpuload(cpu);
1349 1350
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1351
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1352 1353
}

N
Nick Piggin 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1371 1372
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1373
			continue;
1374

N
Nick Piggin 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1391 1392
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1393 1394 1395 1396 1397 1398 1399 1400

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1401
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1402 1403 1404 1405 1406 1407 1408

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1409
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1410
 */
I
Ingo Molnar 已提交
1411 1412
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1413
{
1414
	cpumask_t tmp;
N
Nick Piggin 已提交
1415 1416 1417 1418
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1419 1420 1421 1422
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1423
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1449

1450
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1451 1452 1453
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1454 1455
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1456 1457
		if (tmp->flags & flag)
			sd = tmp;
1458
	}
N
Nick Piggin 已提交
1459 1460 1461 1462

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1463 1464 1465 1466 1467 1468
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1469 1470 1471

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1472 1473 1474 1475
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1476

1477
		new_cpu = find_idlest_cpu(group, t, cpu);
1478 1479 1480 1481 1482
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1483

1484
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1511
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1512 1513 1514 1515 1516
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1527 1528 1529 1530
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1531
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1532
			for_each_cpu_mask(i, tmp) {
1533 1534 1535 1536 1537
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1538
					return i;
1539
				}
L
Linus Torvalds 已提交
1540
			}
I
Ingo Molnar 已提交
1541
		} else {
N
Nick Piggin 已提交
1542
			break;
I
Ingo Molnar 已提交
1543
		}
L
Linus Torvalds 已提交
1544 1545 1546 1547
	}
	return cpu;
}
#else
1548
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1568
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1569
{
1570
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1571 1572
	unsigned long flags;
	long old_state;
1573
	struct rq *rq;
L
Linus Torvalds 已提交
1574
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1575
	struct sched_domain *sd, *this_sd = NULL;
1576
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1577 1578 1579 1580 1581 1582 1583 1584
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1585
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1586 1587 1588
		goto out_running;

	cpu = task_cpu(p);
1589
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1590 1591 1592 1593 1594 1595
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1596 1597
	new_cpu = cpu;

1598
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1599 1600
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1601 1602 1603 1604 1605 1606 1607 1608
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1609 1610 1611
		}
	}

N
Nick Piggin 已提交
1612
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1613 1614 1615
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1616
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1617
	 */
N
Nick Piggin 已提交
1618 1619 1620
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1621

1622 1623
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1624 1625
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1626

N
Nick Piggin 已提交
1627 1628
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1629 1630
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1631 1632
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1633 1634 1635 1636 1637 1638
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1639
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1640
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1641

L
Linus Torvalds 已提交
1642
			/*
1643 1644 1645
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1646
			 */
1647
			if (sync)
I
Ingo Molnar 已提交
1648
				tl -= current->se.load.weight;
1649 1650

			if ((tl <= load &&
1651
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1652
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1653 1654 1655 1656 1657 1658
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1659
				schedstat_inc(p, se.nr_wakeups_affine);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1671
				schedstat_inc(p, se.nr_wakeups_passive);
1672 1673
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1688
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1689 1690 1691 1692 1693 1694 1695 1696
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1697 1698 1699 1700 1701 1702 1703 1704 1705
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1706
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1707
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1708
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1719
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1720 1721 1722 1723 1724 1725
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1726
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1727 1728 1729 1730 1731 1732 1733
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1734 1735 1736 1737 1738 1739 1740
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1741
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1742 1743 1744

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1745 1746 1747 1748 1749 1750
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1751
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1752
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1753
#endif
N
Nick Piggin 已提交
1754

I
Ingo Molnar 已提交
1755 1756
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1757

1758 1759 1760 1761
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1762 1763 1764 1765 1766 1767 1768
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1783
	set_task_cpu(p, cpu);
1784 1785 1786 1787 1788

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1789 1790
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1791

1792
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1793
	if (likely(sched_info_on()))
1794
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1795
#endif
1796
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1797 1798
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1799
#ifdef CONFIG_PREEMPT
1800
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1801
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1802
#endif
N
Nick Piggin 已提交
1803
	put_cpu();
L
Linus Torvalds 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1813
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1814 1815
{
	unsigned long flags;
I
Ingo Molnar 已提交
1816
	struct rq *rq;
L
Linus Torvalds 已提交
1817 1818

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1819
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1820
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1821 1822 1823

	p->prio = effective_prio(p);

1824
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1825
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1826 1827
	} else {
		/*
I
Ingo Molnar 已提交
1828 1829
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1830
		 */
1831
		p->sched_class->task_new(rq, p);
1832
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1833
	}
I
Ingo Molnar 已提交
1834 1835
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1836 1837
}

1838 1839 1840
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1841 1842
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1843 1844 1845 1846 1847 1848 1849 1850 1851
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1852
 * @notifier: notifier struct to unregister
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1896 1897 1898
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1899
 * @prev: the current task that is being switched out
1900 1901 1902 1903 1904 1905 1906 1907 1908
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1909 1910 1911
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1912
{
1913
	fire_sched_out_preempt_notifiers(prev, next);
1914 1915 1916 1917
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1918 1919
/**
 * finish_task_switch - clean up after a task-switch
1920
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1921 1922
 * @prev: the thread we just switched away from.
 *
1923 1924 1925 1926
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1927 1928
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1929
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1930 1931 1932
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1933
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1934 1935 1936
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1937
	long prev_state;
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1943
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1944 1945
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1946
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1947 1948 1949 1950 1951
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1952
	prev_state = prev->state;
1953 1954
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
1955 1956
	schedule_tail_balance_rt(rq);

1957
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1958 1959
	if (mm)
		mmdrop(mm);
1960
	if (unlikely(prev_state == TASK_DEAD)) {
1961 1962 1963
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1964
		 */
1965
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1966
		put_task_struct(prev);
1967
	}
L
Linus Torvalds 已提交
1968 1969 1970 1971 1972 1973
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1974
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1975 1976
	__releases(rq->lock)
{
1977 1978
	struct rq *rq = this_rq();

1979 1980 1981 1982 1983
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1984
	if (current->set_child_tid)
1985
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1986 1987 1988 1989 1990 1991
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1992
static inline void
1993
context_switch(struct rq *rq, struct task_struct *prev,
1994
	       struct task_struct *next)
L
Linus Torvalds 已提交
1995
{
I
Ingo Molnar 已提交
1996
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1997

1998
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1999 2000
	mm = next->mm;
	oldmm = prev->active_mm;
2001 2002 2003 2004 2005 2006 2007
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2008
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2009 2010 2011 2012 2013 2014
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2015
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2016 2017 2018
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2019 2020 2021 2022 2023 2024 2025
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2026
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2027
#endif
L
Linus Torvalds 已提交
2028 2029 2030 2031

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2032 2033 2034 2035 2036 2037 2038
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2062
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2077 2078
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2079

2080
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2090
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2091 2092 2093 2094 2095
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2111
/*
I
Ingo Molnar 已提交
2112 2113
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2114
 */
I
Ingo Molnar 已提交
2115
static void update_cpu_load(struct rq *this_rq)
2116
{
2117
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2130 2131 2132 2133 2134 2135 2136
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2137 2138
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2139 2140
}

I
Ingo Molnar 已提交
2141 2142
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2143 2144 2145 2146 2147 2148
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2149
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2150 2151 2152
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2153
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2154 2155 2156 2157
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2158
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2159 2160 2161 2162 2163 2164 2165
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2166 2167
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2168 2169 2170 2171 2172 2173 2174 2175
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2176
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2190
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2191 2192 2193 2194
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2195 2196
	int ret = 0;

2197 2198 2199 2200 2201
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2202
	if (unlikely(!spin_trylock(&busiest->lock))) {
2203
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2204 2205 2206
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2207
			ret = 1;
L
Linus Torvalds 已提交
2208 2209 2210
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2211
	return ret;
L
Linus Torvalds 已提交
2212 2213 2214 2215 2216
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2217
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2218 2219
 * the cpu_allowed mask is restored.
 */
2220
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2221
{
2222
	struct migration_req req;
L
Linus Torvalds 已提交
2223
	unsigned long flags;
2224
	struct rq *rq;
L
Linus Torvalds 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2235

L
Linus Torvalds 已提交
2236 2237 2238 2239 2240
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2241

L
Linus Torvalds 已提交
2242 2243 2244 2245 2246 2247 2248
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2249 2250
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2251 2252 2253 2254
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2255
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2256
	put_cpu();
N
Nick Piggin 已提交
2257 2258
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2259 2260 2261 2262 2263 2264
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2265 2266
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2267
{
2268
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2269
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2270
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2271 2272 2273 2274
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2275
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2276 2277 2278 2279 2280
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2281
static
2282
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2283
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2284
		     int *all_pinned)
L
Linus Torvalds 已提交
2285 2286 2287 2288 2289 2290 2291
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2292 2293
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2294
		return 0;
2295
	}
2296 2297
	*all_pinned = 0;

2298 2299
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2300
		return 0;
2301
	}
L
Linus Torvalds 已提交
2302

2303 2304 2305 2306 2307 2308
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2309 2310
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2311
#ifdef CONFIG_SCHEDSTATS
2312
		if (task_hot(p, rq->clock, sd)) {
2313
			schedstat_inc(sd, lb_hot_gained[idle]);
2314 2315
			schedstat_inc(p, se.nr_forced_migrations);
		}
2316 2317 2318 2319
#endif
		return 1;
	}

2320 2321
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2322
		return 0;
2323
	}
L
Linus Torvalds 已提交
2324 2325 2326
	return 1;
}

2327 2328 2329 2330 2331
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2332
{
2333
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2334 2335
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2336

2337
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2338 2339
		goto out;

2340 2341
	pinned = 1;

L
Linus Torvalds 已提交
2342
	/*
I
Ingo Molnar 已提交
2343
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2344
	 */
I
Ingo Molnar 已提交
2345 2346
	p = iterator->start(iterator->arg);
next:
2347
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2348
		goto out;
2349
	/*
2350
	 * To help distribute high priority tasks across CPUs we don't
2351 2352 2353
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2354 2355
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2356
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2357 2358 2359
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2360 2361
	}

I
Ingo Molnar 已提交
2362
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2363
	pulled++;
I
Ingo Molnar 已提交
2364
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2365

2366
	/*
2367
	 * We only want to steal up to the prescribed amount of weighted load.
2368
	 */
2369
	if (rem_load_move > 0) {
2370 2371
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2372 2373
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2374 2375 2376
	}
out:
	/*
2377
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2378 2379 2380 2381
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2382 2383 2384

	if (all_pinned)
		*all_pinned = pinned;
2385 2386

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2387 2388
}

I
Ingo Molnar 已提交
2389
/*
P
Peter Williams 已提交
2390 2391 2392
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2393 2394 2395 2396
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2397
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2398 2399 2400
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2401
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2402
	unsigned long total_load_moved = 0;
2403
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2404 2405

	do {
P
Peter Williams 已提交
2406 2407
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2408
				max_load_move - total_load_moved,
2409
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2410
		class = class->next;
P
Peter Williams 已提交
2411
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2412

P
Peter Williams 已提交
2413 2414 2415
	return total_load_moved > 0;
}

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2452
	const struct sched_class *class;
P
Peter Williams 已提交
2453 2454

	for (class = sched_class_highest; class; class = class->next)
2455
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2456 2457 2458
			return 1;

	return 0;
I
Ingo Molnar 已提交
2459 2460
}

L
Linus Torvalds 已提交
2461 2462
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2463 2464
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2465 2466 2467
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2468 2469
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2470 2471 2472
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2473
	unsigned long max_pull;
2474 2475
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2476
	int load_idx, group_imb = 0;
2477 2478 2479 2480 2481 2482
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2483 2484

	max_load = this_load = total_load = total_pwr = 0;
2485 2486
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2487
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2488
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2489
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2490 2491 2492
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2493 2494

	do {
2495
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2496 2497
		int local_group;
		int i;
2498
		int __group_imb = 0;
2499
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2500
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2501 2502 2503

		local_group = cpu_isset(this_cpu, group->cpumask);

2504 2505 2506
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2507
		/* Tally up the load of all CPUs in the group */
2508
		sum_weighted_load = sum_nr_running = avg_load = 0;
2509 2510
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2511 2512

		for_each_cpu_mask(i, group->cpumask) {
2513 2514 2515 2516 2517 2518
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2519

2520
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2521 2522
				*sd_idle = 0;

L
Linus Torvalds 已提交
2523
			/* Bias balancing toward cpus of our domain */
2524 2525 2526 2527 2528 2529
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2530
				load = target_load(i, load_idx);
2531
			} else {
N
Nick Piggin 已提交
2532
				load = source_load(i, load_idx);
2533 2534 2535 2536 2537
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2538 2539

			avg_load += load;
2540
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2541
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2542 2543
		}

2544 2545 2546
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2547 2548
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2549
		 */
2550 2551
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2552 2553 2554 2555
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2556
		total_load += avg_load;
2557
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2558 2559

		/* Adjust by relative CPU power of the group */
2560 2561
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2562

2563 2564 2565
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2566
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2567

L
Linus Torvalds 已提交
2568 2569 2570
		if (local_group) {
			this_load = avg_load;
			this = group;
2571 2572 2573
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2574
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2575 2576
			max_load = avg_load;
			busiest = group;
2577 2578
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2579
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2580
		}
2581 2582 2583 2584 2585 2586

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2587 2588 2589
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2590 2591 2592 2593 2594 2595 2596 2597 2598

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2599
		/*
2600 2601
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2602 2603
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2604
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2605
			goto group_next;
2606

I
Ingo Molnar 已提交
2607
		/*
2608
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2609 2610 2611 2612 2613
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2614 2615
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2616 2617
			group_min = group;
			min_nr_running = sum_nr_running;
2618 2619
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2620
		}
2621

I
Ingo Molnar 已提交
2622
		/*
2623
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2635
		}
2636 2637
group_next:
#endif
L
Linus Torvalds 已提交
2638 2639 2640
		group = group->next;
	} while (group != sd->groups);

2641
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2642 2643 2644 2645 2646 2647 2648 2649
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2650
	busiest_load_per_task /= busiest_nr_running;
2651 2652 2653
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2654 2655 2656 2657 2658 2659 2660 2661
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2662
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2663 2664
	 * appear as very large values with unsigned longs.
	 */
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2677 2678

	/* Don't want to pull so many tasks that a group would go idle */
2679
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2680

L
Linus Torvalds 已提交
2681
	/* How much load to actually move to equalise the imbalance */
2682 2683
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2684 2685
			/ SCHED_LOAD_SCALE;

2686 2687 2688 2689 2690 2691
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2692
	if (*imbalance < busiest_load_per_task) {
2693
		unsigned long tmp, pwr_now, pwr_move;
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2705

I
Ingo Molnar 已提交
2706 2707
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2708
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2718 2719 2720 2721
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2722 2723 2724
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2725 2726
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2727
		if (max_load > tmp)
2728
			pwr_move += busiest->__cpu_power *
2729
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2730 2731

		/* Amount of load we'd add */
2732
		if (max_load * busiest->__cpu_power <
2733
				busiest_load_per_task * SCHED_LOAD_SCALE)
2734 2735
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2736
		else
2737 2738 2739 2740
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2741 2742 2743
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2744 2745
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2746 2747 2748 2749 2750
	}

	return busiest;

out_balanced:
2751
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2752
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2753
		goto ret;
L
Linus Torvalds 已提交
2754

2755 2756 2757 2758 2759
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2760
ret:
L
Linus Torvalds 已提交
2761 2762 2763 2764 2765 2766 2767
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2768
static struct rq *
I
Ingo Molnar 已提交
2769
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2770
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2771
{
2772
	struct rq *busiest = NULL, *rq;
2773
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2774 2775 2776
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2777
		unsigned long wl;
2778 2779 2780 2781

		if (!cpu_isset(i, *cpus))
			continue;

2782
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2783
		wl = weighted_cpuload(i);
2784

I
Ingo Molnar 已提交
2785
		if (rq->nr_running == 1 && wl > imbalance)
2786
			continue;
L
Linus Torvalds 已提交
2787

I
Ingo Molnar 已提交
2788 2789
		if (wl > max_load) {
			max_load = wl;
2790
			busiest = rq;
L
Linus Torvalds 已提交
2791 2792 2793 2794 2795 2796
		}
	}

	return busiest;
}

2797 2798 2799 2800 2801 2802
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2803 2804 2805 2806
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2807
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2808
			struct sched_domain *sd, enum cpu_idle_type idle,
2809
			int *balance)
L
Linus Torvalds 已提交
2810
{
P
Peter Williams 已提交
2811
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2812 2813
	struct sched_group *group;
	unsigned long imbalance;
2814
	struct rq *busiest;
2815
	cpumask_t cpus = CPU_MASK_ALL;
2816
	unsigned long flags;
N
Nick Piggin 已提交
2817

2818 2819 2820
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2821
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2822
	 * portraying it as CPU_NOT_IDLE.
2823
	 */
I
Ingo Molnar 已提交
2824
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2825
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2826
		sd_idle = 1;
L
Linus Torvalds 已提交
2827

2828
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2829

2830 2831
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2832 2833
				   &cpus, balance);

2834
	if (*balance == 0)
2835 2836
		goto out_balanced;

L
Linus Torvalds 已提交
2837 2838 2839 2840 2841
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2842
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2843 2844 2845 2846 2847
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2848
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2849 2850 2851

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2852
	ld_moved = 0;
L
Linus Torvalds 已提交
2853 2854 2855 2856
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2857
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2858 2859
		 * correctly treated as an imbalance.
		 */
2860
		local_irq_save(flags);
N
Nick Piggin 已提交
2861
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2862
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2863
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2864
		double_rq_unlock(this_rq, busiest);
2865
		local_irq_restore(flags);
2866

2867 2868 2869
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2870
		if (ld_moved && this_cpu != smp_processor_id())
2871 2872
			resched_cpu(this_cpu);

2873
		/* All tasks on this runqueue were pinned by CPU affinity */
2874 2875 2876 2877
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2878
			goto out_balanced;
2879
		}
L
Linus Torvalds 已提交
2880
	}
2881

P
Peter Williams 已提交
2882
	if (!ld_moved) {
L
Linus Torvalds 已提交
2883 2884 2885 2886 2887
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2888
			spin_lock_irqsave(&busiest->lock, flags);
2889 2890 2891 2892 2893

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2894
				spin_unlock_irqrestore(&busiest->lock, flags);
2895 2896 2897 2898
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2899 2900 2901
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2902
				active_balance = 1;
L
Linus Torvalds 已提交
2903
			}
2904
			spin_unlock_irqrestore(&busiest->lock, flags);
2905
			if (active_balance)
L
Linus Torvalds 已提交
2906 2907 2908 2909 2910 2911
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2912
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2913
		}
2914
	} else
L
Linus Torvalds 已提交
2915 2916
		sd->nr_balance_failed = 0;

2917
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2918 2919
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2920 2921 2922 2923 2924 2925 2926 2927 2928
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2929 2930
	}

P
Peter Williams 已提交
2931
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2932
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2933
		return -1;
P
Peter Williams 已提交
2934
	return ld_moved;
L
Linus Torvalds 已提交
2935 2936 2937 2938

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2939
	sd->nr_balance_failed = 0;
2940 2941

out_one_pinned:
L
Linus Torvalds 已提交
2942
	/* tune up the balancing interval */
2943 2944
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2945 2946
		sd->balance_interval *= 2;

2947
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2948
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2949
		return -1;
L
Linus Torvalds 已提交
2950 2951 2952 2953 2954 2955 2956
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2957
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2958 2959
 * this_rq is locked.
 */
2960
static int
2961
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2962 2963
{
	struct sched_group *group;
2964
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2965
	unsigned long imbalance;
P
Peter Williams 已提交
2966
	int ld_moved = 0;
N
Nick Piggin 已提交
2967
	int sd_idle = 0;
2968
	int all_pinned = 0;
2969
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2970

2971 2972 2973 2974
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2975
	 * portraying it as CPU_NOT_IDLE.
2976 2977 2978
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2979
		sd_idle = 1;
L
Linus Torvalds 已提交
2980

2981
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2982
redo:
I
Ingo Molnar 已提交
2983
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2984
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2985
	if (!group) {
I
Ingo Molnar 已提交
2986
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2987
		goto out_balanced;
L
Linus Torvalds 已提交
2988 2989
	}

I
Ingo Molnar 已提交
2990
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2991
				&cpus);
N
Nick Piggin 已提交
2992
	if (!busiest) {
I
Ingo Molnar 已提交
2993
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2994
		goto out_balanced;
L
Linus Torvalds 已提交
2995 2996
	}

N
Nick Piggin 已提交
2997 2998
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2999
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3000

P
Peter Williams 已提交
3001
	ld_moved = 0;
3002 3003 3004
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3005 3006
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3007
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3008 3009
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3010
		spin_unlock(&busiest->lock);
3011

3012
		if (unlikely(all_pinned)) {
3013 3014 3015 3016
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
3017 3018
	}

P
Peter Williams 已提交
3019
	if (!ld_moved) {
I
Ingo Molnar 已提交
3020
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3021 3022
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3023 3024
			return -1;
	} else
3025
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3026

P
Peter Williams 已提交
3027
	return ld_moved;
3028 3029

out_balanced:
I
Ingo Molnar 已提交
3030
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3031
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3032
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3033
		return -1;
3034
	sd->nr_balance_failed = 0;
3035

3036
	return 0;
L
Linus Torvalds 已提交
3037 3038 3039 3040 3041 3042
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3043
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3044 3045
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3046 3047
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
3048 3049

	for_each_domain(this_cpu, sd) {
3050 3051 3052 3053 3054 3055
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3056
			/* If we've pulled tasks over stop searching: */
3057
			pulled_task = load_balance_newidle(this_cpu,
3058 3059 3060 3061 3062 3063 3064
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3065
	}
I
Ingo Molnar 已提交
3066
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3067 3068 3069 3070 3071
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3072
	}
L
Linus Torvalds 已提交
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3083
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3084
{
3085
	int target_cpu = busiest_rq->push_cpu;
3086 3087
	struct sched_domain *sd;
	struct rq *target_rq;
3088

3089
	/* Is there any task to move? */
3090 3091 3092 3093
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3094 3095

	/*
3096
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3097
	 * we need to fix it. Originally reported by
3098
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3099
	 */
3100
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3101

3102 3103
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3104 3105
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3106 3107

	/* Search for an sd spanning us and the target CPU. */
3108
	for_each_domain(target_cpu, sd) {
3109
		if ((sd->flags & SD_LOAD_BALANCE) &&
3110
		    cpu_isset(busiest_cpu, sd->span))
3111
				break;
3112
	}
3113

3114
	if (likely(sd)) {
3115
		schedstat_inc(sd, alb_count);
3116

P
Peter Williams 已提交
3117 3118
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3119 3120 3121 3122
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3123
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3124 3125
}

3126 3127 3128
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3129
	cpumask_t cpu_mask;
3130 3131 3132 3133 3134
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3135
/*
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3146
 *
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3203 3204 3205 3206 3207
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3208
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3209
{
3210 3211
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3212 3213
	unsigned long interval;
	struct sched_domain *sd;
3214
	/* Earliest time when we have to do rebalance again */
3215
	unsigned long next_balance = jiffies + 60*HZ;
3216
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3217

3218
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3219 3220 3221 3222
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3223
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3224 3225 3226 3227 3228 3229
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3230 3231 3232
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3233

3234 3235 3236 3237 3238
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3239
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3240
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3241 3242
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3243 3244 3245
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3246
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3247
			}
3248
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3249
		}
3250 3251 3252
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3253
		if (time_after(next_balance, sd->last_balance + interval)) {
3254
			next_balance = sd->last_balance + interval;
3255 3256
			update_next_balance = 1;
		}
3257 3258 3259 3260 3261 3262 3263 3264

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3265
	}
3266 3267 3268 3269 3270 3271 3272 3273

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3274 3275 3276 3277 3278 3279 3280 3281 3282
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3283 3284 3285 3286
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3287

I
Ingo Molnar 已提交
3288
	rebalance_domains(this_cpu, idle);
3289 3290 3291 3292 3293 3294 3295

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3296 3297
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3298 3299 3300 3301
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3302
		cpu_clear(this_cpu, cpus);
3303 3304 3305 3306 3307 3308 3309 3310 3311
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3312
			rebalance_domains(balance_cpu, CPU_IDLE);
3313 3314

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3315 3316
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3329
static inline void trigger_load_balance(struct rq *rq, int cpu)
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3381
}
I
Ingo Molnar 已提交
3382 3383 3384

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3385 3386 3387
/*
 * on UP we do not need to balance between CPUs:
 */
3388
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3389 3390
{
}
I
Ingo Molnar 已提交
3391

L
Linus Torvalds 已提交
3392 3393 3394 3395 3396 3397 3398
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3399 3400
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3401
 */
3402
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3403 3404
{
	unsigned long flags;
3405 3406
	u64 ns, delta_exec;
	struct rq *rq;
3407

3408 3409
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3410
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3411 3412
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3413 3414 3415 3416
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3417

L
Linus Torvalds 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3441 3442 3443 3444 3445
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3446
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3480
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3481 3482
	cputime64_t tmp;

3483 3484
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3485

L
Linus Torvalds 已提交
3486 3487 3488 3489 3490 3491 3492 3493
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3494
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3495
		cpustat->system = cputime64_add(cpustat->system, tmp);
3496
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3497 3498 3499 3500 3501 3502 3503
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3515 3516 3517 3518 3519 3520 3521 3522 3523
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3524
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3525 3526 3527 3528 3529 3530 3531

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3532
	} else
L
Linus Torvalds 已提交
3533 3534 3535
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3547
	struct task_struct *curr = rq->curr;
3548
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3549 3550

	spin_lock(&rq->lock);
3551
	__update_rq_clock(rq);
3552 3553 3554 3555 3556 3557
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3558
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3559 3560 3561
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3562

3563
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3564 3565
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3566
#endif
L
Linus Torvalds 已提交
3567 3568 3569 3570 3571 3572 3573 3574 3575
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3576 3577
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3578 3579 3580 3581
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3582 3583
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3584 3585 3586 3587 3588 3589 3590 3591
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3592 3593
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3594 3595 3596
	/*
	 * Is the spinlock portion underflowing?
	 */
3597 3598 3599 3600
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3601 3602 3603 3604 3605 3606 3607
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3608
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3609
 */
I
Ingo Molnar 已提交
3610
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3611
{
3612 3613 3614 3615 3616
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3617 3618 3619
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3620 3621 3622 3623 3624

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3625
}
L
Linus Torvalds 已提交
3626

I
Ingo Molnar 已提交
3627 3628 3629 3630 3631
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3632
	/*
I
Ingo Molnar 已提交
3633
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3634 3635 3636
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3637 3638 3639
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3640 3641
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3642
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3643 3644
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3645 3646
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3647 3648
	}
#endif
I
Ingo Molnar 已提交
3649 3650 3651 3652 3653 3654
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3655
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3656
{
3657
	const struct sched_class *class;
I
Ingo Molnar 已提交
3658
	struct task_struct *p;
L
Linus Torvalds 已提交
3659 3660

	/*
I
Ingo Molnar 已提交
3661 3662
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3663
	 */
I
Ingo Molnar 已提交
3664
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3665
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3666 3667
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3668 3669
	}

I
Ingo Molnar 已提交
3670 3671
	class = sched_class_highest;
	for ( ; ; ) {
3672
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3673 3674 3675 3676 3677 3678 3679 3680 3681
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3682

I
Ingo Molnar 已提交
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3705

3706 3707 3708 3709
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3710
	__update_rq_clock(rq);
3711 3712
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3713 3714 3715

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3716
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3717
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3718
		} else {
3719
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3720
		}
I
Ingo Molnar 已提交
3721
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3722 3723
	}

I
Ingo Molnar 已提交
3724
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3725 3726
		idle_balance(cpu, rq);

3727
	prev->sched_class->put_prev_task(rq, prev);
3728
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3729 3730

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3731

L
Linus Torvalds 已提交
3732 3733 3734 3735 3736
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3737
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3738 3739 3740
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3741 3742 3743
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3744
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3745
	}
L
Linus Torvalds 已提交
3746 3747 3748 3749 3750 3751 3752 3753
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3754
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3755
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3767
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3768
	 */
N
Nick Piggin 已提交
3769
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3770 3771
		return;

3772 3773 3774 3775 3776 3777 3778 3779
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3780
#ifdef CONFIG_PREEMPT_BKL
3781 3782
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3783
#endif
3784
		schedule();
L
Linus Torvalds 已提交
3785
#ifdef CONFIG_PREEMPT_BKL
3786
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3787
#endif
3788
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3789

3790 3791 3792 3793 3794 3795
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3796 3797 3798 3799
}
EXPORT_SYMBOL(preempt_schedule);

/*
3800
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3812
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3813 3814
	BUG_ON(ti->preempt_count || !irqs_disabled());

3815 3816 3817 3818 3819 3820 3821 3822
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3823
#ifdef CONFIG_PREEMPT_BKL
3824 3825
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3826
#endif
3827 3828 3829
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3830
#ifdef CONFIG_PREEMPT_BKL
3831
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3832
#endif
3833
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3834

3835 3836 3837 3838 3839 3840
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3841 3842 3843 3844
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3845 3846
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3847
{
3848
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3849 3850 3851 3852
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3853 3854
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3855 3856 3857
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3858
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3859 3860 3861 3862 3863
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3864
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3865

3866
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3867 3868
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3869
		if (curr->func(curr, mode, sync, key) &&
3870
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3871 3872 3873 3874 3875 3876 3877 3878 3879
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3880
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3881 3882
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3883
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3902
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3914 3915
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3932
void complete(struct completion *x)
L
Linus Torvalds 已提交
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3944
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3956 3957
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3958 3959 3960 3961 3962 3963 3964
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3965 3966 3967 3968 3969 3970
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3971 3972 3973 3974 3975
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3976
				return timeout;
L
Linus Torvalds 已提交
3977 3978 3979 3980 3981 3982 3983 3984
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3985 3986
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3987 3988 3989 3990
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3991
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3992
	spin_unlock_irq(&x->wait.lock);
3993 3994
	return timeout;
}
L
Linus Torvalds 已提交
3995

3996
void __sched wait_for_completion(struct completion *x)
3997 3998
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3999
}
4000
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4001

4002
unsigned long __sched
4003
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4004
{
4005
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4006
}
4007
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4008

4009
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4010
{
4011 4012 4013 4014
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4015
}
4016
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4017

4018
unsigned long __sched
4019 4020
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4021
{
4022
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4023
}
4024
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4025

4026 4027
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4028
{
I
Ingo Molnar 已提交
4029 4030 4031 4032
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4033

4034
	__set_current_state(state);
L
Linus Torvalds 已提交
4035

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4050 4051 4052
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4053
long __sched
I
Ingo Molnar 已提交
4054
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4055
{
4056
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4057 4058 4059
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4060
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4061
{
4062
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4063 4064 4065
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4066
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4067
{
4068
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4069 4070 4071
}
EXPORT_SYMBOL(sleep_on_timeout);

4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4084
void rt_mutex_setprio(struct task_struct *p, int prio)
4085 4086
{
	unsigned long flags;
4087
	int oldprio, on_rq, running;
4088
	struct rq *rq;
4089 4090 4091 4092

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4093
	update_rq_clock(rq);
4094

4095
	oldprio = p->prio;
I
Ingo Molnar 已提交
4096
	on_rq = p->se.on_rq;
4097
	running = task_current(rq, p);
4098
	if (on_rq) {
4099
		dequeue_task(rq, p, 0);
4100 4101 4102
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4103 4104 4105 4106 4107 4108

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4109 4110
	p->prio = prio;

I
Ingo Molnar 已提交
4111
	if (on_rq) {
4112 4113
		if (running)
			p->sched_class->set_curr_task(rq);
4114
		enqueue_task(rq, p, 0);
4115 4116
		/*
		 * Reschedule if we are currently running on this runqueue and
4117 4118
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4119
		 */
4120
		if (running) {
4121 4122
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4123 4124 4125
		} else {
			check_preempt_curr(rq, p);
		}
4126 4127 4128 4129 4130 4131
	}
	task_rq_unlock(rq, &flags);
}

#endif

4132
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4133
{
I
Ingo Molnar 已提交
4134
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4135
	unsigned long flags;
4136
	struct rq *rq;
L
Linus Torvalds 已提交
4137 4138 4139 4140 4141 4142 4143 4144

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4145
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4146 4147 4148 4149
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4150
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4151
	 */
4152
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4153 4154 4155
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4156
	on_rq = p->se.on_rq;
4157
	if (on_rq)
4158
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4159 4160

	p->static_prio = NICE_TO_PRIO(nice);
4161
	set_load_weight(p);
4162 4163 4164
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4165

I
Ingo Molnar 已提交
4166
	if (on_rq) {
4167
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4168
		/*
4169 4170
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4171
		 */
4172
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4173 4174 4175 4176 4177 4178 4179
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4180 4181 4182 4183 4184
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4185
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4186
{
4187 4188
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4189

M
Matt Mackall 已提交
4190 4191 4192 4193
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4205
	long nice, retval;
L
Linus Torvalds 已提交
4206 4207 4208 4209 4210 4211

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4212 4213
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4214 4215 4216 4217 4218 4219 4220 4221 4222
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4223 4224 4225
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4244
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4245 4246 4247 4248 4249 4250 4251 4252
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4253
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4272
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4273 4274 4275 4276 4277 4278 4279 4280
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4281
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4282
{
4283
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4284 4285 4286
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4287 4288
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4289
{
I
Ingo Molnar 已提交
4290
	BUG_ON(p->se.on_rq);
4291

L
Linus Torvalds 已提交
4292
	p->policy = policy;
I
Ingo Molnar 已提交
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4305
	p->rt_priority = prio;
4306 4307 4308
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4309
	set_load_weight(p);
L
Linus Torvalds 已提交
4310 4311 4312
}

/**
4313
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4314 4315 4316
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4317
 *
4318
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4319
 */
I
Ingo Molnar 已提交
4320 4321
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4322
{
4323
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4324
	unsigned long flags;
4325
	struct rq *rq;
L
Linus Torvalds 已提交
4326

4327 4328
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4329 4330 4331 4332 4333
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4334 4335
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4336
		return -EINVAL;
L
Linus Torvalds 已提交
4337 4338
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4339 4340
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4341 4342
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4343
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4344
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4345
		return -EINVAL;
4346
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4347 4348
		return -EINVAL;

4349 4350 4351 4352
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4353
		if (rt_policy(policy)) {
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4370 4371 4372 4373 4374 4375
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4376

4377 4378 4379 4380 4381
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4382 4383 4384 4385

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4386 4387 4388 4389 4390
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4391 4392 4393 4394
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4395
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4396 4397 4398
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4399 4400
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4401 4402
		goto recheck;
	}
I
Ingo Molnar 已提交
4403
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4404
	on_rq = p->se.on_rq;
4405
	running = task_current(rq, p);
4406
	if (on_rq) {
4407
		deactivate_task(rq, p, 0);
4408 4409 4410
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4411

L
Linus Torvalds 已提交
4412
	oldprio = p->prio;
I
Ingo Molnar 已提交
4413
	__setscheduler(rq, p, policy, param->sched_priority);
4414

I
Ingo Molnar 已提交
4415
	if (on_rq) {
4416 4417
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4418
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4419 4420
		/*
		 * Reschedule if we are currently running on this runqueue and
4421 4422
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4423
		 */
4424
		if (running) {
4425 4426
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4427 4428 4429
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4430
	}
4431 4432 4433
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4434 4435
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4436 4437 4438 4439
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4440 4441
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4442 4443 4444
{
	struct sched_param lparam;
	struct task_struct *p;
4445
	int retval;
L
Linus Torvalds 已提交
4446 4447 4448 4449 4450

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4451 4452 4453

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4454
	p = find_process_by_pid(pid);
4455 4456 4457
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4458

L
Linus Torvalds 已提交
4459 4460 4461 4462 4463 4464 4465 4466 4467
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4468 4469
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4470
{
4471 4472 4473 4474
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4494
	struct task_struct *p;
4495
	int retval;
L
Linus Torvalds 已提交
4496 4497

	if (pid < 0)
4498
		return -EINVAL;
L
Linus Torvalds 已提交
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4520
	struct task_struct *p;
4521
	int retval;
L
Linus Torvalds 已提交
4522 4523

	if (!param || pid < 0)
4524
		return -EINVAL;
L
Linus Torvalds 已提交
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4554 4555
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4556

4557
	get_online_cpus();
L
Linus Torvalds 已提交
4558 4559 4560 4561 4562
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4563
		put_online_cpus();
L
Linus Torvalds 已提交
4564 4565 4566 4567 4568
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4569
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4580 4581 4582 4583
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4584 4585
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4586
 again:
L
Linus Torvalds 已提交
4587 4588
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4601 4602
out_unlock:
	put_task_struct(p);
4603
	put_online_cpus();
L
Linus Torvalds 已提交
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4644
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4645 4646 4647
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4648
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4649 4650
EXPORT_SYMBOL(cpu_online_map);

4651
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4652
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4653 4654 4655 4656
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4657
	struct task_struct *p;
L
Linus Torvalds 已提交
4658 4659
	int retval;

4660
	get_online_cpus();
L
Linus Torvalds 已提交
4661 4662 4663 4664 4665 4666 4667
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4668 4669 4670 4671
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4672
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4673 4674 4675

out_unlock:
	read_unlock(&tasklist_lock);
4676
	put_online_cpus();
L
Linus Torvalds 已提交
4677

4678
	return retval;
L
Linus Torvalds 已提交
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4709 4710
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4711 4712 4713
 */
asmlinkage long sys_sched_yield(void)
{
4714
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4715

4716
	schedstat_inc(rq, yld_count);
4717
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4718 4719 4720 4721 4722 4723

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4724
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4725 4726 4727 4728 4729 4730 4731 4732
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4733
static void __cond_resched(void)
L
Linus Torvalds 已提交
4734
{
4735 4736 4737
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4738 4739 4740 4741 4742
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4752 4753
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4765
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4766 4767 4768
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4769
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4770
{
J
Jan Kara 已提交
4771 4772
	int ret = 0;

L
Linus Torvalds 已提交
4773 4774 4775
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4776
		ret = 1;
L
Linus Torvalds 已提交
4777 4778
		spin_lock(lock);
	}
4779
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4780
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4781 4782 4783
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4784
		ret = 1;
L
Linus Torvalds 已提交
4785 4786
		spin_lock(lock);
	}
J
Jan Kara 已提交
4787
	return ret;
L
Linus Torvalds 已提交
4788 4789 4790 4791 4792 4793 4794
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4795
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4796
		local_bh_enable();
L
Linus Torvalds 已提交
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4808
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4819
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4820 4821 4822 4823 4824 4825 4826
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4827
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4828

4829
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4830 4831 4832
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4833
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4834 4835 4836 4837 4838
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4839
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4840 4841
	long ret;

4842
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4843 4844 4845
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4846
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4867
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4868
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4892
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4893
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4910
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4911
	unsigned int time_slice;
4912
	int retval;
L
Linus Torvalds 已提交
4913 4914 4915
	struct timespec t;

	if (pid < 0)
4916
		return -EINVAL;
L
Linus Torvalds 已提交
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4928 4929 4930 4931 4932 4933
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
4934
		time_slice = DEF_TIMESLICE;
4935
	} else {
D
Dmitry Adamushko 已提交
4936 4937 4938 4939 4940
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
4941 4942
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
4943 4944
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4945
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4946
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4947 4948
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4949

L
Linus Torvalds 已提交
4950 4951 4952 4953 4954
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4955
static const char stat_nam[] = "RSDTtZX";
4956

4957
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4958 4959
{
	unsigned long free = 0;
4960
	unsigned state;
L
Linus Torvalds 已提交
4961 4962

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
4963
	printk(KERN_INFO "%-13.13s %c", p->comm,
4964
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4965
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4966
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4967
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4968
	else
I
Ingo Molnar 已提交
4969
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4970 4971
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4972
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4973
	else
I
Ingo Molnar 已提交
4974
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4975 4976 4977
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4978
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4979 4980
		while (!*n)
			n++;
4981
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4982 4983
	}
#endif
4984
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
4985
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
4986 4987 4988 4989 4990

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4991
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4992
{
4993
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4994

4995 4996 4997
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4998
#else
4999 5000
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5001 5002 5003 5004 5005 5006 5007 5008
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5009
		if (!state_filter || (p->state & state_filter))
5010
			sched_show_task(p);
L
Linus Torvalds 已提交
5011 5012
	} while_each_thread(g, p);

5013 5014
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5015 5016 5017
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5018
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5019 5020 5021 5022 5023
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5024 5025
}

I
Ingo Molnar 已提交
5026 5027
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5028
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5029 5030
}

5031 5032 5033 5034 5035 5036 5037 5038
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5039
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5040
{
5041
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5042 5043
	unsigned long flags;

I
Ingo Molnar 已提交
5044 5045 5046
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5047
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5048
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5049
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5050 5051 5052

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5053 5054 5055
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5056 5057 5058 5059
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
5060
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
5061
#else
A
Al Viro 已提交
5062
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
5063
#endif
I
Ingo Molnar 已提交
5064 5065 5066 5067
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5105 5106 5107 5108
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5109
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5128
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5129 5130
 * call is not atomic; no spinlocks may be held.
 */
5131
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5132
{
5133
	struct migration_req req;
L
Linus Torvalds 已提交
5134
	unsigned long flags;
5135
	struct rq *rq;
5136
	int ret = 0;
L
Linus Torvalds 已提交
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5159

L
Linus Torvalds 已提交
5160 5161 5162 5163 5164
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5165
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5166 5167 5168 5169 5170 5171
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5172 5173
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5174
 */
5175
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5176
{
5177
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5178
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5179 5180

	if (unlikely(cpu_is_offline(dest_cpu)))
5181
		return ret;
L
Linus Torvalds 已提交
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5194
	on_rq = p->se.on_rq;
5195
	if (on_rq)
5196
		deactivate_task(rq_src, p, 0);
5197

L
Linus Torvalds 已提交
5198
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5199 5200 5201
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5202
	}
5203
	ret = 1;
L
Linus Torvalds 已提交
5204 5205
out:
	double_rq_unlock(rq_src, rq_dest);
5206
	return ret;
L
Linus Torvalds 已提交
5207 5208 5209 5210 5211 5212 5213
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5214
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5215 5216
{
	int cpu = (long)data;
5217
	struct rq *rq;
L
Linus Torvalds 已提交
5218 5219 5220 5221 5222 5223

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5224
		struct migration_req *req;
L
Linus Torvalds 已提交
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5247
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5248 5249
		list_del_init(head->next);

N
Nick Piggin 已提交
5250 5251 5252
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5282
/*
5283
 * Figure out where task on dead CPU should go, use force if necessary.
5284 5285
 * NOTE: interrupts should be disabled by the caller
 */
5286
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5287
{
5288
	unsigned long flags;
L
Linus Torvalds 已提交
5289
	cpumask_t mask;
5290 5291
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5292

5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5305 5306 5307 5308 5309
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5310
			 * cpuset_cpus_allowed() will not block. It must be
5311 5312
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5313
			rq = task_rq_lock(p, &flags);
5314
			p->cpus_allowed = cpus_allowed;
5315 5316
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5317

5318 5319 5320 5321 5322
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5323
			if (p->mm && printk_ratelimit()) {
5324 5325
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5326 5327
					task_pid_nr(p), p->comm, dead_cpu);
			}
5328
		}
5329
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5330 5331 5332 5333 5334 5335 5336 5337 5338
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5339
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5340
{
5341
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5355
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5356

5357
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5358

5359 5360
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5361 5362
			continue;

5363 5364 5365
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5366

5367
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5368 5369
}

I
Ingo Molnar 已提交
5370 5371
/*
 * Schedules idle task to be the next runnable task on current CPU.
5372 5373
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5374 5375 5376
 */
void sched_idle_next(void)
{
5377
	int this_cpu = smp_processor_id();
5378
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5379 5380 5381 5382
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5383
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5384

5385 5386 5387
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5388 5389 5390
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5391
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5392

5393 5394
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5395 5396 5397 5398

	spin_unlock_irqrestore(&rq->lock, flags);
}

5399 5400
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5414
/* called under rq->lock with disabled interrupts */
5415
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5416
{
5417
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5418 5419

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5420
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5421 5422

	/* Cannot have done final schedule yet: would have vanished. */
5423
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5424

5425
	get_task_struct(p);
L
Linus Torvalds 已提交
5426 5427 5428

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5429
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5430 5431
	 * fine.
	 */
5432
	spin_unlock_irq(&rq->lock);
5433
	move_task_off_dead_cpu(dead_cpu, p);
5434
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5435

5436
	put_task_struct(p);
L
Linus Torvalds 已提交
5437 5438 5439 5440 5441
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5442
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5443
	struct task_struct *next;
5444

I
Ingo Molnar 已提交
5445 5446 5447
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5448
		update_rq_clock(rq);
5449
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5450 5451 5452
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5453

L
Linus Torvalds 已提交
5454 5455 5456 5457
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5458 5459 5460
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5461 5462
	{
		.procname	= "sched_domain",
5463
		.mode		= 0555,
5464
	},
I
Ingo Molnar 已提交
5465
	{0, },
5466 5467 5468
};

static struct ctl_table sd_ctl_root[] = {
5469
	{
5470
		.ctl_name	= CTL_KERN,
5471
		.procname	= "kernel",
5472
		.mode		= 0555,
5473 5474
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5475
	{0, },
5476 5477 5478 5479 5480
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5481
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5482 5483 5484 5485

	return entry;
}

5486 5487
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5488
	struct ctl_table *entry;
5489

5490 5491 5492
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5493
	 * will always be set. In the lowest directory the names are
5494 5495 5496
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5497 5498
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5499 5500 5501
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5502 5503 5504 5505 5506

	kfree(*tablep);
	*tablep = NULL;
}

5507
static void
5508
set_table_entry(struct ctl_table *entry,
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5522
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5523

5524 5525 5526
	if (table == NULL)
		return NULL;

5527
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5528
		sizeof(long), 0644, proc_doulongvec_minmax);
5529
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5530
		sizeof(long), 0644, proc_doulongvec_minmax);
5531
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5532
		sizeof(int), 0644, proc_dointvec_minmax);
5533
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5534
		sizeof(int), 0644, proc_dointvec_minmax);
5535
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5536
		sizeof(int), 0644, proc_dointvec_minmax);
5537
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5538
		sizeof(int), 0644, proc_dointvec_minmax);
5539
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5540
		sizeof(int), 0644, proc_dointvec_minmax);
5541
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5542
		sizeof(int), 0644, proc_dointvec_minmax);
5543
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5544
		sizeof(int), 0644, proc_dointvec_minmax);
5545
	set_table_entry(&table[9], "cache_nice_tries",
5546 5547
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5548
	set_table_entry(&table[10], "flags", &sd->flags,
5549
		sizeof(int), 0644, proc_dointvec_minmax);
5550
	/* &table[11] is terminator */
5551 5552 5553 5554

	return table;
}

5555
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5556 5557 5558 5559 5560 5561 5562 5563 5564
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5565 5566
	if (table == NULL)
		return NULL;
5567 5568 5569 5570 5571

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5572
		entry->mode = 0555;
5573 5574 5575 5576 5577 5578 5579 5580
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5581
static void register_sched_domain_sysctl(void)
5582 5583 5584 5585 5586
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5587 5588 5589
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5590 5591 5592
	if (entry == NULL)
		return;

5593
	for_each_online_cpu(i) {
5594 5595
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5596
		entry->mode = 0555;
5597
		entry->child = sd_alloc_ctl_cpu_table(i);
5598
		entry++;
5599
	}
5600 5601

	WARN_ON(sd_sysctl_header);
5602 5603
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5604

5605
/* may be called multiple times per register */
5606 5607
static void unregister_sched_domain_sysctl(void)
{
5608 5609
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5610
	sd_sysctl_header = NULL;
5611 5612
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5613
}
5614
#else
5615 5616 5617 5618
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5619 5620 5621 5622
{
}
#endif

L
Linus Torvalds 已提交
5623 5624 5625 5626
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5627 5628
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5629 5630
{
	struct task_struct *p;
5631
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5632
	unsigned long flags;
5633
	struct rq *rq;
L
Linus Torvalds 已提交
5634 5635

	switch (action) {
5636

L
Linus Torvalds 已提交
5637
	case CPU_UP_PREPARE:
5638
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5639
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5640 5641 5642 5643 5644
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5645
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5646 5647 5648
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5649

L
Linus Torvalds 已提交
5650
	case CPU_ONLINE:
5651
	case CPU_ONLINE_FROZEN:
5652
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5653 5654
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5655

L
Linus Torvalds 已提交
5656 5657
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5658
	case CPU_UP_CANCELED_FROZEN:
5659 5660
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5661
		/* Unbind it from offline cpu so it can run. Fall thru. */
5662 5663
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5664 5665 5666
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5667

L
Linus Torvalds 已提交
5668
	case CPU_DEAD:
5669
	case CPU_DEAD_FROZEN:
5670
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5671 5672 5673 5674 5675
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5676
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5677
		update_rq_clock(rq);
5678
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5679
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5680 5681
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5682
		migrate_dead_tasks(cpu);
5683
		spin_unlock_irq(&rq->lock);
5684
		cpuset_unlock();
L
Linus Torvalds 已提交
5685 5686 5687
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5688 5689 5690 5691 5692
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5693 5694
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5695 5696
			struct migration_req *req;

L
Linus Torvalds 已提交
5697
			req = list_entry(rq->migration_queue.next,
5698
					 struct migration_req, list);
L
Linus Torvalds 已提交
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5712
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5713 5714 5715 5716
	.notifier_call = migration_call,
	.priority = 10
};

5717
void __init migration_init(void)
L
Linus Torvalds 已提交
5718 5719
{
	void *cpu = (void *)(long)smp_processor_id();
5720
	int err;
5721 5722

	/* Start one for the boot CPU: */
5723 5724
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5725 5726 5727 5728 5729 5730
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5731 5732 5733 5734 5735

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5736
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5737 5738

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5739
{
I
Ingo Molnar 已提交
5740 5741 5742
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5743

I
Ingo Molnar 已提交
5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5755 5756
	}

I
Ingo Molnar 已提交
5757 5758 5759 5760 5761 5762 5763 5764 5765 5766
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5767

I
Ingo Molnar 已提交
5768
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5769
	do {
I
Ingo Molnar 已提交
5770 5771 5772
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5773 5774 5775
			break;
		}

I
Ingo Molnar 已提交
5776 5777 5778 5779 5780 5781
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5782

I
Ingo Molnar 已提交
5783 5784 5785 5786 5787
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5788

I
Ingo Molnar 已提交
5789 5790 5791 5792 5793
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5794

I
Ingo Molnar 已提交
5795
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5796

I
Ingo Molnar 已提交
5797 5798
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5799

I
Ingo Molnar 已提交
5800 5801 5802
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5803

I
Ingo Molnar 已提交
5804 5805
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5806

I
Ingo Molnar 已提交
5807 5808 5809 5810 5811
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
5812

I
Ingo Molnar 已提交
5813 5814 5815
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5816

I
Ingo Molnar 已提交
5817 5818 5819 5820
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5821

I
Ingo Molnar 已提交
5822 5823 5824 5825 5826
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
5827 5828
		level++;
		sd = sd->parent;
5829
		if (!sd)
I
Ingo Molnar 已提交
5830 5831
			break;
	}
L
Linus Torvalds 已提交
5832 5833
}
#else
5834
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5835 5836
#endif

5837
static int sd_degenerate(struct sched_domain *sd)
5838 5839 5840 5841 5842 5843 5844 5845
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5846 5847 5848
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5862 5863
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5882 5883 5884
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5885 5886 5887 5888 5889 5890 5891
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5892 5893 5894 5895
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5896
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5897
{
5898
	struct rq *rq = cpu_rq(cpu);
5899 5900 5901 5902 5903 5904 5905
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5906
		if (sd_parent_degenerate(tmp, parent)) {
5907
			tmp->parent = parent->parent;
5908 5909 5910
			if (parent->parent)
				parent->parent->child = tmp;
		}
5911 5912
	}

5913
	if (sd && sd_degenerate(sd)) {
5914
		sd = sd->parent;
5915 5916 5917
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5918 5919 5920

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5921
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5922 5923 5924
}

/* cpus with isolated domains */
5925
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5940
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5941 5942

/*
5943 5944 5945 5946
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5947 5948 5949 5950 5951
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5952
static void
5953 5954 5955
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5956 5957 5958 5959 5960 5961
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5962 5963
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5964 5965 5966 5967 5968 5969
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5970
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5971 5972

		for_each_cpu_mask(j, span) {
5973
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5988
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5989

5990
#ifdef CONFIG_NUMA
5991

5992 5993 5994 5995 5996
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
5997
 * Find the next node to include in a given scheduling domain. Simply
5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
6037
 * Given a node, construct a good cpumask for its sched_domain to span. It
6038 6039 6040 6041 6042 6043
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6044 6045
	cpumask_t span, nodemask;
	int i;
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6056

6057 6058 6059 6060 6061 6062 6063 6064
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6065
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6066

6067
/*
6068
 * SMT sched-domains:
6069
 */
L
Linus Torvalds 已提交
6070 6071
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6072
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6073

I
Ingo Molnar 已提交
6074 6075
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6076
{
6077 6078
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6079 6080 6081 6082
	return cpu;
}
#endif

6083 6084 6085
/*
 * multi-core sched-domains:
 */
6086 6087
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6088
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6089 6090 6091
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6092 6093
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6094
{
6095
	int group;
6096
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6097
	cpus_and(mask, mask, *cpu_map);
6098 6099 6100 6101
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6102 6103
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6104 6105
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6106
{
6107 6108
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6109 6110 6111 6112
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6113
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6114
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6115

I
Ingo Molnar 已提交
6116 6117
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6118
{
6119
	int group;
6120
#ifdef CONFIG_SCHED_MC
6121
	cpumask_t mask = cpu_coregroup_map(cpu);
6122
	cpus_and(mask, mask, *cpu_map);
6123
	group = first_cpu(mask);
6124
#elif defined(CONFIG_SCHED_SMT)
6125
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6126
	cpus_and(mask, mask, *cpu_map);
6127
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6128
#else
6129
	group = cpu;
L
Linus Torvalds 已提交
6130
#endif
6131 6132 6133
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6134 6135 6136 6137
}

#ifdef CONFIG_NUMA
/*
6138 6139 6140
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6141
 */
6142
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6143
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6144

6145
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6146
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6147

6148 6149
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6150
{
6151 6152 6153 6154 6155 6156 6157 6158 6159
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6160
}
6161

6162 6163 6164 6165 6166 6167 6168
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6169 6170 6171
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6172

6173 6174 6175 6176 6177 6178 6179 6180
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6181

6182 6183 6184 6185
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6186
}
L
Linus Torvalds 已提交
6187 6188
#endif

6189
#ifdef CONFIG_NUMA
6190 6191 6192
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6193
	int cpu, i;
6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6224 6225 6226 6227 6228
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6229

6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6256 6257
	sd->groups->__cpu_power = 0;

6258 6259 6260 6261 6262 6263 6264 6265 6266 6267
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6268
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6269 6270 6271 6272 6273 6274 6275 6276
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6277
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6278 6279 6280 6281
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6282
/*
6283 6284
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6285
 */
6286
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6287 6288
{
	int i;
6289 6290
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6291
	int sd_allnodes = 0;
6292 6293 6294 6295

	/*
	 * Allocate the per-node list of sched groups
	 */
6296
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6297
				    GFP_KERNEL);
6298 6299
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6300
		return -ENOMEM;
6301 6302 6303
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6304 6305

	/*
6306
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6307
	 */
6308
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6309 6310 6311
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6312
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6313 6314

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6315 6316
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6317 6318 6319
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6320
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6321
			p = sd;
6322
			sd_allnodes = 1;
6323 6324 6325
		} else
			p = NULL;

L
Linus Torvalds 已提交
6326 6327
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6328 6329
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6330 6331
		if (p)
			p->child = sd;
6332
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6333 6334 6335 6336 6337 6338 6339
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6340 6341
		if (p)
			p->child = sd;
6342
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6343

6344 6345 6346 6347 6348 6349 6350
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6351
		p->child = sd;
6352
		cpu_to_core_group(i, cpu_map, &sd->groups);
6353 6354
#endif

L
Linus Torvalds 已提交
6355 6356 6357 6358
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6359
		sd->span = per_cpu(cpu_sibling_map, i);
6360
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6361
		sd->parent = p;
6362
		p->child = sd;
6363
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6364 6365 6366 6367 6368
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6369
	for_each_cpu_mask(i, *cpu_map) {
6370
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6371
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6372 6373 6374
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6375 6376
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6377 6378 6379
	}
#endif

6380 6381 6382 6383 6384 6385 6386
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6387 6388
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6389 6390 6391
	}
#endif

L
Linus Torvalds 已提交
6392 6393 6394 6395
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6396
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6397 6398 6399
		if (cpus_empty(nodemask))
			continue;

6400
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6401 6402 6403 6404
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6405
	if (sd_allnodes)
I
Ingo Molnar 已提交
6406 6407
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6418 6419
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6420
			continue;
6421
		}
6422 6423 6424 6425

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6426
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6427 6428 6429 6430 6431
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6432 6433 6434
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6435

6436 6437 6438
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6439
		sg->__cpu_power = 0;
6440
		sg->cpumask = nodemask;
6441
		sg->next = sg;
6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6460 6461
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6462 6463 6464
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6465
				goto error;
6466
			}
6467
			sg->__cpu_power = 0;
6468
			sg->cpumask = tmp;
6469
			sg->next = prev->next;
6470 6471 6472 6473 6474
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6475 6476 6477
#endif

	/* Calculate CPU power for physical packages and nodes */
6478
#ifdef CONFIG_SCHED_SMT
6479
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6480 6481
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6482
		init_sched_groups_power(i, sd);
6483
	}
L
Linus Torvalds 已提交
6484
#endif
6485
#ifdef CONFIG_SCHED_MC
6486
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6487 6488
		struct sched_domain *sd = &per_cpu(core_domains, i);

6489
		init_sched_groups_power(i, sd);
6490 6491
	}
#endif
6492

6493
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6494 6495
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6496
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6497 6498
	}

6499
#ifdef CONFIG_NUMA
6500 6501
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6502

6503 6504
	if (sd_allnodes) {
		struct sched_group *sg;
6505

6506
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6507 6508
		init_numa_sched_groups_power(sg);
	}
6509 6510
#endif

L
Linus Torvalds 已提交
6511
	/* Attach the domains */
6512
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6513 6514 6515
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6516 6517
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6518 6519 6520 6521 6522
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6523 6524 6525

	return 0;

6526
#ifdef CONFIG_NUMA
6527 6528 6529
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6530
#endif
L
Linus Torvalds 已提交
6531
}
P
Paul Jackson 已提交
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6543
/*
I
Ingo Molnar 已提交
6544
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6545 6546
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6547
 */
6548
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6549
{
6550 6551
	int err;

P
Paul Jackson 已提交
6552 6553 6554 6555 6556
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6557
	err = build_sched_domains(doms_cur);
6558
	register_sched_domain_sysctl();
6559 6560

	return err;
6561 6562 6563
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6564
{
6565
	free_sched_groups(cpu_map);
6566
}
L
Linus Torvalds 已提交
6567

6568 6569 6570 6571
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6572
static void detach_destroy_domains(const cpumask_t *cpu_map)
6573 6574 6575
{
	int i;

6576 6577
	unregister_sched_domain_sysctl();

6578 6579 6580 6581 6582 6583
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6584 6585
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6586
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6587 6588 6589 6590
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6591 6592 6593
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6594 6595 6596
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6597 6598
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6609 6610
	lock_doms_cur();

6611 6612 6613
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6649 6650

	register_sched_domain_sysctl();
6651 6652

	unlock_doms_cur();
P
Paul Jackson 已提交
6653 6654
}

6655
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6656
static int arch_reinit_sched_domains(void)
6657 6658 6659
{
	int err;

6660
	get_online_cpus();
6661 6662
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6663
	put_online_cpus();
6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6690 6691
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6692 6693 6694
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6695 6696
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6697 6698 6699 6700 6701 6702 6703
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6704 6705
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6706 6707 6708
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6729 6730
#endif

L
Linus Torvalds 已提交
6731
/*
I
Ingo Molnar 已提交
6732
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
6733
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6734
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6735 6736 6737 6738 6739 6740 6741
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6742
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6743
	case CPU_DOWN_PREPARE:
6744
	case CPU_DOWN_PREPARE_FROZEN:
6745
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6746 6747 6748
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6749
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6750
	case CPU_DOWN_FAILED:
6751
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6752
	case CPU_ONLINE:
6753
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6754
	case CPU_DEAD:
6755
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6756 6757 6758 6759 6760 6761 6762 6763 6764
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6765
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6766 6767 6768 6769 6770 6771

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6772 6773
	cpumask_t non_isolated_cpus;

6774
	get_online_cpus();
6775
	arch_init_sched_domains(&cpu_online_map);
6776
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6777 6778
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6779
	put_online_cpus();
L
Linus Torvalds 已提交
6780 6781
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6782 6783 6784 6785

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6786
	sched_init_granularity();
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801

#ifdef CONFIG_FAIR_GROUP_SCHED
	if (nr_cpu_ids == 1)
		return;

	lb_monitor_task = kthread_create(load_balance_monitor, NULL,
					 "group_balance");
	if (!IS_ERR(lb_monitor_task)) {
		lb_monitor_task->flags |= PF_NOFREEZE;
		wake_up_process(lb_monitor_task);
	} else {
		printk(KERN_ERR "Could not create load balance monitor thread"
			"(error = %ld) \n", PTR_ERR(lb_monitor_task));
	}
#endif
L
Linus Torvalds 已提交
6802 6803 6804 6805
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6806
	sched_init_granularity();
L
Linus Torvalds 已提交
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6817
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6818 6819 6820 6821 6822
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6823
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6824 6825
}

L
Linus Torvalds 已提交
6826 6827
void __init sched_init(void)
{
6828
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6829 6830
	int i, j;

6831
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6832
		struct rt_prio_array *array;
6833
		struct rq *rq;
L
Linus Torvalds 已提交
6834 6835 6836

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6837
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6838
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6839 6840 6841 6842
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6843 6844 6845 6846 6847 6848 6849
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6850
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6851
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6852 6853
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6854 6855 6856
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6857
			se->load.weight = init_task_group_load;
6858
			se->load.inv_weight =
6859
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6860 6861
			se->parent = NULL;
		}
6862
		init_task_group.shares = init_task_group_load;
I
Ingo Molnar 已提交
6863
#endif
L
Linus Torvalds 已提交
6864

I
Ingo Molnar 已提交
6865 6866
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6867
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6868
		rq->sd = NULL;
L
Linus Torvalds 已提交
6869
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6870
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6871
		rq->push_cpu = 0;
6872
		rq->cpu = i;
L
Linus Torvalds 已提交
6873 6874
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
6875
		rq->rt.highest_prio = MAX_RT_PRIO;
L
Linus Torvalds 已提交
6876 6877 6878
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6879 6880 6881 6882
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6883
		}
6884
		highest_cpu = i;
I
Ingo Molnar 已提交
6885 6886
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6887 6888
	}

6889
	set_load_weight(&init_task);
6890

6891 6892 6893 6894
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6895
#ifdef CONFIG_SMP
6896
	nr_cpu_ids = highest_cpu + 1;
6897 6898 6899
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6900 6901 6902 6903
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6917 6918 6919 6920
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6921 6922 6923 6924 6925
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6926
#ifdef in_atomic
L
Linus Torvalds 已提交
6927 6928 6929 6930 6931 6932 6933
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6934
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6935 6936 6937
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6938
		debug_show_held_locks(current);
6939 6940
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6941 6942 6943 6944 6945 6946 6947 6948
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6963 6964
void normalize_rt_tasks(void)
{
6965
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6966
	unsigned long flags;
6967
	struct rq *rq;
L
Linus Torvalds 已提交
6968 6969

	read_lock_irq(&tasklist_lock);
6970
	do_each_thread(g, p) {
6971 6972 6973 6974 6975 6976
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6977 6978
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6979 6980 6981
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6982
#endif
I
Ingo Molnar 已提交
6983 6984 6985 6986 6987 6988 6989 6990 6991
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6992
			continue;
I
Ingo Molnar 已提交
6993
		}
L
Linus Torvalds 已提交
6994

6995 6996
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6997

6998
		normalize_task(rq, p);
6999

7000 7001
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
7002 7003
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
7004 7005 7006 7007
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7026
struct task_struct *curr_task(int cpu)
7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7037 7038
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7039 7040 7041 7042 7043 7044 7045
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7046
void set_curr_task(int cpu, struct task_struct *p)
7047 7048 7049 7050 7051
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7052 7053 7054

#ifdef CONFIG_FAIR_GROUP_SCHED

7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157
#ifdef CONFIG_SMP
/*
 * distribute shares of all task groups among their schedulable entities,
 * to reflect load distrbution across cpus.
 */
static int rebalance_shares(struct sched_domain *sd, int this_cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(this_cpu);
	cpumask_t sdspan = sd->span;
	int balanced = 1;

	/* Walk thr' all the task groups that we have */
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		int i;
		unsigned long total_load = 0, total_shares;
		struct task_group *tg = cfs_rq->tg;

		/* Gather total task load of this group across cpus */
		for_each_cpu_mask(i, sdspan)
			total_load += tg->cfs_rq[i]->load.weight;

		/* Nothing to do if this group has no load  */
		if (!total_load)
			continue;

		/*
		 * tg->shares represents the number of cpu shares the task group
		 * is eligible to hold on a single cpu. On N cpus, it is
		 * eligible to hold (N * tg->shares) number of cpu shares.
		 */
		total_shares = tg->shares * cpus_weight(sdspan);

		/*
		 * redistribute total_shares across cpus as per the task load
		 * distribution.
		 */
		for_each_cpu_mask(i, sdspan) {
			unsigned long local_load, local_shares;

			local_load = tg->cfs_rq[i]->load.weight;
			local_shares = (local_load * total_shares) / total_load;
			if (!local_shares)
				local_shares = MIN_GROUP_SHARES;
			if (local_shares == tg->se[i]->load.weight)
				continue;

			spin_lock_irq(&cpu_rq(i)->lock);
			set_se_shares(tg->se[i], local_shares);
			spin_unlock_irq(&cpu_rq(i)->lock);
			balanced = 0;
		}
	}

	return balanced;
}

/*
 * How frequently should we rebalance_shares() across cpus?
 *
 * The more frequently we rebalance shares, the more accurate is the fairness
 * of cpu bandwidth distribution between task groups. However higher frequency
 * also implies increased scheduling overhead.
 *
 * sysctl_sched_min_bal_int_shares represents the minimum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
 * sysctl_sched_max_bal_int_shares represents the maximum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
 * These settings allows for the appropriate tradeoff between accuracy of
 * fairness and the associated overhead.
 *
 */

/* default: 8ms, units: milliseconds */
const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;

/* default: 128ms, units: milliseconds */
const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;

/* kernel thread that runs rebalance_shares() periodically */
static int load_balance_monitor(void *unused)
{
	unsigned int timeout = sysctl_sched_min_bal_int_shares;
	struct sched_param schedparm;
	int ret;

	/*
	 * We don't want this thread's execution to be limited by the shares
	 * assigned to default group (init_task_group). Hence make it run
	 * as a SCHED_RR RT task at the lowest priority.
	 */
	schedparm.sched_priority = 1;
	ret = sched_setscheduler(current, SCHED_RR, &schedparm);
	if (ret)
		printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
				" monitor thread (error = %d) \n", ret);

	while (!kthread_should_stop()) {
		int i, cpu, balanced = 1;

		/* Prevent cpus going down or coming up */
7158
		get_online_cpus();
7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191
		/* lockout changes to doms_cur[] array */
		lock_doms_cur();
		/*
		 * Enter a rcu read-side critical section to safely walk rq->sd
		 * chain on various cpus and to walk task group list
		 * (rq->leaf_cfs_rq_list) in rebalance_shares().
		 */
		rcu_read_lock();

		for (i = 0; i < ndoms_cur; i++) {
			cpumask_t cpumap = doms_cur[i];
			struct sched_domain *sd = NULL, *sd_prev = NULL;

			cpu = first_cpu(cpumap);

			/* Find the highest domain at which to balance shares */
			for_each_domain(cpu, sd) {
				if (!(sd->flags & SD_LOAD_BALANCE))
					continue;
				sd_prev = sd;
			}

			sd = sd_prev;
			/* sd == NULL? No load balance reqd in this domain */
			if (!sd)
				continue;

			balanced &= rebalance_shares(sd, cpu);
		}

		rcu_read_unlock();

		unlock_doms_cur();
7192
		put_online_cpus();
7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205

		if (!balanced)
			timeout = sysctl_sched_min_bal_int_shares;
		else if (timeout < sysctl_sched_max_bal_int_shares)
			timeout *= 2;

		msleep_interruptible(timeout);
	}

	return 0;
}
#endif	/* CONFIG_SMP */

S
Srivatsa Vaddagiri 已提交
7206
/* allocate runqueue etc for a new task group */
7207
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
7208
{
7209
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7210 7211
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
7212
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7213 7214 7215 7216 7217 7218
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7219
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7220 7221
	if (!tg->cfs_rq)
		goto err;
7222
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7223 7224 7225 7226
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
7227
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

7254 7255 7256
	tg->shares = NICE_0_LOAD;

	lock_task_group_list();
7257 7258 7259 7260 7261
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
7262
	unlock_task_group_list();
S
Srivatsa Vaddagiri 已提交
7263

7264
	return tg;
S
Srivatsa Vaddagiri 已提交
7265 7266 7267

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
7268
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
7269
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
7270
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
7271 7272
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
7273 7274 7275
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
7276 7277 7278 7279

	return ERR_PTR(-ENOMEM);
}

7280 7281
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7282
{
7283 7284
	struct task_group *tg = container_of(rhp, struct task_group, rcu);
	struct cfs_rq *cfs_rq;
S
Srivatsa Vaddagiri 已提交
7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

7302
/* Destroy runqueue etc associated with a task group */
7303
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7304
{
7305
	struct cfs_rq *cfs_rq = NULL;
7306
	int i;
S
Srivatsa Vaddagiri 已提交
7307

7308
	lock_task_group_list();
7309 7310 7311 7312
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}
7313
	unlock_task_group_list();
7314

7315
	BUG_ON(!cfs_rq);
7316 7317

	/* wait for possible concurrent references to cfs_rqs complete */
7318
	call_rcu(&tg->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
7319 7320
}

7321
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7322 7323 7324
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7325 7326
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7327 7328 7329 7330 7331 7332 7333
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7334
	if (tsk->sched_class != &fair_sched_class) {
7335
		set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7336
		goto done;
7337
	}
S
Srivatsa Vaddagiri 已提交
7338 7339 7340

	update_rq_clock(rq);

7341
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7342 7343
	on_rq = tsk->se.on_rq;

7344
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7345
		dequeue_task(rq, tsk, 0);
7346 7347 7348
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7349

7350
	set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7351

7352 7353 7354
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7355
		enqueue_task(rq, tsk, 0);
7356
	}
S
Srivatsa Vaddagiri 已提交
7357 7358 7359 7360 7361

done:
	task_rq_unlock(rq, &flags);
}

7362
/* rq->lock to be locked by caller */
S
Srivatsa Vaddagiri 已提交
7363 7364 7365 7366 7367 7368
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7369 7370
	if (!shares)
		shares = MIN_GROUP_SHARES;
S
Srivatsa Vaddagiri 已提交
7371 7372

	on_rq = se->on_rq;
7373
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7374
		dequeue_entity(cfs_rq, se, 0);
7375 7376
		dec_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7377 7378 7379 7380

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7381
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7382
		enqueue_entity(cfs_rq, se, 0);
7383 7384
		inc_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7385 7386
}

7387
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7388 7389
{
	int i;
7390 7391
	struct cfs_rq *cfs_rq;
	struct rq *rq;
7392

7393
	lock_task_group_list();
7394
	if (tg->shares == shares)
7395
		goto done;
S
Srivatsa Vaddagiri 已提交
7396

7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416
	if (shares < MIN_GROUP_SHARES)
		shares = MIN_GROUP_SHARES;

	/*
	 * Prevent any load balance activity (rebalance_shares,
	 * load_balance_fair) from referring to this group first,
	 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
	 */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7417
	tg->shares = shares;
7418 7419
	for_each_possible_cpu(i) {
		spin_lock_irq(&cpu_rq(i)->lock);
7420
		set_se_shares(tg->se[i], shares);
7421 7422
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
S
Srivatsa Vaddagiri 已提交
7423

7424 7425 7426 7427 7428 7429 7430 7431 7432
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
7433
done:
7434
	unlock_task_group_list();
7435
	return 0;
S
Srivatsa Vaddagiri 已提交
7436 7437
}

7438 7439 7440 7441 7442
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
7443
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7444 7445 7446 7447

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
7448
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7449
{
7450 7451
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7452 7453 7454
}

static struct cgroup_subsys_state *
7455
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7456 7457 7458
{
	struct task_group *tg;

7459
	if (!cgrp->parent) {
7460
		/* This is early initialization for the top cgroup */
7461
		init_task_group.css.cgroup = cgrp;
7462 7463 7464 7465
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7466
	if (cgrp->parent->parent)
7467 7468 7469 7470 7471 7472 7473
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7474
	tg->css.cgroup = cgrp;
7475 7476 7477 7478

	return &tg->css;
}

I
Ingo Molnar 已提交
7479 7480
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7481
{
7482
	struct task_group *tg = cgroup_tg(cgrp);
7483 7484 7485 7486

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7487 7488 7489
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
7490 7491 7492 7493 7494 7495 7496 7497 7498
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
7499
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7500 7501 7502 7503 7504
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7505 7506
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7507
{
7508
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7509 7510
}

7511
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7512
{
7513
	struct task_group *tg = cgroup_tg(cgrp);
7514 7515 7516 7517

	return (u64) tg->shares;
}

7518 7519 7520 7521 7522 7523
static struct cftype cpu_files[] = {
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
7524 7525 7526 7527
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7528
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7529 7530 7531
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7532 7533 7534 7535 7536 7537 7538
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7539 7540 7541 7542
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */
7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7595 7596
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */