sched.c 218.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76

77 78
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
98
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
99
 */
100
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
101

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

139 140
static inline int rt_policy(int policy)
{
141
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 143 144 145 146 147 148 149 150
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
151
/*
I
Ingo Molnar 已提交
152
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
153
 */
I
Ingo Molnar 已提交
154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156
	struct list_head queue[MAX_RT_PRIO];
I
Ingo Molnar 已提交
157 158
};

159
struct rt_bandwidth {
I
Ingo Molnar 已提交
160 161 162 163 164
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
198 199
	spin_lock_init(&rt_b->rt_runtime_lock);

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

237 238 239 240 241 242
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

243
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
244

245 246
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
247 248
struct cfs_rq;

P
Peter Zijlstra 已提交
249 250
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
251
/* task group related information */
252
struct task_group {
253
#ifdef CONFIG_CGROUP_SCHED
254 255
	struct cgroup_subsys_state css;
#endif
256 257

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
258 259 260 261 262
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
263 264 265 266 267 268
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

269
	struct rt_bandwidth rt_bandwidth;
270
#endif
271

272
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
273
	struct list_head list;
P
Peter Zijlstra 已提交
274 275 276 277

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
278 279
};

D
Dhaval Giani 已提交
280
#ifdef CONFIG_USER_SCHED
281 282 283 284 285 286 287 288

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

289
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
290 291 292 293
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
294
#endif /* CONFIG_FAIR_GROUP_SCHED */
295 296 297 298

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
299 300
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
301
#define root_task_group init_task_group
302
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
303

304
/* task_group_lock serializes add/remove of task groups and also changes to
305 306
 * a task group's cpu shares.
 */
307
static DEFINE_SPINLOCK(task_group_lock);
308

309 310 311
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
312
#else /* !CONFIG_USER_SCHED */
313
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
314
#endif /* CONFIG_USER_SCHED */
315

316
/*
317 318 319 320
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
321 322 323
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
324
#define MIN_SHARES	2
325
#define MAX_SHARES	(1UL << 18)
326

327 328 329
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
330
/* Default task group.
I
Ingo Molnar 已提交
331
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
332
 */
333
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
334 335

/* return group to which a task belongs */
336
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
337
{
338
	struct task_group *tg;
339

340
#ifdef CONFIG_USER_SCHED
341
	tg = p->user->tg;
342
#elif defined(CONFIG_CGROUP_SCHED)
343 344
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
345
#else
I
Ingo Molnar 已提交
346
	tg = &init_task_group;
347
#endif
348
	return tg;
S
Srivatsa Vaddagiri 已提交
349 350 351
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
352
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
353
{
354
#ifdef CONFIG_FAIR_GROUP_SCHED
355 356
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
357
#endif
P
Peter Zijlstra 已提交
358

359
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
360 361
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
362
#endif
S
Srivatsa Vaddagiri 已提交
363 364 365 366
}

#else

P
Peter Zijlstra 已提交
367
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
368 369 370 371
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
372

373
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
374

I
Ingo Molnar 已提交
375 376 377 378 379 380
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
381
	u64 min_vruntime;
382
	u64 pair_start;
I
Ingo Molnar 已提交
383 384 385

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
386 387 388 389 390 391

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
392 393
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
394
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
395 396 397

	unsigned long nr_spread_over;

398
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
399 400
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
401 402
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
403 404 405 406 407 408
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
409 410
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
411 412 413

#ifdef CONFIG_SMP
	/*
414
	 * the part of load.weight contributed by tasks
415
	 */
416
	unsigned long task_weight;
417

418 419 420 421 422 423 424
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
425

426 427 428 429
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
430 431 432 433 434

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
435
#endif
I
Ingo Molnar 已提交
436 437
#endif
};
L
Linus Torvalds 已提交
438

I
Ingo Molnar 已提交
439 440 441
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
442
	unsigned long rt_nr_running;
443
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
444 445
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
446
#ifdef CONFIG_SMP
447
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
448
	int overloaded;
P
Peter Zijlstra 已提交
449
#endif
P
Peter Zijlstra 已提交
450
	int rt_throttled;
P
Peter Zijlstra 已提交
451
	u64 rt_time;
P
Peter Zijlstra 已提交
452
	u64 rt_runtime;
I
Ingo Molnar 已提交
453
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
454
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
455

456
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
457 458
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
459 460 461 462 463
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
464 465
};

G
Gregory Haskins 已提交
466 467 468 469
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
470 471
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
472 473 474 475 476 477 478 479
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
480

I
Ingo Molnar 已提交
481
	/*
482 483 484 485
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
486
	atomic_t rto_count;
487 488 489
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
490 491
};

492 493 494 495
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
496 497 498 499
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
500 501 502 503 504 505 506
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
507
struct rq {
508 509
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
510 511 512 513 514 515

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
516 517
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
518
	unsigned char idle_at_tick;
519
#ifdef CONFIG_NO_HZ
520
	unsigned long last_tick_seen;
521 522
	unsigned char in_nohz_recently;
#endif
523 524
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
525 526 527 528
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
529 530
	struct rt_rq rt;

I
Ingo Molnar 已提交
531
#ifdef CONFIG_FAIR_GROUP_SCHED
532 533
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
534 535
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
536
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
537 538 539 540 541 542 543 544 545 546
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

547
	struct task_struct *curr, *idle;
548
	unsigned long next_balance;
L
Linus Torvalds 已提交
549
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
550

551
	u64 clock;
I
Ingo Molnar 已提交
552

L
Linus Torvalds 已提交
553 554 555
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
556
	struct root_domain *rd;
L
Linus Torvalds 已提交
557 558 559 560 561
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
562 563
	/* cpu of this runqueue: */
	int cpu;
564
	int online;
L
Linus Torvalds 已提交
565

566 567
	unsigned long avg_load_per_task;

568
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
569 570 571
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
572 573 574 575 576 577
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
578 579 580 581 582
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
583 584 585 586
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
587 588

	/* schedule() stats */
589 590 591
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
592 593

	/* try_to_wake_up() stats */
594 595
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
596 597

	/* BKL stats */
598
	unsigned int bkl_count;
L
Linus Torvalds 已提交
599
#endif
600
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
601 602
};

603
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
604

I
Ingo Molnar 已提交
605 606 607 608 609
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

610 611 612 613 614 615 616 617 618
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
619 620
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
621
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
622 623 624 625
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
626 627
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
628 629 630 631 632 633

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

634 635 636 637 638
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
639 640 641 642 643 644 645 646 647 648 649 650
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
651 652 653 654

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
655
enum {
P
Peter Zijlstra 已提交
656
#include "sched_features.h"
I
Ingo Molnar 已提交
657 658
};

P
Peter Zijlstra 已提交
659 660 661 662 663
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
664
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
665 666 667 668 669 670 671 672 673
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

674
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
675 676 677 678 679 680
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

681
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
709
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
739
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
782

783 784 785 786 787 788
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
789 790 791 792 793 794
/*
 * ratelimit for updating the group shares.
 * default: 0.5ms
 */
const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;

P
Peter Zijlstra 已提交
795
/*
P
Peter Zijlstra 已提交
796
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
797 798
 * default: 1s
 */
P
Peter Zijlstra 已提交
799
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
800

801 802
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
803 804 805 806 807
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
808

809 810 811 812 813 814 815 816 817 818 819 820
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
821

L
Linus Torvalds 已提交
822
#ifndef prepare_arch_switch
823 824 825 826 827 828
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

829 830 831 832 833
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

834
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
835
static inline int task_running(struct rq *rq, struct task_struct *p)
836
{
837
	return task_current(rq, p);
838 839
}

840
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
841 842 843
{
}

844
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
845
{
846 847 848 849
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
850 851 852 853 854 855 856
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

857 858 859 860
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
861
static inline int task_running(struct rq *rq, struct task_struct *p)
862 863 864 865
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
866
	return task_current(rq, p);
867 868 869
#endif
}

870
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

887
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
888 889 890 891 892 893 894 895 896 897 898 899
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
900
#endif
901 902
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
903

904 905 906 907
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
908
static inline struct rq *__task_rq_lock(struct task_struct *p)
909 910
	__acquires(rq->lock)
{
911 912 913 914 915
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
916 917 918 919
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
920 921
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
922
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
923 924
 * explicitly disabling preemption.
 */
925
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
926 927
	__acquires(rq->lock)
{
928
	struct rq *rq;
L
Linus Torvalds 已提交
929

930 931 932 933 934 935
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
936 937 938 939
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
940
static void __task_rq_unlock(struct rq *rq)
941 942 943 944 945
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

946
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
947 948 949 950 951 952
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
953
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
954
 */
A
Alexey Dobriyan 已提交
955
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
956 957
	__acquires(rq->lock)
{
958
	struct rq *rq;
L
Linus Torvalds 已提交
959 960 961 962 963 964 965 966

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
1002
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1014 1015
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1091
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1092 1093 1094 1095 1096 1097
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1098
#ifdef CONFIG_SMP
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1154
#endif /* CONFIG_SMP */
1155 1156

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1193 1194 1195 1196

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1197 1198
#endif

I
Ingo Molnar 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1212
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1213 1214 1215 1216 1217
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1218
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1219 1220
		return;

P
Peter Zijlstra 已提交
1221
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1284
#endif /* CONFIG_NO_HZ */
1285

1286
#else /* !CONFIG_SMP */
P
Peter Zijlstra 已提交
1287
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1288 1289
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1290
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1291
}
1292
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1293

1294 1295 1296 1297 1298 1299 1300 1301
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1302 1303 1304
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1305
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1306

1307 1308 1309
/*
 * delta *= weight / lw
 */
1310
static unsigned long
1311 1312 1313 1314 1315
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1316 1317 1318 1319 1320 1321 1322
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1323 1324 1325 1326 1327

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1328
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1329
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1330 1331
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1332
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1333

1334
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1335 1336
}

1337
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1338 1339
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1340
	lw->inv_weight = 0;
1341 1342
}

1343
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1344 1345
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1346
	lw->inv_weight = 0;
1347 1348
}

1349 1350 1351 1352
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1353
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1354 1355 1356 1357
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1369 1370 1371
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1372 1373
 */
static const int prio_to_weight[40] = {
1374 1375 1376 1377 1378 1379 1380 1381
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1382 1383
};

1384 1385 1386 1387 1388 1389 1390
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1391
static const u32 prio_to_wmult[40] = {
1392 1393 1394 1395 1396 1397 1398 1399
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1400
};
1401

I
Ingo Molnar 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1427

1428 1429 1430 1431 1432 1433
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1444 1445 1446 1447
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1448

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}

1459 1460
#ifdef CONFIG_FAIR_GROUP_SCHED

1461
typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1462 1463 1464 1465 1466

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
1467 1468
static void
walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1469 1470 1471 1472 1473 1474
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
1475
	(*down)(parent, cpu, sd);
1476 1477 1478 1479 1480 1481 1482
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
1483
	(*up)(parent, cpu, sd);
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1498
__update_group_shares_cpu(struct task_group *tg, int cpu,
1499
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1500 1501 1502 1503 1504
{
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1505
	if (!tg->se[cpu])
1506 1507
		return;

1508
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1520 1521 1522
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1523 1524 1525 1526 1527 1528
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1529
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1530 1531 1532 1533

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1534
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1535
	tg->cfs_rq[cpu]->rq_weight = rq_weight;
1536 1537 1538 1539 1540 1541

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1542
	__set_se_shares(tg->se[cpu], shares);
1543 1544 1545
}

/*
1546 1547 1548
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1549 1550
 */
static void
1551
tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1552
{
1553 1554 1555
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
	int i;
1556

1557 1558 1559
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1560 1561
	}

1562 1563 1564 1565 1566
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1567

P
Peter Zijlstra 已提交
1568 1569 1570
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1571 1572 1573 1574 1575
	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1576
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1577 1578 1579 1580 1581
		spin_unlock_irqrestore(&rq->lock, flags);
	}
}

/*
1582 1583 1584
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1585
 */
1586
static void
1587
tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1588
{
1589
	unsigned long load;
1590

1591 1592 1593 1594 1595 1596 1597
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1598

1599
	tg->cfs_rq[cpu]->h_load = load;
1600 1601
}

1602 1603
static void
tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1604 1605 1606
{
}

1607
static void update_shares(struct sched_domain *sd)
1608
{
P
Peter Zijlstra 已提交
1609 1610 1611 1612 1613 1614 1615
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
		walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
	}
1616 1617
}

1618 1619 1620 1621 1622 1623 1624
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

1625
static void update_h_load(int cpu)
1626
{
1627
	walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1628 1629 1630 1631
}

#else

1632
static inline void update_shares(struct sched_domain *sd)
1633 1634 1635
{
}

1636 1637 1638 1639
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1640 1641
#endif

1642 1643
#endif

V
Vegard Nossum 已提交
1644
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1645 1646
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1647
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1648 1649 1650
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1651
#endif
I
Ingo Molnar 已提交
1652

I
Ingo Molnar 已提交
1653 1654
#include "sched_stats.h"
#include "sched_idletask.c"
1655 1656
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1657 1658 1659 1660 1661
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1662 1663
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1664

1665
static void inc_nr_running(struct rq *rq)
1666 1667 1668 1669
{
	rq->nr_running++;
}

1670
static void dec_nr_running(struct rq *rq)
1671 1672 1673 1674
{
	rq->nr_running--;
}

1675 1676 1677
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1678 1679 1680 1681
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1682

I
Ingo Molnar 已提交
1683 1684 1685 1686 1687 1688 1689 1690
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1691

I
Ingo Molnar 已提交
1692 1693
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1694 1695
}

1696
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1697
{
I
Ingo Molnar 已提交
1698
	sched_info_queued(p);
1699
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1700
	p->se.on_rq = 1;
1701 1702
}

1703
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1704
{
1705
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1706
	p->se.on_rq = 0;
1707 1708
}

1709
/*
I
Ingo Molnar 已提交
1710
 * __normal_prio - return the priority that is based on the static prio
1711 1712 1713
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1714
	return p->static_prio;
1715 1716
}

1717 1718 1719 1720 1721 1722 1723
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1724
static inline int normal_prio(struct task_struct *p)
1725 1726 1727
{
	int prio;

1728
	if (task_has_rt_policy(p))
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1742
static int effective_prio(struct task_struct *p)
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1755
/*
I
Ingo Molnar 已提交
1756
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1757
 */
I
Ingo Molnar 已提交
1758
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1759
{
1760
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1761
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1762

1763
	enqueue_task(rq, p, wakeup);
1764
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1765 1766 1767 1768 1769
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1770
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1771
{
1772
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1773 1774
		rq->nr_uninterruptible++;

1775
	dequeue_task(rq, p, sleep);
1776
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1777 1778 1779 1780 1781 1782
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1783
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1784 1785 1786 1787
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1788 1789
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1790
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1791
#ifdef CONFIG_SMP
1792 1793 1794 1795 1796 1797
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1798 1799
	task_thread_info(p)->cpu = cpu;
#endif
1800 1801
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1814
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1815

1816 1817 1818 1819 1820 1821
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1822 1823 1824
/*
 * Is this task likely cache-hot:
 */
1825
static int
1826 1827 1828 1829
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1830 1831 1832
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1833
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1834 1835
		return 1;

1836 1837 1838
	if (p->sched_class != &fair_sched_class)
		return 0;

1839 1840 1841 1842 1843
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1844 1845 1846 1847 1848 1849
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1850
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1851
{
I
Ingo Molnar 已提交
1852 1853
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1854 1855
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1856
	u64 clock_offset;
I
Ingo Molnar 已提交
1857 1858

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1859 1860 1861 1862

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1863 1864 1865 1866
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1867 1868 1869 1870 1871
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1872
#endif
1873 1874
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1875 1876

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1877 1878
}

1879
struct migration_req {
L
Linus Torvalds 已提交
1880 1881
	struct list_head list;

1882
	struct task_struct *task;
L
Linus Torvalds 已提交
1883 1884 1885
	int dest_cpu;

	struct completion done;
1886
};
L
Linus Torvalds 已提交
1887 1888 1889 1890 1891

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1892
static int
1893
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1894
{
1895
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1896 1897 1898 1899 1900

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1901
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1902 1903 1904 1905 1906 1907 1908 1909
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1910

L
Linus Torvalds 已提交
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1923
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1924 1925
{
	unsigned long flags;
I
Ingo Molnar 已提交
1926
	int running, on_rq;
1927
	struct rq *rq;
L
Linus Torvalds 已提交
1928

1929 1930 1931 1932 1933 1934 1935 1936
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1937

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1951

1952 1953 1954 1955 1956 1957 1958 1959 1960
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1961

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1972

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1986

1987 1988 1989 1990 1991 1992 1993
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2009
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2021 2022
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2023 2024 2025 2026
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2027
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2028
{
2029
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2030
	unsigned long total = weighted_cpuload(cpu);
2031

2032
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2033
		return total;
2034

I
Ingo Molnar 已提交
2035
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2036 2037 2038
}

/*
2039 2040
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2041
 */
A
Alexey Dobriyan 已提交
2042
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2043
{
2044
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2045
	unsigned long total = weighted_cpuload(cpu);
2046

2047
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2048
		return total;
2049

I
Ingo Molnar 已提交
2050
	return max(rq->cpu_load[type-1], total);
2051 2052
}

N
Nick Piggin 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2070 2071
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2072
			continue;
2073

N
Nick Piggin 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2090 2091
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2092 2093 2094 2095 2096 2097 2098 2099

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2100
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2101 2102 2103 2104 2105 2106 2107

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2108
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2109
 */
I
Ingo Molnar 已提交
2110
static int
2111 2112
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2113 2114 2115 2116 2117
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2118
	/* Traverse only the allowed CPUs */
2119
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2120

2121
	for_each_cpu_mask(i, *tmp) {
2122
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2148

2149
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2150 2151 2152
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2153 2154
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2155 2156
		if (tmp->flags & flag)
			sd = tmp;
2157
	}
N
Nick Piggin 已提交
2158

2159 2160 2161
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2162
	while (sd) {
2163
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2164
		struct sched_group *group;
2165 2166 2167 2168 2169 2170
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2171 2172 2173

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2174 2175 2176 2177
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2178

2179
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2180 2181 2182 2183 2184
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2185

2186
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2218
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2219
{
2220
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2221 2222
	unsigned long flags;
	long old_state;
2223
	struct rq *rq;
L
Linus Torvalds 已提交
2224

2225 2226 2227
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2244
	smp_wmb();
L
Linus Torvalds 已提交
2245 2246 2247 2248 2249
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2250
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2251 2252 2253
		goto out_running;

	cpu = task_cpu(p);
2254
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2255 2256 2257 2258 2259 2260
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2261 2262 2263
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2264 2265 2266 2267 2268 2269
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2270
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2271 2272 2273 2274 2275 2276
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2290
#endif /* CONFIG_SCHEDSTATS */
2291

L
Linus Torvalds 已提交
2292 2293
out_activate:
#endif /* CONFIG_SMP */
2294 2295 2296 2297 2298 2299 2300 2301 2302
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2303
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2304
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2305 2306 2307
	success = 1;

out_running:
I
Ingo Molnar 已提交
2308 2309
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2310
	p->state = TASK_RUNNING;
2311 2312 2313 2314
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2315 2316 2317 2318 2319 2320
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2321
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2322
{
2323
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2324 2325 2326
}
EXPORT_SYMBOL(wake_up_process);

2327
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2328 2329 2330 2331 2332 2333 2334
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2335 2336 2337 2338 2339 2340 2341
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2342
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2343 2344
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2345 2346 2347

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2348 2349 2350 2351 2352 2353
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2354
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2355
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2356
#endif
N
Nick Piggin 已提交
2357

P
Peter Zijlstra 已提交
2358
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2359
	p->se.on_rq = 0;
2360
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2361

2362 2363 2364 2365
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2366 2367 2368 2369 2370 2371 2372
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2387
	set_task_cpu(p, cpu);
2388 2389 2390 2391 2392

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2393 2394
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2395

2396
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2397
	if (likely(sched_info_on()))
2398
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2399
#endif
2400
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2401 2402
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2403
#ifdef CONFIG_PREEMPT
2404
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2405
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2406
#endif
N
Nick Piggin 已提交
2407
	put_cpu();
L
Linus Torvalds 已提交
2408 2409 2410 2411 2412 2413 2414 2415 2416
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2417
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2418 2419
{
	unsigned long flags;
I
Ingo Molnar 已提交
2420
	struct rq *rq;
L
Linus Torvalds 已提交
2421 2422

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2423
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2424
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2425 2426 2427

	p->prio = effective_prio(p);

2428
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2429
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2430 2431
	} else {
		/*
I
Ingo Molnar 已提交
2432 2433
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2434
		 */
2435
		p->sched_class->task_new(rq, p);
2436
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2437
	}
I
Ingo Molnar 已提交
2438
	check_preempt_curr(rq, p);
2439 2440 2441 2442
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2443
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2444 2445
}

2446 2447 2448
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2449 2450
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2451 2452 2453 2454 2455 2456 2457 2458 2459
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2460
 * @notifier: notifier struct to unregister
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2490
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2502
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2503

2504 2505 2506
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2507
 * @prev: the current task that is being switched out
2508 2509 2510 2511 2512 2513 2514 2515 2516
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2517 2518 2519
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2520
{
2521
	fire_sched_out_preempt_notifiers(prev, next);
2522 2523 2524 2525
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2526 2527
/**
 * finish_task_switch - clean up after a task-switch
2528
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2529 2530
 * @prev: the thread we just switched away from.
 *
2531 2532 2533 2534
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2535 2536
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2537
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2538 2539 2540
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2541
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2542 2543 2544
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2545
	long prev_state;
L
Linus Torvalds 已提交
2546 2547 2548 2549 2550

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2551
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2552 2553
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2554
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2555 2556 2557 2558 2559
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2560
	prev_state = prev->state;
2561 2562
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2563 2564 2565 2566
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2567

2568
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2569 2570
	if (mm)
		mmdrop(mm);
2571
	if (unlikely(prev_state == TASK_DEAD)) {
2572 2573 2574
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2575
		 */
2576
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2577
		put_task_struct(prev);
2578
	}
L
Linus Torvalds 已提交
2579 2580 2581 2582 2583 2584
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2585
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2586 2587
	__releases(rq->lock)
{
2588 2589
	struct rq *rq = this_rq();

2590 2591 2592 2593 2594
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2595
	if (current->set_child_tid)
2596
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2597 2598 2599 2600 2601 2602
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2603
static inline void
2604
context_switch(struct rq *rq, struct task_struct *prev,
2605
	       struct task_struct *next)
L
Linus Torvalds 已提交
2606
{
I
Ingo Molnar 已提交
2607
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2608

2609
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2610 2611
	mm = next->mm;
	oldmm = prev->active_mm;
2612 2613 2614 2615 2616 2617 2618
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2619
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2620 2621 2622 2623 2624 2625
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2626
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2627 2628 2629
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2630 2631 2632 2633 2634 2635 2636
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2637
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2638
#endif
L
Linus Torvalds 已提交
2639 2640 2641 2642

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2643 2644 2645 2646 2647 2648 2649
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2673
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2688 2689
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2690

2691
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2701
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2702 2703 2704 2705 2706
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2722
/*
I
Ingo Molnar 已提交
2723 2724
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2725
 */
I
Ingo Molnar 已提交
2726
static void update_cpu_load(struct rq *this_rq)
2727
{
2728
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2741 2742 2743 2744 2745 2746 2747
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2748 2749
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2750 2751
}

I
Ingo Molnar 已提交
2752 2753
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2754 2755 2756 2757 2758 2759
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2760
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2761 2762 2763
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2764
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2765 2766 2767 2768
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2769
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2770 2771 2772 2773 2774 2775 2776
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2777 2778
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2779 2780 2781 2782 2783 2784 2785 2786
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2787
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2801
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2802 2803 2804 2805
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2806 2807
	int ret = 0;

2808 2809 2810 2811 2812
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2813
	if (unlikely(!spin_trylock(&busiest->lock))) {
2814
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2815 2816 2817
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2818
			ret = 1;
L
Linus Torvalds 已提交
2819 2820 2821
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2822
	return ret;
L
Linus Torvalds 已提交
2823 2824 2825 2826 2827
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2828
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2829 2830
 * the cpu_allowed mask is restored.
 */
2831
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2832
{
2833
	struct migration_req req;
L
Linus Torvalds 已提交
2834
	unsigned long flags;
2835
	struct rq *rq;
L
Linus Torvalds 已提交
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2846

L
Linus Torvalds 已提交
2847 2848 2849 2850 2851
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2852

L
Linus Torvalds 已提交
2853 2854 2855 2856 2857 2858 2859
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2860 2861
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2862 2863 2864 2865
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2866
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2867
	put_cpu();
N
Nick Piggin 已提交
2868 2869
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2870 2871 2872 2873 2874 2875
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2876 2877
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2878
{
2879
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2880
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2881
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2882 2883 2884 2885
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2886
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2887 2888 2889 2890 2891
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2892
static
2893
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2894
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2895
		     int *all_pinned)
L
Linus Torvalds 已提交
2896 2897 2898 2899 2900 2901 2902
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2903 2904
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2905
		return 0;
2906
	}
2907 2908
	*all_pinned = 0;

2909 2910
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2911
		return 0;
2912
	}
L
Linus Torvalds 已提交
2913

2914 2915 2916 2917 2918 2919
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2920 2921
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2922
#ifdef CONFIG_SCHEDSTATS
2923
		if (task_hot(p, rq->clock, sd)) {
2924
			schedstat_inc(sd, lb_hot_gained[idle]);
2925 2926
			schedstat_inc(p, se.nr_forced_migrations);
		}
2927 2928 2929 2930
#endif
		return 1;
	}

2931 2932
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2933
		return 0;
2934
	}
L
Linus Torvalds 已提交
2935 2936 2937
	return 1;
}

2938 2939 2940 2941 2942
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2943
{
2944
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2945 2946
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2947

2948
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2949 2950
		goto out;

2951 2952
	pinned = 1;

L
Linus Torvalds 已提交
2953
	/*
I
Ingo Molnar 已提交
2954
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2955
	 */
I
Ingo Molnar 已提交
2956 2957
	p = iterator->start(iterator->arg);
next:
2958
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2959
		goto out;
2960 2961

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2962 2963 2964
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2965 2966
	}

I
Ingo Molnar 已提交
2967
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2968
	pulled++;
I
Ingo Molnar 已提交
2969
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2970

2971
	/*
2972
	 * We only want to steal up to the prescribed amount of weighted load.
2973
	 */
2974
	if (rem_load_move > 0) {
2975 2976
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2977 2978
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2979 2980 2981
	}
out:
	/*
2982
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2983 2984 2985 2986
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2987 2988 2989

	if (all_pinned)
		*all_pinned = pinned;
2990 2991

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2992 2993
}

I
Ingo Molnar 已提交
2994
/*
P
Peter Williams 已提交
2995 2996 2997
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2998 2999 3000 3001
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3002
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3003 3004 3005
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3006
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3007
	unsigned long total_load_moved = 0;
3008
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3009 3010

	do {
P
Peter Williams 已提交
3011 3012
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3013
				max_load_move - total_load_moved,
3014
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3015
		class = class->next;
3016 3017 3018 3019

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3020
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3021

P
Peter Williams 已提交
3022 3023 3024
	return total_load_moved > 0;
}

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3061
	const struct sched_class *class;
P
Peter Williams 已提交
3062 3063

	for (class = sched_class_highest; class; class = class->next)
3064
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3065 3066 3067
			return 1;

	return 0;
I
Ingo Molnar 已提交
3068 3069
}

L
Linus Torvalds 已提交
3070 3071
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3072 3073
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3074 3075 3076
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3077
		   unsigned long *imbalance, enum cpu_idle_type idle,
3078
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3079 3080 3081
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3082
	unsigned long max_pull;
3083 3084
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3085
	int load_idx, group_imb = 0;
3086 3087 3088 3089 3090 3091
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3092 3093

	max_load = this_load = total_load = total_pwr = 0;
3094 3095
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3096

I
Ingo Molnar 已提交
3097
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3098
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3099
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3100 3101 3102
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3103 3104

	do {
3105
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3106 3107
		int local_group;
		int i;
3108
		int __group_imb = 0;
3109
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3110
		unsigned long sum_nr_running, sum_weighted_load;
3111 3112
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3113 3114 3115

		local_group = cpu_isset(this_cpu, group->cpumask);

3116 3117 3118
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3119
		/* Tally up the load of all CPUs in the group */
3120
		sum_weighted_load = sum_nr_running = avg_load = 0;
3121 3122
		sum_avg_load_per_task = avg_load_per_task = 0;

3123 3124
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3125 3126

		for_each_cpu_mask(i, group->cpumask) {
3127 3128 3129 3130 3131 3132
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3133

3134
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3135 3136
				*sd_idle = 0;

L
Linus Torvalds 已提交
3137
			/* Bias balancing toward cpus of our domain */
3138 3139 3140 3141 3142 3143
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3144
				load = target_load(i, load_idx);
3145
			} else {
N
Nick Piggin 已提交
3146
				load = source_load(i, load_idx);
3147 3148 3149 3150 3151
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3152 3153

			avg_load += load;
3154
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3155
			sum_weighted_load += weighted_cpuload(i);
3156 3157

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3158 3159
		}

3160 3161 3162
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3163 3164
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3165
		 */
3166 3167
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3168 3169 3170 3171
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3172
		total_load += avg_load;
3173
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3174 3175

		/* Adjust by relative CPU power of the group */
3176 3177
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3178

3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3193 3194
			__group_imb = 1;

3195
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3196

L
Linus Torvalds 已提交
3197 3198 3199
		if (local_group) {
			this_load = avg_load;
			this = group;
3200 3201 3202
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3203
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3204 3205
			max_load = avg_load;
			busiest = group;
3206 3207
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3208
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3209
		}
3210 3211 3212 3213 3214 3215

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3216 3217 3218
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3219 3220 3221 3222 3223 3224 3225 3226 3227

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3228
		/*
3229 3230
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3231 3232
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3233
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3234
			goto group_next;
3235

I
Ingo Molnar 已提交
3236
		/*
3237
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3238 3239 3240 3241 3242
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3243 3244
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3245 3246
			group_min = group;
			min_nr_running = sum_nr_running;
3247 3248
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3249
		}
3250

I
Ingo Molnar 已提交
3251
		/*
3252
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3264
		}
3265 3266
group_next:
#endif
L
Linus Torvalds 已提交
3267 3268 3269
		group = group->next;
	} while (group != sd->groups);

3270
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3271 3272 3273 3274 3275 3276 3277 3278
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3279
	busiest_load_per_task /= busiest_nr_running;
3280 3281 3282
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3283 3284 3285 3286 3287 3288 3289 3290
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3291
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3292 3293
	 * appear as very large values with unsigned longs.
	 */
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3306 3307

	/* Don't want to pull so many tasks that a group would go idle */
3308
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3309

L
Linus Torvalds 已提交
3310
	/* How much load to actually move to equalise the imbalance */
3311 3312
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3313 3314
			/ SCHED_LOAD_SCALE;

3315 3316 3317 3318 3319 3320
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3321
	if (*imbalance < busiest_load_per_task) {
3322
		unsigned long tmp, pwr_now, pwr_move;
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3333
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3334

3335
		if (max_load - this_load + 2*busiest_load_per_task >=
I
Ingo Molnar 已提交
3336
					busiest_load_per_task * imbn) {
3337
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3338 3339 3340 3341 3342 3343 3344 3345 3346
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3347 3348 3349 3350
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3351 3352 3353
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3354 3355
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3356
		if (max_load > tmp)
3357
			pwr_move += busiest->__cpu_power *
3358
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3359 3360

		/* Amount of load we'd add */
3361
		if (max_load * busiest->__cpu_power <
3362
				busiest_load_per_task * SCHED_LOAD_SCALE)
3363 3364
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3365
		else
3366 3367 3368 3369
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3370 3371 3372
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3373 3374
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3375 3376 3377 3378 3379
	}

	return busiest;

out_balanced:
3380
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3381
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3382
		goto ret;
L
Linus Torvalds 已提交
3383

3384 3385 3386 3387 3388
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3389
ret:
L
Linus Torvalds 已提交
3390 3391 3392 3393 3394 3395 3396
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3397
static struct rq *
I
Ingo Molnar 已提交
3398
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3399
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3400
{
3401
	struct rq *busiest = NULL, *rq;
3402
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3403 3404 3405
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3406
		unsigned long wl;
3407 3408 3409 3410

		if (!cpu_isset(i, *cpus))
			continue;

3411
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3412
		wl = weighted_cpuload(i);
3413

I
Ingo Molnar 已提交
3414
		if (rq->nr_running == 1 && wl > imbalance)
3415
			continue;
L
Linus Torvalds 已提交
3416

I
Ingo Molnar 已提交
3417 3418
		if (wl > max_load) {
			max_load = wl;
3419
			busiest = rq;
L
Linus Torvalds 已提交
3420 3421 3422 3423 3424 3425
		}
	}

	return busiest;
}

3426 3427 3428 3429 3430 3431
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3432 3433 3434 3435
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3436
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3437
			struct sched_domain *sd, enum cpu_idle_type idle,
3438
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3439
{
P
Peter Williams 已提交
3440
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3441 3442
	struct sched_group *group;
	unsigned long imbalance;
3443
	struct rq *busiest;
3444
	unsigned long flags;
N
Nick Piggin 已提交
3445

3446 3447
	cpus_setall(*cpus);

3448 3449 3450
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3451
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3452
	 * portraying it as CPU_NOT_IDLE.
3453
	 */
I
Ingo Molnar 已提交
3454
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3455
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3456
		sd_idle = 1;
L
Linus Torvalds 已提交
3457

3458
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3459

3460
redo:
3461
	update_shares(sd);
3462
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3463
				   cpus, balance);
3464

3465
	if (*balance == 0)
3466 3467
		goto out_balanced;

L
Linus Torvalds 已提交
3468 3469 3470 3471 3472
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3473
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3474 3475 3476 3477 3478
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3479
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3480 3481 3482

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3483
	ld_moved = 0;
L
Linus Torvalds 已提交
3484 3485 3486 3487
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3488
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3489 3490
		 * correctly treated as an imbalance.
		 */
3491
		local_irq_save(flags);
N
Nick Piggin 已提交
3492
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3493
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3494
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3495
		double_rq_unlock(this_rq, busiest);
3496
		local_irq_restore(flags);
3497

3498 3499 3500
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3501
		if (ld_moved && this_cpu != smp_processor_id())
3502 3503
			resched_cpu(this_cpu);

3504
		/* All tasks on this runqueue were pinned by CPU affinity */
3505
		if (unlikely(all_pinned)) {
3506 3507
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3508
				goto redo;
3509
			goto out_balanced;
3510
		}
L
Linus Torvalds 已提交
3511
	}
3512

P
Peter Williams 已提交
3513
	if (!ld_moved) {
L
Linus Torvalds 已提交
3514 3515 3516 3517 3518
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3519
			spin_lock_irqsave(&busiest->lock, flags);
3520 3521 3522 3523 3524

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3525
				spin_unlock_irqrestore(&busiest->lock, flags);
3526 3527 3528 3529
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3530 3531 3532
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3533
				active_balance = 1;
L
Linus Torvalds 已提交
3534
			}
3535
			spin_unlock_irqrestore(&busiest->lock, flags);
3536
			if (active_balance)
L
Linus Torvalds 已提交
3537 3538 3539 3540 3541 3542
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3543
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3544
		}
3545
	} else
L
Linus Torvalds 已提交
3546 3547
		sd->nr_balance_failed = 0;

3548
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3549 3550
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3551 3552 3553 3554 3555 3556 3557 3558 3559
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3560 3561
	}

P
Peter Williams 已提交
3562
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3563
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3564 3565 3566
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3567 3568 3569 3570

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3571
	sd->nr_balance_failed = 0;
3572 3573

out_one_pinned:
L
Linus Torvalds 已提交
3574
	/* tune up the balancing interval */
3575 3576
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3577 3578
		sd->balance_interval *= 2;

3579
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3580
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3581 3582 3583 3584
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3585 3586
	if (ld_moved)
		update_shares(sd);
3587
	return ld_moved;
L
Linus Torvalds 已提交
3588 3589 3590 3591 3592 3593
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3594
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3595 3596
 * this_rq is locked.
 */
3597
static int
3598 3599
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3600 3601
{
	struct sched_group *group;
3602
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3603
	unsigned long imbalance;
P
Peter Williams 已提交
3604
	int ld_moved = 0;
N
Nick Piggin 已提交
3605
	int sd_idle = 0;
3606
	int all_pinned = 0;
3607 3608

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3609

3610 3611 3612 3613
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3614
	 * portraying it as CPU_NOT_IDLE.
3615 3616 3617
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3618
		sd_idle = 1;
L
Linus Torvalds 已提交
3619

3620
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3621
redo:
3622
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3623
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3624
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3625
	if (!group) {
I
Ingo Molnar 已提交
3626
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3627
		goto out_balanced;
L
Linus Torvalds 已提交
3628 3629
	}

3630
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3631
	if (!busiest) {
I
Ingo Molnar 已提交
3632
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3633
		goto out_balanced;
L
Linus Torvalds 已提交
3634 3635
	}

N
Nick Piggin 已提交
3636 3637
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3638
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3639

P
Peter Williams 已提交
3640
	ld_moved = 0;
3641 3642 3643
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3644 3645
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3646
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3647 3648
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3649
		spin_unlock(&busiest->lock);
3650

3651
		if (unlikely(all_pinned)) {
3652 3653
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3654 3655
				goto redo;
		}
3656 3657
	}

P
Peter Williams 已提交
3658
	if (!ld_moved) {
I
Ingo Molnar 已提交
3659
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3660 3661
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3662 3663
			return -1;
	} else
3664
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3665

3666
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3667
	return ld_moved;
3668 3669

out_balanced:
I
Ingo Molnar 已提交
3670
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3671
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3672
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3673
		return -1;
3674
	sd->nr_balance_failed = 0;
3675

3676
	return 0;
L
Linus Torvalds 已提交
3677 3678 3679 3680 3681 3682
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3683
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3684 3685
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3686 3687
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3688
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3689 3690

	for_each_domain(this_cpu, sd) {
3691 3692 3693 3694 3695 3696
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3697
			/* If we've pulled tasks over stop searching: */
3698 3699
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3700 3701 3702 3703 3704 3705

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3706
	}
I
Ingo Molnar 已提交
3707
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3708 3709 3710 3711 3712
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3713
	}
L
Linus Torvalds 已提交
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3724
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3725
{
3726
	int target_cpu = busiest_rq->push_cpu;
3727 3728
	struct sched_domain *sd;
	struct rq *target_rq;
3729

3730
	/* Is there any task to move? */
3731 3732 3733 3734
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3735 3736

	/*
3737
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3738
	 * we need to fix it. Originally reported by
3739
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3740
	 */
3741
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3742

3743 3744
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3745 3746
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3747 3748

	/* Search for an sd spanning us and the target CPU. */
3749
	for_each_domain(target_cpu, sd) {
3750
		if ((sd->flags & SD_LOAD_BALANCE) &&
3751
		    cpu_isset(busiest_cpu, sd->span))
3752
				break;
3753
	}
3754

3755
	if (likely(sd)) {
3756
		schedstat_inc(sd, alb_count);
3757

P
Peter Williams 已提交
3758 3759
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3760 3761 3762 3763
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3764
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3765 3766
}

3767 3768 3769
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3770
	cpumask_t cpu_mask;
3771 3772 3773 3774 3775
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3776
/*
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3787
 *
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3844 3845 3846 3847 3848
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3849
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3850
{
3851 3852
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3853 3854
	unsigned long interval;
	struct sched_domain *sd;
3855
	/* Earliest time when we have to do rebalance again */
3856
	unsigned long next_balance = jiffies + 60*HZ;
3857
	int update_next_balance = 0;
3858
	int need_serialize;
3859
	cpumask_t tmp;
L
Linus Torvalds 已提交
3860

3861
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3862 3863 3864 3865
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3866
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3867 3868 3869 3870 3871 3872
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3873 3874 3875
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3876
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3877

3878
		if (need_serialize) {
3879 3880 3881 3882
			if (!spin_trylock(&balancing))
				goto out;
		}

3883
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3884
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3885 3886
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3887 3888 3889
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3890
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3891
			}
3892
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3893
		}
3894
		if (need_serialize)
3895 3896
			spin_unlock(&balancing);
out:
3897
		if (time_after(next_balance, sd->last_balance + interval)) {
3898
			next_balance = sd->last_balance + interval;
3899 3900
			update_next_balance = 1;
		}
3901 3902 3903 3904 3905 3906 3907 3908

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3909
	}
3910 3911 3912 3913 3914 3915 3916 3917

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3918 3919 3920 3921 3922 3923 3924 3925 3926
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3927 3928 3929 3930
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3931

I
Ingo Molnar 已提交
3932
	rebalance_domains(this_cpu, idle);
3933 3934 3935 3936 3937 3938 3939

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3940 3941
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3942 3943 3944 3945
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3946
		cpu_clear(this_cpu, cpus);
3947 3948 3949 3950 3951 3952 3953 3954 3955
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3956
			rebalance_domains(balance_cpu, CPU_IDLE);
3957 3958

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3959 3960
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3973
static inline void trigger_load_balance(struct rq *rq, int cpu)
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4000
			if (ilb < nr_cpu_ids)
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4025
}
I
Ingo Molnar 已提交
4026 4027 4028

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4029 4030 4031
/*
 * on UP we do not need to balance between CPUs:
 */
4032
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4033 4034
{
}
I
Ingo Molnar 已提交
4035

L
Linus Torvalds 已提交
4036 4037 4038 4039 4040 4041 4042
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4043 4044
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4045
 */
4046
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4047 4048
{
	unsigned long flags;
4049 4050
	u64 ns, delta_exec;
	struct rq *rq;
4051

4052 4053
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4054
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4055 4056
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4057 4058 4059 4060
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4061

L
Linus Torvalds 已提交
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4085 4086 4087 4088 4089
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4090
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4124
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4125 4126
	cputime64_t tmp;

4127 4128 4129 4130
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4131

L
Linus Torvalds 已提交
4132 4133 4134 4135 4136 4137 4138 4139
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4140
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4141
		cpustat->system = cputime64_add(cpustat->system, tmp);
4142
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4143 4144 4145 4146 4147 4148 4149
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4161 4162 4163 4164 4165 4166 4167 4168 4169
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4170
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4171 4172 4173 4174 4175 4176 4177

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4178
	} else
L
Linus Torvalds 已提交
4179 4180 4181
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4193
	struct task_struct *curr = rq->curr;
4194 4195

	sched_clock_tick();
I
Ingo Molnar 已提交
4196 4197

	spin_lock(&rq->lock);
4198
	update_rq_clock(rq);
4199
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4200
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4201
	spin_unlock(&rq->lock);
4202

4203
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4204 4205
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4206
#endif
L
Linus Torvalds 已提交
4207 4208 4209 4210
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4211
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4212 4213 4214 4215
{
	/*
	 * Underflow?
	 */
4216 4217
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4218 4219 4220 4221
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4222 4223
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4224 4225 4226
}
EXPORT_SYMBOL(add_preempt_count);

4227
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4228 4229 4230 4231
{
	/*
	 * Underflow?
	 */
4232 4233
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4234 4235 4236
	/*
	 * Is the spinlock portion underflowing?
	 */
4237 4238 4239 4240
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4241 4242 4243 4244 4245 4246 4247
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4248
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4249
 */
I
Ingo Molnar 已提交
4250
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4251
{
4252 4253 4254 4255 4256
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4257
	debug_show_held_locks(prev);
4258
	print_modules();
I
Ingo Molnar 已提交
4259 4260
	if (irqs_disabled())
		print_irqtrace_events(prev);
4261 4262 4263 4264 4265

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4266
}
L
Linus Torvalds 已提交
4267

I
Ingo Molnar 已提交
4268 4269 4270 4271 4272
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4273
	/*
I
Ingo Molnar 已提交
4274
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4275 4276 4277
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4278
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4279 4280
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4281 4282
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4283
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4284 4285
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4286 4287
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4288 4289
	}
#endif
I
Ingo Molnar 已提交
4290 4291 4292 4293 4294 4295
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4296
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4297
{
4298
	const struct sched_class *class;
I
Ingo Molnar 已提交
4299
	struct task_struct *p;
L
Linus Torvalds 已提交
4300 4301

	/*
I
Ingo Molnar 已提交
4302 4303
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4304
	 */
I
Ingo Molnar 已提交
4305
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4306
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4307 4308
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4309 4310
	}

I
Ingo Molnar 已提交
4311 4312
	class = sched_class_highest;
	for ( ; ; ) {
4313
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4314 4315 4316 4317 4318 4319 4320 4321 4322
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4323

I
Ingo Molnar 已提交
4324 4325 4326 4327 4328 4329
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4330
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4331
	struct rq *rq;
M
Mike Galbraith 已提交
4332
	int cpu, hrtick = sched_feat(HRTICK);
I
Ingo Molnar 已提交
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4346

M
Mike Galbraith 已提交
4347 4348
	if (hrtick)
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4349

4350 4351 4352 4353
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4354
	update_rq_clock(rq);
4355 4356
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4357 4358

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4359
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4360
			prev->state = TASK_RUNNING;
4361
		else
4362
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4363
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4364 4365
	}

4366 4367 4368 4369
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4370

I
Ingo Molnar 已提交
4371
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4372 4373
		idle_balance(cpu, rq);

4374
	prev->sched_class->put_prev_task(rq, prev);
4375
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4376 4377

	if (likely(prev != next)) {
4378 4379
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4380 4381 4382 4383
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4384
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4385 4386 4387 4388 4389 4390
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4391 4392 4393
	} else
		spin_unlock_irq(&rq->lock);

M
Mike Galbraith 已提交
4394 4395
	if (hrtick)
		hrtick_set(rq);
P
Peter Zijlstra 已提交
4396 4397

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4398
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4399

L
Linus Torvalds 已提交
4400 4401 4402 4403 4404 4405 4406 4407
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4408
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4409
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4410 4411 4412 4413 4414
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4415

L
Linus Torvalds 已提交
4416 4417
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4418
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4419
	 */
N
Nick Piggin 已提交
4420
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4421 4422
		return;

4423 4424 4425 4426
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4427

4428 4429 4430 4431 4432 4433
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4434 4435 4436 4437
}
EXPORT_SYMBOL(preempt_schedule);

/*
4438
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4439 4440 4441 4442 4443 4444 4445
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4446

4447
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4448 4449
	BUG_ON(ti->preempt_count || !irqs_disabled());

4450 4451 4452 4453 4454 4455
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4456

4457 4458 4459 4460 4461 4462
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4463 4464 4465 4466
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4467 4468
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4469
{
4470
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4471 4472 4473 4474
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4475 4476
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4477 4478 4479
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4480
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4481 4482 4483 4484 4485
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4486
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4487

4488
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4489 4490
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4491
		if (curr->func(curr, mode, sync, key) &&
4492
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4493 4494 4495 4496 4497 4498 4499 4500 4501
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4502
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4503
 */
4504
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4505
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4518
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4519 4520 4521 4522 4523
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4524
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4536
void
I
Ingo Molnar 已提交
4537
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4554
void complete(struct completion *x)
L
Linus Torvalds 已提交
4555 4556 4557 4558 4559
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4560
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4561 4562 4563 4564
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4565
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4566 4567 4568 4569 4570
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4571
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4572 4573 4574 4575
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4576 4577
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4578 4579 4580 4581 4582 4583 4584
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4585 4586 4587 4588
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4589 4590
				timeout = -ERESTARTSYS;
				break;
4591 4592
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4593 4594 4595
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4596
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4597
		__remove_wait_queue(&x->wait, &wait);
4598 4599
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4600 4601
	}
	x->done--;
4602
	return timeout ?: 1;
L
Linus Torvalds 已提交
4603 4604
}

4605 4606
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4607 4608 4609 4610
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4611
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4612
	spin_unlock_irq(&x->wait.lock);
4613 4614
	return timeout;
}
L
Linus Torvalds 已提交
4615

4616
void __sched wait_for_completion(struct completion *x)
4617 4618
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4619
}
4620
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4621

4622
unsigned long __sched
4623
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4624
{
4625
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4626
}
4627
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4628

4629
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4630
{
4631 4632 4633 4634
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4635
}
4636
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4637

4638
unsigned long __sched
4639 4640
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4641
{
4642
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4643
}
4644
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4645

M
Matthew Wilcox 已提交
4646 4647 4648 4649 4650 4651 4652 4653 4654
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4655 4656
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4657
{
I
Ingo Molnar 已提交
4658 4659 4660 4661
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4662

4663
	__set_current_state(state);
L
Linus Torvalds 已提交
4664

4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4679 4680 4681
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4682
long __sched
I
Ingo Molnar 已提交
4683
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4684
{
4685
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4686 4687 4688
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4689
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4690
{
4691
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4692 4693 4694
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4695
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4696
{
4697
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4698 4699 4700
}
EXPORT_SYMBOL(sleep_on_timeout);

4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4713
void rt_mutex_setprio(struct task_struct *p, int prio)
4714 4715
{
	unsigned long flags;
4716
	int oldprio, on_rq, running;
4717
	struct rq *rq;
4718
	const struct sched_class *prev_class = p->sched_class;
4719 4720 4721 4722

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4723
	update_rq_clock(rq);
4724

4725
	oldprio = p->prio;
I
Ingo Molnar 已提交
4726
	on_rq = p->se.on_rq;
4727
	running = task_current(rq, p);
4728
	if (on_rq)
4729
		dequeue_task(rq, p, 0);
4730 4731
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4732 4733 4734 4735 4736 4737

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4738 4739
	p->prio = prio;

4740 4741
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4742
	if (on_rq) {
4743
		enqueue_task(rq, p, 0);
4744 4745

		check_class_changed(rq, p, prev_class, oldprio, running);
4746 4747 4748 4749 4750 4751
	}
	task_rq_unlock(rq, &flags);
}

#endif

4752
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4753
{
I
Ingo Molnar 已提交
4754
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4755
	unsigned long flags;
4756
	struct rq *rq;
L
Linus Torvalds 已提交
4757 4758 4759 4760 4761 4762 4763 4764

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4765
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4766 4767 4768 4769
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4770
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4771
	 */
4772
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4773 4774 4775
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4776
	on_rq = p->se.on_rq;
4777
	if (on_rq)
4778
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4779 4780

	p->static_prio = NICE_TO_PRIO(nice);
4781
	set_load_weight(p);
4782 4783 4784
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4785

I
Ingo Molnar 已提交
4786
	if (on_rq) {
4787
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4788
		/*
4789 4790
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4791
		 */
4792
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4793 4794 4795 4796 4797 4798 4799
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4800 4801 4802 4803 4804
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4805
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4806
{
4807 4808
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4809

M
Matt Mackall 已提交
4810 4811 4812 4813
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4825
	long nice, retval;
L
Linus Torvalds 已提交
4826 4827 4828 4829 4830 4831

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4832 4833
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4834 4835 4836 4837 4838 4839 4840 4841 4842
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4843 4844 4845
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4864
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4865 4866 4867 4868 4869 4870 4871 4872
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4873
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4874 4875 4876
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4877
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4892
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4893 4894 4895 4896 4897 4898 4899 4900
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4901
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4902
{
4903
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4904 4905 4906
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4907 4908
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4909
{
I
Ingo Molnar 已提交
4910
	BUG_ON(p->se.on_rq);
4911

L
Linus Torvalds 已提交
4912
	p->policy = policy;
I
Ingo Molnar 已提交
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4925
	p->rt_priority = prio;
4926 4927 4928
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4929
	set_load_weight(p);
L
Linus Torvalds 已提交
4930 4931 4932
}

/**
4933
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4934 4935 4936
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4937
 *
4938
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4939
 */
I
Ingo Molnar 已提交
4940 4941
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4942
{
4943
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4944
	unsigned long flags;
4945
	const struct sched_class *prev_class = p->sched_class;
4946
	struct rq *rq;
L
Linus Torvalds 已提交
4947

4948 4949
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4950 4951 4952 4953 4954
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4955 4956
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4957
		return -EINVAL;
L
Linus Torvalds 已提交
4958 4959
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4960 4961
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4962 4963
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4964
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4965
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4966
		return -EINVAL;
4967
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4968 4969
		return -EINVAL;

4970 4971 4972 4973
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4974
		if (rt_policy(policy)) {
4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4991 4992 4993 4994 4995 4996
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4997

4998 4999 5000 5001 5002
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5003

5004 5005 5006 5007 5008
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
5009
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5010 5011 5012
		return -EPERM;
#endif

L
Linus Torvalds 已提交
5013 5014 5015
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
5016 5017 5018 5019 5020
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5021 5022 5023 5024
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5025
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5026 5027 5028
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5029 5030
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5031 5032
		goto recheck;
	}
I
Ingo Molnar 已提交
5033
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5034
	on_rq = p->se.on_rq;
5035
	running = task_current(rq, p);
5036
	if (on_rq)
5037
		deactivate_task(rq, p, 0);
5038 5039
	if (running)
		p->sched_class->put_prev_task(rq, p);
5040

L
Linus Torvalds 已提交
5041
	oldprio = p->prio;
I
Ingo Molnar 已提交
5042
	__setscheduler(rq, p, policy, param->sched_priority);
5043

5044 5045
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5046 5047
	if (on_rq) {
		activate_task(rq, p, 0);
5048 5049

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5050
	}
5051 5052 5053
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5054 5055
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5056 5057 5058 5059
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
5060 5061
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5062 5063 5064
{
	struct sched_param lparam;
	struct task_struct *p;
5065
	int retval;
L
Linus Torvalds 已提交
5066 5067 5068 5069 5070

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5071 5072 5073

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5074
	p = find_process_by_pid(pid);
5075 5076 5077
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5078

L
Linus Torvalds 已提交
5079 5080 5081 5082 5083 5084 5085 5086 5087
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5088 5089
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5090
{
5091 5092 5093 5094
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5114
	struct task_struct *p;
5115
	int retval;
L
Linus Torvalds 已提交
5116 5117

	if (pid < 0)
5118
		return -EINVAL;
L
Linus Torvalds 已提交
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5140
	struct task_struct *p;
5141
	int retval;
L
Linus Torvalds 已提交
5142 5143

	if (!param || pid < 0)
5144
		return -EINVAL;
L
Linus Torvalds 已提交
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5171
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5172 5173
{
	cpumask_t cpus_allowed;
5174
	cpumask_t new_mask = *in_mask;
5175 5176
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5177

5178
	get_online_cpus();
L
Linus Torvalds 已提交
5179 5180 5181 5182 5183
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5184
		put_online_cpus();
L
Linus Torvalds 已提交
5185 5186 5187 5188 5189
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5190
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5201 5202 5203 5204
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5205
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5206
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5207
 again:
5208
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5209

P
Paul Menage 已提交
5210
	if (!retval) {
5211
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5222 5223
out_unlock:
	put_task_struct(p);
5224
	put_online_cpus();
L
Linus Torvalds 已提交
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5255
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5256 5257 5258 5259
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5260
	struct task_struct *p;
L
Linus Torvalds 已提交
5261 5262
	int retval;

5263
	get_online_cpus();
L
Linus Torvalds 已提交
5264 5265 5266 5267 5268 5269 5270
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5271 5272 5273 5274
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5275
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5276 5277 5278

out_unlock:
	read_unlock(&tasklist_lock);
5279
	put_online_cpus();
L
Linus Torvalds 已提交
5280

5281
	return retval;
L
Linus Torvalds 已提交
5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5312 5313
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5314 5315 5316
 */
asmlinkage long sys_sched_yield(void)
{
5317
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5318

5319
	schedstat_inc(rq, yld_count);
5320
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5321 5322 5323 5324 5325 5326

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5327
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5328 5329 5330 5331 5332 5333 5334 5335
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5336
static void __cond_resched(void)
L
Linus Torvalds 已提交
5337
{
5338 5339 5340
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5341 5342 5343 5344 5345
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5346 5347 5348 5349 5350 5351 5352
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5353
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5354
{
5355 5356
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5357 5358 5359 5360 5361
		__cond_resched();
		return 1;
	}
	return 0;
}
5362
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5363 5364 5365 5366 5367

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5368
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5369 5370 5371
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5372
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5373
{
N
Nick Piggin 已提交
5374
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5375 5376
	int ret = 0;

N
Nick Piggin 已提交
5377
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5378
		spin_unlock(lock);
N
Nick Piggin 已提交
5379 5380 5381 5382
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5383
		ret = 1;
L
Linus Torvalds 已提交
5384 5385
		spin_lock(lock);
	}
J
Jan Kara 已提交
5386
	return ret;
L
Linus Torvalds 已提交
5387 5388 5389 5390 5391 5392 5393
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5394
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5395
		local_bh_enable();
L
Linus Torvalds 已提交
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5407
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5418
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5419 5420 5421 5422 5423 5424 5425
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5426
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5427

5428
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5429 5430 5431
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5432
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5433 5434 5435 5436 5437
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5438
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5439 5440
	long ret;

5441
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5442 5443 5444
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5445
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5466
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5467
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5491
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5492
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5509
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5510
	unsigned int time_slice;
5511
	int retval;
L
Linus Torvalds 已提交
5512 5513 5514
	struct timespec t;

	if (pid < 0)
5515
		return -EINVAL;
L
Linus Torvalds 已提交
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5527 5528 5529 5530 5531 5532
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5533
		time_slice = DEF_TIMESLICE;
5534
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5535 5536 5537 5538 5539
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5540 5541
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5542 5543
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5544
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5545
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5546 5547
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5548

L
Linus Torvalds 已提交
5549 5550 5551 5552 5553
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5554
static const char stat_nam[] = "RSDTtZX";
5555

5556
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5557 5558
{
	unsigned long free = 0;
5559
	unsigned state;
L
Linus Torvalds 已提交
5560 5561

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5562
	printk(KERN_INFO "%-13.13s %c", p->comm,
5563
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5564
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5565
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5566
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5567
	else
I
Ingo Molnar 已提交
5568
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5569 5570
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5571
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5572
	else
I
Ingo Molnar 已提交
5573
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5574 5575 5576
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5577
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5578 5579
		while (!*n)
			n++;
5580
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5581 5582
	}
#endif
5583
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5584
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5585

5586
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5587 5588
}

I
Ingo Molnar 已提交
5589
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5590
{
5591
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5592

5593 5594 5595
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5596
#else
5597 5598
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5599 5600 5601 5602 5603 5604 5605 5606
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5607
		if (!state_filter || (p->state & state_filter))
5608
			sched_show_task(p);
L
Linus Torvalds 已提交
5609 5610
	} while_each_thread(g, p);

5611 5612
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5613 5614 5615
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5616
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5617 5618 5619 5620 5621
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5622 5623
}

I
Ingo Molnar 已提交
5624 5625
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5626
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5627 5628
}

5629 5630 5631 5632 5633 5634 5635 5636
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5637
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5638
{
5639
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5640 5641
	unsigned long flags;

I
Ingo Molnar 已提交
5642 5643 5644
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5645
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5646
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5647
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5648 5649 5650

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5651 5652 5653
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5654 5655 5656
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5657 5658 5659
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5660
	task_thread_info(idle)->preempt_count = 0;
5661
#endif
I
Ingo Molnar 已提交
5662 5663 5664 5665
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5702 5703 5704 5705
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5706
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5725
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5726 5727
 * call is not atomic; no spinlocks may be held.
 */
5728
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5729
{
5730
	struct migration_req req;
L
Linus Torvalds 已提交
5731
	unsigned long flags;
5732
	struct rq *rq;
5733
	int ret = 0;
L
Linus Torvalds 已提交
5734 5735

	rq = task_rq_lock(p, &flags);
5736
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5737 5738 5739 5740
		ret = -EINVAL;
		goto out;
	}

5741 5742 5743 5744 5745 5746
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5747
	if (p->sched_class->set_cpus_allowed)
5748
		p->sched_class->set_cpus_allowed(p, new_mask);
5749
	else {
5750 5751
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5752 5753
	}

L
Linus Torvalds 已提交
5754
	/* Can the task run on the task's current CPU? If so, we're done */
5755
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5756 5757
		goto out;

5758
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5759 5760 5761 5762 5763 5764 5765 5766 5767
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5768

L
Linus Torvalds 已提交
5769 5770
	return ret;
}
5771
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5772 5773

/*
I
Ingo Molnar 已提交
5774
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5775 5776 5777 5778 5779 5780
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5781 5782
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5783
 */
5784
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5785
{
5786
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5787
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5788 5789

	if (unlikely(cpu_is_offline(dest_cpu)))
5790
		return ret;
L
Linus Torvalds 已提交
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5803
	on_rq = p->se.on_rq;
5804
	if (on_rq)
5805
		deactivate_task(rq_src, p, 0);
5806

L
Linus Torvalds 已提交
5807
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5808 5809 5810
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5811
	}
5812
	ret = 1;
L
Linus Torvalds 已提交
5813 5814
out:
	double_rq_unlock(rq_src, rq_dest);
5815
	return ret;
L
Linus Torvalds 已提交
5816 5817 5818 5819 5820 5821 5822
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5823
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5824 5825
{
	int cpu = (long)data;
5826
	struct rq *rq;
L
Linus Torvalds 已提交
5827 5828 5829 5830 5831 5832

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5833
		struct migration_req *req;
L
Linus Torvalds 已提交
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5856
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5857 5858
		list_del_init(head->next);

N
Nick Piggin 已提交
5859 5860 5861
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5891
/*
5892
 * Figure out where task on dead CPU should go, use force if necessary.
5893 5894
 * NOTE: interrupts should be disabled by the caller
 */
5895
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5896
{
5897
	unsigned long flags;
L
Linus Torvalds 已提交
5898
	cpumask_t mask;
5899 5900
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5901

5902 5903 5904 5905 5906 5907 5908
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
5909
		if (dest_cpu >= nr_cpu_ids)
5910 5911 5912
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
5913
		if (dest_cpu >= nr_cpu_ids) {
5914 5915 5916
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
5917 5918 5919 5920
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5921
			 * cpuset_cpus_allowed() will not block. It must be
5922 5923
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5924
			rq = task_rq_lock(p, &flags);
5925
			p->cpus_allowed = cpus_allowed;
5926 5927
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5928

5929 5930 5931 5932 5933
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5934
			if (p->mm && printk_ratelimit()) {
5935 5936
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5937 5938
					task_pid_nr(p), p->comm, dead_cpu);
			}
5939
		}
5940
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5941 5942 5943 5944 5945 5946 5947 5948 5949
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5950
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5951
{
5952
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5966
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5967

5968
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5969

5970 5971
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5972 5973
			continue;

5974 5975 5976
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5977

5978
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5979 5980
}

I
Ingo Molnar 已提交
5981 5982
/*
 * Schedules idle task to be the next runnable task on current CPU.
5983 5984
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5985 5986 5987
 */
void sched_idle_next(void)
{
5988
	int this_cpu = smp_processor_id();
5989
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5990 5991 5992 5993
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5994
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5995

5996 5997 5998
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5999 6000 6001
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6002
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6003

6004 6005
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6006 6007 6008 6009

	spin_unlock_irqrestore(&rq->lock, flags);
}

6010 6011
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6025
/* called under rq->lock with disabled interrupts */
6026
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6027
{
6028
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6029 6030

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6031
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6032 6033

	/* Cannot have done final schedule yet: would have vanished. */
6034
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6035

6036
	get_task_struct(p);
L
Linus Torvalds 已提交
6037 6038 6039

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6040
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6041 6042
	 * fine.
	 */
6043
	spin_unlock_irq(&rq->lock);
6044
	move_task_off_dead_cpu(dead_cpu, p);
6045
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6046

6047
	put_task_struct(p);
L
Linus Torvalds 已提交
6048 6049 6050 6051 6052
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6053
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6054
	struct task_struct *next;
6055

I
Ingo Molnar 已提交
6056 6057 6058
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6059
		update_rq_clock(rq);
6060
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6061 6062 6063
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
6064

L
Linus Torvalds 已提交
6065 6066 6067 6068
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6069 6070 6071
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6072 6073
	{
		.procname	= "sched_domain",
6074
		.mode		= 0555,
6075
	},
I
Ingo Molnar 已提交
6076
	{0, },
6077 6078 6079
};

static struct ctl_table sd_ctl_root[] = {
6080
	{
6081
		.ctl_name	= CTL_KERN,
6082
		.procname	= "kernel",
6083
		.mode		= 0555,
6084 6085
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6086
	{0, },
6087 6088 6089 6090 6091
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6092
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6093 6094 6095 6096

	return entry;
}

6097 6098
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6099
	struct ctl_table *entry;
6100

6101 6102 6103
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6104
	 * will always be set. In the lowest directory the names are
6105 6106 6107
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6108 6109
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6110 6111 6112
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6113 6114 6115 6116 6117

	kfree(*tablep);
	*tablep = NULL;
}

6118
static void
6119
set_table_entry(struct ctl_table *entry,
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6133
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6134

6135 6136 6137
	if (table == NULL)
		return NULL;

6138
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6139
		sizeof(long), 0644, proc_doulongvec_minmax);
6140
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6141
		sizeof(long), 0644, proc_doulongvec_minmax);
6142
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6143
		sizeof(int), 0644, proc_dointvec_minmax);
6144
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6145
		sizeof(int), 0644, proc_dointvec_minmax);
6146
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6147
		sizeof(int), 0644, proc_dointvec_minmax);
6148
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6149
		sizeof(int), 0644, proc_dointvec_minmax);
6150
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6151
		sizeof(int), 0644, proc_dointvec_minmax);
6152
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6153
		sizeof(int), 0644, proc_dointvec_minmax);
6154
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6155
		sizeof(int), 0644, proc_dointvec_minmax);
6156
	set_table_entry(&table[9], "cache_nice_tries",
6157 6158
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6159
	set_table_entry(&table[10], "flags", &sd->flags,
6160
		sizeof(int), 0644, proc_dointvec_minmax);
6161
	/* &table[11] is terminator */
6162 6163 6164 6165

	return table;
}

6166
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6167 6168 6169 6170 6171 6172 6173 6174 6175
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6176 6177
	if (table == NULL)
		return NULL;
6178 6179 6180 6181 6182

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6183
		entry->mode = 0555;
6184 6185 6186 6187 6188 6189 6190 6191
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6192
static void register_sched_domain_sysctl(void)
6193 6194 6195 6196 6197
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6198 6199 6200
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6201 6202 6203
	if (entry == NULL)
		return;

6204
	for_each_online_cpu(i) {
6205 6206
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6207
		entry->mode = 0555;
6208
		entry->child = sd_alloc_ctl_cpu_table(i);
6209
		entry++;
6210
	}
6211 6212

	WARN_ON(sd_sysctl_header);
6213 6214
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6215

6216
/* may be called multiple times per register */
6217 6218
static void unregister_sched_domain_sysctl(void)
{
6219 6220
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6221
	sd_sysctl_header = NULL;
6222 6223
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6224
}
6225
#else
6226 6227 6228 6229
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6230 6231 6232 6233
{
}
#endif

6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6264 6265 6266 6267
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6268 6269
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6270 6271
{
	struct task_struct *p;
6272
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6273
	unsigned long flags;
6274
	struct rq *rq;
L
Linus Torvalds 已提交
6275 6276

	switch (action) {
6277

L
Linus Torvalds 已提交
6278
	case CPU_UP_PREPARE:
6279
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6280
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6281 6282 6283 6284 6285
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6286
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6287 6288 6289
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6290

L
Linus Torvalds 已提交
6291
	case CPU_ONLINE:
6292
	case CPU_ONLINE_FROZEN:
6293
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6294
		wake_up_process(cpu_rq(cpu)->migration_thread);
6295 6296 6297 6298 6299 6300

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6301 6302

			set_rq_online(rq);
6303 6304
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6305
		break;
6306

L
Linus Torvalds 已提交
6307 6308
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6309
	case CPU_UP_CANCELED_FROZEN:
6310 6311
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6312
		/* Unbind it from offline cpu so it can run. Fall thru. */
6313 6314
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6315 6316 6317
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6318

L
Linus Torvalds 已提交
6319
	case CPU_DEAD:
6320
	case CPU_DEAD_FROZEN:
6321
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6322 6323 6324 6325 6326
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6327
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6328
		update_rq_clock(rq);
6329
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6330
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6331 6332
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6333
		migrate_dead_tasks(cpu);
6334
		spin_unlock_irq(&rq->lock);
6335
		cpuset_unlock();
L
Linus Torvalds 已提交
6336 6337 6338
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6339 6340 6341 6342 6343
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6344 6345
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6346 6347
			struct migration_req *req;

L
Linus Torvalds 已提交
6348
			req = list_entry(rq->migration_queue.next,
6349
					 struct migration_req, list);
L
Linus Torvalds 已提交
6350 6351 6352 6353 6354
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6355

6356 6357
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6358 6359 6360 6361 6362
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6363
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6364 6365 6366
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6367 6368 6369 6370 6371 6372 6373 6374
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6375
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6376 6377 6378 6379
	.notifier_call = migration_call,
	.priority = 10
};

6380
void __init migration_init(void)
L
Linus Torvalds 已提交
6381 6382
{
	void *cpu = (void *)(long)smp_processor_id();
6383
	int err;
6384 6385

	/* Start one for the boot CPU: */
6386 6387
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6388 6389 6390 6391 6392 6393
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6394

6395
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6396

6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6419 6420
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6421
{
I
Ingo Molnar 已提交
6422
	struct sched_group *group = sd->groups;
6423
	char str[256];
L
Linus Torvalds 已提交
6424

6425
	cpulist_scnprintf(str, sizeof(str), sd->span);
6426
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6427 6428 6429 6430 6431 6432 6433 6434 6435

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6436 6437
	}

6438 6439
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6440 6441 6442 6443 6444 6445 6446 6447 6448

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6449

I
Ingo Molnar 已提交
6450
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6451
	do {
I
Ingo Molnar 已提交
6452 6453 6454
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6455 6456 6457
			break;
		}

I
Ingo Molnar 已提交
6458 6459 6460 6461 6462 6463
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6464

I
Ingo Molnar 已提交
6465 6466 6467 6468 6469
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6470

6471
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6472 6473 6474 6475
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6476

6477
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6478

6479
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6480
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6481

I
Ingo Molnar 已提交
6482 6483 6484
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6485

6486
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6487
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6488

6489
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6490 6491 6492 6493
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6494

I
Ingo Molnar 已提交
6495 6496
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6497
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6498
	int level = 0;
L
Linus Torvalds 已提交
6499

I
Ingo Molnar 已提交
6500 6501 6502 6503
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6504

I
Ingo Molnar 已提交
6505 6506
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6507 6508 6509 6510 6511 6512
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6513
	for (;;) {
6514
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6515
			break;
L
Linus Torvalds 已提交
6516 6517
		level++;
		sd = sd->parent;
6518
		if (!sd)
I
Ingo Molnar 已提交
6519 6520
			break;
	}
6521
	kfree(groupmask);
L
Linus Torvalds 已提交
6522
}
6523
#else /* !CONFIG_SCHED_DEBUG */
6524
# define sched_domain_debug(sd, cpu) do { } while (0)
6525
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6526

6527
static int sd_degenerate(struct sched_domain *sd)
6528 6529 6530 6531 6532 6533 6534 6535
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6536 6537 6538
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6552 6553
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6572 6573 6574
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6575 6576 6577 6578 6579 6580 6581
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6582 6583 6584 6585 6586 6587 6588 6589 6590
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6591 6592
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6593

6594 6595
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6596 6597 6598 6599 6600 6601 6602
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6603
	cpu_set(rq->cpu, rd->span);
6604
	if (cpu_isset(rq->cpu, cpu_online_map))
6605
		set_rq_online(rq);
G
Gregory Haskins 已提交
6606 6607 6608 6609

	spin_unlock_irqrestore(&rq->lock, flags);
}

6610
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6611 6612 6613
{
	memset(rd, 0, sizeof(*rd));

6614 6615
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6616 6617

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6618 6619 6620 6621
}

static void init_defrootdomain(void)
{
6622
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6623 6624 6625
	atomic_set(&def_root_domain.refcount, 1);
}

6626
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6627 6628 6629 6630 6631 6632 6633
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6634
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6635 6636 6637 6638

	return rd;
}

L
Linus Torvalds 已提交
6639
/*
I
Ingo Molnar 已提交
6640
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6641 6642
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6643 6644
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6645
{
6646
	struct rq *rq = cpu_rq(cpu);
6647 6648 6649 6650 6651 6652 6653
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6654
		if (sd_parent_degenerate(tmp, parent)) {
6655
			tmp->parent = parent->parent;
6656 6657 6658
			if (parent->parent)
				parent->parent->child = tmp;
		}
6659 6660
	}

6661
	if (sd && sd_degenerate(sd)) {
6662
		sd = sd->parent;
6663 6664 6665
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6666 6667 6668

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6669
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6670
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6671 6672 6673
}

/* cpus with isolated domains */
6674
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6689
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6690 6691

/*
6692 6693 6694 6695
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6696 6697 6698 6699 6700
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6701
static void
6702
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6703
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6704 6705 6706
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6707 6708 6709 6710
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6711 6712 6713
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6714
		struct sched_group *sg;
6715
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6716 6717
		int j;

6718
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6719 6720
			continue;

6721
		cpus_clear(sg->cpumask);
6722
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6723

6724 6725
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6726 6727
				continue;

6728
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6740
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6741

6742
#ifdef CONFIG_NUMA
6743

6744 6745 6746 6747 6748
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6749
 * Find the next node to include in a given scheduling domain. Simply
6750 6751 6752 6753
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6754
static int find_next_best_node(int node, nodemask_t *used_nodes)
6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6768
		if (node_isset(n, *used_nodes))
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6780
	node_set(best_node, *used_nodes);
6781 6782 6783 6784 6785 6786
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6787
 * @span: resulting cpumask
6788
 *
I
Ingo Molnar 已提交
6789
 * Given a node, construct a good cpumask for its sched_domain to span. It
6790 6791 6792
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6793
static void sched_domain_node_span(int node, cpumask_t *span)
6794
{
6795 6796
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6797
	int i;
6798

6799
	cpus_clear(*span);
6800
	nodes_clear(used_nodes);
6801

6802
	cpus_or(*span, *span, *nodemask);
6803
	node_set(node, used_nodes);
6804 6805

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6806
		int next_node = find_next_best_node(node, &used_nodes);
6807

6808
		node_to_cpumask_ptr_next(nodemask, next_node);
6809
		cpus_or(*span, *span, *nodemask);
6810 6811
	}
}
6812
#endif /* CONFIG_NUMA */
6813

6814
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6815

6816
/*
6817
 * SMT sched-domains:
6818
 */
L
Linus Torvalds 已提交
6819 6820
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6821
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6822

I
Ingo Molnar 已提交
6823
static int
6824 6825
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6826
{
6827 6828
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6829 6830
	return cpu;
}
6831
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6832

6833 6834 6835
/*
 * multi-core sched-domains:
 */
6836 6837
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6838
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6839
#endif /* CONFIG_SCHED_MC */
6840 6841

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6842
static int
6843 6844
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6845
{
6846
	int group;
6847 6848 6849 6850

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6851 6852 6853
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6854 6855
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6856
static int
6857 6858
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6859
{
6860 6861
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6862 6863 6864 6865
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6866
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6867
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6868

I
Ingo Molnar 已提交
6869
static int
6870 6871
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6872
{
6873
	int group;
6874
#ifdef CONFIG_SCHED_MC
6875 6876 6877
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6878
#elif defined(CONFIG_SCHED_SMT)
6879 6880 6881
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6882
#else
6883
	group = cpu;
L
Linus Torvalds 已提交
6884
#endif
6885 6886 6887
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6888 6889 6890 6891
}

#ifdef CONFIG_NUMA
/*
6892 6893 6894
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6895
 */
6896
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6897
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6898

6899
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6900
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6901

6902
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6903
				 struct sched_group **sg, cpumask_t *nodemask)
6904
{
6905 6906
	int group;

6907 6908 6909
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
6910 6911 6912 6913

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6914
}
6915

6916 6917 6918 6919 6920 6921 6922
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6923 6924 6925
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6926

6927 6928 6929 6930 6931 6932 6933 6934
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6935

6936 6937 6938 6939
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6940
}
6941
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6942

6943
#ifdef CONFIG_NUMA
6944
/* Free memory allocated for various sched_group structures */
6945
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6946
{
6947
	int cpu, i;
6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6959 6960 6961
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6978
#else /* !CONFIG_NUMA */
6979
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6980 6981
{
}
6982
#endif /* CONFIG_NUMA */
6983

6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7010 7011
	sd->groups->__cpu_power = 0;

7012 7013 7014 7015 7016 7017 7018 7019 7020 7021
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7022
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7023 7024 7025 7026 7027 7028 7029 7030
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7031
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7032 7033 7034 7035
		group = group->next;
	} while (group != child->groups);
}

7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7047
	sd->level = SD_LV_##type;				\
7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7096 7097 7098 7099
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7100 7101 7102 7103 7104 7105
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7131
/*
7132 7133
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7134
 */
7135 7136
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7137 7138
{
	int i;
G
Gregory Haskins 已提交
7139
	struct root_domain *rd;
7140 7141
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7142 7143
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7144
	int sd_allnodes = 0;
7145 7146 7147 7148

	/*
	 * Allocate the per-node list of sched groups
	 */
7149
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7150
				    GFP_KERNEL);
7151 7152
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7153
		return -ENOMEM;
7154 7155
	}
#endif
L
Linus Torvalds 已提交
7156

7157
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7158 7159
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7160 7161 7162
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7163 7164 7165
		return -ENOMEM;
	}

7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7185
	/*
7186
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7187
	 */
7188
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7189
		struct sched_domain *sd = NULL, *p;
7190
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7191

7192 7193
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7194 7195

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7196
		if (cpus_weight(*cpu_map) >
7197
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7198
			sd = &per_cpu(allnodes_domains, i);
7199
			SD_INIT(sd, ALLNODES);
7200
			set_domain_attribute(sd, attr);
7201
			sd->span = *cpu_map;
7202
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7203
			p = sd;
7204
			sd_allnodes = 1;
7205 7206 7207
		} else
			p = NULL;

L
Linus Torvalds 已提交
7208
		sd = &per_cpu(node_domains, i);
7209
		SD_INIT(sd, NODE);
7210
		set_domain_attribute(sd, attr);
7211
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7212
		sd->parent = p;
7213 7214
		if (p)
			p->child = sd;
7215
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7216 7217 7218 7219
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7220
		SD_INIT(sd, CPU);
7221
		set_domain_attribute(sd, attr);
7222
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7223
		sd->parent = p;
7224 7225
		if (p)
			p->child = sd;
7226
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7227

7228 7229 7230
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7231
		SD_INIT(sd, MC);
7232
		set_domain_attribute(sd, attr);
7233 7234 7235
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7236
		p->child = sd;
7237
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7238 7239
#endif

L
Linus Torvalds 已提交
7240 7241 7242
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7243
		SD_INIT(sd, SIBLING);
7244
		set_domain_attribute(sd, attr);
7245
		sd->span = per_cpu(cpu_sibling_map, i);
7246
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7247
		sd->parent = p;
7248
		p->child = sd;
7249
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7250 7251 7252 7253 7254
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7255
	for_each_cpu_mask(i, *cpu_map) {
7256 7257 7258 7259 7260 7261
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7262 7263
			continue;

I
Ingo Molnar 已提交
7264
		init_sched_build_groups(this_sibling_map, cpu_map,
7265 7266
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7267 7268 7269
	}
#endif

7270 7271 7272
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7273 7274 7275 7276 7277 7278
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7279
			continue;
7280

I
Ingo Molnar 已提交
7281
		init_sched_build_groups(this_core_map, cpu_map,
7282 7283
					&cpu_to_core_group,
					send_covered, tmpmask);
7284 7285 7286
	}
#endif

L
Linus Torvalds 已提交
7287 7288
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7289 7290
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7291

7292 7293 7294
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7295 7296
			continue;

7297 7298 7299
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7300 7301 7302 7303
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7304 7305 7306 7307 7308 7309 7310
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7311 7312 7313 7314

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7315 7316 7317
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7318 7319
		int j;

7320 7321 7322 7323 7324
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7325
			sched_group_nodes[i] = NULL;
7326
			continue;
7327
		}
7328

7329
		sched_domain_node_span(i, domainspan);
7330
		cpus_and(*domainspan, *domainspan, *cpu_map);
7331

7332
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7333 7334 7335 7336 7337
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7338
		sched_group_nodes[i] = sg;
7339
		for_each_cpu_mask(j, *nodemask) {
7340
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7341

7342 7343 7344
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7345
		sg->__cpu_power = 0;
7346
		sg->cpumask = *nodemask;
7347
		sg->next = sg;
7348
		cpus_or(*covered, *covered, *nodemask);
7349 7350 7351
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7352
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7353
			int n = (i + j) % MAX_NUMNODES;
7354
			node_to_cpumask_ptr(pnodemask, n);
7355

7356 7357 7358 7359
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7360 7361
				break;

7362 7363
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7364 7365
				continue;

7366 7367
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7368 7369 7370
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7371
				goto error;
7372
			}
7373
			sg->__cpu_power = 0;
7374
			sg->cpumask = *tmpmask;
7375
			sg->next = prev->next;
7376
			cpus_or(*covered, *covered, *tmpmask);
7377 7378 7379 7380
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7381 7382 7383
#endif

	/* Calculate CPU power for physical packages and nodes */
7384
#ifdef CONFIG_SCHED_SMT
7385
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7386 7387
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7388
		init_sched_groups_power(i, sd);
7389
	}
L
Linus Torvalds 已提交
7390
#endif
7391
#ifdef CONFIG_SCHED_MC
7392
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7393 7394
		struct sched_domain *sd = &per_cpu(core_domains, i);

7395
		init_sched_groups_power(i, sd);
7396 7397
	}
#endif
7398

7399
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7400 7401
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7402
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7403 7404
	}

7405
#ifdef CONFIG_NUMA
7406 7407
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7408

7409 7410
	if (sd_allnodes) {
		struct sched_group *sg;
7411

7412 7413
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7414 7415
		init_numa_sched_groups_power(sg);
	}
7416 7417
#endif

L
Linus Torvalds 已提交
7418
	/* Attach the domains */
7419
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7420 7421 7422
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7423 7424
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7425 7426 7427
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7428
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7429
	}
7430

7431
	SCHED_CPUMASK_FREE((void *)allmasks);
7432 7433
	return 0;

7434
#ifdef CONFIG_NUMA
7435
error:
7436 7437
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7438
	return -ENOMEM;
7439
#endif
L
Linus Torvalds 已提交
7440
}
P
Paul Jackson 已提交
7441

7442 7443 7444 7445 7446
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7447 7448
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7449 7450
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7451 7452 7453 7454 7455 7456 7457 7458

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7459 7460 7461 7462
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474
/*
 * Free current domain masks.
 * Called after all cpus are attached to NULL domain.
 */
static void free_sched_domains(void)
{
	ndoms_cur = 0;
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = &fallback_doms;
}

7475
/*
I
Ingo Molnar 已提交
7476
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7477 7478
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7479
 */
7480
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7481
{
7482 7483
	int err;

7484
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7485 7486 7487 7488 7489
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7490
	dattr_cur = NULL;
7491
	err = build_sched_domains(doms_cur);
7492
	register_sched_domain_sysctl();
7493 7494

	return err;
7495 7496
}

7497 7498
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7499
{
7500
	free_sched_groups(cpu_map, tmpmask);
7501
}
L
Linus Torvalds 已提交
7502

7503 7504 7505 7506
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7507
static void detach_destroy_domains(const cpumask_t *cpu_map)
7508
{
7509
	cpumask_t tmpmask;
7510 7511
	int i;

7512 7513
	unregister_sched_domain_sysctl();

7514
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7515
		cpu_attach_domain(NULL, &def_root_domain, i);
7516
	synchronize_sched();
7517
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7518 7519
}

7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7536 7537
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7538
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7539 7540 7541 7542
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7543 7544 7545
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7546 7547 7548
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7549 7550
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7551 7552 7553 7554 7555 7556
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7557 7558
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7559 7560 7561
{
	int i, j;

7562
	mutex_lock(&sched_domains_mutex);
7563

7564 7565 7566
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7567 7568 7569 7570
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7571
		dattr_new = NULL;
P
Paul Jackson 已提交
7572 7573 7574 7575 7576
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7577 7578
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7590 7591
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7592 7593 7594
				goto match2;
		}
		/* no match - add a new doms_new */
7595 7596
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7597 7598 7599 7600 7601 7602 7603
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7604
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7605
	doms_cur = doms_new;
7606
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7607
	ndoms_cur = ndoms_new;
7608 7609

	register_sched_domain_sysctl();
7610

7611
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7612 7613
}

7614
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7615
int arch_reinit_sched_domains(void)
7616 7617 7618
{
	int err;

7619
	get_online_cpus();
7620
	mutex_lock(&sched_domains_mutex);
7621
	detach_destroy_domains(&cpu_online_map);
7622
	free_sched_domains();
7623
	err = arch_init_sched_domains(&cpu_online_map);
7624
	mutex_unlock(&sched_domains_mutex);
7625
	put_online_cpus();
7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7652 7653
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7654 7655 7656
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7657 7658
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7659 7660 7661 7662 7663 7664 7665
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7666 7667
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7668 7669 7670
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7691
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7692

L
Linus Torvalds 已提交
7693
/*
I
Ingo Molnar 已提交
7694
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7695
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7696
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7697 7698 7699 7700 7701
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
P
Peter Zijlstra 已提交
7702 7703
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7704 7705
	switch (action) {
	case CPU_DOWN_PREPARE:
7706
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7707 7708 7709 7710
		disable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
7711
		detach_destroy_domains(&cpu_online_map);
7712
		free_sched_domains();
L
Linus Torvalds 已提交
7713 7714
		return NOTIFY_OK;

P
Peter Zijlstra 已提交
7715

L
Linus Torvalds 已提交
7716
	case CPU_DOWN_FAILED:
7717
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7718
	case CPU_ONLINE:
7719
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7720 7721 7722 7723
		enable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7724
	case CPU_DEAD:
7725
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7726 7727 7728 7729 7730 7731 7732 7733
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

7734 7735 7736 7737 7738 7739 7740
#ifndef CONFIG_CPUSETS
	/*
	 * Create default domain partitioning if cpusets are disabled.
	 * Otherwise we let cpusets rebuild the domains based on the
	 * current setup.
	 */

L
Linus Torvalds 已提交
7741
	/* The hotplug lock is already held by cpu_up/cpu_down */
7742
	arch_init_sched_domains(&cpu_online_map);
7743
#endif
L
Linus Torvalds 已提交
7744 7745 7746 7747 7748 7749

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7750 7751
	cpumask_t non_isolated_cpus;

7752 7753 7754 7755 7756
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7757
	get_online_cpus();
7758
	mutex_lock(&sched_domains_mutex);
7759
	arch_init_sched_domains(&cpu_online_map);
7760
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7761 7762
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7763
	mutex_unlock(&sched_domains_mutex);
7764
	put_online_cpus();
L
Linus Torvalds 已提交
7765 7766
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7767
	init_hrtick();
7768 7769

	/* Move init over to a non-isolated CPU */
7770
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7771
		BUG();
I
Ingo Molnar 已提交
7772
	sched_init_granularity();
L
Linus Torvalds 已提交
7773 7774 7775 7776
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7777
	sched_init_granularity();
L
Linus Torvalds 已提交
7778 7779 7780 7781 7782 7783 7784 7785 7786 7787
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7788
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7789 7790
{
	cfs_rq->tasks_timeline = RB_ROOT;
7791
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7792 7793 7794
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7795
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7796 7797
}

P
Peter Zijlstra 已提交
7798 7799 7800 7801 7802 7803 7804
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
7805
		INIT_LIST_HEAD(array->queue + i);
P
Peter Zijlstra 已提交
7806 7807 7808 7809 7810
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7811
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7812 7813
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7814 7815 7816 7817 7818 7819 7820
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7821 7822
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7823

7824
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7825
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7826 7827
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7828 7829
}

P
Peter Zijlstra 已提交
7830
#ifdef CONFIG_FAIR_GROUP_SCHED
7831 7832 7833
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7834
{
7835
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7836 7837 7838 7839 7840 7841 7842
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7843 7844 7845 7846
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7847 7848 7849 7850 7851
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7852 7853
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7854
	se->load.inv_weight = 0;
7855
	se->parent = parent;
P
Peter Zijlstra 已提交
7856
}
7857
#endif
P
Peter Zijlstra 已提交
7858

7859
#ifdef CONFIG_RT_GROUP_SCHED
7860 7861 7862
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7863
{
7864 7865
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7866 7867 7868 7869
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7870
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7871 7872 7873 7874
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7875 7876 7877
	if (!rt_se)
		return;

7878 7879 7880 7881 7882
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7883
	rt_se->my_q = rt_rq;
7884
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7885 7886 7887 7888
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7889 7890
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7891
	int i, j;
7892 7893 7894 7895 7896 7897 7898
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7899 7900 7901
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7902 7903 7904 7905 7906 7907
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
7908
		ptr = (unsigned long)alloc_bootmem(alloc_size);
7909 7910 7911 7912 7913 7914 7915

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7916 7917 7918 7919 7920 7921 7922

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7923 7924
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
7925 7926 7927 7928 7929
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7930 7931 7932 7933 7934 7935 7936 7937
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7938 7939
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7940
	}
I
Ingo Molnar 已提交
7941

G
Gregory Haskins 已提交
7942 7943 7944 7945
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7946 7947 7948 7949 7950 7951
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7952 7953 7954
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
7955 7956
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7957

7958
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7959
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7960 7961 7962 7963 7964 7965
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
7966 7967
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
7968

7969
	for_each_possible_cpu(i) {
7970
		struct rq *rq;
L
Linus Torvalds 已提交
7971 7972 7973

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7974
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7975
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7976
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7977
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7978
#ifdef CONFIG_FAIR_GROUP_SCHED
7979
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7980
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8001
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8002
#elif defined CONFIG_USER_SCHED
8003 8004
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8016
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8017
				&per_cpu(init_cfs_rq, i),
8018 8019
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8020

8021
#endif
D
Dhaval Giani 已提交
8022 8023 8024
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8025
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8026
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8027
#ifdef CONFIG_CGROUP_SCHED
8028
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8029
#elif defined CONFIG_USER_SCHED
8030
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8031
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8032
				&per_cpu(init_rt_rq, i),
8033 8034
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8035
#endif
I
Ingo Molnar 已提交
8036
#endif
L
Linus Torvalds 已提交
8037

I
Ingo Molnar 已提交
8038 8039
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8040
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8041
		rq->sd = NULL;
G
Gregory Haskins 已提交
8042
		rq->rd = NULL;
L
Linus Torvalds 已提交
8043
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8044
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8045
		rq->push_cpu = 0;
8046
		rq->cpu = i;
8047
		rq->online = 0;
L
Linus Torvalds 已提交
8048 8049
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8050
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8051
#endif
P
Peter Zijlstra 已提交
8052
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8053 8054 8055
		atomic_set(&rq->nr_iowait, 0);
	}

8056
	set_load_weight(&init_task);
8057

8058 8059 8060 8061
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8062 8063 8064 8065
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

8066 8067 8068 8069
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8083 8084 8085 8086
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8087 8088

	scheduler_running = 1;
L
Linus Torvalds 已提交
8089 8090 8091 8092 8093
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8094
#ifdef in_atomic
L
Linus Torvalds 已提交
8095 8096 8097 8098 8099 8100 8101
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8102
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8103 8104 8105
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8106
		debug_show_held_locks(current);
8107 8108
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8109 8110 8111 8112 8113 8114 8115 8116
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8117 8118 8119
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8120

8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8132 8133
void normalize_rt_tasks(void)
{
8134
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8135
	unsigned long flags;
8136
	struct rq *rq;
L
Linus Torvalds 已提交
8137

8138
	read_lock_irqsave(&tasklist_lock, flags);
8139
	do_each_thread(g, p) {
8140 8141 8142 8143 8144 8145
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8146 8147
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8148 8149 8150
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8151
#endif
I
Ingo Molnar 已提交
8152 8153 8154 8155 8156 8157 8158 8159

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8160
			continue;
I
Ingo Molnar 已提交
8161
		}
L
Linus Torvalds 已提交
8162

8163
		spin_lock(&p->pi_lock);
8164
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8165

8166
		normalize_task(rq, p);
8167

8168
		__task_rq_unlock(rq);
8169
		spin_unlock(&p->pi_lock);
8170 8171
	} while_each_thread(g, p);

8172
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8173 8174 8175
}

#endif /* CONFIG_MAGIC_SYSRQ */
8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8194
struct task_struct *curr_task(int cpu)
8195 8196 8197 8198 8199 8200 8201 8202 8203 8204
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8205 8206
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8207 8208 8209 8210 8211 8212 8213
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8214
void set_curr_task(int cpu, struct task_struct *p)
8215 8216 8217 8218 8219
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8220

8221 8222
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8237 8238
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8239 8240
{
	struct cfs_rq *cfs_rq;
8241
	struct sched_entity *se, *parent_se;
8242
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8243 8244
	int i;

8245
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8246 8247
	if (!tg->cfs_rq)
		goto err;
8248
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8249 8250
	if (!tg->se)
		goto err;
8251 8252

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8253 8254

	for_each_possible_cpu(i) {
8255
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8256

P
Peter Zijlstra 已提交
8257 8258
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8259 8260 8261
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8262 8263
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8264 8265 8266
		if (!se)
			goto err;

8267 8268
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8287
#else /* !CONFG_FAIR_GROUP_SCHED */
8288 8289 8290 8291
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8292 8293
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8305
#endif /* CONFIG_FAIR_GROUP_SCHED */
8306 8307

#ifdef CONFIG_RT_GROUP_SCHED
8308 8309 8310 8311
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8312 8313
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8325 8326
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8327 8328
{
	struct rt_rq *rt_rq;
8329
	struct sched_rt_entity *rt_se, *parent_se;
8330 8331 8332
	struct rq *rq;
	int i;

8333
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8334 8335
	if (!tg->rt_rq)
		goto err;
8336
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8337 8338 8339
	if (!tg->rt_se)
		goto err;

8340 8341
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8342 8343 8344 8345

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8346 8347 8348 8349
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8350

P
Peter Zijlstra 已提交
8351 8352 8353 8354
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8355

8356 8357
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8358 8359
	}

8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8376
#else /* !CONFIG_RT_GROUP_SCHED */
8377 8378 8379 8380
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8381 8382
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8394
#endif /* CONFIG_RT_GROUP_SCHED */
8395

8396
#ifdef CONFIG_GROUP_SCHED
8397 8398 8399 8400 8401 8402 8403 8404
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8405
struct task_group *sched_create_group(struct task_group *parent)
8406 8407 8408 8409 8410 8411 8412 8413 8414
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8415
	if (!alloc_fair_sched_group(tg, parent))
8416 8417
		goto err;

8418
	if (!alloc_rt_sched_group(tg, parent))
8419 8420
		goto err;

8421
	spin_lock_irqsave(&task_group_lock, flags);
8422
	for_each_possible_cpu(i) {
8423 8424
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8425
	}
P
Peter Zijlstra 已提交
8426
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8427 8428 8429 8430 8431 8432

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8433
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8434

8435
	return tg;
S
Srivatsa Vaddagiri 已提交
8436 8437

err:
P
Peter Zijlstra 已提交
8438
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8439 8440 8441
	return ERR_PTR(-ENOMEM);
}

8442
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8443
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8444 8445
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8446
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8447 8448
}

8449
/* Destroy runqueue etc associated with a task group */
8450
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8451
{
8452
	unsigned long flags;
8453
	int i;
S
Srivatsa Vaddagiri 已提交
8454

8455
	spin_lock_irqsave(&task_group_lock, flags);
8456
	for_each_possible_cpu(i) {
8457 8458
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8459
	}
P
Peter Zijlstra 已提交
8460
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8461
	list_del_rcu(&tg->siblings);
8462
	spin_unlock_irqrestore(&task_group_lock, flags);
8463 8464

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8465
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8466 8467
}

8468
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8469 8470 8471
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8472 8473
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8474 8475 8476 8477 8478 8479 8480 8481 8482
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8483
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8484 8485
	on_rq = tsk->se.on_rq;

8486
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8487
		dequeue_task(rq, tsk, 0);
8488 8489
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8490

P
Peter Zijlstra 已提交
8491
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8492

P
Peter Zijlstra 已提交
8493 8494 8495 8496 8497
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8498 8499 8500
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8501
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8502 8503 8504

	task_rq_unlock(rq, &flags);
}
8505
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8506

8507
#ifdef CONFIG_FAIR_GROUP_SCHED
8508
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8509 8510 8511 8512 8513
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8514
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8515 8516 8517
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8518
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8519

8520
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8521
		enqueue_entity(cfs_rq, se, 0);
8522
}
8523

8524 8525 8526 8527 8528 8529 8530 8531 8532
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8533 8534
}

8535 8536
static DEFINE_MUTEX(shares_mutex);

8537
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8538 8539
{
	int i;
8540
	unsigned long flags;
8541

8542 8543 8544 8545 8546 8547
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8548 8549
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8550 8551
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8552

8553
	mutex_lock(&shares_mutex);
8554
	if (tg->shares == shares)
8555
		goto done;
S
Srivatsa Vaddagiri 已提交
8556

8557
	spin_lock_irqsave(&task_group_lock, flags);
8558 8559
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8560
	list_del_rcu(&tg->siblings);
8561
	spin_unlock_irqrestore(&task_group_lock, flags);
8562 8563 8564 8565 8566 8567 8568 8569

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8570
	tg->shares = shares;
8571 8572 8573 8574 8575
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8576
		set_se_shares(tg->se[i], shares);
8577
	}
S
Srivatsa Vaddagiri 已提交
8578

8579 8580 8581 8582
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8583
	spin_lock_irqsave(&task_group_lock, flags);
8584 8585
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8586
	list_add_rcu(&tg->siblings, &tg->parent->children);
8587
	spin_unlock_irqrestore(&task_group_lock, flags);
8588
done:
8589
	mutex_unlock(&shares_mutex);
8590
	return 0;
S
Srivatsa Vaddagiri 已提交
8591 8592
}

8593 8594 8595 8596
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8597
#endif
8598

8599
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8600
/*
P
Peter Zijlstra 已提交
8601
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8602
 */
P
Peter Zijlstra 已提交
8603 8604 8605 8606 8607 8608 8609
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8610
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8611 8612
}

8613 8614 8615
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8616
	struct task_group *tgi, *parent = tg->parent;
8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8640
	return total + to_ratio(period, runtime) <=
8641 8642 8643 8644
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8645
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8646 8647 8648
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8649
	unsigned long global_ratio =
8650
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8651 8652

	rcu_read_lock();
P
Peter Zijlstra 已提交
8653 8654 8655
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8656

8657 8658
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8659 8660
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8661

P
Peter Zijlstra 已提交
8662
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8663
}
8664
#endif
P
Peter Zijlstra 已提交
8665

8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8677 8678
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8679
{
P
Peter Zijlstra 已提交
8680
	int i, err = 0;
P
Peter Zijlstra 已提交
8681 8682

	mutex_lock(&rt_constraints_mutex);
8683
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8684
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8685 8686 8687
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8688 8689 8690 8691
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8692 8693

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8694 8695
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8696 8697 8698 8699 8700 8701 8702 8703 8704

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8705
 unlock:
8706
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8707 8708 8709
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8710 8711
}

8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8724 8725 8726 8727
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8728
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8729 8730
		return -1;

8731
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8732 8733 8734
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8757 8758
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8759 8760
	int ret = 0;

8761 8762 8763
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8764
	mutex_lock(&rt_constraints_mutex);
8765
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8766 8767 8768 8769 8770
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8771
#else /* !CONFIG_RT_GROUP_SCHED */
8772 8773
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8787 8788
	return 0;
}
8789
#endif /* CONFIG_RT_GROUP_SCHED */
8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8820

8821
#ifdef CONFIG_CGROUP_SCHED
8822 8823

/* return corresponding task_group object of a cgroup */
8824
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8825
{
8826 8827
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8828 8829 8830
}

static struct cgroup_subsys_state *
8831
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8832
{
8833
	struct task_group *tg, *parent;
8834

8835
	if (!cgrp->parent) {
8836
		/* This is early initialization for the top cgroup */
8837
		init_task_group.css.cgroup = cgrp;
8838 8839 8840
		return &init_task_group.css;
	}

8841 8842
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8843 8844 8845 8846
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8847
	tg->css.cgroup = cgrp;
8848 8849 8850 8851

	return &tg->css;
}

I
Ingo Molnar 已提交
8852 8853
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8854
{
8855
	struct task_group *tg = cgroup_tg(cgrp);
8856 8857 8858 8859

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8860 8861 8862
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8863
{
8864 8865
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8866
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8867 8868
		return -EINVAL;
#else
8869 8870 8871
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8872
#endif
8873 8874 8875 8876 8877

	return 0;
}

static void
8878
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8879 8880 8881 8882 8883
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8884
#ifdef CONFIG_FAIR_GROUP_SCHED
8885
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8886
				u64 shareval)
8887
{
8888
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8889 8890
}

8891
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8892
{
8893
	struct task_group *tg = cgroup_tg(cgrp);
8894 8895 8896

	return (u64) tg->shares;
}
8897
#endif /* CONFIG_FAIR_GROUP_SCHED */
8898

8899
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8900
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8901
				s64 val)
P
Peter Zijlstra 已提交
8902
{
8903
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8904 8905
}

8906
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8907
{
8908
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8909
}
8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8921
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8922

8923
static struct cftype cpu_files[] = {
8924
#ifdef CONFIG_FAIR_GROUP_SCHED
8925 8926
	{
		.name = "shares",
8927 8928
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8929
	},
8930 8931
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8932
	{
P
Peter Zijlstra 已提交
8933
		.name = "rt_runtime_us",
8934 8935
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8936
	},
8937 8938
	{
		.name = "rt_period_us",
8939 8940
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8941
	},
8942
#endif
8943 8944 8945 8946
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8947
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8948 8949 8950
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8951 8952 8953 8954 8955 8956 8957
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8958 8959 8960
	.early_init	= 1,
};

8961
#endif	/* CONFIG_CGROUP_SCHED */
8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8982
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8983
{
8984
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8997
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9014
static void
9015
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9016
{
9017
	struct cpuacct *ca = cgroup_ca(cgrp);
9018 9019 9020 9021 9022 9023

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9024
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9025
{
9026
	struct cpuacct *ca = cgroup_ca(cgrp);
9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9068 9069 9070
static struct cftype files[] = {
	{
		.name = "usage",
9071 9072
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9073 9074 9075
	},
};

9076
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9077
{
9078
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */