sched.c 187.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46
#include <linux/blkdev.h>
#include <linux/delay.h>
47
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
57
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
58 59
#include <linux/syscalls.h>
#include <linux/times.h>
60
#include <linux/tsacct_kern.h>
61
#include <linux/kprobes.h>
62
#include <linux/delayacct.h>
63
#include <linux/reciprocal_div.h>
64
#include <linux/unistd.h>
J
Jens Axboe 已提交
65
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
66

67
#include <asm/tlb.h>
68
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
69

70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
77
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 79
}

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
101 102
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
103

I
Ingo Molnar 已提交
104 105 106
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
107 108 109
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
110
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
111 112 113
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

136 137 138 139 140 141 142 143 144 145 146 147
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
148
/*
I
Ingo Molnar 已提交
149
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
150
 */
I
Ingo Molnar 已提交
151 152 153 154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
156 157
#ifdef CONFIG_FAIR_GROUP_SCHED

158 159
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
160 161 162
struct cfs_rq;

/* task group related information */
163
struct task_group {
164 165 166
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
167 168 169 170
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

	/*
	 * shares assigned to a task group governs how much of cpu bandwidth
	 * is allocated to the group. The more shares a group has, the more is
	 * the cpu bandwidth allocated to it.
	 *
	 * For ex, lets say that there are three task groups, A, B and C which
	 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
	 * cpu bandwidth allocated by the scheduler to task groups A, B and C
	 * should be:
	 *
	 *	Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
	 *	Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
	 * 	Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
	 *
	 * The weight assigned to a task group's schedulable entities on every
	 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
	 * group's shares. For ex: lets say that task group A has been
	 * assigned shares of 1000 and there are two CPUs in a system. Then,
	 *
	 *  tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
	 *
	 * Note: It's not necessary that each of a task's group schedulable
	 * 	 entity have the same weight on all CPUs. If the group
	 * 	 has 2 of its tasks on CPU0 and 1 task on CPU1, then a
	 * 	 better distribution of weight could be:
	 *
	 *	tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
	 *	tg_A->se[1]->load.weight = 1/2 * 2000 =  667
	 *
	 * rebalance_shares() is responsible for distributing the shares of a
	 * task groups like this among the group's schedulable entities across
	 * cpus.
	 *
	 */
S
Srivatsa Vaddagiri 已提交
206
	unsigned long shares;
207

208
	struct rcu_head rcu;
S
Srivatsa Vaddagiri 已提交
209 210 211 212 213 214 215
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

216 217
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
218

219 220 221 222 223
/* task_group_mutex serializes add/remove of task groups and also changes to
 * a task group's cpu shares.
 */
static DEFINE_MUTEX(task_group_mutex);

224 225 226
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

227 228 229 230 231 232 233 234
#ifdef CONFIG_SMP
/* kernel thread that runs rebalance_shares() periodically */
static struct task_struct *lb_monitor_task;
static int load_balance_monitor(void *unused);
#endif

static void set_se_shares(struct sched_entity *se, unsigned long shares);

S
Srivatsa Vaddagiri 已提交
235
/* Default task group.
I
Ingo Molnar 已提交
236
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
237
 */
238
struct task_group init_task_group = {
I
Ingo Molnar 已提交
239 240 241
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
242

243
#ifdef CONFIG_FAIR_USER_SCHED
244
# define INIT_TASK_GROUP_LOAD	2*NICE_0_LOAD
245
#else
246
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
247 248
#endif

249 250
#define MIN_GROUP_SHARES       2

251
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
S
Srivatsa Vaddagiri 已提交
252 253

/* return group to which a task belongs */
254
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
255
{
256
	struct task_group *tg;
257

258 259
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
260 261 262
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
263
#else
I
Ingo Molnar 已提交
264
	tg = &init_task_group;
265
#endif
266
	return tg;
S
Srivatsa Vaddagiri 已提交
267 268 269
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
270
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
271
{
272 273
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
S
Srivatsa Vaddagiri 已提交
274 275
}

276 277 278 279 280 281 282 283 284 285
static inline void lock_task_group_list(void)
{
	mutex_lock(&task_group_mutex);
}

static inline void unlock_task_group_list(void)
{
	mutex_unlock(&task_group_mutex);
}

286 287 288 289 290 291 292 293 294 295
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
296 297
#else

298
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
299 300
static inline void lock_task_group_list(void) { }
static inline void unlock_task_group_list(void) { }
301 302
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
303 304 305

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
306 307 308 309 310 311
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
312
	u64 min_vruntime;
I
Ingo Molnar 已提交
313 314 315 316 317 318 319 320

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
321 322 323

	unsigned long nr_spread_over;

324
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
325 326
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
327 328
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
329 330 331 332 333 334
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
335 336
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
337 338
#endif
};
L
Linus Torvalds 已提交
339

I
Ingo Molnar 已提交
340 341 342 343 344 345 346
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
347 348 349 350 351 352 353
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
354
struct rq {
355 356
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
357 358 359 360 361 362

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
363 364
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
365
	unsigned char idle_at_tick;
366 367 368
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
369 370
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
371 372 373 374 375
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
376 377
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
378
#endif
I
Ingo Molnar 已提交
379
	struct rt_rq rt;
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387 388

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

389
	struct task_struct *curr, *idle;
390
	unsigned long next_balance;
L
Linus Torvalds 已提交
391
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
392 393 394 395 396

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
397 398
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
399
	u64 tick_timestamp;
I
Ingo Molnar 已提交
400

L
Linus Torvalds 已提交
401 402 403 404 405 406 407 408
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
409 410
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
411

412
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
413 414 415 416 417 418 419 420
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
421 422 423 424
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
425 426

	/* schedule() stats */
427 428 429
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
430 431

	/* try_to_wake_up() stats */
432 433
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
434 435

	/* BKL stats */
436
	unsigned int bkl_count;
L
Linus Torvalds 已提交
437
#endif
438
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
439 440
};

441
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
442

I
Ingo Molnar 已提交
443 444 445 446 447
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

448 449 450 451 452 453 454 455 456
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
457
/*
I
Ingo Molnar 已提交
458 459
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
460
 */
I
Ingo Molnar 已提交
461
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
462 463 464 465 466 467
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
468 469 470
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
471 472 473 474 475 476 477 478 479 480
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
481 482 483 484 485
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
486 487 488 489 490 491 492 493 494 495
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
496
}
I
Ingo Molnar 已提交
497

I
Ingo Molnar 已提交
498 499 500 501
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
502 503
}

N
Nick Piggin 已提交
504 505
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
506
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
507 508 509 510
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
511 512
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
513 514 515 516 517 518

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
532
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
533 534
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
535 536
	SCHED_FEAT_TREE_AVG		= 8,
	SCHED_FEAT_APPROX_AVG		= 16,
I
Ingo Molnar 已提交
537 538 539
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
540
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
541
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
542 543
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
I
Ingo Molnar 已提交
544
		SCHED_FEAT_APPROX_AVG		* 0;
I
Ingo Molnar 已提交
545 546 547

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

548 549 550 551 552 553
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

554 555 556 557 558 559 560 561
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
562
	struct rq *rq;
563

564
	local_irq_save(flags);
I
Ingo Molnar 已提交
565
	rq = cpu_rq(cpu);
566 567 568 569 570 571
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
	if (rq->idle)
		update_rq_clock(rq);
I
Ingo Molnar 已提交
572
	now = rq->clock;
573
	local_irq_restore(flags);
574 575 576

	return now;
}
P
Paul E. McKenney 已提交
577
EXPORT_SYMBOL_GPL(cpu_clock);
578

L
Linus Torvalds 已提交
579
#ifndef prepare_arch_switch
580 581 582 583 584 585
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

586 587 588 589 590
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

591
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
592
static inline int task_running(struct rq *rq, struct task_struct *p)
593
{
594
	return task_current(rq, p);
595 596
}

597
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
598 599 600
{
}

601
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
602
{
603 604 605 606
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
607 608 609 610 611 612 613
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

614 615 616 617
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
618
static inline int task_running(struct rq *rq, struct task_struct *p)
619 620 621 622
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
623
	return task_current(rq, p);
624 625 626
#endif
}

627
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

644
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
645 646 647 648 649 650 651 652 653 654 655 656
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
657
#endif
658 659
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
660

661 662 663 664
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
665
static inline struct rq *__task_rq_lock(struct task_struct *p)
666 667
	__acquires(rq->lock)
{
668 669 670 671 672
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
673 674 675 676
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
677 678
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
679
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
680 681
 * explicitly disabling preemption.
 */
682
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
683 684
	__acquires(rq->lock)
{
685
	struct rq *rq;
L
Linus Torvalds 已提交
686

687 688 689 690 691 692
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
693 694 695 696
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
697
static void __task_rq_unlock(struct rq *rq)
698 699 700 701 702
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

703
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
704 705 706 707 708 709
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
710
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
711
 */
A
Alexey Dobriyan 已提交
712
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
713 714
	__acquires(rq->lock)
{
715
	struct rq *rq;
L
Linus Torvalds 已提交
716 717 718 719 720 721 722 723

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

724
/*
725
 * We are going deep-idle (irqs are disabled):
726
 */
727
void sched_clock_idle_sleep_event(void)
728
{
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
745

746
	touch_softlockup_watchdog();
747 748 749 750 751 752 753 754 755 756 757
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
758
}
759
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
760

I
Ingo Molnar 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

813 814 815 816 817 818 819 820
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
821 822 823
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
824
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
825

826
static unsigned long
827 828 829 830 831 832
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
833
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
834 835 836 837 838

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
839
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
840
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
841 842
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
843
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
844

845
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
846 847 848 849 850 851 852 853
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

854
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
855 856 857 858
{
	lw->weight += inc;
}

859
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
860 861 862 863
{
	lw->weight -= dec;
}

864 865 866 867
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
868
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
869 870 871 872
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
873 874 875 876 877 878 879 880 881 882 883
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
884 885 886
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
887 888
 */
static const int prio_to_weight[40] = {
889 890 891 892 893 894 895 896
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
897 898
};

899 900 901 902 903 904 905
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
906
static const u32 prio_to_wmult[40] = {
907 908 909 910 911 912 913 914
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
915
};
916

I
Ingo Molnar 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

930 931 932 933 934 935 936 937 938 939 940 941
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
942

943 944 945 946 947 948
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

949 950 951 952 953 954 955 956 957 958
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
959 960
#include "sched_stats.h"
#include "sched_idletask.c"
961 962
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
963 964 965 966 967 968
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

969
static void inc_nr_running(struct task_struct *p, struct rq *rq)
970 971 972 973
{
	rq->nr_running++;
}

974
static void dec_nr_running(struct task_struct *p, struct rq *rq)
975 976 977 978
{
	rq->nr_running--;
}

979 980 981
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
982 983 984 985
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
986

I
Ingo Molnar 已提交
987 988 989 990 991 992 993 994
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
995

I
Ingo Molnar 已提交
996 997
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
998 999
}

1000
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1001
{
I
Ingo Molnar 已提交
1002
	sched_info_queued(p);
1003
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1004
	p->se.on_rq = 1;
1005 1006
}

1007
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1008
{
1009
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1010
	p->se.on_rq = 0;
1011 1012
}

1013
/*
I
Ingo Molnar 已提交
1014
 * __normal_prio - return the priority that is based on the static prio
1015 1016 1017
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1018
	return p->static_prio;
1019 1020
}

1021 1022 1023 1024 1025 1026 1027
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1028
static inline int normal_prio(struct task_struct *p)
1029 1030 1031
{
	int prio;

1032
	if (task_has_rt_policy(p))
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1046
static int effective_prio(struct task_struct *p)
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1059
/*
I
Ingo Molnar 已提交
1060
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1061
 */
I
Ingo Molnar 已提交
1062
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1063
{
I
Ingo Molnar 已提交
1064 1065
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1066

1067
	enqueue_task(rq, p, wakeup);
1068
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1069 1070 1071 1072 1073
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1074
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1075
{
I
Ingo Molnar 已提交
1076 1077 1078
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

1079
	dequeue_task(rq, p, sleep);
1080
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1081 1082 1083 1084 1085 1086
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1087
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1088 1089 1090 1091
{
	return cpu_curr(task_cpu(p)) == p;
}

1092 1093 1094
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1095
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1096 1097 1098 1099
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
1100
	set_task_cfs_rq(p, cpu);
I
Ingo Molnar 已提交
1101
#ifdef CONFIG_SMP
1102 1103 1104 1105 1106 1107
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1108 1109
	task_thread_info(p)->cpu = cpu;
#endif
1110 1111
}

L
Linus Torvalds 已提交
1112
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1125 1126 1127 1128 1129
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1130 1131 1132 1133 1134 1135
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1136
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1137
{
I
Ingo Molnar 已提交
1138 1139
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1140 1141
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1142
	u64 clock_offset;
I
Ingo Molnar 已提交
1143 1144

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1145 1146 1147 1148

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1149 1150 1151 1152
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1153 1154 1155 1156 1157
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1158
#endif
1159 1160
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1161 1162

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1163 1164
}

1165
struct migration_req {
L
Linus Torvalds 已提交
1166 1167
	struct list_head list;

1168
	struct task_struct *task;
L
Linus Torvalds 已提交
1169 1170 1171
	int dest_cpu;

	struct completion done;
1172
};
L
Linus Torvalds 已提交
1173 1174 1175 1176 1177

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1178
static int
1179
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1180
{
1181
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1182 1183 1184 1185 1186

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1187
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1188 1189 1190 1191 1192 1193 1194 1195
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1196

L
Linus Torvalds 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1209
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1210 1211
{
	unsigned long flags;
I
Ingo Molnar 已提交
1212
	int running, on_rq;
1213
	struct rq *rq;
L
Linus Torvalds 已提交
1214

1215 1216 1217 1218 1219 1220 1221 1222
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1237

1238 1239 1240 1241 1242 1243 1244 1245 1246
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1247

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1272

1273 1274 1275 1276 1277 1278 1279
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1295
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1307 1308
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1309 1310 1311 1312
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1313
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1314
{
1315
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1316
	unsigned long total = weighted_cpuload(cpu);
1317

1318
	if (type == 0)
I
Ingo Molnar 已提交
1319
		return total;
1320

I
Ingo Molnar 已提交
1321
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1322 1323 1324
}

/*
1325 1326
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1327
 */
A
Alexey Dobriyan 已提交
1328
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1329
{
1330
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1331
	unsigned long total = weighted_cpuload(cpu);
1332

N
Nick Piggin 已提交
1333
	if (type == 0)
I
Ingo Molnar 已提交
1334
		return total;
1335

I
Ingo Molnar 已提交
1336
	return max(rq->cpu_load[type-1], total);
1337 1338 1339 1340 1341 1342 1343
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1344
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1345
	unsigned long total = weighted_cpuload(cpu);
1346 1347
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1348
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1349 1350
}

N
Nick Piggin 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1368 1369
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1370
			continue;
1371

N
Nick Piggin 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1388 1389
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1390 1391 1392 1393 1394 1395 1396 1397

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1398
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1399 1400 1401 1402 1403 1404 1405

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1406
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1407
 */
I
Ingo Molnar 已提交
1408 1409
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1410
{
1411
	cpumask_t tmp;
N
Nick Piggin 已提交
1412 1413 1414 1415
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1416 1417 1418 1419
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1420
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1446

1447
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1448 1449 1450
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1451 1452
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1453 1454
		if (tmp->flags & flag)
			sd = tmp;
1455
	}
N
Nick Piggin 已提交
1456 1457 1458 1459

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1460 1461 1462 1463 1464 1465
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1466 1467 1468

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1469 1470 1471 1472
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1473

1474
		new_cpu = find_idlest_cpu(group, t, cpu);
1475 1476 1477 1478 1479
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1480

1481
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1508
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1509 1510 1511 1512 1513
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1524 1525 1526 1527
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1528
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1529
			for_each_cpu_mask(i, tmp) {
1530 1531 1532 1533 1534
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1535
					return i;
1536
				}
L
Linus Torvalds 已提交
1537
			}
I
Ingo Molnar 已提交
1538
		} else {
N
Nick Piggin 已提交
1539
			break;
I
Ingo Molnar 已提交
1540
		}
L
Linus Torvalds 已提交
1541 1542 1543 1544
	}
	return cpu;
}
#else
1545
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1565
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1566
{
1567
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1568 1569
	unsigned long flags;
	long old_state;
1570
	struct rq *rq;
L
Linus Torvalds 已提交
1571
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1572
	struct sched_domain *sd, *this_sd = NULL;
1573
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1574 1575 1576 1577 1578 1579 1580 1581
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1582
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1583 1584 1585
		goto out_running;

	cpu = task_cpu(p);
1586
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1593 1594
	new_cpu = cpu;

1595
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1596 1597
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1598 1599 1600 1601 1602 1603 1604 1605
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1606 1607 1608
		}
	}

N
Nick Piggin 已提交
1609
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1610 1611 1612
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1613
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1614
	 */
N
Nick Piggin 已提交
1615 1616 1617
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1618

1619 1620
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1621 1622
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1623

N
Nick Piggin 已提交
1624 1625
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1626 1627
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1628 1629
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1630 1631 1632 1633 1634 1635
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1636
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1637
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1638

L
Linus Torvalds 已提交
1639
			/*
1640 1641 1642
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1643
			 */
1644
			if (sync)
I
Ingo Molnar 已提交
1645
				tl -= current->se.load.weight;
1646 1647

			if ((tl <= load &&
1648
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1649
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1650 1651 1652 1653 1654 1655
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1656
				schedstat_inc(p, se.nr_wakeups_affine);
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1668
				schedstat_inc(p, se.nr_wakeups_passive);
1669 1670
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1685
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1686 1687 1688 1689 1690 1691 1692 1693
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1694 1695 1696 1697 1698 1699 1700 1701 1702
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1703
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1704
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1705
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1716
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1717 1718 1719 1720 1721 1722
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1723
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1724 1725 1726 1727 1728 1729 1730
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1731 1732 1733 1734 1735 1736 1737
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1738
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1739 1740 1741

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1742 1743 1744 1745 1746 1747
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1748
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1749
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1750
#endif
N
Nick Piggin 已提交
1751

I
Ingo Molnar 已提交
1752 1753
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1754

1755 1756 1757 1758
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1759 1760 1761 1762 1763 1764 1765
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1780
	set_task_cpu(p, cpu);
1781 1782 1783 1784 1785

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1786 1787
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1788

1789
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1790
	if (likely(sched_info_on()))
1791
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1792
#endif
1793
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1794 1795
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1796
#ifdef CONFIG_PREEMPT
1797
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1798
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1799
#endif
N
Nick Piggin 已提交
1800
	put_cpu();
L
Linus Torvalds 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1810
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1811 1812
{
	unsigned long flags;
I
Ingo Molnar 已提交
1813
	struct rq *rq;
L
Linus Torvalds 已提交
1814 1815

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1816
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1817
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1818 1819 1820

	p->prio = effective_prio(p);

1821
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1822
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1823 1824
	} else {
		/*
I
Ingo Molnar 已提交
1825 1826
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1827
		 */
1828
		p->sched_class->task_new(rq, p);
1829
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1830
	}
I
Ingo Molnar 已提交
1831 1832
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1833 1834
}

1835 1836 1837
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1838 1839
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1840 1841 1842 1843 1844 1845 1846 1847 1848
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1849
 * @notifier: notifier struct to unregister
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1893 1894 1895
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1896
 * @prev: the current task that is being switched out
1897 1898 1899 1900 1901 1902 1903 1904 1905
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1906 1907 1908
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1909
{
1910
	fire_sched_out_preempt_notifiers(prev, next);
1911 1912 1913 1914
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1915 1916
/**
 * finish_task_switch - clean up after a task-switch
1917
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1918 1919
 * @prev: the thread we just switched away from.
 *
1920 1921 1922 1923
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1924 1925
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1926
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1927 1928 1929
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1930
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1931 1932 1933
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1934
	long prev_state;
L
Linus Torvalds 已提交
1935 1936 1937 1938 1939

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1940
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1941 1942
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1943
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1944 1945 1946 1947 1948
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1949
	prev_state = prev->state;
1950 1951
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1952
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1953 1954
	if (mm)
		mmdrop(mm);
1955
	if (unlikely(prev_state == TASK_DEAD)) {
1956 1957 1958
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1959
		 */
1960
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1961
		put_task_struct(prev);
1962
	}
L
Linus Torvalds 已提交
1963 1964 1965 1966 1967 1968
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1969
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1970 1971
	__releases(rq->lock)
{
1972 1973
	struct rq *rq = this_rq();

1974 1975 1976 1977 1978
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1979
	if (current->set_child_tid)
1980
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1981 1982 1983 1984 1985 1986
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1987
static inline void
1988
context_switch(struct rq *rq, struct task_struct *prev,
1989
	       struct task_struct *next)
L
Linus Torvalds 已提交
1990
{
I
Ingo Molnar 已提交
1991
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1992

1993
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1994 1995
	mm = next->mm;
	oldmm = prev->active_mm;
1996 1997 1998 1999 2000 2001 2002
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2003
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2004 2005 2006 2007 2008 2009
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2010
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2011 2012 2013
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2014 2015 2016 2017 2018 2019 2020
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2021
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2022
#endif
L
Linus Torvalds 已提交
2023 2024 2025 2026

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2027 2028 2029 2030 2031 2032 2033
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2057
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2072 2073
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2074

2075
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2076 2077 2078 2079 2080 2081 2082 2083 2084
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2085
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2086 2087 2088 2089 2090
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2106
/*
I
Ingo Molnar 已提交
2107 2108
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2109
 */
I
Ingo Molnar 已提交
2110
static void update_cpu_load(struct rq *this_rq)
2111
{
2112
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2125 2126 2127 2128 2129 2130 2131
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2132 2133
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2134 2135
}

I
Ingo Molnar 已提交
2136 2137
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2138 2139 2140 2141 2142 2143
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2144
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2145 2146 2147
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2148
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2149 2150 2151 2152
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2153
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2154 2155 2156 2157 2158 2159 2160
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2161 2162
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2163 2164 2165 2166 2167 2168 2169 2170
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2171
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2185
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2186 2187 2188 2189
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2190 2191 2192 2193 2194
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2195
	if (unlikely(!spin_trylock(&busiest->lock))) {
2196
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2208
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2209 2210
 * the cpu_allowed mask is restored.
 */
2211
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2212
{
2213
	struct migration_req req;
L
Linus Torvalds 已提交
2214
	unsigned long flags;
2215
	struct rq *rq;
L
Linus Torvalds 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2226

L
Linus Torvalds 已提交
2227 2228 2229 2230 2231
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2232

L
Linus Torvalds 已提交
2233 2234 2235 2236 2237 2238 2239
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2240 2241
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2242 2243 2244 2245
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2246
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2247
	put_cpu();
N
Nick Piggin 已提交
2248 2249
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2250 2251 2252 2253 2254 2255
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2256 2257
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2258
{
2259
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2260
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2261
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2262 2263 2264 2265
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2266
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2267 2268 2269 2270 2271
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2272
static
2273
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2274
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2275
		     int *all_pinned)
L
Linus Torvalds 已提交
2276 2277 2278 2279 2280 2281 2282
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2283 2284
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2285
		return 0;
2286
	}
2287 2288
	*all_pinned = 0;

2289 2290
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2291
		return 0;
2292
	}
L
Linus Torvalds 已提交
2293

2294 2295 2296 2297 2298 2299
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2300 2301
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2302
#ifdef CONFIG_SCHEDSTATS
2303
		if (task_hot(p, rq->clock, sd)) {
2304
			schedstat_inc(sd, lb_hot_gained[idle]);
2305 2306
			schedstat_inc(p, se.nr_forced_migrations);
		}
2307 2308 2309 2310
#endif
		return 1;
	}

2311 2312
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2313
		return 0;
2314
	}
L
Linus Torvalds 已提交
2315 2316 2317
	return 1;
}

2318 2319 2320 2321 2322
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2323
{
2324
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2325 2326
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2327

2328
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2329 2330
		goto out;

2331 2332
	pinned = 1;

L
Linus Torvalds 已提交
2333
	/*
I
Ingo Molnar 已提交
2334
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2335
	 */
I
Ingo Molnar 已提交
2336 2337
	p = iterator->start(iterator->arg);
next:
2338
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2339
		goto out;
2340
	/*
2341
	 * To help distribute high priority tasks across CPUs we don't
2342 2343 2344
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2345 2346
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2347
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2348 2349 2350
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2351 2352
	}

I
Ingo Molnar 已提交
2353
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2354
	pulled++;
I
Ingo Molnar 已提交
2355
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2356

2357
	/*
2358
	 * We only want to steal up to the prescribed amount of weighted load.
2359
	 */
2360
	if (rem_load_move > 0) {
2361 2362
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2363 2364
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2365 2366 2367
	}
out:
	/*
2368
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2369 2370 2371 2372
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2373 2374 2375

	if (all_pinned)
		*all_pinned = pinned;
2376 2377

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2378 2379
}

I
Ingo Molnar 已提交
2380
/*
P
Peter Williams 已提交
2381 2382 2383
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2384 2385 2386 2387
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2388
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2389 2390 2391
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2392
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2393
	unsigned long total_load_moved = 0;
2394
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2395 2396

	do {
P
Peter Williams 已提交
2397 2398
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2399
				max_load_move - total_load_moved,
2400
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2401
		class = class->next;
P
Peter Williams 已提交
2402
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2403

P
Peter Williams 已提交
2404 2405 2406
	return total_load_moved > 0;
}

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2443
	const struct sched_class *class;
P
Peter Williams 已提交
2444 2445

	for (class = sched_class_highest; class; class = class->next)
2446
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2447 2448 2449
			return 1;

	return 0;
I
Ingo Molnar 已提交
2450 2451
}

L
Linus Torvalds 已提交
2452 2453
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2454 2455
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2456 2457 2458
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2459 2460
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2461 2462 2463
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2464
	unsigned long max_pull;
2465 2466
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2467
	int load_idx, group_imb = 0;
2468 2469 2470 2471 2472 2473
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2474 2475

	max_load = this_load = total_load = total_pwr = 0;
2476 2477
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2478
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2479
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2480
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2481 2482 2483
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2484 2485

	do {
2486
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2487 2488
		int local_group;
		int i;
2489
		int __group_imb = 0;
2490
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2491
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2492 2493 2494

		local_group = cpu_isset(this_cpu, group->cpumask);

2495 2496 2497
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2498
		/* Tally up the load of all CPUs in the group */
2499
		sum_weighted_load = sum_nr_running = avg_load = 0;
2500 2501
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2502 2503

		for_each_cpu_mask(i, group->cpumask) {
2504 2505 2506 2507 2508 2509
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2510

2511
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2512 2513
				*sd_idle = 0;

L
Linus Torvalds 已提交
2514
			/* Bias balancing toward cpus of our domain */
2515 2516 2517 2518 2519 2520
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2521
				load = target_load(i, load_idx);
2522
			} else {
N
Nick Piggin 已提交
2523
				load = source_load(i, load_idx);
2524 2525 2526 2527 2528
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2529 2530

			avg_load += load;
2531
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2532
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2533 2534
		}

2535 2536 2537
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2538 2539
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2540
		 */
2541 2542
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2543 2544 2545 2546
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2547
		total_load += avg_load;
2548
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2549 2550

		/* Adjust by relative CPU power of the group */
2551 2552
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2553

2554 2555 2556
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2557
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2558

L
Linus Torvalds 已提交
2559 2560 2561
		if (local_group) {
			this_load = avg_load;
			this = group;
2562 2563 2564
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2565
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2566 2567
			max_load = avg_load;
			busiest = group;
2568 2569
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2570
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2571
		}
2572 2573 2574 2575 2576 2577

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2578 2579 2580
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2581 2582 2583 2584 2585 2586 2587 2588 2589

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2590
		/*
2591 2592
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2593 2594
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2595
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2596
			goto group_next;
2597

I
Ingo Molnar 已提交
2598
		/*
2599
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2600 2601 2602 2603 2604
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2605 2606
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2607 2608
			group_min = group;
			min_nr_running = sum_nr_running;
2609 2610
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2611
		}
2612

I
Ingo Molnar 已提交
2613
		/*
2614
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2626
		}
2627 2628
group_next:
#endif
L
Linus Torvalds 已提交
2629 2630 2631
		group = group->next;
	} while (group != sd->groups);

2632
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2633 2634 2635 2636 2637 2638 2639 2640
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2641
	busiest_load_per_task /= busiest_nr_running;
2642 2643 2644
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2645 2646 2647 2648 2649 2650 2651 2652
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2653
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2654 2655
	 * appear as very large values with unsigned longs.
	 */
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2668 2669

	/* Don't want to pull so many tasks that a group would go idle */
2670
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2671

L
Linus Torvalds 已提交
2672
	/* How much load to actually move to equalise the imbalance */
2673 2674
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2675 2676
			/ SCHED_LOAD_SCALE;

2677 2678 2679 2680 2681 2682
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2683
	if (*imbalance < busiest_load_per_task) {
2684
		unsigned long tmp, pwr_now, pwr_move;
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2696

I
Ingo Molnar 已提交
2697 2698
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2699
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2700 2701 2702 2703 2704 2705 2706 2707 2708
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2709 2710 2711 2712
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2713 2714 2715
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2716 2717
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2718
		if (max_load > tmp)
2719
			pwr_move += busiest->__cpu_power *
2720
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2721 2722

		/* Amount of load we'd add */
2723
		if (max_load * busiest->__cpu_power <
2724
				busiest_load_per_task * SCHED_LOAD_SCALE)
2725 2726
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2727
		else
2728 2729 2730 2731
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2732 2733 2734
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2735 2736
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2737 2738 2739 2740 2741
	}

	return busiest;

out_balanced:
2742
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2743
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2744
		goto ret;
L
Linus Torvalds 已提交
2745

2746 2747 2748 2749 2750
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2751
ret:
L
Linus Torvalds 已提交
2752 2753 2754 2755 2756 2757 2758
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2759
static struct rq *
I
Ingo Molnar 已提交
2760
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2761
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2762
{
2763
	struct rq *busiest = NULL, *rq;
2764
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2765 2766 2767
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2768
		unsigned long wl;
2769 2770 2771 2772

		if (!cpu_isset(i, *cpus))
			continue;

2773
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2774
		wl = weighted_cpuload(i);
2775

I
Ingo Molnar 已提交
2776
		if (rq->nr_running == 1 && wl > imbalance)
2777
			continue;
L
Linus Torvalds 已提交
2778

I
Ingo Molnar 已提交
2779 2780
		if (wl > max_load) {
			max_load = wl;
2781
			busiest = rq;
L
Linus Torvalds 已提交
2782 2783 2784 2785 2786 2787
		}
	}

	return busiest;
}

2788 2789 2790 2791 2792 2793
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2794 2795 2796 2797
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2798
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2799
			struct sched_domain *sd, enum cpu_idle_type idle,
2800
			int *balance)
L
Linus Torvalds 已提交
2801
{
P
Peter Williams 已提交
2802
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2803 2804
	struct sched_group *group;
	unsigned long imbalance;
2805
	struct rq *busiest;
2806
	cpumask_t cpus = CPU_MASK_ALL;
2807
	unsigned long flags;
N
Nick Piggin 已提交
2808

2809 2810 2811
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2812
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2813
	 * portraying it as CPU_NOT_IDLE.
2814
	 */
I
Ingo Molnar 已提交
2815
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2816
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2817
		sd_idle = 1;
L
Linus Torvalds 已提交
2818

2819
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2820

2821 2822
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2823 2824
				   &cpus, balance);

2825
	if (*balance == 0)
2826 2827
		goto out_balanced;

L
Linus Torvalds 已提交
2828 2829 2830 2831 2832
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2833
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2834 2835 2836 2837 2838
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2839
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2840 2841 2842

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2843
	ld_moved = 0;
L
Linus Torvalds 已提交
2844 2845 2846 2847
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2848
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2849 2850
		 * correctly treated as an imbalance.
		 */
2851
		local_irq_save(flags);
N
Nick Piggin 已提交
2852
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2853
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2854
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2855
		double_rq_unlock(this_rq, busiest);
2856
		local_irq_restore(flags);
2857

2858 2859 2860
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2861
		if (ld_moved && this_cpu != smp_processor_id())
2862 2863
			resched_cpu(this_cpu);

2864
		/* All tasks on this runqueue were pinned by CPU affinity */
2865 2866 2867 2868
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2869
			goto out_balanced;
2870
		}
L
Linus Torvalds 已提交
2871
	}
2872

P
Peter Williams 已提交
2873
	if (!ld_moved) {
L
Linus Torvalds 已提交
2874 2875 2876 2877 2878
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2879
			spin_lock_irqsave(&busiest->lock, flags);
2880 2881 2882 2883 2884

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2885
				spin_unlock_irqrestore(&busiest->lock, flags);
2886 2887 2888 2889
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2890 2891 2892
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2893
				active_balance = 1;
L
Linus Torvalds 已提交
2894
			}
2895
			spin_unlock_irqrestore(&busiest->lock, flags);
2896
			if (active_balance)
L
Linus Torvalds 已提交
2897 2898 2899 2900 2901 2902
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2903
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2904
		}
2905
	} else
L
Linus Torvalds 已提交
2906 2907
		sd->nr_balance_failed = 0;

2908
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2909 2910
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2911 2912 2913 2914 2915 2916 2917 2918 2919
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2920 2921
	}

P
Peter Williams 已提交
2922
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2923
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2924
		return -1;
P
Peter Williams 已提交
2925
	return ld_moved;
L
Linus Torvalds 已提交
2926 2927 2928 2929

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2930
	sd->nr_balance_failed = 0;
2931 2932

out_one_pinned:
L
Linus Torvalds 已提交
2933
	/* tune up the balancing interval */
2934 2935
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2936 2937
		sd->balance_interval *= 2;

2938
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2939
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2940
		return -1;
L
Linus Torvalds 已提交
2941 2942 2943 2944 2945 2946 2947
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2948
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2949 2950
 * this_rq is locked.
 */
2951
static int
2952
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2953 2954
{
	struct sched_group *group;
2955
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2956
	unsigned long imbalance;
P
Peter Williams 已提交
2957
	int ld_moved = 0;
N
Nick Piggin 已提交
2958
	int sd_idle = 0;
2959
	int all_pinned = 0;
2960
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2961

2962 2963 2964 2965
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2966
	 * portraying it as CPU_NOT_IDLE.
2967 2968 2969
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2970
		sd_idle = 1;
L
Linus Torvalds 已提交
2971

2972
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2973
redo:
I
Ingo Molnar 已提交
2974
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2975
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2976
	if (!group) {
I
Ingo Molnar 已提交
2977
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2978
		goto out_balanced;
L
Linus Torvalds 已提交
2979 2980
	}

I
Ingo Molnar 已提交
2981
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2982
				&cpus);
N
Nick Piggin 已提交
2983
	if (!busiest) {
I
Ingo Molnar 已提交
2984
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2985
		goto out_balanced;
L
Linus Torvalds 已提交
2986 2987
	}

N
Nick Piggin 已提交
2988 2989
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2990
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2991

P
Peter Williams 已提交
2992
	ld_moved = 0;
2993 2994 2995
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2996 2997
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2998
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2999 3000
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3001
		spin_unlock(&busiest->lock);
3002

3003
		if (unlikely(all_pinned)) {
3004 3005 3006 3007
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
3008 3009
	}

P
Peter Williams 已提交
3010
	if (!ld_moved) {
I
Ingo Molnar 已提交
3011
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3012 3013
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3014 3015
			return -1;
	} else
3016
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3017

P
Peter Williams 已提交
3018
	return ld_moved;
3019 3020

out_balanced:
I
Ingo Molnar 已提交
3021
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3022
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3023
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3024
		return -1;
3025
	sd->nr_balance_failed = 0;
3026

3027
	return 0;
L
Linus Torvalds 已提交
3028 3029 3030 3031 3032 3033
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3034
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3035 3036
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3037 3038
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
3039 3040

	for_each_domain(this_cpu, sd) {
3041 3042 3043 3044 3045 3046
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3047
			/* If we've pulled tasks over stop searching: */
3048
			pulled_task = load_balance_newidle(this_cpu,
3049 3050 3051 3052 3053 3054 3055
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3056
	}
I
Ingo Molnar 已提交
3057
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3058 3059 3060 3061 3062
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3063
	}
L
Linus Torvalds 已提交
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3074
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3075
{
3076
	int target_cpu = busiest_rq->push_cpu;
3077 3078
	struct sched_domain *sd;
	struct rq *target_rq;
3079

3080
	/* Is there any task to move? */
3081 3082 3083 3084
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3085 3086

	/*
3087
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3088
	 * we need to fix it. Originally reported by
3089
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3090
	 */
3091
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3092

3093 3094
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3095 3096
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3097 3098

	/* Search for an sd spanning us and the target CPU. */
3099
	for_each_domain(target_cpu, sd) {
3100
		if ((sd->flags & SD_LOAD_BALANCE) &&
3101
		    cpu_isset(busiest_cpu, sd->span))
3102
				break;
3103
	}
3104

3105
	if (likely(sd)) {
3106
		schedstat_inc(sd, alb_count);
3107

P
Peter Williams 已提交
3108 3109
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3110 3111 3112 3113
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3114
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3115 3116
}

3117 3118 3119
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3120
	cpumask_t cpu_mask;
3121 3122 3123 3124 3125
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3126
/*
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3137
 *
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3194 3195 3196 3197 3198
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3199
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3200
{
3201 3202
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3203 3204
	unsigned long interval;
	struct sched_domain *sd;
3205
	/* Earliest time when we have to do rebalance again */
3206
	unsigned long next_balance = jiffies + 60*HZ;
3207
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3208

3209
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3210 3211 3212 3213
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3214
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3215 3216 3217 3218 3219 3220
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3221 3222 3223
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3224

3225 3226 3227 3228 3229
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3230
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3231
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3232 3233
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3234 3235 3236
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3237
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3238
			}
3239
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3240
		}
3241 3242 3243
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3244
		if (time_after(next_balance, sd->last_balance + interval)) {
3245
			next_balance = sd->last_balance + interval;
3246 3247
			update_next_balance = 1;
		}
3248 3249 3250 3251 3252 3253 3254 3255

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3256
	}
3257 3258 3259 3260 3261 3262 3263 3264

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3265 3266 3267 3268 3269 3270 3271 3272 3273
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3274 3275 3276 3277
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3278

I
Ingo Molnar 已提交
3279
	rebalance_domains(this_cpu, idle);
3280 3281 3282 3283 3284 3285 3286

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3287 3288
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3289 3290 3291 3292
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3293
		cpu_clear(this_cpu, cpus);
3294 3295 3296 3297 3298 3299 3300 3301 3302
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3303
			rebalance_domains(balance_cpu, CPU_IDLE);
3304 3305

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3306 3307
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3320
static inline void trigger_load_balance(struct rq *rq, int cpu)
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3372
}
I
Ingo Molnar 已提交
3373 3374 3375

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3376 3377 3378
/*
 * on UP we do not need to balance between CPUs:
 */
3379
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3380 3381
{
}
I
Ingo Molnar 已提交
3382

L
Linus Torvalds 已提交
3383 3384 3385 3386 3387 3388 3389
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3390 3391
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3392
 */
3393
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3394 3395
{
	unsigned long flags;
3396 3397
	u64 ns, delta_exec;
	struct rq *rq;
3398

3399 3400
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3401
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3402 3403
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3404 3405 3406 3407
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3408

L
Linus Torvalds 已提交
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3432 3433 3434 3435 3436
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3437
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3471
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3472 3473
	cputime64_t tmp;

3474 3475
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3476

L
Linus Torvalds 已提交
3477 3478 3479 3480 3481 3482 3483 3484
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3485
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3486
		cpustat->system = cputime64_add(cpustat->system, tmp);
3487
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3488 3489 3490 3491 3492 3493 3494
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3506 3507 3508 3509 3510 3511 3512 3513 3514
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3515
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3516 3517 3518 3519 3520 3521 3522

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3523
	} else
L
Linus Torvalds 已提交
3524 3525 3526
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3538
	struct task_struct *curr = rq->curr;
3539
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3540 3541

	spin_lock(&rq->lock);
3542
	__update_rq_clock(rq);
3543 3544 3545 3546 3547 3548
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3549
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3550 3551 3552
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3553

3554
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3555 3556
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3557
#endif
L
Linus Torvalds 已提交
3558 3559 3560 3561 3562 3563 3564 3565 3566
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3567 3568
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3569 3570 3571 3572
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3573 3574
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3575 3576 3577 3578 3579 3580 3581 3582
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3583 3584
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3585 3586 3587
	/*
	 * Is the spinlock portion underflowing?
	 */
3588 3589 3590 3591
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3592 3593 3594 3595 3596 3597 3598
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3599
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3600
 */
I
Ingo Molnar 已提交
3601
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3602
{
3603 3604 3605 3606 3607
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3608 3609 3610
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3611 3612 3613 3614 3615

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3616
}
L
Linus Torvalds 已提交
3617

I
Ingo Molnar 已提交
3618 3619 3620 3621 3622
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3623
	/*
I
Ingo Molnar 已提交
3624
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3625 3626 3627
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3628 3629 3630
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3631 3632
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3633
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3634 3635
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3636 3637
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3638 3639
	}
#endif
I
Ingo Molnar 已提交
3640 3641 3642 3643 3644 3645
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3646
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3647
{
3648
	const struct sched_class *class;
I
Ingo Molnar 已提交
3649
	struct task_struct *p;
L
Linus Torvalds 已提交
3650 3651

	/*
I
Ingo Molnar 已提交
3652 3653
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3654
	 */
I
Ingo Molnar 已提交
3655
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3656
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3657 3658
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3659 3660
	}

I
Ingo Molnar 已提交
3661 3662
	class = sched_class_highest;
	for ( ; ; ) {
3663
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3664 3665 3666 3667 3668 3669 3670 3671 3672
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3673

I
Ingo Molnar 已提交
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3696

3697 3698 3699 3700
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3701
	__update_rq_clock(rq);
3702 3703
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3704 3705 3706

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3707
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3708
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3709
		} else {
3710
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3711
		}
I
Ingo Molnar 已提交
3712
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3713 3714
	}

I
Ingo Molnar 已提交
3715
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3716 3717
		idle_balance(cpu, rq);

3718
	prev->sched_class->put_prev_task(rq, prev);
3719
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3720 3721

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3722

L
Linus Torvalds 已提交
3723 3724 3725 3726 3727
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3728
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3729 3730 3731
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3732 3733 3734
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3735
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3736
	}
L
Linus Torvalds 已提交
3737 3738 3739 3740 3741 3742 3743 3744
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3745
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3746
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3758
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3759
	 */
N
Nick Piggin 已提交
3760
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3761 3762
		return;

3763 3764 3765 3766 3767 3768 3769 3770
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3771
#ifdef CONFIG_PREEMPT_BKL
3772 3773
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3774
#endif
3775
		schedule();
L
Linus Torvalds 已提交
3776
#ifdef CONFIG_PREEMPT_BKL
3777
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3778
#endif
3779
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3780

3781 3782 3783 3784 3785 3786
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3787 3788 3789 3790
}
EXPORT_SYMBOL(preempt_schedule);

/*
3791
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3803
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3804 3805
	BUG_ON(ti->preempt_count || !irqs_disabled());

3806 3807 3808 3809 3810 3811 3812 3813
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3814
#ifdef CONFIG_PREEMPT_BKL
3815 3816
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3817
#endif
3818 3819 3820
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3821
#ifdef CONFIG_PREEMPT_BKL
3822
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3823
#endif
3824
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3825

3826 3827 3828 3829 3830 3831
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3832 3833 3834 3835
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3836 3837
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3838
{
3839
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3840 3841 3842 3843
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3844 3845
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3846 3847 3848
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3849
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3850 3851 3852 3853 3854
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3855
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3856

3857
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3858 3859
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3860
		if (curr->func(curr, mode, sync, key) &&
3861
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3862 3863 3864 3865 3866 3867 3868 3869 3870
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3871
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3872 3873
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3874
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3893
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3905 3906
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3923
void complete(struct completion *x)
L
Linus Torvalds 已提交
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3935
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3947 3948
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3949 3950 3951 3952 3953 3954 3955
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3956 3957 3958 3959 3960 3961
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3962 3963 3964 3965 3966
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3967
				return timeout;
L
Linus Torvalds 已提交
3968 3969 3970 3971 3972 3973 3974 3975
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3976 3977
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3978 3979 3980 3981
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3982
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3983
	spin_unlock_irq(&x->wait.lock);
3984 3985
	return timeout;
}
L
Linus Torvalds 已提交
3986

3987
void __sched wait_for_completion(struct completion *x)
3988 3989
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3990
}
3991
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3992

3993
unsigned long __sched
3994
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3995
{
3996
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3997
}
3998
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3999

4000
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4001
{
4002 4003 4004 4005
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4006
}
4007
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4008

4009
unsigned long __sched
4010 4011
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4012
{
4013
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4014
}
4015
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4016

4017 4018
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4019
{
I
Ingo Molnar 已提交
4020 4021 4022 4023
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4024

4025
	__set_current_state(state);
L
Linus Torvalds 已提交
4026

4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4041 4042 4043
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4044
long __sched
I
Ingo Molnar 已提交
4045
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4046
{
4047
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4048 4049 4050
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4051
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4052
{
4053
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4054 4055 4056
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4057
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4058
{
4059
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4060 4061 4062
}
EXPORT_SYMBOL(sleep_on_timeout);

4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4075
void rt_mutex_setprio(struct task_struct *p, int prio)
4076 4077
{
	unsigned long flags;
4078
	int oldprio, on_rq, running;
4079
	struct rq *rq;
4080 4081 4082 4083

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4084
	update_rq_clock(rq);
4085

4086
	oldprio = p->prio;
I
Ingo Molnar 已提交
4087
	on_rq = p->se.on_rq;
4088
	running = task_current(rq, p);
4089
	if (on_rq) {
4090
		dequeue_task(rq, p, 0);
4091 4092 4093
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4094 4095 4096 4097 4098 4099

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4100 4101
	p->prio = prio;

I
Ingo Molnar 已提交
4102
	if (on_rq) {
4103 4104
		if (running)
			p->sched_class->set_curr_task(rq);
4105
		enqueue_task(rq, p, 0);
4106 4107
		/*
		 * Reschedule if we are currently running on this runqueue and
4108 4109
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4110
		 */
4111
		if (running) {
4112 4113
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4114 4115 4116
		} else {
			check_preempt_curr(rq, p);
		}
4117 4118 4119 4120 4121 4122
	}
	task_rq_unlock(rq, &flags);
}

#endif

4123
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4124
{
I
Ingo Molnar 已提交
4125
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4126
	unsigned long flags;
4127
	struct rq *rq;
L
Linus Torvalds 已提交
4128 4129 4130 4131 4132 4133 4134 4135

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4136
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4137 4138 4139 4140
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4141
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4142
	 */
4143
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4144 4145 4146
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4147
	on_rq = p->se.on_rq;
4148
	if (on_rq)
4149
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4150 4151

	p->static_prio = NICE_TO_PRIO(nice);
4152
	set_load_weight(p);
4153 4154 4155
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4156

I
Ingo Molnar 已提交
4157
	if (on_rq) {
4158
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4159
		/*
4160 4161
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4162
		 */
4163
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4164 4165 4166 4167 4168 4169 4170
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4171 4172 4173 4174 4175
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4176
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4177
{
4178 4179
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4180

M
Matt Mackall 已提交
4181 4182 4183 4184
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4196
	long nice, retval;
L
Linus Torvalds 已提交
4197 4198 4199 4200 4201 4202

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4203 4204
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4205 4206 4207 4208 4209 4210 4211 4212 4213
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4214 4215 4216
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4235
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4236 4237 4238 4239 4240 4241 4242 4243
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4244
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4263
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4264 4265 4266 4267 4268 4269 4270 4271
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4272
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4273
{
4274
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4275 4276 4277
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4278 4279
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4280
{
I
Ingo Molnar 已提交
4281
	BUG_ON(p->se.on_rq);
4282

L
Linus Torvalds 已提交
4283
	p->policy = policy;
I
Ingo Molnar 已提交
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4296
	p->rt_priority = prio;
4297 4298 4299
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4300
	set_load_weight(p);
L
Linus Torvalds 已提交
4301 4302 4303
}

/**
4304
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4305 4306 4307
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4308
 *
4309
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4310
 */
I
Ingo Molnar 已提交
4311 4312
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4313
{
4314
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4315
	unsigned long flags;
4316
	struct rq *rq;
L
Linus Torvalds 已提交
4317

4318 4319
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4320 4321 4322 4323 4324
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4325 4326
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4327
		return -EINVAL;
L
Linus Torvalds 已提交
4328 4329
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4330 4331
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4332 4333
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4334
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4335
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4336
		return -EINVAL;
4337
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4338 4339
		return -EINVAL;

4340 4341 4342 4343
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4344
		if (rt_policy(policy)) {
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4361 4362 4363 4364 4365 4366
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4367

4368 4369 4370 4371 4372
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4373 4374 4375 4376

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4377 4378 4379 4380 4381
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4382 4383 4384 4385
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4386
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4387 4388 4389
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4390 4391
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4392 4393
		goto recheck;
	}
I
Ingo Molnar 已提交
4394
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4395
	on_rq = p->se.on_rq;
4396
	running = task_current(rq, p);
4397
	if (on_rq) {
4398
		deactivate_task(rq, p, 0);
4399 4400 4401
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4402

L
Linus Torvalds 已提交
4403
	oldprio = p->prio;
I
Ingo Molnar 已提交
4404
	__setscheduler(rq, p, policy, param->sched_priority);
4405

I
Ingo Molnar 已提交
4406
	if (on_rq) {
4407 4408
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4409
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4410 4411
		/*
		 * Reschedule if we are currently running on this runqueue and
4412 4413
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4414
		 */
4415
		if (running) {
4416 4417
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4418 4419 4420
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4421
	}
4422 4423 4424
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4425 4426
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4427 4428 4429 4430
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4431 4432
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4433 4434 4435
{
	struct sched_param lparam;
	struct task_struct *p;
4436
	int retval;
L
Linus Torvalds 已提交
4437 4438 4439 4440 4441

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4442 4443 4444

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4445
	p = find_process_by_pid(pid);
4446 4447 4448
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4449

L
Linus Torvalds 已提交
4450 4451 4452 4453 4454 4455 4456 4457 4458
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4459 4460
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4461
{
4462 4463 4464 4465
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4485
	struct task_struct *p;
4486
	int retval;
L
Linus Torvalds 已提交
4487 4488

	if (pid < 0)
4489
		return -EINVAL;
L
Linus Torvalds 已提交
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4511
	struct task_struct *p;
4512
	int retval;
L
Linus Torvalds 已提交
4513 4514

	if (!param || pid < 0)
4515
		return -EINVAL;
L
Linus Torvalds 已提交
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4545 4546
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4547

4548
	get_online_cpus();
L
Linus Torvalds 已提交
4549 4550 4551 4552 4553
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4554
		put_online_cpus();
L
Linus Torvalds 已提交
4555 4556 4557 4558 4559
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4560
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4571 4572 4573 4574
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4575 4576
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4577
 again:
L
Linus Torvalds 已提交
4578 4579
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4592 4593
out_unlock:
	put_task_struct(p);
4594
	put_online_cpus();
L
Linus Torvalds 已提交
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4635
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4636 4637 4638
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4639
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4640 4641
EXPORT_SYMBOL(cpu_online_map);

4642
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4643
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4644 4645 4646 4647
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4648
	struct task_struct *p;
L
Linus Torvalds 已提交
4649 4650
	int retval;

4651
	get_online_cpus();
L
Linus Torvalds 已提交
4652 4653 4654 4655 4656 4657 4658
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4659 4660 4661 4662
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4663
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4664 4665 4666

out_unlock:
	read_unlock(&tasklist_lock);
4667
	put_online_cpus();
L
Linus Torvalds 已提交
4668

4669
	return retval;
L
Linus Torvalds 已提交
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4700 4701
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4702 4703 4704
 */
asmlinkage long sys_sched_yield(void)
{
4705
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4706

4707
	schedstat_inc(rq, yld_count);
4708
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4709 4710 4711 4712 4713 4714

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4715
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4716 4717 4718 4719 4720 4721 4722 4723
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4724
static void __cond_resched(void)
L
Linus Torvalds 已提交
4725
{
4726 4727 4728
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4729 4730 4731 4732 4733
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4734 4735 4736 4737 4738 4739 4740 4741 4742
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4743 4744
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4756
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4757 4758 4759
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4760
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4761
{
J
Jan Kara 已提交
4762 4763
	int ret = 0;

L
Linus Torvalds 已提交
4764 4765 4766
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4767
		ret = 1;
L
Linus Torvalds 已提交
4768 4769
		spin_lock(lock);
	}
4770
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4771
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4772 4773 4774
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4775
		ret = 1;
L
Linus Torvalds 已提交
4776 4777
		spin_lock(lock);
	}
J
Jan Kara 已提交
4778
	return ret;
L
Linus Torvalds 已提交
4779 4780 4781 4782 4783 4784 4785
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4786
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4787
		local_bh_enable();
L
Linus Torvalds 已提交
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4799
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4810
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4811 4812 4813 4814 4815 4816 4817
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4818
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4819

4820
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4821 4822 4823
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4824
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4825 4826 4827 4828 4829
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4830
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4831 4832
	long ret;

4833
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4834 4835 4836
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4837
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4858
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4859
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4883
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4884
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4901
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4902
	unsigned int time_slice;
4903
	int retval;
L
Linus Torvalds 已提交
4904 4905 4906
	struct timespec t;

	if (pid < 0)
4907
		return -EINVAL;
L
Linus Torvalds 已提交
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4919 4920 4921 4922 4923 4924
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
4925
		time_slice = DEF_TIMESLICE;
4926
	} else {
D
Dmitry Adamushko 已提交
4927 4928 4929 4930 4931
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
4932 4933
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
4934 4935
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4936
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4937
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4938 4939
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4940

L
Linus Torvalds 已提交
4941 4942 4943 4944 4945
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4946
static const char stat_nam[] = "RSDTtZX";
4947 4948

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4949 4950
{
	unsigned long free = 0;
4951
	unsigned state;
L
Linus Torvalds 已提交
4952 4953

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
4954
	printk(KERN_INFO "%-13.13s %c", p->comm,
4955
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4956
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4957
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4958
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4959
	else
I
Ingo Molnar 已提交
4960
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4961 4962
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4963
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4964
	else
I
Ingo Molnar 已提交
4965
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4966 4967 4968
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4969
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4970 4971
		while (!*n)
			n++;
4972
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4973 4974
	}
#endif
4975
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
4976
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
4977 4978 4979 4980 4981

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4982
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4983
{
4984
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4985

4986 4987 4988
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4989
#else
4990 4991
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4992 4993 4994 4995 4996 4997 4998 4999
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5000
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
5001
			show_task(p);
L
Linus Torvalds 已提交
5002 5003
	} while_each_thread(g, p);

5004 5005
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5006 5007 5008
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5009
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5010 5011 5012 5013 5014
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5015 5016
}

I
Ingo Molnar 已提交
5017 5018
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5019
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5020 5021
}

5022 5023 5024 5025 5026 5027 5028 5029
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5030
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5031
{
5032
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5033 5034
	unsigned long flags;

I
Ingo Molnar 已提交
5035 5036 5037
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5038
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5039
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5040
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5041 5042 5043

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5044 5045 5046
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5047 5048 5049 5050
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
5051
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
5052
#else
A
Al Viro 已提交
5053
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
5054
#endif
I
Ingo Molnar 已提交
5055 5056 5057 5058
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5096 5097 5098 5099
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5100
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5119
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5120 5121
 * call is not atomic; no spinlocks may be held.
 */
5122
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5123
{
5124
	struct migration_req req;
L
Linus Torvalds 已提交
5125
	unsigned long flags;
5126
	struct rq *rq;
5127
	int ret = 0;
L
Linus Torvalds 已提交
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5150

L
Linus Torvalds 已提交
5151 5152 5153 5154 5155
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5156
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5157 5158 5159 5160 5161 5162
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5163 5164
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5165
 */
5166
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5167
{
5168
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5169
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5170 5171

	if (unlikely(cpu_is_offline(dest_cpu)))
5172
		return ret;
L
Linus Torvalds 已提交
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5185
	on_rq = p->se.on_rq;
5186
	if (on_rq)
5187
		deactivate_task(rq_src, p, 0);
5188

L
Linus Torvalds 已提交
5189
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5190 5191 5192
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5193
	}
5194
	ret = 1;
L
Linus Torvalds 已提交
5195 5196
out:
	double_rq_unlock(rq_src, rq_dest);
5197
	return ret;
L
Linus Torvalds 已提交
5198 5199 5200 5201 5202 5203 5204
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5205
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5206 5207
{
	int cpu = (long)data;
5208
	struct rq *rq;
L
Linus Torvalds 已提交
5209 5210 5211 5212 5213 5214

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5215
		struct migration_req *req;
L
Linus Torvalds 已提交
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5238
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5239 5240
		list_del_init(head->next);

N
Nick Piggin 已提交
5241 5242 5243
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5273
/*
5274
 * Figure out where task on dead CPU should go, use force if necessary.
5275 5276
 * NOTE: interrupts should be disabled by the caller
 */
5277
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5278
{
5279
	unsigned long flags;
L
Linus Torvalds 已提交
5280
	cpumask_t mask;
5281 5282
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5283

5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5296 5297 5298 5299 5300
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5301
			 * cpuset_cpus_allowed() will not block. It must be
5302 5303
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5304
			rq = task_rq_lock(p, &flags);
5305
			p->cpus_allowed = cpus_allowed;
5306 5307
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5308

5309 5310 5311 5312 5313
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5314
			if (p->mm && printk_ratelimit()) {
5315 5316
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5317 5318
					task_pid_nr(p), p->comm, dead_cpu);
			}
5319
		}
5320
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5321 5322 5323 5324 5325 5326 5327 5328 5329
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5330
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5331
{
5332
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5346
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5347

5348
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5349

5350 5351
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5352 5353
			continue;

5354 5355 5356
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5357

5358
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5359 5360
}

I
Ingo Molnar 已提交
5361 5362
/*
 * Schedules idle task to be the next runnable task on current CPU.
5363 5364
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5365 5366 5367
 */
void sched_idle_next(void)
{
5368
	int this_cpu = smp_processor_id();
5369
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5370 5371 5372 5373
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5374
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5375

5376 5377 5378
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5379 5380 5381
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5382
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5383

5384 5385
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5386 5387 5388 5389

	spin_unlock_irqrestore(&rq->lock, flags);
}

5390 5391
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5405
/* called under rq->lock with disabled interrupts */
5406
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5407
{
5408
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5409 5410

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5411
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5412 5413

	/* Cannot have done final schedule yet: would have vanished. */
5414
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5415

5416
	get_task_struct(p);
L
Linus Torvalds 已提交
5417 5418 5419

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5420
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5421 5422
	 * fine.
	 */
5423
	spin_unlock_irq(&rq->lock);
5424
	move_task_off_dead_cpu(dead_cpu, p);
5425
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5426

5427
	put_task_struct(p);
L
Linus Torvalds 已提交
5428 5429 5430 5431 5432
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5433
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5434
	struct task_struct *next;
5435

I
Ingo Molnar 已提交
5436 5437 5438
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5439
		update_rq_clock(rq);
5440
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5441 5442 5443
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5444

L
Linus Torvalds 已提交
5445 5446 5447 5448
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5449 5450 5451
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5452 5453
	{
		.procname	= "sched_domain",
5454
		.mode		= 0555,
5455
	},
I
Ingo Molnar 已提交
5456
	{0, },
5457 5458 5459
};

static struct ctl_table sd_ctl_root[] = {
5460
	{
5461
		.ctl_name	= CTL_KERN,
5462
		.procname	= "kernel",
5463
		.mode		= 0555,
5464 5465
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5466
	{0, },
5467 5468 5469 5470 5471
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5472
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5473 5474 5475 5476

	return entry;
}

5477 5478
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5479
	struct ctl_table *entry;
5480

5481 5482 5483
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5484
	 * will always be set. In the lowest directory the names are
5485 5486 5487
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5488 5489
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5490 5491 5492
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5493 5494 5495 5496 5497

	kfree(*tablep);
	*tablep = NULL;
}

5498
static void
5499
set_table_entry(struct ctl_table *entry,
5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5513
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5514

5515 5516 5517
	if (table == NULL)
		return NULL;

5518
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5519
		sizeof(long), 0644, proc_doulongvec_minmax);
5520
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5521
		sizeof(long), 0644, proc_doulongvec_minmax);
5522
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5523
		sizeof(int), 0644, proc_dointvec_minmax);
5524
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5525
		sizeof(int), 0644, proc_dointvec_minmax);
5526
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5527
		sizeof(int), 0644, proc_dointvec_minmax);
5528
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5529
		sizeof(int), 0644, proc_dointvec_minmax);
5530
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5531
		sizeof(int), 0644, proc_dointvec_minmax);
5532
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5533
		sizeof(int), 0644, proc_dointvec_minmax);
5534
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5535
		sizeof(int), 0644, proc_dointvec_minmax);
5536
	set_table_entry(&table[9], "cache_nice_tries",
5537 5538
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5539
	set_table_entry(&table[10], "flags", &sd->flags,
5540
		sizeof(int), 0644, proc_dointvec_minmax);
5541
	/* &table[11] is terminator */
5542 5543 5544 5545

	return table;
}

5546
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5547 5548 5549 5550 5551 5552 5553 5554 5555
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5556 5557
	if (table == NULL)
		return NULL;
5558 5559 5560 5561 5562

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5563
		entry->mode = 0555;
5564 5565 5566 5567 5568 5569 5570 5571
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5572
static void register_sched_domain_sysctl(void)
5573 5574 5575 5576 5577
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5578 5579 5580
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5581 5582 5583
	if (entry == NULL)
		return;

5584
	for_each_online_cpu(i) {
5585 5586
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5587
		entry->mode = 0555;
5588
		entry->child = sd_alloc_ctl_cpu_table(i);
5589
		entry++;
5590
	}
5591 5592

	WARN_ON(sd_sysctl_header);
5593 5594
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5595

5596
/* may be called multiple times per register */
5597 5598
static void unregister_sched_domain_sysctl(void)
{
5599 5600
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5601
	sd_sysctl_header = NULL;
5602 5603
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5604
}
5605
#else
5606 5607 5608 5609
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5610 5611 5612 5613
{
}
#endif

L
Linus Torvalds 已提交
5614 5615 5616 5617
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5618 5619
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5620 5621
{
	struct task_struct *p;
5622
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5623
	unsigned long flags;
5624
	struct rq *rq;
L
Linus Torvalds 已提交
5625 5626

	switch (action) {
5627

L
Linus Torvalds 已提交
5628
	case CPU_UP_PREPARE:
5629
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5630
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5631 5632 5633 5634 5635
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5636
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5637 5638 5639
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5640

L
Linus Torvalds 已提交
5641
	case CPU_ONLINE:
5642
	case CPU_ONLINE_FROZEN:
5643
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5644 5645
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5646

L
Linus Torvalds 已提交
5647 5648
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5649
	case CPU_UP_CANCELED_FROZEN:
5650 5651
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5652
		/* Unbind it from offline cpu so it can run. Fall thru. */
5653 5654
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5655 5656 5657
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5658

L
Linus Torvalds 已提交
5659
	case CPU_DEAD:
5660
	case CPU_DEAD_FROZEN:
5661
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5662 5663 5664 5665 5666
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5667
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5668
		update_rq_clock(rq);
5669
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5670
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5671 5672
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5673
		migrate_dead_tasks(cpu);
5674
		spin_unlock_irq(&rq->lock);
5675
		cpuset_unlock();
L
Linus Torvalds 已提交
5676 5677 5678
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5679 5680 5681 5682 5683
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5684 5685
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5686 5687
			struct migration_req *req;

L
Linus Torvalds 已提交
5688
			req = list_entry(rq->migration_queue.next,
5689
					 struct migration_req, list);
L
Linus Torvalds 已提交
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5703
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5704 5705 5706 5707
	.notifier_call = migration_call,
	.priority = 10
};

5708
void __init migration_init(void)
L
Linus Torvalds 已提交
5709 5710
{
	void *cpu = (void *)(long)smp_processor_id();
5711
	int err;
5712 5713

	/* Start one for the boot CPU: */
5714 5715
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5716 5717 5718 5719 5720 5721
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5722 5723 5724 5725 5726

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5727
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5728 5729

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5730
{
I
Ingo Molnar 已提交
5731 5732 5733
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5734

I
Ingo Molnar 已提交
5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5746 5747
	}

I
Ingo Molnar 已提交
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5758

I
Ingo Molnar 已提交
5759
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5760
	do {
I
Ingo Molnar 已提交
5761 5762 5763
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5764 5765 5766
			break;
		}

I
Ingo Molnar 已提交
5767 5768 5769 5770 5771 5772
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5773

I
Ingo Molnar 已提交
5774 5775 5776 5777 5778
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5779

I
Ingo Molnar 已提交
5780 5781 5782 5783 5784
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5785

I
Ingo Molnar 已提交
5786
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5787

I
Ingo Molnar 已提交
5788 5789
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5790

I
Ingo Molnar 已提交
5791 5792 5793
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5794

I
Ingo Molnar 已提交
5795 5796
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5797

I
Ingo Molnar 已提交
5798 5799 5800 5801 5802
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
5803

I
Ingo Molnar 已提交
5804 5805 5806
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5807

I
Ingo Molnar 已提交
5808 5809 5810 5811
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5812

I
Ingo Molnar 已提交
5813 5814 5815 5816 5817
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
5818 5819
		level++;
		sd = sd->parent;
5820
		if (!sd)
I
Ingo Molnar 已提交
5821 5822
			break;
	}
L
Linus Torvalds 已提交
5823 5824
}
#else
5825
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5826 5827
#endif

5828
static int sd_degenerate(struct sched_domain *sd)
5829 5830 5831 5832 5833 5834 5835 5836
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5837 5838 5839
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5853 5854
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5873 5874 5875
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5876 5877 5878 5879 5880 5881 5882
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5883 5884 5885 5886
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5887
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5888
{
5889
	struct rq *rq = cpu_rq(cpu);
5890 5891 5892 5893 5894 5895 5896
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5897
		if (sd_parent_degenerate(tmp, parent)) {
5898
			tmp->parent = parent->parent;
5899 5900 5901
			if (parent->parent)
				parent->parent->child = tmp;
		}
5902 5903
	}

5904
	if (sd && sd_degenerate(sd)) {
5905
		sd = sd->parent;
5906 5907 5908
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5909 5910 5911

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5912
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5913 5914 5915
}

/* cpus with isolated domains */
5916
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5931
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5932 5933

/*
5934 5935 5936 5937
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5938 5939 5940 5941 5942
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5943
static void
5944 5945 5946
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5947 5948 5949 5950 5951 5952
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5953 5954
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5955 5956 5957 5958 5959 5960
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5961
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5962 5963

		for_each_cpu_mask(j, span) {
5964
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5979
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5980

5981
#ifdef CONFIG_NUMA
5982

5983 5984 5985 5986 5987
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
5988
 * Find the next node to include in a given scheduling domain. Simply
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
6028
 * Given a node, construct a good cpumask for its sched_domain to span. It
6029 6030 6031 6032 6033 6034
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6035 6036
	cpumask_t span, nodemask;
	int i;
6037 6038 6039 6040 6041 6042 6043 6044 6045 6046

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6047

6048 6049 6050 6051 6052 6053 6054 6055
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6056
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6057

6058
/*
6059
 * SMT sched-domains:
6060
 */
L
Linus Torvalds 已提交
6061 6062
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6063
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6064

I
Ingo Molnar 已提交
6065 6066
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6067
{
6068 6069
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6070 6071 6072 6073
	return cpu;
}
#endif

6074 6075 6076
/*
 * multi-core sched-domains:
 */
6077 6078
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6079
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6080 6081 6082
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6083 6084
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6085
{
6086
	int group;
6087
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6088
	cpus_and(mask, mask, *cpu_map);
6089 6090 6091 6092
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6093 6094
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6095 6096
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6097
{
6098 6099
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6100 6101 6102 6103
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6104
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6105
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6106

I
Ingo Molnar 已提交
6107 6108
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6109
{
6110
	int group;
6111
#ifdef CONFIG_SCHED_MC
6112
	cpumask_t mask = cpu_coregroup_map(cpu);
6113
	cpus_and(mask, mask, *cpu_map);
6114
	group = first_cpu(mask);
6115
#elif defined(CONFIG_SCHED_SMT)
6116
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6117
	cpus_and(mask, mask, *cpu_map);
6118
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6119
#else
6120
	group = cpu;
L
Linus Torvalds 已提交
6121
#endif
6122 6123 6124
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6125 6126 6127 6128
}

#ifdef CONFIG_NUMA
/*
6129 6130 6131
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6132
 */
6133
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6134
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6135

6136
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6137
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6138

6139 6140
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6141
{
6142 6143 6144 6145 6146 6147 6148 6149 6150
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6151
}
6152

6153 6154 6155 6156 6157 6158 6159
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6160 6161 6162
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6163

6164 6165 6166 6167 6168 6169 6170 6171
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6172

6173 6174 6175 6176
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6177
}
L
Linus Torvalds 已提交
6178 6179
#endif

6180
#ifdef CONFIG_NUMA
6181 6182 6183
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6184
	int cpu, i;
6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6215 6216 6217 6218 6219
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6220

6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6247 6248
	sd->groups->__cpu_power = 0;

6249 6250 6251 6252 6253 6254 6255 6256 6257 6258
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6259
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6260 6261 6262 6263 6264 6265 6266 6267
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6268
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6269 6270 6271 6272
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6273
/*
6274 6275
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6276
 */
6277
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6278 6279
{
	int i;
6280 6281
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6282
	int sd_allnodes = 0;
6283 6284 6285 6286

	/*
	 * Allocate the per-node list of sched groups
	 */
6287
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6288
				    GFP_KERNEL);
6289 6290
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6291
		return -ENOMEM;
6292 6293 6294
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6295 6296

	/*
6297
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6298
	 */
6299
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6300 6301 6302
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6303
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6304 6305

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6306 6307
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6308 6309 6310
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6311
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6312
			p = sd;
6313
			sd_allnodes = 1;
6314 6315 6316
		} else
			p = NULL;

L
Linus Torvalds 已提交
6317 6318
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6319 6320
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6321 6322
		if (p)
			p->child = sd;
6323
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6324 6325 6326 6327 6328 6329 6330
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6331 6332
		if (p)
			p->child = sd;
6333
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6334

6335 6336 6337 6338 6339 6340 6341
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6342
		p->child = sd;
6343
		cpu_to_core_group(i, cpu_map, &sd->groups);
6344 6345
#endif

L
Linus Torvalds 已提交
6346 6347 6348 6349
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6350
		sd->span = per_cpu(cpu_sibling_map, i);
6351
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6352
		sd->parent = p;
6353
		p->child = sd;
6354
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6355 6356 6357 6358 6359
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6360
	for_each_cpu_mask(i, *cpu_map) {
6361
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6362
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6363 6364 6365
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6366 6367
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6368 6369 6370
	}
#endif

6371 6372 6373 6374 6375 6376 6377
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6378 6379
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6380 6381 6382
	}
#endif

L
Linus Torvalds 已提交
6383 6384 6385 6386
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6387
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6388 6389 6390
		if (cpus_empty(nodemask))
			continue;

6391
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6392 6393 6394 6395
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6396
	if (sd_allnodes)
I
Ingo Molnar 已提交
6397 6398
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6399 6400 6401 6402 6403 6404 6405 6406 6407 6408

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6409 6410
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6411
			continue;
6412
		}
6413 6414 6415 6416

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6417
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6418 6419 6420 6421 6422
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6423 6424 6425
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6426

6427 6428 6429
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6430
		sg->__cpu_power = 0;
6431
		sg->cpumask = nodemask;
6432
		sg->next = sg;
6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6451 6452
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6453 6454 6455
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6456
				goto error;
6457
			}
6458
			sg->__cpu_power = 0;
6459
			sg->cpumask = tmp;
6460
			sg->next = prev->next;
6461 6462 6463 6464 6465
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6466 6467 6468
#endif

	/* Calculate CPU power for physical packages and nodes */
6469
#ifdef CONFIG_SCHED_SMT
6470
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6471 6472
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6473
		init_sched_groups_power(i, sd);
6474
	}
L
Linus Torvalds 已提交
6475
#endif
6476
#ifdef CONFIG_SCHED_MC
6477
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6478 6479
		struct sched_domain *sd = &per_cpu(core_domains, i);

6480
		init_sched_groups_power(i, sd);
6481 6482
	}
#endif
6483

6484
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6485 6486
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6487
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6488 6489
	}

6490
#ifdef CONFIG_NUMA
6491 6492
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6493

6494 6495
	if (sd_allnodes) {
		struct sched_group *sg;
6496

6497
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6498 6499
		init_numa_sched_groups_power(sg);
	}
6500 6501
#endif

L
Linus Torvalds 已提交
6502
	/* Attach the domains */
6503
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6504 6505 6506
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6507 6508
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6509 6510 6511 6512 6513
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6514 6515 6516

	return 0;

6517
#ifdef CONFIG_NUMA
6518 6519 6520
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6521
#endif
L
Linus Torvalds 已提交
6522
}
P
Paul Jackson 已提交
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6534
/*
I
Ingo Molnar 已提交
6535
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6536 6537
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6538
 */
6539
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6540
{
6541 6542
	int err;

P
Paul Jackson 已提交
6543 6544 6545 6546 6547
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6548
	err = build_sched_domains(doms_cur);
6549
	register_sched_domain_sysctl();
6550 6551

	return err;
6552 6553 6554
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6555
{
6556
	free_sched_groups(cpu_map);
6557
}
L
Linus Torvalds 已提交
6558

6559 6560 6561 6562
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6563
static void detach_destroy_domains(const cpumask_t *cpu_map)
6564 6565 6566
{
	int i;

6567 6568
	unregister_sched_domain_sysctl();

6569 6570 6571 6572 6573 6574
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6575 6576
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6577
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6578 6579 6580 6581
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6582 6583 6584
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6585 6586 6587
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6588 6589
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6600 6601
	lock_doms_cur();

6602 6603 6604
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6640 6641

	register_sched_domain_sysctl();
6642 6643

	unlock_doms_cur();
P
Paul Jackson 已提交
6644 6645
}

6646
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6647
static int arch_reinit_sched_domains(void)
6648 6649 6650
{
	int err;

6651
	get_online_cpus();
6652 6653
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6654
	put_online_cpus();
6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6681 6682
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6683 6684 6685
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6686 6687
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6688 6689 6690 6691 6692 6693 6694
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6695 6696
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6697 6698 6699
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6720 6721
#endif

L
Linus Torvalds 已提交
6722
/*
I
Ingo Molnar 已提交
6723
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
6724
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6725
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6726 6727 6728 6729 6730 6731 6732
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6733
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6734
	case CPU_DOWN_PREPARE:
6735
	case CPU_DOWN_PREPARE_FROZEN:
6736
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6737 6738 6739
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6740
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6741
	case CPU_DOWN_FAILED:
6742
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6743
	case CPU_ONLINE:
6744
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6745
	case CPU_DEAD:
6746
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6747 6748 6749 6750 6751 6752 6753 6754 6755
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6756
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6757 6758 6759 6760 6761 6762

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6763 6764
	cpumask_t non_isolated_cpus;

6765
	get_online_cpus();
6766
	arch_init_sched_domains(&cpu_online_map);
6767
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6768 6769
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6770
	put_online_cpus();
L
Linus Torvalds 已提交
6771 6772
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6773 6774 6775 6776

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6777
	sched_init_granularity();
6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792

#ifdef CONFIG_FAIR_GROUP_SCHED
	if (nr_cpu_ids == 1)
		return;

	lb_monitor_task = kthread_create(load_balance_monitor, NULL,
					 "group_balance");
	if (!IS_ERR(lb_monitor_task)) {
		lb_monitor_task->flags |= PF_NOFREEZE;
		wake_up_process(lb_monitor_task);
	} else {
		printk(KERN_ERR "Could not create load balance monitor thread"
			"(error = %ld) \n", PTR_ERR(lb_monitor_task));
	}
#endif
L
Linus Torvalds 已提交
6793 6794 6795 6796
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6797
	sched_init_granularity();
L
Linus Torvalds 已提交
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6808
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6809 6810 6811 6812 6813
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6814
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6815 6816
}

L
Linus Torvalds 已提交
6817 6818
void __init sched_init(void)
{
6819
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6820 6821
	int i, j;

6822
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6823
		struct rt_prio_array *array;
6824
		struct rq *rq;
L
Linus Torvalds 已提交
6825 6826 6827

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6828
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6829
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6830 6831 6832 6833
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6834 6835 6836 6837 6838 6839 6840
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6841
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6842
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6843 6844
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6845 6846 6847
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6848
			se->load.weight = init_task_group_load;
6849
			se->load.inv_weight =
6850
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6851 6852
			se->parent = NULL;
		}
6853
		init_task_group.shares = init_task_group_load;
I
Ingo Molnar 已提交
6854
#endif
L
Linus Torvalds 已提交
6855

I
Ingo Molnar 已提交
6856 6857
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6858
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6859
		rq->sd = NULL;
L
Linus Torvalds 已提交
6860
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6861
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6862
		rq->push_cpu = 0;
6863
		rq->cpu = i;
L
Linus Torvalds 已提交
6864 6865 6866 6867 6868
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6869 6870 6871 6872
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6873
		}
6874
		highest_cpu = i;
I
Ingo Molnar 已提交
6875 6876
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6877 6878
	}

6879
	set_load_weight(&init_task);
6880

6881 6882 6883 6884
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6885
#ifdef CONFIG_SMP
6886
	nr_cpu_ids = highest_cpu + 1;
6887 6888 6889
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6890 6891 6892 6893
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6907 6908 6909 6910
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6911 6912 6913 6914 6915
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6916
#ifdef in_atomic
L
Linus Torvalds 已提交
6917 6918 6919 6920 6921 6922 6923
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6924
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6925 6926 6927
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6928
		debug_show_held_locks(current);
6929 6930
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6931 6932 6933 6934 6935 6936 6937 6938
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6953 6954
void normalize_rt_tasks(void)
{
6955
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6956
	unsigned long flags;
6957
	struct rq *rq;
L
Linus Torvalds 已提交
6958 6959

	read_lock_irq(&tasklist_lock);
6960
	do_each_thread(g, p) {
6961 6962 6963 6964 6965 6966
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6967 6968
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6969 6970 6971
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6972
#endif
I
Ingo Molnar 已提交
6973 6974 6975 6976 6977 6978 6979 6980 6981
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6982
			continue;
I
Ingo Molnar 已提交
6983
		}
L
Linus Torvalds 已提交
6984

6985 6986
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6987

6988
		normalize_task(rq, p);
6989

6990 6991
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6992 6993
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6994 6995 6996 6997
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7016
struct task_struct *curr_task(int cpu)
7017 7018 7019 7020 7021 7022 7023 7024 7025 7026
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7027 7028
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7029 7030 7031 7032 7033 7034 7035
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7036
void set_curr_task(int cpu, struct task_struct *p)
7037 7038 7039 7040 7041
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7042 7043 7044

#ifdef CONFIG_FAIR_GROUP_SCHED

7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147
#ifdef CONFIG_SMP
/*
 * distribute shares of all task groups among their schedulable entities,
 * to reflect load distrbution across cpus.
 */
static int rebalance_shares(struct sched_domain *sd, int this_cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(this_cpu);
	cpumask_t sdspan = sd->span;
	int balanced = 1;

	/* Walk thr' all the task groups that we have */
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		int i;
		unsigned long total_load = 0, total_shares;
		struct task_group *tg = cfs_rq->tg;

		/* Gather total task load of this group across cpus */
		for_each_cpu_mask(i, sdspan)
			total_load += tg->cfs_rq[i]->load.weight;

		/* Nothing to do if this group has no load  */
		if (!total_load)
			continue;

		/*
		 * tg->shares represents the number of cpu shares the task group
		 * is eligible to hold on a single cpu. On N cpus, it is
		 * eligible to hold (N * tg->shares) number of cpu shares.
		 */
		total_shares = tg->shares * cpus_weight(sdspan);

		/*
		 * redistribute total_shares across cpus as per the task load
		 * distribution.
		 */
		for_each_cpu_mask(i, sdspan) {
			unsigned long local_load, local_shares;

			local_load = tg->cfs_rq[i]->load.weight;
			local_shares = (local_load * total_shares) / total_load;
			if (!local_shares)
				local_shares = MIN_GROUP_SHARES;
			if (local_shares == tg->se[i]->load.weight)
				continue;

			spin_lock_irq(&cpu_rq(i)->lock);
			set_se_shares(tg->se[i], local_shares);
			spin_unlock_irq(&cpu_rq(i)->lock);
			balanced = 0;
		}
	}

	return balanced;
}

/*
 * How frequently should we rebalance_shares() across cpus?
 *
 * The more frequently we rebalance shares, the more accurate is the fairness
 * of cpu bandwidth distribution between task groups. However higher frequency
 * also implies increased scheduling overhead.
 *
 * sysctl_sched_min_bal_int_shares represents the minimum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
 * sysctl_sched_max_bal_int_shares represents the maximum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
 * These settings allows for the appropriate tradeoff between accuracy of
 * fairness and the associated overhead.
 *
 */

/* default: 8ms, units: milliseconds */
const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;

/* default: 128ms, units: milliseconds */
const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;

/* kernel thread that runs rebalance_shares() periodically */
static int load_balance_monitor(void *unused)
{
	unsigned int timeout = sysctl_sched_min_bal_int_shares;
	struct sched_param schedparm;
	int ret;

	/*
	 * We don't want this thread's execution to be limited by the shares
	 * assigned to default group (init_task_group). Hence make it run
	 * as a SCHED_RR RT task at the lowest priority.
	 */
	schedparm.sched_priority = 1;
	ret = sched_setscheduler(current, SCHED_RR, &schedparm);
	if (ret)
		printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
				" monitor thread (error = %d) \n", ret);

	while (!kthread_should_stop()) {
		int i, cpu, balanced = 1;

		/* Prevent cpus going down or coming up */
7148
		get_online_cpus();
7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
		/* lockout changes to doms_cur[] array */
		lock_doms_cur();
		/*
		 * Enter a rcu read-side critical section to safely walk rq->sd
		 * chain on various cpus and to walk task group list
		 * (rq->leaf_cfs_rq_list) in rebalance_shares().
		 */
		rcu_read_lock();

		for (i = 0; i < ndoms_cur; i++) {
			cpumask_t cpumap = doms_cur[i];
			struct sched_domain *sd = NULL, *sd_prev = NULL;

			cpu = first_cpu(cpumap);

			/* Find the highest domain at which to balance shares */
			for_each_domain(cpu, sd) {
				if (!(sd->flags & SD_LOAD_BALANCE))
					continue;
				sd_prev = sd;
			}

			sd = sd_prev;
			/* sd == NULL? No load balance reqd in this domain */
			if (!sd)
				continue;

			balanced &= rebalance_shares(sd, cpu);
		}

		rcu_read_unlock();

		unlock_doms_cur();
7182
		put_online_cpus();
7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195

		if (!balanced)
			timeout = sysctl_sched_min_bal_int_shares;
		else if (timeout < sysctl_sched_max_bal_int_shares)
			timeout *= 2;

		msleep_interruptible(timeout);
	}

	return 0;
}
#endif	/* CONFIG_SMP */

S
Srivatsa Vaddagiri 已提交
7196
/* allocate runqueue etc for a new task group */
7197
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
7198
{
7199
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7200 7201
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
7202
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7203 7204 7205 7206 7207 7208
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7209
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7210 7211
	if (!tg->cfs_rq)
		goto err;
7212
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7213 7214 7215 7216
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
7217
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

7244 7245 7246
	tg->shares = NICE_0_LOAD;

	lock_task_group_list();
7247 7248 7249 7250 7251
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
7252
	unlock_task_group_list();
S
Srivatsa Vaddagiri 已提交
7253

7254
	return tg;
S
Srivatsa Vaddagiri 已提交
7255 7256 7257

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
7258
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
7259
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
7260
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
7261 7262
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
7263 7264 7265
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
7266 7267 7268 7269

	return ERR_PTR(-ENOMEM);
}

7270 7271
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7272
{
7273 7274
	struct task_group *tg = container_of(rhp, struct task_group, rcu);
	struct cfs_rq *cfs_rq;
S
Srivatsa Vaddagiri 已提交
7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

7292
/* Destroy runqueue etc associated with a task group */
7293
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7294
{
7295
	struct cfs_rq *cfs_rq = NULL;
7296
	int i;
S
Srivatsa Vaddagiri 已提交
7297

7298
	lock_task_group_list();
7299 7300 7301 7302
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}
7303
	unlock_task_group_list();
7304

7305
	BUG_ON(!cfs_rq);
7306 7307

	/* wait for possible concurrent references to cfs_rqs complete */
7308
	call_rcu(&tg->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
7309 7310
}

7311
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7312 7313 7314
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7315 7316
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7317 7318 7319 7320 7321 7322 7323
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7324
	if (tsk->sched_class != &fair_sched_class) {
7325
		set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7326
		goto done;
7327
	}
S
Srivatsa Vaddagiri 已提交
7328 7329 7330

	update_rq_clock(rq);

7331
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7332 7333
	on_rq = tsk->se.on_rq;

7334
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7335
		dequeue_task(rq, tsk, 0);
7336 7337 7338
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7339

7340
	set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7341

7342 7343 7344
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7345
		enqueue_task(rq, tsk, 0);
7346
	}
S
Srivatsa Vaddagiri 已提交
7347 7348 7349 7350 7351

done:
	task_rq_unlock(rq, &flags);
}

7352
/* rq->lock to be locked by caller */
S
Srivatsa Vaddagiri 已提交
7353 7354 7355 7356 7357 7358
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7359 7360
	if (!shares)
		shares = MIN_GROUP_SHARES;
S
Srivatsa Vaddagiri 已提交
7361 7362

	on_rq = se->on_rq;
7363
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7364
		dequeue_entity(cfs_rq, se, 0);
7365 7366
		dec_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7367 7368 7369 7370

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7371
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7372
		enqueue_entity(cfs_rq, se, 0);
7373 7374
		inc_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7375 7376
}

7377
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7378 7379
{
	int i;
7380 7381
	struct cfs_rq *cfs_rq;
	struct rq *rq;
7382

7383
	lock_task_group_list();
7384
	if (tg->shares == shares)
7385
		goto done;
S
Srivatsa Vaddagiri 已提交
7386

7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406
	if (shares < MIN_GROUP_SHARES)
		shares = MIN_GROUP_SHARES;

	/*
	 * Prevent any load balance activity (rebalance_shares,
	 * load_balance_fair) from referring to this group first,
	 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
	 */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7407
	tg->shares = shares;
7408 7409
	for_each_possible_cpu(i) {
		spin_lock_irq(&cpu_rq(i)->lock);
7410
		set_se_shares(tg->se[i], shares);
7411 7412
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
S
Srivatsa Vaddagiri 已提交
7413

7414 7415 7416 7417 7418 7419 7420 7421 7422
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
7423
done:
7424
	unlock_task_group_list();
7425
	return 0;
S
Srivatsa Vaddagiri 已提交
7426 7427
}

7428 7429 7430 7431 7432
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
7433
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7434 7435 7436 7437

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
7438
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7439
{
7440 7441
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7442 7443 7444
}

static struct cgroup_subsys_state *
7445
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7446 7447 7448
{
	struct task_group *tg;

7449
	if (!cgrp->parent) {
7450
		/* This is early initialization for the top cgroup */
7451
		init_task_group.css.cgroup = cgrp;
7452 7453 7454 7455
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7456
	if (cgrp->parent->parent)
7457 7458 7459 7460 7461 7462 7463
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7464
	tg->css.cgroup = cgrp;
7465 7466 7467 7468

	return &tg->css;
}

I
Ingo Molnar 已提交
7469 7470
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7471
{
7472
	struct task_group *tg = cgroup_tg(cgrp);
7473 7474 7475 7476

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7477 7478 7479
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
7480 7481 7482 7483 7484 7485 7486 7487 7488
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
7489
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7490 7491 7492 7493 7494
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7495 7496
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7497
{
7498
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7499 7500
}

7501
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7502
{
7503
	struct task_group *tg = cgroup_tg(cgrp);
7504 7505 7506 7507

	return (u64) tg->shares;
}

7508 7509 7510 7511 7512 7513
static struct cftype cpu_files[] = {
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
7514 7515 7516 7517
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7518
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7519 7520 7521
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7522 7523 7524 7525 7526 7527 7528
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7529 7530 7531 7532
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */
7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7585 7586
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */