sched.c 259.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/reciprocal_div.h>
68
#include <linux/unistd.h>
J
Jens Axboe 已提交
69
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
70
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
71
#include <linux/tick.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123
#ifdef CONFIG_SMP
124 125 126

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

147 148
static inline int rt_policy(int policy)
{
149
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 151 152 153 154 155 156 157 158
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
159
/*
I
Ingo Molnar 已提交
160
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
161
 */
I
Ingo Molnar 已提交
162 163 164 165 166
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

167
struct rt_bandwidth {
I
Ingo Molnar 已提交
168 169 170 171 172
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
206 207
	spin_lock_init(&rt_b->rt_runtime_lock);

208 209 210 211 212
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

213 214 215
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
216 217 218 219 220 221
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

222
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 224 225 226 227 228 229
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
230 231 232
		unsigned long delta;
		ktime_t soft, hard;

233 234 235 236 237
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238 239 240 241 242

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243
				HRTIMER_MODE_ABS_PINNED, 0);
244 245 246 247 248 249 250 251 252 253 254
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

255 256 257 258 259 260
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

261
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
262

263 264
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
265 266
struct cfs_rq;

P
Peter Zijlstra 已提交
267 268
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
269
/* task group related information */
270
struct task_group {
271
#ifdef CONFIG_CGROUP_SCHED
272 273
	struct cgroup_subsys_state css;
#endif
274

275 276 277 278
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

279
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
280 281 282 283 284
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
285 286 287 288 289 290
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

291
	struct rt_bandwidth rt_bandwidth;
292
#endif
293

294
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
295
	struct list_head list;
P
Peter Zijlstra 已提交
296 297 298 299

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
300 301
};

D
Dhaval Giani 已提交
302
#ifdef CONFIG_USER_SCHED
303

304 305 306 307 308 309
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

310 311 312 313 314 315 316
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

317
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
318 319 320 321
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322
#endif /* CONFIG_FAIR_GROUP_SCHED */
323 324 325 326

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
328
#else /* !CONFIG_USER_SCHED */
329
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
330
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
331

332
/* task_group_lock serializes add/remove of task groups and also changes to
333 334
 * a task group's cpu shares.
 */
335
static DEFINE_SPINLOCK(task_group_lock);
336

337 338 339 340 341 342 343
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

344 345 346
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
347
#else /* !CONFIG_USER_SCHED */
348
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
349
#endif /* CONFIG_USER_SCHED */
350

351
/*
352 353 354 355
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
356 357 358
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
359
#define MIN_SHARES	2
360
#define MAX_SHARES	(1UL << 18)
361

362 363 364
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
365
/* Default task group.
I
Ingo Molnar 已提交
366
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
367
 */
368
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
369 370

/* return group to which a task belongs */
371
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
372
{
373
	struct task_group *tg;
374

375
#ifdef CONFIG_USER_SCHED
376 377 378
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
379
#elif defined(CONFIG_CGROUP_SCHED)
380 381
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
382
#else
I
Ingo Molnar 已提交
383
	tg = &init_task_group;
384
#endif
385
	return tg;
S
Srivatsa Vaddagiri 已提交
386 387 388
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
389
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
390
{
391
#ifdef CONFIG_FAIR_GROUP_SCHED
392 393
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
394
#endif
P
Peter Zijlstra 已提交
395

396
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
397 398
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
399
#endif
S
Srivatsa Vaddagiri 已提交
400 401 402 403
}

#else

404 405 406 407 408 409 410
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
411
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 413 414 415
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
416

417
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
418

I
Ingo Molnar 已提交
419 420 421 422 423 424
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
425
	u64 min_vruntime;
I
Ingo Molnar 已提交
426 427 428

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
429 430 431 432 433 434

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
435 436
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
437
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
438

P
Peter Zijlstra 已提交
439
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
440

441
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
442 443
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
444 445
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
446 447 448 449 450 451
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
452 453
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
454 455 456

#ifdef CONFIG_SMP
	/*
457
	 * the part of load.weight contributed by tasks
458
	 */
459
	unsigned long task_weight;
460

461 462 463 464 465 466 467
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
468

469 470 471 472
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
473 474 475 476 477

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
478
#endif
I
Ingo Molnar 已提交
479 480
#endif
};
L
Linus Torvalds 已提交
481

I
Ingo Molnar 已提交
482 483 484
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
485
	unsigned long rt_nr_running;
486
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 488
	struct {
		int curr; /* highest queued rt task prio */
489
#ifdef CONFIG_SMP
490
		int next; /* next highest */
491
#endif
492
	} highest_prio;
P
Peter Zijlstra 已提交
493
#endif
P
Peter Zijlstra 已提交
494
#ifdef CONFIG_SMP
495
	unsigned long rt_nr_migratory;
496
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
497
	int overloaded;
498
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
499
#endif
P
Peter Zijlstra 已提交
500
	int rt_throttled;
P
Peter Zijlstra 已提交
501
	u64 rt_time;
P
Peter Zijlstra 已提交
502
	u64 rt_runtime;
I
Ingo Molnar 已提交
503
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
504
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
505

506
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
507 508
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
509 510 511 512 513
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
514 515
};

G
Gregory Haskins 已提交
516 517 518 519
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
520 521
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
522 523 524 525 526 527
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
528 529
	cpumask_var_t span;
	cpumask_var_t online;
530

I
Ingo Molnar 已提交
531
	/*
532 533 534
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
535
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
536
	atomic_t rto_count;
537 538 539
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
540 541 542 543 544 545 546 547
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
548 549
};

550 551 552 553
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
554 555 556 557
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
558 559 560 561 562 563 564
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
565
struct rq {
566 567
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
568 569 570 571 572 573

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
574 575
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
576
#ifdef CONFIG_NO_HZ
577
	unsigned long last_tick_seen;
578 579
	unsigned char in_nohz_recently;
#endif
580 581
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
582 583
	unsigned long nr_load_updates;
	u64 nr_switches;
584
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
585 586

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
587 588
	struct rt_rq rt;

I
Ingo Molnar 已提交
589
#ifdef CONFIG_FAIR_GROUP_SCHED
590 591
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
592 593
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
594
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
595 596 597 598 599 600 601 602 603 604
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

605
	struct task_struct *curr, *idle;
606
	unsigned long next_balance;
L
Linus Torvalds 已提交
607
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
608

609
	u64 clock;
I
Ingo Molnar 已提交
610

L
Linus Torvalds 已提交
611 612 613
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
614
	struct root_domain *rd;
L
Linus Torvalds 已提交
615 616
	struct sched_domain *sd;

617
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
618 619 620
	/* For active balancing */
	int active_balance;
	int push_cpu;
621 622
	/* cpu of this runqueue: */
	int cpu;
623
	int online;
L
Linus Torvalds 已提交
624

625
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
626

627
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
628 629 630
	struct list_head migration_queue;
#endif

631 632 633 634
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
635
#ifdef CONFIG_SCHED_HRTICK
636 637 638 639
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
640 641 642
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
643 644 645
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
646 647
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
648 649

	/* sys_sched_yield() stats */
650
	unsigned int yld_count;
L
Linus Torvalds 已提交
651 652

	/* schedule() stats */
653 654 655
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
656 657

	/* try_to_wake_up() stats */
658 659
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
660 661

	/* BKL stats */
662
	unsigned int bkl_count;
L
Linus Torvalds 已提交
663 664 665
#endif
};

666
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
667

668
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
669
{
670
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
671 672
}

673 674 675 676 677 678 679 680 681
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
682 683
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
684
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
685 686 687 688
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
689 690
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
691 692 693 694 695

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
696
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
697

I
Ingo Molnar 已提交
698
inline void update_rq_clock(struct rq *rq)
699 700 701 702
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
703 704 705 706 707 708 709 710 711
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
730 731 732
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
733 734 735 736

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
737
enum {
P
Peter Zijlstra 已提交
738
#include "sched_features.h"
I
Ingo Molnar 已提交
739 740
};

P
Peter Zijlstra 已提交
741 742 743 744 745
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
746
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
747 748 749 750 751 752 753 754 755
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

756
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
757 758 759 760 761 762
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
763
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
764 765 766 767
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
768 769 770
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
771
	}
L
Li Zefan 已提交
772
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
773

L
Li Zefan 已提交
774
	return 0;
P
Peter Zijlstra 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
794
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
819 820 821 822 823
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
824
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
825 826 827 828 829
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
844

845 846 847 848 849 850
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
851 852
/*
 * ratelimit for updating the group shares.
853
 * default: 0.25ms
P
Peter Zijlstra 已提交
854
 */
855
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
856

857 858 859 860 861 862 863
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
864
/*
P
Peter Zijlstra 已提交
865
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
866 867
 * default: 1s
 */
P
Peter Zijlstra 已提交
868
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
869

870 871
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
872 873 874 875 876
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
877

878 879 880 881 882 883 884
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
885
	if (sysctl_sched_rt_runtime < 0)
886 887 888 889
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
890

L
Linus Torvalds 已提交
891
#ifndef prepare_arch_switch
892 893 894 895 896 897
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

898 899 900 901 902
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

903
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
904
static inline int task_running(struct rq *rq, struct task_struct *p)
905
{
906
	return task_current(rq, p);
907 908
}

909
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 911 912
{
}

913
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
914
{
915 916 917 918
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
919 920 921 922 923 924 925
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

926 927 928 929
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
930
static inline int task_running(struct rq *rq, struct task_struct *p)
931 932 933 934
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
935
	return task_current(rq, p);
936 937 938
#endif
}

939
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

956
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
957 958 959 960 961 962 963 964 965 966 967 968
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
969
#endif
970 971
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
972

973 974 975 976
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
977
static inline struct rq *__task_rq_lock(struct task_struct *p)
978 979
	__acquires(rq->lock)
{
980 981 982 983 984
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
985 986 987 988
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
989 990
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
991
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
992 993
 * explicitly disabling preemption.
 */
994
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
995 996
	__acquires(rq->lock)
{
997
	struct rq *rq;
L
Linus Torvalds 已提交
998

999 1000 1001 1002 1003 1004
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1005 1006 1007 1008
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

1009 1010 1011 1012 1013 1014 1015 1016
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1017
static void __task_rq_unlock(struct rq *rq)
1018 1019 1020 1021 1022
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1023
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1024 1025 1026 1027 1028 1029
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1030
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1031
 */
A
Alexey Dobriyan 已提交
1032
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1033 1034
	__acquires(rq->lock)
{
1035
	struct rq *rq;
L
Linus Torvalds 已提交
1036 1037 1038 1039 1040 1041 1042 1043

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1065
	if (!cpu_active(cpu_of(rq)))
1066
		return 0;
P
Peter Zijlstra 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1087
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1088 1089 1090 1091 1092 1093
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1094
#ifdef CONFIG_SMP
1095 1096 1097 1098
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1099
{
1100
	struct rq *rq = arg;
1101

1102 1103 1104 1105
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1106 1107
}

1108 1109 1110 1111 1112 1113
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1114
{
1115 1116
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1117

1118
	hrtimer_set_expires(timer, time);
1119 1120 1121 1122

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1123
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1124 1125
		rq->hrtick_csd_pending = 1;
	}
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1140
		hrtick_clear(cpu_rq(cpu));
1141 1142 1143 1144 1145 1146
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1147
static __init void init_hrtick(void)
1148 1149 1150
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1151 1152 1153 1154 1155 1156 1157 1158
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1159
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1160
			HRTIMER_MODE_REL_PINNED, 0);
1161
}
1162

A
Andrew Morton 已提交
1163
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1164 1165
{
}
1166
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1167

1168
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1169
{
1170 1171
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1172

1173 1174 1175 1176
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1177

1178 1179
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1180
}
A
Andrew Morton 已提交
1181
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1182 1183 1184 1185 1186 1187 1188 1189
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1190 1191 1192
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1193
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1194

I
Ingo Molnar 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1208
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1209 1210 1211 1212 1213
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1214
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1215 1216
		return;

1217
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1273
	set_tsk_need_resched(rq->idle);
1274 1275 1276 1277 1278 1279

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1280
#endif /* CONFIG_NO_HZ */
1281

1282
#else /* !CONFIG_SMP */
1283
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1284 1285
{
	assert_spin_locked(&task_rq(p)->lock);
1286
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1287
}
1288
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1289

1290 1291 1292 1293 1294 1295 1296 1297
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1298 1299 1300
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1301
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1302

1303 1304 1305
/*
 * delta *= weight / lw
 */
1306
static unsigned long
1307 1308 1309 1310 1311
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1312 1313 1314 1315 1316 1317 1318
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1319 1320 1321 1322 1323

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1324
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1325
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1326 1327
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1328
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1329

1330
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1331 1332
}

1333
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1334 1335
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1336
	lw->inv_weight = 0;
1337 1338
}

1339
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1340 1341
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1342
	lw->inv_weight = 0;
1343 1344
}

1345 1346 1347 1348
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1349
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1350 1351 1352 1353
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1354 1355
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1365 1366 1367
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1368 1369
 */
static const int prio_to_weight[40] = {
1370 1371 1372 1373 1374 1375 1376 1377
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1378 1379
};

1380 1381 1382 1383 1384 1385 1386
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1387
static const u32 prio_to_wmult[40] = {
1388 1389 1390 1391 1392 1393 1394 1395
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1396
};
1397

I
Ingo Molnar 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1423

1424 1425 1426 1427 1428 1429 1430 1431
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1432 1433
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1434 1435
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1436 1437
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1438 1439
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1440 1441
#endif

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1452
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1453
typedef int (*tg_visitor)(struct task_group *, void *);
1454 1455 1456 1457 1458

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1459
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1460 1461
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1462
	int ret;
1463 1464 1465 1466

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1467 1468 1469
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1470 1471 1472 1473 1474 1475 1476
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1477 1478 1479
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1480 1481 1482 1483 1484

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1485
out_unlock:
1486
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1487 1488

	return ret;
1489 1490
}

P
Peter Zijlstra 已提交
1491 1492 1493
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1494
}
P
Peter Zijlstra 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1505
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1506

1507 1508
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1509 1510
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1511 1512 1513 1514 1515

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1516 1517 1518 1519 1520 1521 1522

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1523 1524
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1525
{
1526 1527 1528
	unsigned long shares;
	unsigned long rq_weight;

1529
	if (!tg->se[cpu])
1530 1531
		return;

1532
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1533

1534 1535 1536 1537 1538 1539
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1540
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1541
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1542

1543 1544 1545 1546
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1547

1548
		spin_lock_irqsave(&rq->lock, flags);
1549
		tg->cfs_rq[cpu]->shares = shares;
1550

1551 1552 1553
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1554
}
1555 1556

/*
1557 1558 1559
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1560
 */
P
Peter Zijlstra 已提交
1561
static int tg_shares_up(struct task_group *tg, void *data)
1562
{
1563
	unsigned long weight, rq_weight = 0;
1564
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1565
	struct sched_domain *sd = data;
1566
	int i;
1567

1568
	for_each_cpu(i, sched_domain_span(sd)) {
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1580
		shares += tg->cfs_rq[i]->shares;
1581 1582
	}

1583 1584 1585 1586 1587
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1588

1589
	for_each_cpu(i, sched_domain_span(sd))
1590
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1591 1592

	return 0;
1593 1594 1595
}

/*
1596 1597 1598
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1599
 */
P
Peter Zijlstra 已提交
1600
static int tg_load_down(struct task_group *tg, void *data)
1601
{
1602
	unsigned long load;
P
Peter Zijlstra 已提交
1603
	long cpu = (long)data;
1604

1605 1606 1607 1608 1609 1610 1611
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1612

1613
	tg->cfs_rq[cpu]->h_load = load;
1614

P
Peter Zijlstra 已提交
1615
	return 0;
1616 1617
}

1618
static void update_shares(struct sched_domain *sd)
1619
{
P
Peter Zijlstra 已提交
1620 1621 1622 1623 1624
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1625
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1626
	}
1627 1628
}

1629 1630 1631 1632 1633 1634 1635
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1636
static void update_h_load(long cpu)
1637
{
P
Peter Zijlstra 已提交
1638
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1639 1640 1641 1642
}

#else

1643
static inline void update_shares(struct sched_domain *sd)
1644 1645 1646
{
}

1647 1648 1649 1650
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1651 1652
#endif

1653 1654
#ifdef CONFIG_PREEMPT

1655
/*
1656 1657 1658 1659 1660 1661
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1662
 */
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1717 1718 1719 1720 1721 1722
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1723 1724
#endif

V
Vegard Nossum 已提交
1725
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1726 1727
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1728
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1729 1730 1731
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1732
#endif
1733

1734 1735
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1736 1737
#include "sched_stats.h"
#include "sched_idletask.c"
1738 1739
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1740 1741 1742 1743 1744
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1745 1746
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1747

1748
static void inc_nr_running(struct rq *rq)
1749 1750 1751 1752
{
	rq->nr_running++;
}

1753
static void dec_nr_running(struct rq *rq)
1754 1755 1756 1757
{
	rq->nr_running--;
}

1758 1759 1760
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1761 1762 1763 1764
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1765

I
Ingo Molnar 已提交
1766 1767 1768 1769 1770 1771 1772 1773
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1774

I
Ingo Molnar 已提交
1775 1776
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1777 1778
}

1779 1780 1781 1782 1783 1784
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1785
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1786
{
P
Peter Zijlstra 已提交
1787 1788 1789
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1790
	sched_info_queued(p);
1791
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1792
	p->se.on_rq = 1;
1793 1794
}

1795
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1796
{
P
Peter Zijlstra 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1806 1807
	}

1808
	sched_info_dequeued(p);
1809
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1810
	p->se.on_rq = 0;
1811 1812
}

1813
/*
I
Ingo Molnar 已提交
1814
 * __normal_prio - return the priority that is based on the static prio
1815 1816 1817
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1818
	return p->static_prio;
1819 1820
}

1821 1822 1823 1824 1825 1826 1827
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1828
static inline int normal_prio(struct task_struct *p)
1829 1830 1831
{
	int prio;

1832
	if (task_has_rt_policy(p))
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1846
static int effective_prio(struct task_struct *p)
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1859
/*
I
Ingo Molnar 已提交
1860
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1861
 */
I
Ingo Molnar 已提交
1862
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1863
{
1864
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1865
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1866

1867
	enqueue_task(rq, p, wakeup);
1868
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1869 1870 1871 1872 1873
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1874
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1875
{
1876
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1877 1878
		rq->nr_uninterruptible++;

1879
	dequeue_task(rq, p, sleep);
1880
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1881 1882 1883 1884 1885 1886
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1887
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1888 1889 1890 1891
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1892 1893
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1894
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1895
#ifdef CONFIG_SMP
1896 1897 1898 1899 1900 1901
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1902 1903
	task_thread_info(p)->cpu = cpu;
#endif
1904 1905
}

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1918
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1919

1920 1921 1922 1923 1924 1925
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1926 1927 1928
/*
 * Is this task likely cache-hot:
 */
1929
static int
1930 1931 1932 1933
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1934 1935 1936
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1937 1938 1939
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1940 1941
		return 1;

1942 1943 1944
	if (p->sched_class != &fair_sched_class)
		return 0;

1945 1946 1947 1948 1949
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1950 1951 1952 1953 1954 1955
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1956
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1957
{
I
Ingo Molnar 已提交
1958 1959
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1960 1961
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1962
	u64 clock_offset;
I
Ingo Molnar 已提交
1963 1964

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1965

1966
	trace_sched_migrate_task(p, new_cpu);
1967

I
Ingo Molnar 已提交
1968 1969 1970
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1971 1972 1973 1974
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1975
#endif
1976
	if (old_cpu != new_cpu) {
1977
		p->se.nr_migrations++;
1978
		new_rq->nr_migrations_in++;
1979
#ifdef CONFIG_SCHEDSTATS
1980 1981
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
1982
#endif
1983 1984
		perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
				     1, 1, NULL, 0);
1985
	}
1986 1987
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1988 1989

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1990 1991
}

1992
struct migration_req {
L
Linus Torvalds 已提交
1993 1994
	struct list_head list;

1995
	struct task_struct *task;
L
Linus Torvalds 已提交
1996 1997 1998
	int dest_cpu;

	struct completion done;
1999
};
L
Linus Torvalds 已提交
2000 2001 2002 2003 2004

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2005
static int
2006
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2007
{
2008
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2009 2010 2011 2012 2013

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2014
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2015 2016 2017 2018 2019 2020 2021 2022
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2023

L
Linus Torvalds 已提交
2024 2025 2026
	return 1;
}

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2070 2071 2072
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2073 2074 2075 2076 2077 2078 2079
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2080 2081 2082 2083 2084 2085
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2086
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2087 2088
{
	unsigned long flags;
I
Ingo Molnar 已提交
2089
	int running, on_rq;
R
Roland McGrath 已提交
2090
	unsigned long ncsw;
2091
	struct rq *rq;
L
Linus Torvalds 已提交
2092

2093 2094 2095 2096 2097 2098 2099 2100
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2101

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2113 2114 2115
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2116
			cpu_relax();
R
Roland McGrath 已提交
2117
		}
2118

2119 2120 2121 2122 2123 2124
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2125
		trace_sched_wait_task(rq, p);
2126 2127
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2128
		ncsw = 0;
2129
		if (!match_state || p->state == match_state)
2130
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2131
		task_rq_unlock(rq, &flags);
2132

R
Roland McGrath 已提交
2133 2134 2135 2136 2137 2138
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2149

2150 2151 2152 2153 2154
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2155
		 * So if it was still runnable (but just not actively
2156 2157 2158 2159 2160 2161 2162
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2163

2164 2165 2166 2167 2168 2169 2170
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2171 2172

	return ncsw;
L
Linus Torvalds 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2188
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2189 2190 2191 2192 2193 2194 2195 2196 2197
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2198
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
2199 2200

/*
2201 2202
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2203 2204 2205 2206
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2207
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2208
{
2209
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2210
	unsigned long total = weighted_cpuload(cpu);
2211

2212
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2213
		return total;
2214

I
Ingo Molnar 已提交
2215
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2216 2217 2218
}

/*
2219 2220
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2221
 */
A
Alexey Dobriyan 已提交
2222
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2223
{
2224
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2225
	unsigned long total = weighted_cpuload(cpu);
2226

2227
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2228
		return total;
2229

I
Ingo Molnar 已提交
2230
	return max(rq->cpu_load[type-1], total);
2231 2232
}

N
Nick Piggin 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2250
		/* Skip over this group if it has no CPUs allowed */
2251 2252
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2253
			continue;
2254

2255 2256
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2257 2258 2259 2260

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2261
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2272 2273
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2274 2275 2276 2277 2278 2279 2280 2281

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2282
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2283 2284 2285 2286 2287 2288 2289

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2290
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2291
 */
I
Ingo Molnar 已提交
2292
static int
2293
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2294 2295 2296 2297 2298
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2299
	/* Traverse only the allowed CPUs */
2300
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2301
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2327

2328
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2329 2330 2331
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2332 2333
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2334 2335
		if (tmp->flags & flag)
			sd = tmp;
2336
	}
N
Nick Piggin 已提交
2337

2338 2339 2340
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2341 2342
	while (sd) {
		struct sched_group *group;
2343 2344 2345 2346 2347 2348
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2349 2350

		group = find_idlest_group(sd, t, cpu);
2351 2352 2353 2354
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2355

2356
		new_cpu = find_idlest_cpu(group, t, cpu);
2357 2358 2359 2360 2361
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2362

2363
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2364
		cpu = new_cpu;
2365
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2366 2367
		sd = NULL;
		for_each_domain(cpu, tmp) {
2368
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2380

T
Thomas Gleixner 已提交
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2416
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2417
{
2418
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2419 2420
	unsigned long flags;
	long old_state;
2421
	struct rq *rq;
L
Linus Torvalds 已提交
2422

2423 2424 2425
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2426
#ifdef CONFIG_SMP
2427
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2428 2429 2430 2431 2432 2433
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2434
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2435 2436 2437 2438 2439 2440 2441
				update_shares(sd);
				break;
			}
		}
	}
#endif

2442
	smp_wmb();
L
Linus Torvalds 已提交
2443
	rq = task_rq_lock(p, &flags);
2444
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2445 2446 2447 2448
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2449
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2450 2451 2452
		goto out_running;

	cpu = task_cpu(p);
2453
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2454 2455 2456 2457 2458 2459
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2460 2461 2462
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2463 2464 2465 2466 2467 2468
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2469
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2470 2471 2472 2473 2474 2475
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2476 2477 2478 2479 2480 2481 2482
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2483
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2484 2485 2486 2487 2488
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2489
#endif /* CONFIG_SCHEDSTATS */
2490

L
Linus Torvalds 已提交
2491 2492
out_activate:
#endif /* CONFIG_SMP */
2493 2494 2495 2496 2497 2498 2499 2500 2501
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2502
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2503 2504
	success = 1;

P
Peter Zijlstra 已提交
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2521
out_running:
2522
	trace_sched_wakeup(rq, p, success);
2523
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2524

L
Linus Torvalds 已提交
2525
	p->state = TASK_RUNNING;
2526 2527 2528 2529
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2530 2531 2532 2533 2534 2535
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2547
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2548
{
2549
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2550 2551 2552
}
EXPORT_SYMBOL(wake_up_process);

2553
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2554 2555 2556 2557 2558 2559 2560
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2561 2562 2563 2564 2565 2566 2567
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2568
	p->se.prev_sum_exec_runtime	= 0;
2569
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2570 2571
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2572 2573
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2574 2575

#ifdef CONFIG_SCHEDSTATS
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2607
#endif
N
Nick Piggin 已提交
2608

P
Peter Zijlstra 已提交
2609
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2610
	p->se.on_rq = 0;
2611
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2612

2613 2614 2615 2616
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2617 2618 2619 2620 2621 2622 2623
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2638
	set_task_cpu(p, cpu);
2639 2640

	/*
2641
	 * Make sure we do not leak PI boosting priority to the child.
2642
	 */
2643
	p->prio = current->normal_prio;
2644

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
			p->policy = SCHED_NORMAL;

		if (p->normal_prio < DEFAULT_PRIO)
			p->prio = DEFAULT_PRIO;

2655 2656 2657 2658 2659
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
			set_load_weight(p);
		}

2660 2661 2662 2663 2664 2665
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2666

H
Hiroshi Shimamoto 已提交
2667 2668
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2669

2670
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2671
	if (likely(sched_info_on()))
2672
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2673
#endif
2674
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2675 2676
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2677
#ifdef CONFIG_PREEMPT
2678
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2679
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2680
#endif
2681 2682
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2683
	put_cpu();
L
Linus Torvalds 已提交
2684 2685 2686 2687 2688 2689 2690 2691 2692
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2693
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2694 2695
{
	unsigned long flags;
I
Ingo Molnar 已提交
2696
	struct rq *rq;
L
Linus Torvalds 已提交
2697 2698

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2699
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2700
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2701 2702 2703

	p->prio = effective_prio(p);

2704
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2705
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2706 2707
	} else {
		/*
I
Ingo Molnar 已提交
2708 2709
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2710
		 */
2711
		p->sched_class->task_new(rq, p);
2712
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2713
	}
2714
	trace_sched_wakeup_new(rq, p, 1);
2715
	check_preempt_curr(rq, p, 0);
2716 2717 2718 2719
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2720
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2721 2722
}

2723 2724 2725
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2726
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2727
 * @notifier: notifier struct to register
2728 2729 2730 2731 2732 2733 2734 2735 2736
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2737
 * @notifier: notifier struct to unregister
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2767
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2779
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2780

2781 2782 2783
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2784
 * @prev: the current task that is being switched out
2785 2786 2787 2788 2789 2790 2791 2792 2793
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2794 2795 2796
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2797
{
2798
	fire_sched_out_preempt_notifiers(prev, next);
2799 2800 2801 2802
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2803 2804
/**
 * finish_task_switch - clean up after a task-switch
2805
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2806 2807
 * @prev: the thread we just switched away from.
 *
2808 2809 2810 2811
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2812 2813
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2814
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2815 2816 2817
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2818
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2819 2820 2821
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2822
	long prev_state;
2823 2824 2825 2826 2827 2828
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2829 2830 2831 2832 2833

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2834
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2835 2836
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2837
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2838 2839 2840 2841 2842
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2843
	prev_state = prev->state;
2844
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2845
	perf_counter_task_sched_in(current, cpu_of(rq));
2846
	finish_lock_switch(rq, prev);
2847
#ifdef CONFIG_SMP
2848
	if (post_schedule)
2849 2850
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2851

2852
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2853 2854
	if (mm)
		mmdrop(mm);
2855
	if (unlikely(prev_state == TASK_DEAD)) {
2856 2857 2858
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2859
		 */
2860
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2861
		put_task_struct(prev);
2862
	}
L
Linus Torvalds 已提交
2863 2864 2865 2866 2867 2868
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2869
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2870 2871
	__releases(rq->lock)
{
2872 2873
	struct rq *rq = this_rq();

2874 2875 2876 2877 2878
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2879
	if (current->set_child_tid)
2880
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2881 2882 2883 2884 2885 2886
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2887
static inline void
2888
context_switch(struct rq *rq, struct task_struct *prev,
2889
	       struct task_struct *next)
L
Linus Torvalds 已提交
2890
{
I
Ingo Molnar 已提交
2891
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2892

2893
	prepare_task_switch(rq, prev, next);
2894
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2895 2896
	mm = next->mm;
	oldmm = prev->active_mm;
2897 2898 2899 2900 2901
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2902
	arch_start_context_switch(prev);
2903

I
Ingo Molnar 已提交
2904
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2905 2906 2907 2908 2909 2910
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2911
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2912 2913 2914
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2915 2916 2917 2918 2919 2920 2921
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2922
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2923
#endif
L
Linus Torvalds 已提交
2924 2925 2926 2927

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2928 2929 2930 2931 2932 2933 2934
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2958
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2973 2974
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2975

2976
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2977 2978 2979 2980 2981 2982 2983 2984 2985
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2986
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2987 2988 2989 2990 2991
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2992 2993 2994 2995 2996 2997
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

3013 3014
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3015
{
3016 3017 3018 3019
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3020

3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
3032

3033 3034
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
3035

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3058 3059
}

3060 3061 3062 3063 3064 3065 3066 3067 3068
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

3069
/*
I
Ingo Molnar 已提交
3070 3071
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3072
 */
I
Ingo Molnar 已提交
3073
static void update_cpu_load(struct rq *this_rq)
3074
{
3075
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3088 3089 3090 3091 3092 3093 3094
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3095 3096
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3097 3098 3099 3100 3101

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3102 3103
}

I
Ingo Molnar 已提交
3104 3105
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3106 3107 3108 3109 3110 3111
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3112
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3113 3114 3115
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3116
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3117 3118 3119 3120
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3121
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3122
			spin_lock(&rq1->lock);
3123
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3124 3125
		} else {
			spin_lock(&rq2->lock);
3126
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3127 3128
		}
	}
3129 3130
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3131 3132 3133 3134 3135 3136 3137 3138
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3139
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3153
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3154 3155
 * the cpu_allowed mask is restored.
 */
3156
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3157
{
3158
	struct migration_req req;
L
Linus Torvalds 已提交
3159
	unsigned long flags;
3160
	struct rq *rq;
L
Linus Torvalds 已提交
3161 3162

	rq = task_rq_lock(p, &flags);
3163
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3164
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3165 3166 3167 3168 3169 3170
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3171

L
Linus Torvalds 已提交
3172 3173 3174 3175 3176
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3177

L
Linus Torvalds 已提交
3178 3179 3180 3181 3182 3183 3184
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3185 3186
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3187 3188 3189 3190
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3191
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3192
	put_cpu();
N
Nick Piggin 已提交
3193 3194
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3195 3196 3197 3198 3199 3200
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3201 3202
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3203
{
3204
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3205
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3206
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3207 3208 3209 3210
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3211
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3212 3213 3214 3215 3216
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3217
static
3218
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3219
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3220
		     int *all_pinned)
L
Linus Torvalds 已提交
3221
{
3222
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3223 3224 3225 3226 3227 3228
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3229
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3230
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3231
		return 0;
3232
	}
3233 3234
	*all_pinned = 0;

3235 3236
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3237
		return 0;
3238
	}
L
Linus Torvalds 已提交
3239

3240 3241 3242 3243 3244 3245
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3246 3247 3248
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3249
#ifdef CONFIG_SCHEDSTATS
3250
		if (tsk_cache_hot) {
3251
			schedstat_inc(sd, lb_hot_gained[idle]);
3252 3253
			schedstat_inc(p, se.nr_forced_migrations);
		}
3254 3255 3256 3257
#endif
		return 1;
	}

3258
	if (tsk_cache_hot) {
3259
		schedstat_inc(p, se.nr_failed_migrations_hot);
3260
		return 0;
3261
	}
L
Linus Torvalds 已提交
3262 3263 3264
	return 1;
}

3265 3266 3267 3268 3269
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3270
{
3271
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3272 3273
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3274

3275
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3276 3277
		goto out;

3278 3279
	pinned = 1;

L
Linus Torvalds 已提交
3280
	/*
I
Ingo Molnar 已提交
3281
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3282
	 */
I
Ingo Molnar 已提交
3283 3284
	p = iterator->start(iterator->arg);
next:
3285
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3286
		goto out;
3287 3288

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3289 3290 3291
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3292 3293
	}

I
Ingo Molnar 已提交
3294
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3295
	pulled++;
I
Ingo Molnar 已提交
3296
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3297

3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3308
	/*
3309
	 * We only want to steal up to the prescribed amount of weighted load.
3310
	 */
3311
	if (rem_load_move > 0) {
3312 3313
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3314 3315
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3316 3317 3318
	}
out:
	/*
3319
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3320 3321 3322 3323
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3324 3325 3326

	if (all_pinned)
		*all_pinned = pinned;
3327 3328

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3329 3330
}

I
Ingo Molnar 已提交
3331
/*
P
Peter Williams 已提交
3332 3333 3334
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3335 3336 3337 3338
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3339
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3340 3341 3342
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3343
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3344
	unsigned long total_load_moved = 0;
3345
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3346 3347

	do {
P
Peter Williams 已提交
3348 3349
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3350
				max_load_move - total_load_moved,
3351
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3352
		class = class->next;
3353

3354 3355 3356 3357 3358 3359
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3360 3361
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3362
#endif
P
Peter Williams 已提交
3363
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3364

P
Peter Williams 已提交
3365 3366 3367
	return total_load_moved > 0;
}

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3404
	const struct sched_class *class;
P
Peter Williams 已提交
3405 3406

	for (class = sched_class_highest; class; class = class->next)
3407
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3408 3409 3410
			return 1;

	return 0;
I
Ingo Molnar 已提交
3411
}
3412
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3413
/*
3414 3415
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3416
 */
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3435
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3436 3437 3438 3439 3440 3441
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3442
#endif
3443
};
L
Linus Torvalds 已提交
3444

3445
/*
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3456

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3478
		load_idx = sd->busy_idx;
3479 3480 3481
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3482
		load_idx = sd->newidle_idx;
3483 3484
		break;
	default:
N
Nick Piggin 已提交
3485
		load_idx = sd->idle_idx;
3486 3487
		break;
	}
L
Linus Torvalds 已提交
3488

3489 3490
	return load_idx;
}
L
Linus Torvalds 已提交
3491 3492


3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3517

3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3531

3532 3533
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3534

3535 3536 3537 3538 3539 3540 3541
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3542

3543 3544 3545 3546 3547 3548 3549 3550
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3551

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3565

3566 3567 3568 3569 3570 3571 3572
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running > sgs->group_capacity - 1)
		return;
L
Linus Torvalds 已提交
3573

3574 3575 3576 3577 3578 3579 3580
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3581

3582
/**
3583
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3584 3585 3586 3587 3588
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3589 3590 3591 3592 3593
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3594 3595 3596 3597 3598 3599 3600 3601
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3602

3603 3604 3605
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3606

3607 3608
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3609

3610 3611 3612 3613 3614 3615
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;
L
Linus Torvalds 已提交
3616

3617 3618 3619 3620 3621 3622 3623
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3624

3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

	if (local_group)
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3669

3670 3671
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3672

3673 3674
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3675

3676
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3677
		if (local_group) {
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3690
		}
3691

3692 3693 3694
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3695

3696 3697
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3698

3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3710

3711 3712 3713
	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);
3714

3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3734

3735 3736 3737 3738 3739 3740 3741 3742 3743
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3744
 */
3745 3746 3747 3748
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3749
{
3750
	struct sched_group *group = sd->groups;
3751
	struct sg_lb_stats sgs;
3752 3753
	int load_idx;

3754
	init_sd_power_savings_stats(sd, sds, idle);
3755
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3756 3757 3758 3759

	do {
		int local_group;

3760 3761
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3762
		memset(&sgs, 0, sizeof(sgs));
3763 3764
		update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3765

3766 3767
		if (local_group && balance && !(*balance))
			return;
3768

3769 3770
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3771 3772

		if (local_group) {
3773 3774 3775 3776 3777
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3778 3779
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3780 3781 3782 3783 3784
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3785
		}
3786

3787
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3788 3789 3790
		group = group->next;
	} while (group != sd->groups);

3791
}
L
Linus Torvalds 已提交
3792

3793 3794
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3795 3796
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3815

3816 3817 3818 3819 3820
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3821

L
Linus Torvalds 已提交
3822
	/*
3823 3824 3825
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3826
	 */
3827

3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3869 3870 3871 3872 3873
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3874
	if (sds->max_load < sds->avg_load) {
3875
		*imbalance = 0;
3876
		return fix_small_imbalance(sds, this_cpu, imbalance);
3877
	}
3878 3879

	/* Don't want to pull so many tasks that a group would go idle */
3880 3881
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3882

L
Linus Torvalds 已提交
3883
	/* How much load to actually move to equalise the imbalance */
3884 3885
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
L
Linus Torvalds 已提交
3886 3887
			/ SCHED_LOAD_SCALE;

3888 3889 3890 3891 3892 3893
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3894 3895
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3896

3897
}
3898
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3899

3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3924 3925 3926 3927 3928 3929 3930
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3931

3932
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3933

3934 3935 3936 3937 3938 3939 3940
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3951 3952
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3953

3954 3955
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3956

3957
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3958 3959
		goto out_balanced;

3960
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3961

3962 3963 3964 3965
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3966 3967
		goto out_balanced;

3968 3969 3970 3971
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3972

L
Linus Torvalds 已提交
3973 3974 3975 3976 3977 3978 3979 3980
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3981
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3982 3983
	 * appear as very large values with unsigned longs.
	 */
3984
	if (sds.max_load <= sds.busiest_load_per_task)
3985 3986
		goto out_balanced;

3987 3988
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
3989
	return sds.busiest;
L
Linus Torvalds 已提交
3990 3991

out_balanced:
3992 3993 3994 3995 3996 3997
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
3998
ret:
L
Linus Torvalds 已提交
3999 4000 4001 4002 4003 4004 4005
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4006
static struct rq *
I
Ingo Molnar 已提交
4007
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4008
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4009
{
4010
	struct rq *busiest = NULL, *rq;
4011
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4012 4013
	int i;

4014
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
4015
		unsigned long wl;
4016

4017
		if (!cpumask_test_cpu(i, cpus))
4018 4019
			continue;

4020
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
4021
		wl = weighted_cpuload(i);
4022

I
Ingo Molnar 已提交
4023
		if (rq->nr_running == 1 && wl > imbalance)
4024
			continue;
L
Linus Torvalds 已提交
4025

I
Ingo Molnar 已提交
4026 4027
		if (wl > max_load) {
			max_load = wl;
4028
			busiest = rq;
L
Linus Torvalds 已提交
4029 4030 4031 4032 4033 4034
		}
	}

	return busiest;
}

4035 4036 4037 4038 4039 4040
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4041 4042 4043
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4044 4045 4046 4047
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4048
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4049
			struct sched_domain *sd, enum cpu_idle_type idle,
4050
			int *balance)
L
Linus Torvalds 已提交
4051
{
P
Peter Williams 已提交
4052
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4053 4054
	struct sched_group *group;
	unsigned long imbalance;
4055
	struct rq *busiest;
4056
	unsigned long flags;
4057
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4058

4059
	cpumask_setall(cpus);
4060

4061 4062 4063
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4064
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4065
	 * portraying it as CPU_NOT_IDLE.
4066
	 */
I
Ingo Molnar 已提交
4067
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4068
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4069
		sd_idle = 1;
L
Linus Torvalds 已提交
4070

4071
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4072

4073
redo:
4074
	update_shares(sd);
4075
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4076
				   cpus, balance);
4077

4078
	if (*balance == 0)
4079 4080
		goto out_balanced;

L
Linus Torvalds 已提交
4081 4082 4083 4084 4085
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4086
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4087 4088 4089 4090 4091
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4092
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4093 4094 4095

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4096
	ld_moved = 0;
L
Linus Torvalds 已提交
4097 4098 4099 4100
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4101
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4102 4103
		 * correctly treated as an imbalance.
		 */
4104
		local_irq_save(flags);
N
Nick Piggin 已提交
4105
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4106
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4107
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4108
		double_rq_unlock(this_rq, busiest);
4109
		local_irq_restore(flags);
4110

4111 4112 4113
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4114
		if (ld_moved && this_cpu != smp_processor_id())
4115 4116
			resched_cpu(this_cpu);

4117
		/* All tasks on this runqueue were pinned by CPU affinity */
4118
		if (unlikely(all_pinned)) {
4119 4120
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4121
				goto redo;
4122
			goto out_balanced;
4123
		}
L
Linus Torvalds 已提交
4124
	}
4125

P
Peter Williams 已提交
4126
	if (!ld_moved) {
L
Linus Torvalds 已提交
4127 4128 4129 4130 4131
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4132
			spin_lock_irqsave(&busiest->lock, flags);
4133 4134 4135 4136

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4137 4138
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4139
				spin_unlock_irqrestore(&busiest->lock, flags);
4140 4141 4142 4143
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4144 4145 4146
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4147
				active_balance = 1;
L
Linus Torvalds 已提交
4148
			}
4149
			spin_unlock_irqrestore(&busiest->lock, flags);
4150
			if (active_balance)
L
Linus Torvalds 已提交
4151 4152 4153 4154 4155 4156
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4157
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4158
		}
4159
	} else
L
Linus Torvalds 已提交
4160 4161
		sd->nr_balance_failed = 0;

4162
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4163 4164
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4165 4166 4167 4168 4169 4170 4171 4172 4173
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4174 4175
	}

P
Peter Williams 已提交
4176
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4177
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4178 4179 4180
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4181 4182 4183 4184

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4185
	sd->nr_balance_failed = 0;
4186 4187

out_one_pinned:
L
Linus Torvalds 已提交
4188
	/* tune up the balancing interval */
4189 4190
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4191 4192
		sd->balance_interval *= 2;

4193
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4194
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4195 4196 4197 4198
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4199 4200
	if (ld_moved)
		update_shares(sd);
4201
	return ld_moved;
L
Linus Torvalds 已提交
4202 4203 4204 4205 4206 4207
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4208
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4209 4210
 * this_rq is locked.
 */
4211
static int
4212
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4213 4214
{
	struct sched_group *group;
4215
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4216
	unsigned long imbalance;
P
Peter Williams 已提交
4217
	int ld_moved = 0;
N
Nick Piggin 已提交
4218
	int sd_idle = 0;
4219
	int all_pinned = 0;
4220
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4221

4222
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4223

4224 4225 4226 4227
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4228
	 * portraying it as CPU_NOT_IDLE.
4229 4230 4231
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4232
		sd_idle = 1;
L
Linus Torvalds 已提交
4233

4234
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4235
redo:
4236
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4237
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4238
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4239
	if (!group) {
I
Ingo Molnar 已提交
4240
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4241
		goto out_balanced;
L
Linus Torvalds 已提交
4242 4243
	}

4244
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4245
	if (!busiest) {
I
Ingo Molnar 已提交
4246
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4247
		goto out_balanced;
L
Linus Torvalds 已提交
4248 4249
	}

N
Nick Piggin 已提交
4250 4251
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4252
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4253

P
Peter Williams 已提交
4254
	ld_moved = 0;
4255 4256 4257
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4258 4259
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4260
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4261 4262
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4263
		double_unlock_balance(this_rq, busiest);
4264

4265
		if (unlikely(all_pinned)) {
4266 4267
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4268 4269
				goto redo;
		}
4270 4271
	}

P
Peter Williams 已提交
4272
	if (!ld_moved) {
4273
		int active_balance = 0;
4274

I
Ingo Molnar 已提交
4275
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4276 4277
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4278
			return -1;
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4315
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4328 4329 4330 4331
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4332 4333
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4334
		spin_lock(&this_rq->lock);
4335

N
Nick Piggin 已提交
4336
	} else
4337
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4338

4339
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4340
	return ld_moved;
4341 4342

out_balanced:
I
Ingo Molnar 已提交
4343
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4344
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4345
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4346
		return -1;
4347
	sd->nr_balance_failed = 0;
4348

4349
	return 0;
L
Linus Torvalds 已提交
4350 4351 4352 4353 4354 4355
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4356
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4357 4358
{
	struct sched_domain *sd;
4359
	int pulled_task = 0;
I
Ingo Molnar 已提交
4360
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4361 4362

	for_each_domain(this_cpu, sd) {
4363 4364 4365 4366 4367 4368
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4369
			/* If we've pulled tasks over stop searching: */
4370
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4371
							   sd);
4372 4373 4374 4375 4376 4377

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4378
	}
I
Ingo Molnar 已提交
4379
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4380 4381 4382 4383 4384
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4385
	}
L
Linus Torvalds 已提交
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4396
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4397
{
4398
	int target_cpu = busiest_rq->push_cpu;
4399 4400
	struct sched_domain *sd;
	struct rq *target_rq;
4401

4402
	/* Is there any task to move? */
4403 4404 4405 4406
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4407 4408

	/*
4409
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4410
	 * we need to fix it. Originally reported by
4411
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4412
	 */
4413
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4414

4415 4416
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4417 4418
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4419 4420

	/* Search for an sd spanning us and the target CPU. */
4421
	for_each_domain(target_cpu, sd) {
4422
		if ((sd->flags & SD_LOAD_BALANCE) &&
4423
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4424
				break;
4425
	}
4426

4427
	if (likely(sd)) {
4428
		schedstat_inc(sd, alb_count);
4429

P
Peter Williams 已提交
4430 4431
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4432 4433 4434 4435
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4436
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4437 4438
}

4439 4440 4441
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4442
	cpumask_var_t cpu_mask;
4443
	cpumask_var_t ilb_grp_nohz_mask;
4444 4445 4446 4447
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4448 4449 4450 4451 4452
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4564
	return cpumask_first(nohz.cpu_mask);
4565 4566 4567
}
#endif

4568
/*
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4579
 *
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4595 4596 4597 4598 4599 4600 4601 4602
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4603 4604
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4605

4606 4607 4608
			return 0;
		}

4609 4610
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4611
		/* time for ilb owner also to sleep */
4612
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4613 4614 4615 4616 4617 4618 4619 4620 4621
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4638
			return 1;
4639
		}
4640
	} else {
4641
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4642 4643
			return 0;

4644
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4657 4658 4659 4660 4661
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4662
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4663
{
4664 4665
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4666 4667
	unsigned long interval;
	struct sched_domain *sd;
4668
	/* Earliest time when we have to do rebalance again */
4669
	unsigned long next_balance = jiffies + 60*HZ;
4670
	int update_next_balance = 0;
4671
	int need_serialize;
L
Linus Torvalds 已提交
4672

4673
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4674 4675 4676 4677
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4678
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4679 4680 4681 4682 4683 4684
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4685 4686 4687
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4688
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4689

4690
		if (need_serialize) {
4691 4692 4693 4694
			if (!spin_trylock(&balancing))
				goto out;
		}

4695
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4696
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4697 4698
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4699 4700 4701
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4702
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4703
			}
4704
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4705
		}
4706
		if (need_serialize)
4707 4708
			spin_unlock(&balancing);
out:
4709
		if (time_after(next_balance, sd->last_balance + interval)) {
4710
			next_balance = sd->last_balance + interval;
4711 4712
			update_next_balance = 1;
		}
4713 4714 4715 4716 4717 4718 4719 4720

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4721
	}
4722 4723 4724 4725 4726 4727 4728 4729

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4730 4731 4732 4733 4734 4735 4736 4737 4738
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4739 4740 4741 4742
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4743

I
Ingo Molnar 已提交
4744
	rebalance_domains(this_cpu, idle);
4745 4746 4747 4748 4749 4750 4751

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4752 4753
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4754 4755 4756
		struct rq *rq;
		int balance_cpu;

4757 4758 4759 4760
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4761 4762 4763 4764 4765 4766 4767 4768
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4769
			rebalance_domains(balance_cpu, CPU_IDLE);
4770 4771

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4772 4773
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4774 4775 4776 4777 4778
		}
	}
#endif
}

4779 4780 4781 4782 4783
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4784 4785 4786 4787 4788 4789 4790
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4791
static inline void trigger_load_balance(struct rq *rq, int cpu)
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4803
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4804 4805 4806 4807
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4808
			int ilb = find_new_ilb(cpu);
4809

4810
			if (ilb < nr_cpu_ids)
4811 4812 4813 4814 4815 4816 4817 4818 4819
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4820
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4821 4822 4823 4824 4825 4826 4827 4828 4829
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4830
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4831 4832
		return;
#endif
4833 4834 4835
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4836
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4837
}
I
Ingo Molnar 已提交
4838 4839 4840

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4841 4842 4843
/*
 * on UP we do not need to balance between CPUs:
 */
4844
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4845 4846
{
}
I
Ingo Molnar 已提交
4847

L
Linus Torvalds 已提交
4848 4849 4850 4851 4852 4853 4854
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4855
 * Return any ns on the sched_clock that have not yet been accounted in
4856
 * @p in case that task is currently running.
4857 4858
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4859
 */
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4874
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4875 4876
{
	unsigned long flags;
4877
	struct rq *rq;
4878
	u64 ns = 0;
4879

4880
	rq = task_rq_lock(p, &flags);
4881 4882
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4883

4884 4885
	return ns;
}
4886

4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4904

4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4924
	task_rq_unlock(rq, &flags);
4925

L
Linus Torvalds 已提交
4926 4927 4928 4929 4930 4931 4932
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4933
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4934
 */
4935 4936
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4937 4938 4939 4940
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4941
	/* Add user time to process. */
L
Linus Torvalds 已提交
4942
	p->utime = cputime_add(p->utime, cputime);
4943
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4944
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4945 4946 4947 4948 4949 4950 4951

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4952 4953

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4954 4955
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4956 4957
}

4958 4959 4960 4961
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4962
 * @cputime_scaled: cputime scaled by cpu frequency
4963
 */
4964 4965
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4966 4967 4968 4969 4970 4971
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4972
	/* Add guest time to process. */
4973
	p->utime = cputime_add(p->utime, cputime);
4974
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4975
	account_group_user_time(p, cputime);
4976 4977
	p->gtime = cputime_add(p->gtime, cputime);

4978
	/* Add guest time to cpustat. */
4979 4980 4981 4982
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4983 4984 4985 4986 4987
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4988
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4989 4990
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4991
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4992 4993 4994 4995
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4996
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4997
		account_guest_time(p, cputime, cputime_scaled);
4998 4999
		return;
	}
5000

5001
	/* Add system time to process. */
L
Linus Torvalds 已提交
5002
	p->stime = cputime_add(p->stime, cputime);
5003
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5004
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009 5010 5011 5012

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5013 5014
		cpustat->system = cputime64_add(cpustat->system, tmp);

5015 5016
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5017 5018 5019 5020
	/* Account for system time used */
	acct_update_integrals(p);
}

5021
/*
L
Linus Torvalds 已提交
5022 5023
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5024
 */
5025
void account_steal_time(cputime_t cputime)
5026
{
5027 5028 5029 5030
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5031 5032
}

L
Linus Torvalds 已提交
5033
/*
5034 5035
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5036
 */
5037
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5038 5039
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5040
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5041
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5042

5043 5044 5045 5046
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5047 5048
}

5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
5064
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5088 5089
}

5090 5091
#endif

5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5162
	struct task_struct *curr = rq->curr;
5163 5164

	sched_clock_tick();
I
Ingo Molnar 已提交
5165 5166

	spin_lock(&rq->lock);
5167
	update_rq_clock(rq);
5168
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5169
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5170
	spin_unlock(&rq->lock);
5171

5172 5173
	perf_counter_task_tick(curr, cpu);

5174
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5175 5176
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5177
#endif
L
Linus Torvalds 已提交
5178 5179
}

5180
notrace unsigned long get_parent_ip(unsigned long addr)
5181 5182 5183 5184 5185 5186 5187 5188
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5189

5190 5191 5192
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5193
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5194
{
5195
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5196 5197 5198
	/*
	 * Underflow?
	 */
5199 5200
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5201
#endif
L
Linus Torvalds 已提交
5202
	preempt_count() += val;
5203
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5204 5205 5206
	/*
	 * Spinlock count overflowing soon?
	 */
5207 5208
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5209 5210 5211
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5212 5213 5214
}
EXPORT_SYMBOL(add_preempt_count);

5215
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5216
{
5217
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5218 5219 5220
	/*
	 * Underflow?
	 */
5221
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5222
		return;
L
Linus Torvalds 已提交
5223 5224 5225
	/*
	 * Is the spinlock portion underflowing?
	 */
5226 5227 5228
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5229
#endif
5230

5231 5232
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5233 5234 5235 5236 5237 5238 5239
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5240
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5241
 */
I
Ingo Molnar 已提交
5242
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5243
{
5244 5245 5246 5247 5248
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5249
	debug_show_held_locks(prev);
5250
	print_modules();
I
Ingo Molnar 已提交
5251 5252
	if (irqs_disabled())
		print_irqtrace_events(prev);
5253 5254 5255 5256 5257

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5258
}
L
Linus Torvalds 已提交
5259

I
Ingo Molnar 已提交
5260 5261 5262 5263 5264
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5265
	/*
I
Ingo Molnar 已提交
5266
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5267 5268 5269
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5270
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5271 5272
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5273 5274
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5275
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5276 5277
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5278 5279
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5280 5281
	}
#endif
I
Ingo Molnar 已提交
5282 5283
}

M
Mike Galbraith 已提交
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5306 5307 5308 5309
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5310
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5311
{
5312
	const struct sched_class *class;
I
Ingo Molnar 已提交
5313
	struct task_struct *p;
L
Linus Torvalds 已提交
5314 5315

	/*
I
Ingo Molnar 已提交
5316 5317
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5318
	 */
I
Ingo Molnar 已提交
5319
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5320
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5321 5322
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5323 5324
	}

I
Ingo Molnar 已提交
5325 5326
	class = sched_class_highest;
	for ( ; ; ) {
5327
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5328 5329 5330 5331 5332 5333 5334 5335 5336
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5337

I
Ingo Molnar 已提交
5338 5339 5340
/*
 * schedule() is the main scheduler function.
 */
5341
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5342 5343
{
	struct task_struct *prev, *next;
5344
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5345
	struct rq *rq;
5346
	int cpu;
I
Ingo Molnar 已提交
5347

5348 5349
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5360

5361
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5362
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5363

5364
	spin_lock_irq(&rq->lock);
5365
	update_rq_clock(rq);
5366
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5367 5368

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5369
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5370
			prev->state = TASK_RUNNING;
5371
		else
5372
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5373
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5374 5375
	}

5376 5377 5378 5379
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
5380

I
Ingo Molnar 已提交
5381
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5382 5383
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5384
	put_prev_task(rq, prev);
5385
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5386 5387

	if (likely(prev != next)) {
5388
		sched_info_switch(prev, next);
5389
		perf_counter_task_sched_out(prev, next, cpu);
5390

L
Linus Torvalds 已提交
5391 5392 5393 5394
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5395
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5396 5397 5398 5399 5400 5401
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5402 5403 5404
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
5405
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5406
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5407

L
Linus Torvalds 已提交
5408
	preempt_enable_no_resched();
5409
	if (need_resched())
L
Linus Torvalds 已提交
5410 5411 5412 5413
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5475 5476
#ifdef CONFIG_PREEMPT
/*
5477
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5478
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5479 5480 5481 5482 5483
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5484

L
Linus Torvalds 已提交
5485 5486
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5487
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5488
	 */
N
Nick Piggin 已提交
5489
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5490 5491
		return;

5492 5493 5494 5495
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5496

5497 5498 5499 5500 5501
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5502
	} while (need_resched());
L
Linus Torvalds 已提交
5503 5504 5505 5506
}
EXPORT_SYMBOL(preempt_schedule);

/*
5507
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5508 5509 5510 5511 5512 5513 5514
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5515

5516
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5517 5518
	BUG_ON(ti->preempt_count || !irqs_disabled());

5519 5520 5521 5522 5523 5524
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5525

5526 5527 5528 5529 5530
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5531
	} while (need_resched());
L
Linus Torvalds 已提交
5532 5533 5534 5535
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5536 5537
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5538
{
5539
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5540 5541 5542 5543
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5544 5545
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5546 5547 5548
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5549
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5550 5551
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5552
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5553
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5554
{
5555
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5556

5557
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5558 5559
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5560
		if (curr->func(curr, mode, sync, key) &&
5561
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5562 5563 5564 5565 5566 5567 5568 5569 5570
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5571
 * @key: is directly passed to the wakeup function
5572 5573 5574
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5575
 */
5576
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5577
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5590
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5591 5592 5593 5594
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5595 5596 5597 5598 5599
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5600
/**
5601
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5602 5603 5604
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5605
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5606 5607 5608 5609 5610 5611 5612
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5613 5614 5615
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5616
 */
5617 5618
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5630
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5631 5632
	spin_unlock_irqrestore(&q->lock, flags);
}
5633 5634 5635 5636 5637 5638 5639 5640 5641
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5642 5643
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5644 5645 5646 5647 5648 5649 5650 5651
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5652 5653 5654
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5655
 */
5656
void complete(struct completion *x)
L
Linus Torvalds 已提交
5657 5658 5659 5660 5661
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5662
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5663 5664 5665 5666
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5667 5668 5669 5670 5671
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5672 5673 5674
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5675
 */
5676
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5677 5678 5679 5680 5681
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5682
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5683 5684 5685 5686
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5687 5688
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5689 5690 5691 5692 5693 5694 5695
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5696
			if (signal_pending_state(state, current)) {
5697 5698
				timeout = -ERESTARTSYS;
				break;
5699 5700
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5701 5702 5703
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5704
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5705
		__remove_wait_queue(&x->wait, &wait);
5706 5707
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5708 5709
	}
	x->done--;
5710
	return timeout ?: 1;
L
Linus Torvalds 已提交
5711 5712
}

5713 5714
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5715 5716 5717 5718
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5719
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5720
	spin_unlock_irq(&x->wait.lock);
5721 5722
	return timeout;
}
L
Linus Torvalds 已提交
5723

5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5734
void __sched wait_for_completion(struct completion *x)
5735 5736
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5737
}
5738
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5739

5740 5741 5742 5743 5744 5745 5746 5747 5748
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5749
unsigned long __sched
5750
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5751
{
5752
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5753
}
5754
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5755

5756 5757 5758 5759 5760 5761 5762
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5763
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5764
{
5765 5766 5767 5768
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5769
}
5770
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5771

5772 5773 5774 5775 5776 5777 5778 5779
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5780
unsigned long __sched
5781 5782
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5783
{
5784
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5785
}
5786
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5787

5788 5789 5790 5791 5792 5793 5794
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5795 5796 5797 5798 5799 5800 5801 5802 5803
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5850 5851
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5852
{
I
Ingo Molnar 已提交
5853 5854 5855 5856
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5857

5858
	__set_current_state(state);
L
Linus Torvalds 已提交
5859

5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5874 5875 5876
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5877
long __sched
I
Ingo Molnar 已提交
5878
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5879
{
5880
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5881 5882 5883
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5884
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5885
{
5886
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5887 5888 5889
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5890
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5891
{
5892
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5893 5894 5895
}
EXPORT_SYMBOL(sleep_on_timeout);

5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5908
void rt_mutex_setprio(struct task_struct *p, int prio)
5909 5910
{
	unsigned long flags;
5911
	int oldprio, on_rq, running;
5912
	struct rq *rq;
5913
	const struct sched_class *prev_class = p->sched_class;
5914 5915 5916 5917

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5918
	update_rq_clock(rq);
5919

5920
	oldprio = p->prio;
I
Ingo Molnar 已提交
5921
	on_rq = p->se.on_rq;
5922
	running = task_current(rq, p);
5923
	if (on_rq)
5924
		dequeue_task(rq, p, 0);
5925 5926
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5927 5928 5929 5930 5931 5932

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5933 5934
	p->prio = prio;

5935 5936
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5937
	if (on_rq) {
5938
		enqueue_task(rq, p, 0);
5939 5940

		check_class_changed(rq, p, prev_class, oldprio, running);
5941 5942 5943 5944 5945 5946
	}
	task_rq_unlock(rq, &flags);
}

#endif

5947
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5948
{
I
Ingo Molnar 已提交
5949
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5950
	unsigned long flags;
5951
	struct rq *rq;
L
Linus Torvalds 已提交
5952 5953 5954 5955 5956 5957 5958 5959

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5960
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5961 5962 5963 5964
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5965
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5966
	 */
5967
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5968 5969 5970
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5971
	on_rq = p->se.on_rq;
5972
	if (on_rq)
5973
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5974 5975

	p->static_prio = NICE_TO_PRIO(nice);
5976
	set_load_weight(p);
5977 5978 5979
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5980

I
Ingo Molnar 已提交
5981
	if (on_rq) {
5982
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5983
		/*
5984 5985
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5986
		 */
5987
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5988 5989 5990 5991 5992 5993 5994
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5995 5996 5997 5998 5999
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6000
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6001
{
6002 6003
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6004

M
Matt Mackall 已提交
6005 6006 6007 6008
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6009 6010 6011 6012 6013 6014 6015 6016 6017
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6018
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6019
{
6020
	long nice, retval;
L
Linus Torvalds 已提交
6021 6022 6023 6024 6025 6026

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6027 6028
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6029 6030 6031
	if (increment > 40)
		increment = 40;

6032
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6033 6034 6035 6036 6037
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6038 6039 6040
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6059
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6060 6061 6062 6063 6064 6065 6066 6067
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6068
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6069 6070 6071
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6072
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6087
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6088 6089 6090 6091 6092 6093 6094 6095
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6096
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6097
{
6098
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6099 6100 6101
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6102 6103
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6104
{
I
Ingo Molnar 已提交
6105
	BUG_ON(p->se.on_rq);
6106

L
Linus Torvalds 已提交
6107
	p->policy = policy;
I
Ingo Molnar 已提交
6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6120
	p->rt_priority = prio;
6121 6122 6123
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6124
	set_load_weight(p);
L
Linus Torvalds 已提交
6125 6126
}

6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6143 6144
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6145
{
6146
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6147
	unsigned long flags;
6148
	const struct sched_class *prev_class = p->sched_class;
6149
	struct rq *rq;
6150
	int reset_on_fork;
L
Linus Torvalds 已提交
6151

6152 6153
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6154 6155
recheck:
	/* double check policy once rq lock held */
6156 6157
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6158
		policy = oldpolicy = p->policy;
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6169 6170
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6171 6172
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6173 6174
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6175
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6176
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6177
		return -EINVAL;
6178
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6179 6180
		return -EINVAL;

6181 6182 6183
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6184
	if (user && !capable(CAP_SYS_NICE)) {
6185
		if (rt_policy(policy)) {
6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6202 6203 6204 6205 6206 6207
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6208

6209
		/* can't change other user's priorities */
6210
		if (!check_same_owner(p))
6211
			return -EPERM;
6212 6213 6214 6215

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6216
	}
L
Linus Torvalds 已提交
6217

6218
	if (user) {
6219
#ifdef CONFIG_RT_GROUP_SCHED
6220 6221 6222 6223
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6224 6225
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6226
			return -EPERM;
6227 6228
#endif

6229 6230 6231 6232 6233
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6234 6235 6236 6237 6238
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6239 6240 6241 6242
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6243
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6244 6245 6246
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6247 6248
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6249 6250
		goto recheck;
	}
I
Ingo Molnar 已提交
6251
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6252
	on_rq = p->se.on_rq;
6253
	running = task_current(rq, p);
6254
	if (on_rq)
6255
		deactivate_task(rq, p, 0);
6256 6257
	if (running)
		p->sched_class->put_prev_task(rq, p);
6258

6259 6260
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6261
	oldprio = p->prio;
I
Ingo Molnar 已提交
6262
	__setscheduler(rq, p, policy, param->sched_priority);
6263

6264 6265
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6266 6267
	if (on_rq) {
		activate_task(rq, p, 0);
6268 6269

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6270
	}
6271 6272 6273
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6274 6275
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6276 6277
	return 0;
}
6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6292 6293
EXPORT_SYMBOL_GPL(sched_setscheduler);

6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6311 6312
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6313 6314 6315
{
	struct sched_param lparam;
	struct task_struct *p;
6316
	int retval;
L
Linus Torvalds 已提交
6317 6318 6319 6320 6321

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6322 6323 6324

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6325
	p = find_process_by_pid(pid);
6326 6327 6328
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6329

L
Linus Torvalds 已提交
6330 6331 6332 6333 6334 6335 6336 6337 6338
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6339 6340
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6341
{
6342 6343 6344 6345
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6346 6347 6348 6349 6350 6351 6352 6353
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6354
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6355 6356 6357 6358 6359 6360 6361 6362
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6363
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6364
{
6365
	struct task_struct *p;
6366
	int retval;
L
Linus Torvalds 已提交
6367 6368

	if (pid < 0)
6369
		return -EINVAL;
L
Linus Torvalds 已提交
6370 6371 6372 6373 6374 6375 6376

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6377 6378
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6379 6380 6381 6382 6383 6384
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6385
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6386 6387 6388
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6389
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6390 6391
{
	struct sched_param lp;
6392
	struct task_struct *p;
6393
	int retval;
L
Linus Torvalds 已提交
6394 6395

	if (!param || pid < 0)
6396
		return -EINVAL;
L
Linus Torvalds 已提交
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6423
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6424
{
6425
	cpumask_var_t cpus_allowed, new_mask;
6426 6427
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6428

6429
	get_online_cpus();
L
Linus Torvalds 已提交
6430 6431 6432 6433 6434
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6435
		put_online_cpus();
L
Linus Torvalds 已提交
6436 6437 6438 6439 6440
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6441
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6442 6443 6444 6445 6446
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6447 6448 6449 6450 6451 6452 6453 6454
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6455
	retval = -EPERM;
6456
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6457 6458
		goto out_unlock;

6459 6460 6461 6462
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6463 6464
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6465
 again:
6466
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6467

P
Paul Menage 已提交
6468
	if (!retval) {
6469 6470
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6471 6472 6473 6474 6475
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6476
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6477 6478 6479
			goto again;
		}
	}
L
Linus Torvalds 已提交
6480
out_unlock:
6481 6482 6483 6484
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6485
	put_task_struct(p);
6486
	put_online_cpus();
L
Linus Torvalds 已提交
6487 6488 6489 6490
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6491
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6492
{
6493 6494 6495 6496 6497
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6498 6499 6500 6501 6502 6503 6504 6505 6506
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6507 6508
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6509
{
6510
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6511 6512
	int retval;

6513 6514
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6515

6516 6517 6518 6519 6520
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6521 6522
}

6523
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6524
{
6525
	struct task_struct *p;
L
Linus Torvalds 已提交
6526 6527
	int retval;

6528
	get_online_cpus();
L
Linus Torvalds 已提交
6529 6530 6531 6532 6533 6534 6535
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6536 6537 6538 6539
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6540
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6541 6542 6543

out_unlock:
	read_unlock(&tasklist_lock);
6544
	put_online_cpus();
L
Linus Torvalds 已提交
6545

6546
	return retval;
L
Linus Torvalds 已提交
6547 6548 6549 6550 6551 6552 6553 6554
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6555 6556
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6557 6558
{
	int ret;
6559
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6560

6561
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6562 6563
		return -EINVAL;

6564 6565
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6566

6567 6568 6569 6570 6571 6572 6573 6574
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6575

6576
	return ret;
L
Linus Torvalds 已提交
6577 6578 6579 6580 6581
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6582 6583
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6584
 */
6585
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6586
{
6587
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6588

6589
	schedstat_inc(rq, yld_count);
6590
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6591 6592 6593 6594 6595 6596

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6597
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6598 6599 6600 6601 6602 6603 6604 6605
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6606 6607 6608 6609 6610
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6611
static void __cond_resched(void)
L
Linus Torvalds 已提交
6612
{
6613
	__might_sleep(__FILE__, __LINE__);
6614

6615 6616 6617
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6618 6619
}

6620
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6621
{
P
Peter Zijlstra 已提交
6622
	if (should_resched()) {
L
Linus Torvalds 已提交
6623 6624 6625 6626 6627
		__cond_resched();
		return 1;
	}
	return 0;
}
6628
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6629 6630 6631 6632 6633

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6634
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6635 6636 6637
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
6638
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6639
{
P
Peter Zijlstra 已提交
6640
	int resched = should_resched();
J
Jan Kara 已提交
6641 6642
	int ret = 0;

N
Nick Piggin 已提交
6643
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6644
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6645
		if (resched)
N
Nick Piggin 已提交
6646 6647 6648
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6649
		ret = 1;
L
Linus Torvalds 已提交
6650 6651
		spin_lock(lock);
	}
J
Jan Kara 已提交
6652
	return ret;
L
Linus Torvalds 已提交
6653 6654 6655 6656 6657 6658 6659
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6660
	if (should_resched()) {
6661
		local_bh_enable();
L
Linus Torvalds 已提交
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
6673
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6684
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6685 6686 6687 6688 6689 6690 6691
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6692
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6693

6694
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6695 6696 6697
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
6698
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6699 6700 6701 6702 6703
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6704
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6705 6706
	long ret;

6707
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6708 6709 6710
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
6711
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6712 6713 6714 6715 6716 6717 6718 6719 6720 6721
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6722
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6723 6724 6725 6726 6727 6728 6729 6730 6731
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6732
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6733
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6747
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6748 6749 6750 6751 6752 6753 6754 6755 6756
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6757
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6758
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6772
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6773
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6774
{
6775
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6776
	unsigned int time_slice;
6777
	int retval;
L
Linus Torvalds 已提交
6778 6779 6780
	struct timespec t;

	if (pid < 0)
6781
		return -EINVAL;
L
Linus Torvalds 已提交
6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6793 6794 6795 6796 6797 6798
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6799
		time_slice = DEF_TIMESLICE;
6800
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6801 6802 6803 6804 6805
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6806 6807
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6808 6809
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6810
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6811
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6812 6813
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6814

L
Linus Torvalds 已提交
6815 6816 6817 6818 6819
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6820
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6821

6822
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6823 6824
{
	unsigned long free = 0;
6825
	unsigned state;
L
Linus Torvalds 已提交
6826 6827

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6828
	printk(KERN_INFO "%-13.13s %c", p->comm,
6829
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6830
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6831
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6832
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6833
	else
I
Ingo Molnar 已提交
6834
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6835 6836
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6837
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6838
	else
I
Ingo Molnar 已提交
6839
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6840 6841
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6842
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6843
#endif
6844 6845 6846
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6847

6848
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6849 6850
}

I
Ingo Molnar 已提交
6851
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6852
{
6853
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6854

6855 6856 6857
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6858
#else
6859 6860
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6861 6862 6863 6864 6865 6866 6867 6868
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6869
		if (!state_filter || (p->state & state_filter))
6870
			sched_show_task(p);
L
Linus Torvalds 已提交
6871 6872
	} while_each_thread(g, p);

6873 6874
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6875 6876 6877
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6878
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6879 6880 6881 6882 6883
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6884 6885
}

I
Ingo Molnar 已提交
6886 6887
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6888
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6889 6890
}

6891 6892 6893 6894 6895 6896 6897 6898
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6899
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6900
{
6901
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6902 6903
	unsigned long flags;

6904 6905
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6906 6907 6908
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6909
	idle->prio = idle->normal_prio = MAX_PRIO;
6910
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6911
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6912 6913

	rq->curr = rq->idle = idle;
6914 6915 6916
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6917 6918 6919
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6920 6921 6922
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6923
	task_thread_info(idle)->preempt_count = 0;
6924
#endif
I
Ingo Molnar 已提交
6925 6926 6927 6928
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6929
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6930 6931 6932 6933 6934 6935 6936
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6937
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6938
 */
6939
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6940

I
Ingo Molnar 已提交
6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6964 6965

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6966 6967
}

L
Linus Torvalds 已提交
6968 6969 6970 6971
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6972
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6991
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6992 6993
 * call is not atomic; no spinlocks may be held.
 */
6994
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6995
{
6996
	struct migration_req req;
L
Linus Torvalds 已提交
6997
	unsigned long flags;
6998
	struct rq *rq;
6999
	int ret = 0;
L
Linus Torvalds 已提交
7000 7001

	rq = task_rq_lock(p, &flags);
7002
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
7003 7004 7005 7006
		ret = -EINVAL;
		goto out;
	}

7007
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7008
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7009 7010 7011 7012
		ret = -EINVAL;
		goto out;
	}

7013
	if (p->sched_class->set_cpus_allowed)
7014
		p->sched_class->set_cpus_allowed(p, new_mask);
7015
	else {
7016 7017
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7018 7019
	}

L
Linus Torvalds 已提交
7020
	/* Can the task run on the task's current CPU? If so, we're done */
7021
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7022 7023
		goto out;

R
Rusty Russell 已提交
7024
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7025 7026 7027 7028 7029 7030 7031 7032 7033
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7034

L
Linus Torvalds 已提交
7035 7036
	return ret;
}
7037
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7038 7039

/*
I
Ingo Molnar 已提交
7040
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7041 7042 7043 7044 7045 7046
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7047 7048
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7049
 */
7050
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7051
{
7052
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7053
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7054

7055
	if (unlikely(!cpu_active(dest_cpu)))
7056
		return ret;
L
Linus Torvalds 已提交
7057 7058 7059 7060 7061 7062 7063

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7064
		goto done;
L
Linus Torvalds 已提交
7065
	/* Affinity changed (again). */
7066
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7067
		goto fail;
L
Linus Torvalds 已提交
7068

I
Ingo Molnar 已提交
7069
	on_rq = p->se.on_rq;
7070
	if (on_rq)
7071
		deactivate_task(rq_src, p, 0);
7072

L
Linus Torvalds 已提交
7073
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7074 7075
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7076
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7077
	}
L
Linus Torvalds 已提交
7078
done:
7079
	ret = 1;
L
Linus Torvalds 已提交
7080
fail:
L
Linus Torvalds 已提交
7081
	double_rq_unlock(rq_src, rq_dest);
7082
	return ret;
L
Linus Torvalds 已提交
7083 7084 7085 7086 7087 7088 7089
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7090
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7091 7092
{
	int cpu = (long)data;
7093
	struct rq *rq;
L
Linus Torvalds 已提交
7094 7095 7096 7097 7098 7099

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7100
		struct migration_req *req;
L
Linus Torvalds 已提交
7101 7102 7103 7104 7105 7106
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7107
			break;
L
Linus Torvalds 已提交
7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7123
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7124 7125
		list_del_init(head->next);

N
Nick Piggin 已提交
7126 7127 7128
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
7129 7130 7131 7132 7133 7134 7135 7136 7137

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7149
/*
7150
 * Figure out where task on dead CPU should go, use force if necessary.
7151
 */
7152
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7153
{
7154
	int dest_cpu;
7155
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7172

7173 7174 7175 7176 7177 7178 7179 7180 7181
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7182
		}
7183 7184 7185 7186 7187 7188
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7189 7190 7191 7192 7193 7194 7195 7196 7197
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7198
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7199
{
R
Rusty Russell 已提交
7200
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7214
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7215

7216
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7217

7218 7219
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7220 7221
			continue;

7222 7223 7224
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7225

7226
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7227 7228
}

I
Ingo Molnar 已提交
7229 7230
/*
 * Schedules idle task to be the next runnable task on current CPU.
7231 7232
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7233 7234 7235
 */
void sched_idle_next(void)
{
7236
	int this_cpu = smp_processor_id();
7237
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7238 7239 7240 7241
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7242
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7243

7244 7245 7246
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7247 7248 7249
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7250
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7251

7252 7253
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7254 7255 7256 7257

	spin_unlock_irqrestore(&rq->lock, flags);
}

7258 7259
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7273
/* called under rq->lock with disabled interrupts */
7274
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7275
{
7276
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7277 7278

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7279
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7280 7281

	/* Cannot have done final schedule yet: would have vanished. */
7282
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7283

7284
	get_task_struct(p);
L
Linus Torvalds 已提交
7285 7286 7287

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7288
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7289 7290
	 * fine.
	 */
7291
	spin_unlock_irq(&rq->lock);
7292
	move_task_off_dead_cpu(dead_cpu, p);
7293
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7294

7295
	put_task_struct(p);
L
Linus Torvalds 已提交
7296 7297 7298 7299 7300
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7301
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7302
	struct task_struct *next;
7303

I
Ingo Molnar 已提交
7304 7305 7306
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7307
		update_rq_clock(rq);
7308
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7309 7310
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7311
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7312
		migrate_dead(dead_cpu, next);
7313

L
Linus Torvalds 已提交
7314 7315
	}
}
7316 7317 7318 7319 7320 7321 7322 7323

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
}
L
Linus Torvalds 已提交
7324 7325
#endif /* CONFIG_HOTPLUG_CPU */

7326 7327 7328
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7329 7330
	{
		.procname	= "sched_domain",
7331
		.mode		= 0555,
7332
	},
I
Ingo Molnar 已提交
7333
	{0, },
7334 7335 7336
};

static struct ctl_table sd_ctl_root[] = {
7337
	{
7338
		.ctl_name	= CTL_KERN,
7339
		.procname	= "kernel",
7340
		.mode		= 0555,
7341 7342
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7343
	{0, },
7344 7345 7346 7347 7348
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7349
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7350 7351 7352 7353

	return entry;
}

7354 7355
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7356
	struct ctl_table *entry;
7357

7358 7359 7360
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7361
	 * will always be set. In the lowest directory the names are
7362 7363 7364
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7365 7366
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7367 7368 7369
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7370 7371 7372 7373 7374

	kfree(*tablep);
	*tablep = NULL;
}

7375
static void
7376
set_table_entry(struct ctl_table *entry,
7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7390
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7391

7392 7393 7394
	if (table == NULL)
		return NULL;

7395
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7396
		sizeof(long), 0644, proc_doulongvec_minmax);
7397
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7398
		sizeof(long), 0644, proc_doulongvec_minmax);
7399
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7400
		sizeof(int), 0644, proc_dointvec_minmax);
7401
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7402
		sizeof(int), 0644, proc_dointvec_minmax);
7403
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7404
		sizeof(int), 0644, proc_dointvec_minmax);
7405
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7406
		sizeof(int), 0644, proc_dointvec_minmax);
7407
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7408
		sizeof(int), 0644, proc_dointvec_minmax);
7409
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7410
		sizeof(int), 0644, proc_dointvec_minmax);
7411
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7412
		sizeof(int), 0644, proc_dointvec_minmax);
7413
	set_table_entry(&table[9], "cache_nice_tries",
7414 7415
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7416
	set_table_entry(&table[10], "flags", &sd->flags,
7417
		sizeof(int), 0644, proc_dointvec_minmax);
7418 7419 7420
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7421 7422 7423 7424

	return table;
}

7425
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7426 7427 7428 7429 7430 7431 7432 7433 7434
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7435 7436
	if (table == NULL)
		return NULL;
7437 7438 7439 7440 7441

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7442
		entry->mode = 0555;
7443 7444 7445 7446 7447 7448 7449 7450
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7451
static void register_sched_domain_sysctl(void)
7452 7453 7454 7455 7456
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7457 7458 7459
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7460 7461 7462
	if (entry == NULL)
		return;

7463
	for_each_online_cpu(i) {
7464 7465
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7466
		entry->mode = 0555;
7467
		entry->child = sd_alloc_ctl_cpu_table(i);
7468
		entry++;
7469
	}
7470 7471

	WARN_ON(sd_sysctl_header);
7472 7473
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7474

7475
/* may be called multiple times per register */
7476 7477
static void unregister_sched_domain_sysctl(void)
{
7478 7479
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7480
	sd_sysctl_header = NULL;
7481 7482
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7483
}
7484
#else
7485 7486 7487 7488
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7489 7490 7491 7492
{
}
#endif

7493 7494 7495 7496 7497
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7498
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7518
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7519 7520 7521 7522
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7523 7524 7525 7526
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7527 7528
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7529 7530
{
	struct task_struct *p;
7531
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7532
	unsigned long flags;
7533
	struct rq *rq;
L
Linus Torvalds 已提交
7534 7535

	switch (action) {
7536

L
Linus Torvalds 已提交
7537
	case CPU_UP_PREPARE:
7538
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7539
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7540 7541 7542 7543 7544
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7545
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7546
		task_rq_unlock(rq, &flags);
7547
		get_task_struct(p);
L
Linus Torvalds 已提交
7548 7549
		cpu_rq(cpu)->migration_thread = p;
		break;
7550

L
Linus Torvalds 已提交
7551
	case CPU_ONLINE:
7552
	case CPU_ONLINE_FROZEN:
7553
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7554
		wake_up_process(cpu_rq(cpu)->migration_thread);
7555 7556 7557 7558

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
7559 7560
		rq->calc_load_update = calc_load_update;
		rq->calc_load_active = 0;
7561
		if (rq->rd) {
7562
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7563 7564

			set_rq_online(rq);
7565 7566
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7567
		break;
7568

L
Linus Torvalds 已提交
7569 7570
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7571
	case CPU_UP_CANCELED_FROZEN:
7572 7573
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7574
		/* Unbind it from offline cpu so it can run. Fall thru. */
7575
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7576
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7577
		kthread_stop(cpu_rq(cpu)->migration_thread);
7578
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7579 7580
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7581

L
Linus Torvalds 已提交
7582
	case CPU_DEAD:
7583
	case CPU_DEAD_FROZEN:
7584
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7585 7586 7587
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7588
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7589 7590
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7591
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7592
		update_rq_clock(rq);
7593
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7594
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7595 7596
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7597
		migrate_dead_tasks(cpu);
7598
		spin_unlock_irq(&rq->lock);
7599
		cpuset_unlock();
L
Linus Torvalds 已提交
7600 7601
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7602
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7603 7604 7605 7606 7607
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7608 7609
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7610 7611
			struct migration_req *req;

L
Linus Torvalds 已提交
7612
			req = list_entry(rq->migration_queue.next,
7613
					 struct migration_req, list);
L
Linus Torvalds 已提交
7614
			list_del_init(&req->list);
B
Brian King 已提交
7615
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7616
			complete(&req->done);
B
Brian King 已提交
7617
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7618 7619 7620
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7621

7622 7623
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7624 7625 7626 7627
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7628
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7629
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7630 7631 7632
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7633 7634 7635 7636 7637
#endif
	}
	return NOTIFY_OK;
}

7638 7639 7640 7641
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
 * the notifier in the perf_counter subsystem, though.
L
Linus Torvalds 已提交
7642
 */
7643
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7644 7645 7646 7647
	.notifier_call = migration_call,
	.priority = 10
};

7648
static int __init migration_init(void)
L
Linus Torvalds 已提交
7649 7650
{
	void *cpu = (void *)(long)smp_processor_id();
7651
	int err;
7652 7653

	/* Start one for the boot CPU: */
7654 7655
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7656 7657
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7658 7659

	return err;
L
Linus Torvalds 已提交
7660
}
7661
early_initcall(migration_init);
L
Linus Torvalds 已提交
7662 7663 7664
#endif

#ifdef CONFIG_SMP
7665

7666
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7667

7668
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7669
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7670
{
I
Ingo Molnar 已提交
7671
	struct sched_group *group = sd->groups;
7672
	char str[256];
L
Linus Torvalds 已提交
7673

R
Rusty Russell 已提交
7674
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7675
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7676 7677 7678 7679 7680 7681 7682 7683 7684

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7685 7686
	}

7687
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7688

7689
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7690 7691 7692
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7693
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7694 7695 7696
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7697

I
Ingo Molnar 已提交
7698
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7699
	do {
I
Ingo Molnar 已提交
7700 7701 7702
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7703 7704 7705
			break;
		}

I
Ingo Molnar 已提交
7706 7707 7708 7709 7710 7711
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7712

7713
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7714 7715 7716 7717
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7718

7719
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7720 7721 7722 7723
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7724

7725
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7726

R
Rusty Russell 已提交
7727
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7728 7729 7730 7731 7732 7733

		printk(KERN_CONT " %s", str);
		if (group->__cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (__cpu_power = %d)",
				group->__cpu_power);
		}
L
Linus Torvalds 已提交
7734

I
Ingo Molnar 已提交
7735 7736 7737
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7738

7739
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7740
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7741

7742 7743
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7744 7745 7746 7747
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7748

I
Ingo Molnar 已提交
7749 7750
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7751
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7752
	int level = 0;
L
Linus Torvalds 已提交
7753

I
Ingo Molnar 已提交
7754 7755 7756 7757
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7758

I
Ingo Molnar 已提交
7759 7760
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7761
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7762 7763 7764 7765
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7766
	for (;;) {
7767
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7768
			break;
L
Linus Torvalds 已提交
7769 7770
		level++;
		sd = sd->parent;
7771
		if (!sd)
I
Ingo Molnar 已提交
7772 7773
			break;
	}
7774
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7775
}
7776
#else /* !CONFIG_SCHED_DEBUG */
7777
# define sched_domain_debug(sd, cpu) do { } while (0)
7778
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7779

7780
static int sd_degenerate(struct sched_domain *sd)
7781
{
7782
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7783 7784 7785 7786 7787 7788
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7789 7790 7791
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7805 7806
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7807 7808 7809 7810 7811 7812
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7813
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7825 7826 7827
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7828 7829
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7830 7831 7832 7833 7834 7835 7836
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7837 7838
static void free_rootdomain(struct root_domain *rd)
{
7839 7840
	cpupri_cleanup(&rd->cpupri);

7841 7842 7843 7844 7845 7846
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7847 7848
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7849
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7850 7851 7852 7853 7854
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7855
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7856

7857
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7858
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7859

7860
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7861

I
Ingo Molnar 已提交
7862 7863 7864 7865 7866 7867 7868
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7869 7870 7871 7872 7873
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7874 7875
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7876
		set_rq_online(rq);
G
Gregory Haskins 已提交
7877 7878

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7879 7880 7881

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7882 7883
}

L
Li Zefan 已提交
7884
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7885
{
7886 7887
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7888 7889
	memset(rd, 0, sizeof(*rd));

7890 7891
	if (bootmem)
		gfp = GFP_NOWAIT;
7892

7893
	if (!alloc_cpumask_var(&rd->span, gfp))
7894
		goto out;
7895
	if (!alloc_cpumask_var(&rd->online, gfp))
7896
		goto free_span;
7897
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7898
		goto free_online;
7899

P
Pekka Enberg 已提交
7900
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7901
		goto free_rto_mask;
7902
	return 0;
7903

7904 7905
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7906 7907 7908 7909
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7910
out:
7911
	return -ENOMEM;
G
Gregory Haskins 已提交
7912 7913 7914 7915
}

static void init_defrootdomain(void)
{
7916 7917
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7918 7919 7920
	atomic_set(&def_root_domain.refcount, 1);
}

7921
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7922 7923 7924 7925 7926 7927 7928
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7929 7930 7931 7932
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7933 7934 7935 7936

	return rd;
}

L
Linus Torvalds 已提交
7937
/*
I
Ingo Molnar 已提交
7938
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7939 7940
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7941 7942
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7943
{
7944
	struct rq *rq = cpu_rq(cpu);
7945 7946 7947
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7948
	for (tmp = sd; tmp; ) {
7949 7950 7951
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7952

7953
		if (sd_parent_degenerate(tmp, parent)) {
7954
			tmp->parent = parent->parent;
7955 7956
			if (parent->parent)
				parent->parent->child = tmp;
7957 7958
		} else
			tmp = tmp->parent;
7959 7960
	}

7961
	if (sd && sd_degenerate(sd)) {
7962
		sd = sd->parent;
7963 7964 7965
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7966 7967 7968

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7969
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7970
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7971 7972 7973
}

/* cpus with isolated domains */
7974
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7975 7976 7977 7978

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7979
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7980 7981 7982
	return 1;
}

I
Ingo Molnar 已提交
7983
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7984 7985

/*
7986 7987
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7988 7989
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7990 7991 7992 7993 7994
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7995
static void
7996 7997 7998
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7999
					struct sched_group **sg,
8000 8001
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8002 8003 8004 8005
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8006
	cpumask_clear(covered);
8007

8008
	for_each_cpu(i, span) {
8009
		struct sched_group *sg;
8010
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8011 8012
		int j;

8013
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8014 8015
			continue;

8016
		cpumask_clear(sched_group_cpus(sg));
8017
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
8018

8019
		for_each_cpu(j, span) {
8020
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8021 8022
				continue;

8023
			cpumask_set_cpu(j, covered);
8024
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8025 8026 8027 8028 8029 8030 8031 8032 8033 8034
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8035
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8036

8037
#ifdef CONFIG_NUMA
8038

8039 8040 8041 8042 8043
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8044
 * Find the next node to include in a given scheduling domain. Simply
8045 8046 8047 8048
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8049
static int find_next_best_node(int node, nodemask_t *used_nodes)
8050 8051 8052 8053 8054
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8055
	for (i = 0; i < nr_node_ids; i++) {
8056
		/* Start at @node */
8057
		n = (node + i) % nr_node_ids;
8058 8059 8060 8061 8062

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8063
		if (node_isset(n, *used_nodes))
8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8075
	node_set(best_node, *used_nodes);
8076 8077 8078 8079 8080 8081
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8082
 * @span: resulting cpumask
8083
 *
I
Ingo Molnar 已提交
8084
 * Given a node, construct a good cpumask for its sched_domain to span. It
8085 8086 8087
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8088
static void sched_domain_node_span(int node, struct cpumask *span)
8089
{
8090
	nodemask_t used_nodes;
8091
	int i;
8092

8093
	cpumask_clear(span);
8094
	nodes_clear(used_nodes);
8095

8096
	cpumask_or(span, span, cpumask_of_node(node));
8097
	node_set(node, used_nodes);
8098 8099

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8100
		int next_node = find_next_best_node(node, &used_nodes);
8101

8102
		cpumask_or(span, span, cpumask_of_node(next_node));
8103 8104
	}
}
8105
#endif /* CONFIG_NUMA */
8106

8107
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8108

8109 8110
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8111 8112 8113
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8125
/*
8126
 * SMT sched-domains:
8127
 */
L
Linus Torvalds 已提交
8128
#ifdef CONFIG_SCHED_SMT
8129 8130
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8131

I
Ingo Molnar 已提交
8132
static int
8133 8134
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8135
{
8136
	if (sg)
8137
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8138 8139
	return cpu;
}
8140
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8141

8142 8143 8144
/*
 * multi-core sched-domains:
 */
8145
#ifdef CONFIG_SCHED_MC
8146 8147
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8148
#endif /* CONFIG_SCHED_MC */
8149 8150

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8151
static int
8152 8153
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8154
{
8155
	int group;
8156

8157
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8158
	group = cpumask_first(mask);
8159
	if (sg)
8160
		*sg = &per_cpu(sched_group_core, group).sg;
8161
	return group;
8162 8163
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8164
static int
8165 8166
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8167
{
8168
	if (sg)
8169
		*sg = &per_cpu(sched_group_core, cpu).sg;
8170 8171 8172 8173
	return cpu;
}
#endif

8174 8175
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8176

I
Ingo Molnar 已提交
8177
static int
8178 8179
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8180
{
8181
	int group;
8182
#ifdef CONFIG_SCHED_MC
8183
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8184
	group = cpumask_first(mask);
8185
#elif defined(CONFIG_SCHED_SMT)
8186
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8187
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8188
#else
8189
	group = cpu;
L
Linus Torvalds 已提交
8190
#endif
8191
	if (sg)
8192
		*sg = &per_cpu(sched_group_phys, group).sg;
8193
	return group;
L
Linus Torvalds 已提交
8194 8195 8196 8197
}

#ifdef CONFIG_NUMA
/*
8198 8199 8200
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8201
 */
8202
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8203
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8204

8205
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8206
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8207

8208 8209 8210
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8211
{
8212 8213
	int group;

8214
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8215
	group = cpumask_first(nodemask);
8216 8217

	if (sg)
8218
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8219
	return group;
L
Linus Torvalds 已提交
8220
}
8221

8222 8223 8224 8225 8226 8227 8228
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8229
	do {
8230
		for_each_cpu(j, sched_group_cpus(sg)) {
8231
			struct sched_domain *sd;
8232

8233
			sd = &per_cpu(phys_domains, j).sd;
8234
			if (j != group_first_cpu(sd->groups)) {
8235 8236 8237 8238 8239 8240
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8241

8242 8243 8244 8245
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
8246
}
8247
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8248

8249
#ifdef CONFIG_NUMA
8250
/* Free memory allocated for various sched_group structures */
8251 8252
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8253
{
8254
	int cpu, i;
8255

8256
	for_each_cpu(cpu, cpu_map) {
8257 8258 8259 8260 8261 8262
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8263
		for (i = 0; i < nr_node_ids; i++) {
8264 8265
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8266
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8267
			if (cpumask_empty(nodemask))
8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8284
#else /* !CONFIG_NUMA */
8285 8286
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8287 8288
{
}
8289
#endif /* CONFIG_NUMA */
8290

8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

8312
	if (cpu != group_first_cpu(sd->groups))
8313 8314 8315 8316
		return;

	child = sd->child;

8317 8318
	sd->groups->__cpu_power = 0;

8319 8320 8321 8322 8323 8324 8325 8326 8327 8328
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8329
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8330 8331 8332 8333 8334 8335 8336 8337
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
8338
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
8339 8340 8341 8342
		group = group->next;
	} while (group != child->groups);
}

8343 8344 8345 8346 8347
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8348 8349 8350 8351 8352 8353
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8354
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8355

8356 8357 8358 8359 8360
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8361
	sd->level = SD_LV_##type;				\
8362
	SD_INIT_NAME(sd, type);					\
8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8377 8378 8379 8380
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8381 8382 8383 8384 8385 8386
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
8412
/*
8413 8414
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
8415
 */
8416
static int __build_sched_domains(const struct cpumask *cpu_map,
8417
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
8418
{
8419
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
8420
	struct root_domain *rd;
8421 8422
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
8423
#ifdef CONFIG_NUMA
8424
	cpumask_var_t domainspan, covered, notcovered;
8425
	struct sched_group **sched_group_nodes = NULL;
8426
	int sd_allnodes = 0;
8427

8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
8448 8449 8450
	/*
	 * Allocate the per-node list of sched groups
	 */
8451
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
8452
				    GFP_KERNEL);
8453 8454
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8455
		goto free_tmpmask;
8456 8457
	}
#endif
L
Linus Torvalds 已提交
8458

8459
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
8460 8461
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
8462
		goto free_sched_groups;
G
Gregory Haskins 已提交
8463 8464
	}

8465
#ifdef CONFIG_NUMA
8466
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8467 8468
#endif

L
Linus Torvalds 已提交
8469
	/*
8470
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8471
	 */
8472
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8473 8474
		struct sched_domain *sd = NULL, *p;

8475
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
8476 8477

#ifdef CONFIG_NUMA
8478 8479
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8480
			sd = &per_cpu(allnodes_domains, i).sd;
8481
			SD_INIT(sd, ALLNODES);
8482
			set_domain_attribute(sd, attr);
8483
			cpumask_copy(sched_domain_span(sd), cpu_map);
8484
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8485
			p = sd;
8486
			sd_allnodes = 1;
8487 8488 8489
		} else
			p = NULL;

8490
		sd = &per_cpu(node_domains, i).sd;
8491
		SD_INIT(sd, NODE);
8492
		set_domain_attribute(sd, attr);
8493
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8494
		sd->parent = p;
8495 8496
		if (p)
			p->child = sd;
8497 8498
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8499 8500 8501
#endif

		p = sd;
8502
		sd = &per_cpu(phys_domains, i).sd;
8503
		SD_INIT(sd, CPU);
8504
		set_domain_attribute(sd, attr);
8505
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
8506
		sd->parent = p;
8507 8508
		if (p)
			p->child = sd;
8509
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8510

8511 8512
#ifdef CONFIG_SCHED_MC
		p = sd;
8513
		sd = &per_cpu(core_domains, i).sd;
8514
		SD_INIT(sd, MC);
8515
		set_domain_attribute(sd, attr);
8516 8517
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
8518
		sd->parent = p;
8519
		p->child = sd;
8520
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8521 8522
#endif

L
Linus Torvalds 已提交
8523 8524
#ifdef CONFIG_SCHED_SMT
		p = sd;
8525
		sd = &per_cpu(cpu_domains, i).sd;
8526
		SD_INIT(sd, SIBLING);
8527
		set_domain_attribute(sd, attr);
8528
		cpumask_and(sched_domain_span(sd),
8529
			    topology_thread_cpumask(i), cpu_map);
L
Linus Torvalds 已提交
8530
		sd->parent = p;
8531
		p->child = sd;
8532
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8533 8534 8535 8536 8537
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
8538
	for_each_cpu(i, cpu_map) {
8539
		cpumask_and(this_sibling_map,
8540
			    topology_thread_cpumask(i), cpu_map);
8541
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
8542 8543
			continue;

I
Ingo Molnar 已提交
8544
		init_sched_build_groups(this_sibling_map, cpu_map,
8545 8546
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8547 8548 8549
	}
#endif

8550 8551
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
8552
	for_each_cpu(i, cpu_map) {
8553
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8554
		if (i != cpumask_first(this_core_map))
8555
			continue;
8556

I
Ingo Molnar 已提交
8557
		init_sched_build_groups(this_core_map, cpu_map,
8558 8559
					&cpu_to_core_group,
					send_covered, tmpmask);
8560 8561 8562
	}
#endif

L
Linus Torvalds 已提交
8563
	/* Set up physical groups */
8564
	for (i = 0; i < nr_node_ids; i++) {
8565
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8566
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
8567 8568
			continue;

8569 8570 8571
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8572 8573 8574 8575
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
8576 8577 8578 8579 8580
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
8581

8582
	for (i = 0; i < nr_node_ids; i++) {
8583 8584 8585 8586
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

8587
		cpumask_clear(covered);
8588
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8589
		if (cpumask_empty(nodemask)) {
8590
			sched_group_nodes[i] = NULL;
8591
			continue;
8592
		}
8593

8594
		sched_domain_node_span(i, domainspan);
8595
		cpumask_and(domainspan, domainspan, cpu_map);
8596

8597 8598
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
8599 8600 8601 8602 8603
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
8604
		sched_group_nodes[i] = sg;
8605
		for_each_cpu(j, nodemask) {
8606
			struct sched_domain *sd;
I
Ingo Molnar 已提交
8607

8608
			sd = &per_cpu(node_domains, j).sd;
8609 8610
			sd->groups = sg;
		}
8611
		sg->__cpu_power = 0;
8612
		cpumask_copy(sched_group_cpus(sg), nodemask);
8613
		sg->next = sg;
8614
		cpumask_or(covered, covered, nodemask);
8615 8616
		prev = sg;

8617 8618
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
8619

8620 8621 8622 8623
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
8624 8625
				break;

8626
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8627
			if (cpumask_empty(tmpmask))
8628 8629
				continue;

8630 8631
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
8632
					  GFP_KERNEL, i);
8633 8634 8635
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
8636
				goto error;
8637
			}
8638
			sg->__cpu_power = 0;
8639
			cpumask_copy(sched_group_cpus(sg), tmpmask);
8640
			sg->next = prev->next;
8641
			cpumask_or(covered, covered, tmpmask);
8642 8643 8644 8645
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
8646 8647 8648
#endif

	/* Calculate CPU power for physical packages and nodes */
8649
#ifdef CONFIG_SCHED_SMT
8650
	for_each_cpu(i, cpu_map) {
8651
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
8652

8653
		init_sched_groups_power(i, sd);
8654
	}
L
Linus Torvalds 已提交
8655
#endif
8656
#ifdef CONFIG_SCHED_MC
8657
	for_each_cpu(i, cpu_map) {
8658
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
8659

8660
		init_sched_groups_power(i, sd);
8661 8662
	}
#endif
8663

8664
	for_each_cpu(i, cpu_map) {
8665
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
8666

8667
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8668 8669
	}

8670
#ifdef CONFIG_NUMA
8671
	for (i = 0; i < nr_node_ids; i++)
8672
		init_numa_sched_groups_power(sched_group_nodes[i]);
8673

8674 8675
	if (sd_allnodes) {
		struct sched_group *sg;
8676

8677
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8678
								tmpmask);
8679 8680
		init_numa_sched_groups_power(sg);
	}
8681 8682
#endif

L
Linus Torvalds 已提交
8683
	/* Attach the domains */
8684
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8685 8686
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
8687
		sd = &per_cpu(cpu_domains, i).sd;
8688
#elif defined(CONFIG_SCHED_MC)
8689
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8690
#else
8691
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8692
#endif
G
Gregory Haskins 已提交
8693
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
8694
	}
8695

8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
8724

8725
#ifdef CONFIG_NUMA
8726
error:
8727
	free_sched_groups(cpu_map, tmpmask);
8728
	free_rootdomain(rd);
8729
	goto free_tmpmask;
8730
#endif
L
Linus Torvalds 已提交
8731
}
P
Paul Jackson 已提交
8732

8733
static int build_sched_domains(const struct cpumask *cpu_map)
8734 8735 8736 8737
{
	return __build_sched_domains(cpu_map, NULL);
}

8738
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8739
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8740 8741
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8742 8743 8744

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8745 8746
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8747
 */
8748
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8749

8750 8751 8752 8753 8754 8755
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8756
{
8757
	return 0;
8758 8759
}

8760
/*
I
Ingo Molnar 已提交
8761
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8762 8763
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8764
 */
8765
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8766
{
8767 8768
	int err;

8769
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8770
	ndoms_cur = 1;
8771
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8772
	if (!doms_cur)
8773
		doms_cur = fallback_doms;
8774
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8775
	dattr_cur = NULL;
8776
	err = build_sched_domains(doms_cur);
8777
	register_sched_domain_sysctl();
8778 8779

	return err;
8780 8781
}

8782 8783
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8784
{
8785
	free_sched_groups(cpu_map, tmpmask);
8786
}
L
Linus Torvalds 已提交
8787

8788 8789 8790 8791
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8792
static void detach_destroy_domains(const struct cpumask *cpu_map)
8793
{
8794 8795
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8796 8797
	int i;

8798
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8799
		cpu_attach_domain(NULL, &def_root_domain, i);
8800
	synchronize_sched();
8801
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8802 8803
}

8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8820 8821
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8822
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8823 8824 8825
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8826
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8827 8828 8829
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8830 8831 8832
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8833 8834
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8835 8836 8837 8838
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8839
 *
8840
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8841 8842
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8843
 *
P
Paul Jackson 已提交
8844 8845
 * Call with hotplug lock held
 */
8846 8847
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8848
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8849
{
8850
	int i, j, n;
8851
	int new_topology;
P
Paul Jackson 已提交
8852

8853
	mutex_lock(&sched_domains_mutex);
8854

8855 8856 8857
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8858 8859 8860
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8861
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8862 8863 8864

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8865
		for (j = 0; j < n && !new_topology; j++) {
8866
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8867
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8868 8869 8870 8871 8872 8873 8874 8875
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8876 8877
	if (doms_new == NULL) {
		ndoms_cur = 0;
8878
		doms_new = fallback_doms;
8879
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8880
		WARN_ON_ONCE(dattr_new);
8881 8882
	}

P
Paul Jackson 已提交
8883 8884
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8885
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8886
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8887
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8888 8889 8890
				goto match2;
		}
		/* no match - add a new doms_new */
8891 8892
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8893 8894 8895 8896 8897
match2:
		;
	}

	/* Remember the new sched domains */
8898
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8899
		kfree(doms_cur);
8900
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8901
	doms_cur = doms_new;
8902
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8903
	ndoms_cur = ndoms_new;
8904 8905

	register_sched_domain_sysctl();
8906

8907
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8908 8909
}

8910
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8911
static void arch_reinit_sched_domains(void)
8912
{
8913
	get_online_cpus();
8914 8915 8916 8917

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8918
	rebuild_sched_domains();
8919
	put_online_cpus();
8920 8921 8922 8923
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8924
	unsigned int level = 0;
8925

8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8937 8938 8939
		return -EINVAL;

	if (smt)
8940
		sched_smt_power_savings = level;
8941
	else
8942
		sched_mc_power_savings = level;
8943

8944
	arch_reinit_sched_domains();
8945

8946
	return count;
8947 8948 8949
}

#ifdef CONFIG_SCHED_MC
8950 8951
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8952 8953 8954
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8955
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8956
					    const char *buf, size_t count)
8957 8958 8959
{
	return sched_power_savings_store(buf, count, 0);
}
8960 8961 8962
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8963 8964 8965
#endif

#ifdef CONFIG_SCHED_SMT
8966 8967
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8968 8969 8970
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8971
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8972
					     const char *buf, size_t count)
8973 8974 8975
{
	return sched_power_savings_store(buf, count, 1);
}
8976 8977
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8978 8979 8980
		   sched_smt_power_savings_store);
#endif

8981
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8997
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8998

8999
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9000
/*
9001 9002
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9003 9004 9005
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9006 9007 9008 9009 9010 9011
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
9012
		partition_sched_domains(1, NULL, NULL);
9013 9014 9015 9016 9017 9018 9019 9020 9021 9022
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9023
{
P
Peter Zijlstra 已提交
9024 9025
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9026 9027
	switch (action) {
	case CPU_DOWN_PREPARE:
9028
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9029
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9030 9031 9032
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9033
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9034
	case CPU_ONLINE:
9035
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9036
		enable_runtime(cpu_rq(cpu));
9037 9038
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9039 9040 9041 9042 9043 9044 9045
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9046 9047 9048
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9049

9050 9051 9052 9053 9054
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9055
	get_online_cpus();
9056
	mutex_lock(&sched_domains_mutex);
9057 9058 9059 9060
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9061
	mutex_unlock(&sched_domains_mutex);
9062
	put_online_cpus();
9063 9064

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9065 9066
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9067 9068 9069 9070 9071
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9072
	init_hrtick();
9073 9074

	/* Move init over to a non-isolated CPU */
9075
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9076
		BUG();
I
Ingo Molnar 已提交
9077
	sched_init_granularity();
9078
	free_cpumask_var(non_isolated_cpus);
9079 9080

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9081
	init_sched_rt_class();
L
Linus Torvalds 已提交
9082 9083 9084 9085
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9086
	sched_init_granularity();
L
Linus Torvalds 已提交
9087 9088 9089
}
#endif /* CONFIG_SMP */

9090 9091
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9092 9093 9094 9095 9096 9097 9098
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9099
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9100 9101
{
	cfs_rq->tasks_timeline = RB_ROOT;
9102
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9103 9104 9105
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9106
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9107 9108
}

P
Peter Zijlstra 已提交
9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9122
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9123
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9124
#ifdef CONFIG_SMP
9125
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9126 9127
#endif
#endif
P
Peter Zijlstra 已提交
9128 9129 9130
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9131
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9132 9133 9134 9135
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9136 9137
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9138

9139
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9140
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9141 9142
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9143 9144
}

P
Peter Zijlstra 已提交
9145
#ifdef CONFIG_FAIR_GROUP_SCHED
9146 9147 9148
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9149
{
9150
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9151 9152 9153 9154 9155 9156 9157
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9158 9159 9160 9161
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9162 9163 9164 9165 9166
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9167 9168
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9169
	se->load.inv_weight = 0;
9170
	se->parent = parent;
P
Peter Zijlstra 已提交
9171
}
9172
#endif
P
Peter Zijlstra 已提交
9173

9174
#ifdef CONFIG_RT_GROUP_SCHED
9175 9176 9177
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9178
{
9179 9180
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9181 9182 9183 9184
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9185
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9186 9187 9188 9189
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9190 9191 9192
	if (!rt_se)
		return;

9193 9194 9195 9196 9197
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9198
	rt_se->my_q = rt_rq;
9199
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9200 9201 9202 9203
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9204 9205
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9206
	int i, j;
9207 9208 9209 9210 9211 9212 9213
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9214 9215 9216
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9217 9218
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9219
	alloc_size += num_possible_cpus() * cpumask_size();
9220 9221 9222 9223 9224 9225
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9226
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9227 9228 9229 9230 9231 9232 9233

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9234 9235 9236 9237 9238 9239 9240

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9241 9242
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9243 9244 9245 9246 9247
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9248 9249 9250 9251 9252 9253 9254 9255
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9256 9257
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9258 9259 9260 9261 9262 9263
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9264
	}
I
Ingo Molnar 已提交
9265

G
Gregory Haskins 已提交
9266 9267 9268 9269
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9270 9271 9272 9273 9274 9275
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9276 9277 9278
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9279 9280
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9281

9282
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9283
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9284 9285 9286 9287 9288 9289
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9290 9291
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9292

9293
	for_each_possible_cpu(i) {
9294
		struct rq *rq;
L
Linus Torvalds 已提交
9295 9296 9297

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9298
		rq->nr_running = 0;
9299 9300
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9301
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9302
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9303
#ifdef CONFIG_FAIR_GROUP_SCHED
9304
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9305
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9321
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9322 9323 9324 9325
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9326
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9327
#elif defined CONFIG_USER_SCHED
9328 9329
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9341
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
9342
				&per_cpu(init_cfs_rq, i),
9343 9344
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9345

9346
#endif
D
Dhaval Giani 已提交
9347 9348 9349
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9350
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9351
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9352
#ifdef CONFIG_CGROUP_SCHED
9353
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9354
#elif defined CONFIG_USER_SCHED
9355
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9356
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9357
				&per_cpu(init_rt_rq, i),
9358 9359
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9360
#endif
I
Ingo Molnar 已提交
9361
#endif
L
Linus Torvalds 已提交
9362

I
Ingo Molnar 已提交
9363 9364
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9365
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9366
		rq->sd = NULL;
G
Gregory Haskins 已提交
9367
		rq->rd = NULL;
L
Linus Torvalds 已提交
9368
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9369
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9370
		rq->push_cpu = 0;
9371
		rq->cpu = i;
9372
		rq->online = 0;
L
Linus Torvalds 已提交
9373 9374
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9375
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9376
#endif
P
Peter Zijlstra 已提交
9377
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9378 9379 9380
		atomic_set(&rq->nr_iowait, 0);
	}

9381
	set_load_weight(&init_task);
9382

9383 9384 9385 9386
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9387
#ifdef CONFIG_SMP
9388
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9389 9390
#endif

9391 9392 9393 9394
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9408 9409 9410

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9411 9412 9413 9414
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9415

9416
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9417
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9418
#ifdef CONFIG_SMP
9419
#ifdef CONFIG_NO_HZ
9420 9421
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9422
#endif
9423
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9424
#endif /* SMP */
9425

9426 9427
	perf_counter_init();

9428
	scheduler_running = 1;
L
Linus Torvalds 已提交
9429 9430 9431 9432 9433
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
9434
#ifdef in_atomic
L
Linus Torvalds 已提交
9435 9436
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9456 9457 9458 9459 9460 9461
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9462 9463 9464
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9465

9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9477 9478
void normalize_rt_tasks(void)
{
9479
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9480
	unsigned long flags;
9481
	struct rq *rq;
L
Linus Torvalds 已提交
9482

9483
	read_lock_irqsave(&tasklist_lock, flags);
9484
	do_each_thread(g, p) {
9485 9486 9487 9488 9489 9490
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9491 9492
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9493 9494 9495
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9496
#endif
I
Ingo Molnar 已提交
9497 9498 9499 9500 9501 9502 9503 9504

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9505
			continue;
I
Ingo Molnar 已提交
9506
		}
L
Linus Torvalds 已提交
9507

9508
		spin_lock(&p->pi_lock);
9509
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9510

9511
		normalize_task(rq, p);
9512

9513
		__task_rq_unlock(rq);
9514
		spin_unlock(&p->pi_lock);
9515 9516
	} while_each_thread(g, p);

9517
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9518 9519 9520
}

#endif /* CONFIG_MAGIC_SYSRQ */
9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9539
struct task_struct *curr_task(int cpu)
9540 9541 9542 9543 9544 9545 9546 9547 9548 9549
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9550 9551
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9552 9553 9554 9555 9556 9557 9558
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9559
void set_curr_task(int cpu, struct task_struct *p)
9560 9561 9562 9563 9564
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9565

9566 9567
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9582 9583
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9584 9585
{
	struct cfs_rq *cfs_rq;
9586
	struct sched_entity *se;
9587
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9588 9589
	int i;

9590
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9591 9592
	if (!tg->cfs_rq)
		goto err;
9593
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9594 9595
	if (!tg->se)
		goto err;
9596 9597

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9598 9599

	for_each_possible_cpu(i) {
9600
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9601

9602 9603
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9604 9605 9606
		if (!cfs_rq)
			goto err;

9607 9608
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9609 9610 9611
		if (!se)
			goto err;

9612
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9631
#else /* !CONFG_FAIR_GROUP_SCHED */
9632 9633 9634 9635
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9636 9637
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9649
#endif /* CONFIG_FAIR_GROUP_SCHED */
9650 9651

#ifdef CONFIG_RT_GROUP_SCHED
9652 9653 9654 9655
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9656 9657
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9669 9670
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9671 9672
{
	struct rt_rq *rt_rq;
9673
	struct sched_rt_entity *rt_se;
9674 9675 9676
	struct rq *rq;
	int i;

9677
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9678 9679
	if (!tg->rt_rq)
		goto err;
9680
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9681 9682 9683
	if (!tg->rt_se)
		goto err;

9684 9685
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9686 9687 9688 9689

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9690 9691
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9692 9693
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9694

9695 9696
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9697 9698
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9699

9700
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9701 9702
	}

9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9719
#else /* !CONFIG_RT_GROUP_SCHED */
9720 9721 9722 9723
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9724 9725
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9737
#endif /* CONFIG_RT_GROUP_SCHED */
9738

9739
#ifdef CONFIG_GROUP_SCHED
9740 9741 9742 9743 9744 9745 9746 9747
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9748
struct task_group *sched_create_group(struct task_group *parent)
9749 9750 9751 9752 9753 9754 9755 9756 9757
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9758
	if (!alloc_fair_sched_group(tg, parent))
9759 9760
		goto err;

9761
	if (!alloc_rt_sched_group(tg, parent))
9762 9763
		goto err;

9764
	spin_lock_irqsave(&task_group_lock, flags);
9765
	for_each_possible_cpu(i) {
9766 9767
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9768
	}
P
Peter Zijlstra 已提交
9769
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9770 9771 9772 9773 9774

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9775
	list_add_rcu(&tg->siblings, &parent->children);
9776
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9777

9778
	return tg;
S
Srivatsa Vaddagiri 已提交
9779 9780

err:
P
Peter Zijlstra 已提交
9781
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9782 9783 9784
	return ERR_PTR(-ENOMEM);
}

9785
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9786
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9787 9788
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9789
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9790 9791
}

9792
/* Destroy runqueue etc associated with a task group */
9793
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9794
{
9795
	unsigned long flags;
9796
	int i;
S
Srivatsa Vaddagiri 已提交
9797

9798
	spin_lock_irqsave(&task_group_lock, flags);
9799
	for_each_possible_cpu(i) {
9800 9801
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9802
	}
P
Peter Zijlstra 已提交
9803
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9804
	list_del_rcu(&tg->siblings);
9805
	spin_unlock_irqrestore(&task_group_lock, flags);
9806 9807

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9808
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9809 9810
}

9811
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9812 9813 9814
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9815 9816
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9817 9818 9819 9820 9821 9822 9823 9824 9825
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9826
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9827 9828
	on_rq = tsk->se.on_rq;

9829
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9830
		dequeue_task(rq, tsk, 0);
9831 9832
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9833

P
Peter Zijlstra 已提交
9834
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9835

P
Peter Zijlstra 已提交
9836 9837 9838 9839 9840
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9841 9842 9843
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9844
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9845 9846 9847

	task_rq_unlock(rq, &flags);
}
9848
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9849

9850
#ifdef CONFIG_FAIR_GROUP_SCHED
9851
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9852 9853 9854 9855 9856
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9857
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9858 9859 9860
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9861
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9862

9863
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9864
		enqueue_entity(cfs_rq, se, 0);
9865
}
9866

9867 9868 9869 9870 9871 9872 9873 9874 9875
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9876 9877
}

9878 9879
static DEFINE_MUTEX(shares_mutex);

9880
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9881 9882
{
	int i;
9883
	unsigned long flags;
9884

9885 9886 9887 9888 9889 9890
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9891 9892
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9893 9894
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9895

9896
	mutex_lock(&shares_mutex);
9897
	if (tg->shares == shares)
9898
		goto done;
S
Srivatsa Vaddagiri 已提交
9899

9900
	spin_lock_irqsave(&task_group_lock, flags);
9901 9902
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9903
	list_del_rcu(&tg->siblings);
9904
	spin_unlock_irqrestore(&task_group_lock, flags);
9905 9906 9907 9908 9909 9910 9911 9912

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9913
	tg->shares = shares;
9914 9915 9916 9917 9918
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9919
		set_se_shares(tg->se[i], shares);
9920
	}
S
Srivatsa Vaddagiri 已提交
9921

9922 9923 9924 9925
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9926
	spin_lock_irqsave(&task_group_lock, flags);
9927 9928
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9929
	list_add_rcu(&tg->siblings, &tg->parent->children);
9930
	spin_unlock_irqrestore(&task_group_lock, flags);
9931
done:
9932
	mutex_unlock(&shares_mutex);
9933
	return 0;
S
Srivatsa Vaddagiri 已提交
9934 9935
}

9936 9937 9938 9939
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9940
#endif
9941

9942
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9943
/*
P
Peter Zijlstra 已提交
9944
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9945
 */
P
Peter Zijlstra 已提交
9946 9947 9948 9949 9950
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9951
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9952

P
Peter Zijlstra 已提交
9953
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9954 9955
}

P
Peter Zijlstra 已提交
9956 9957
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9958
{
P
Peter Zijlstra 已提交
9959
	struct task_struct *g, *p;
9960

P
Peter Zijlstra 已提交
9961 9962 9963 9964
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9965

P
Peter Zijlstra 已提交
9966 9967
	return 0;
}
9968

P
Peter Zijlstra 已提交
9969 9970 9971 9972 9973
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9974

P
Peter Zijlstra 已提交
9975 9976 9977 9978 9979 9980
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9981

P
Peter Zijlstra 已提交
9982 9983
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9984

P
Peter Zijlstra 已提交
9985 9986 9987
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9988 9989
	}

9990 9991 9992 9993 9994 9995 9996
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9997 9998 9999 10000 10001
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10002

10003 10004 10005
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10006 10007
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10008

P
Peter Zijlstra 已提交
10009
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10010

10011 10012 10013 10014 10015
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10016

10017 10018 10019
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10020 10021 10022
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10023

P
Peter Zijlstra 已提交
10024 10025 10026 10027
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10028

P
Peter Zijlstra 已提交
10029
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10030
	}
P
Peter Zijlstra 已提交
10031

P
Peter Zijlstra 已提交
10032 10033 10034 10035
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10036 10037
}

P
Peter Zijlstra 已提交
10038
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10039
{
P
Peter Zijlstra 已提交
10040 10041 10042 10043 10044 10045 10046
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10047 10048
}

10049 10050
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10051
{
P
Peter Zijlstra 已提交
10052
	int i, err = 0;
P
Peter Zijlstra 已提交
10053 10054

	mutex_lock(&rt_constraints_mutex);
10055
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10056 10057
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10058
		goto unlock;
P
Peter Zijlstra 已提交
10059 10060

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10061 10062
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10063 10064 10065 10066 10067 10068 10069 10070 10071

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10072
 unlock:
10073
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10074 10075 10076
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10077 10078
}

10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10091 10092 10093 10094
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10095
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10096 10097
		return -1;

10098
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10099 10100 10101
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10102 10103 10104 10105 10106 10107 10108 10109

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10110 10111 10112
	if (rt_period == 0)
		return -EINVAL;

10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10127
	u64 runtime, period;
10128 10129
	int ret = 0;

10130 10131 10132
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10133 10134 10135 10136 10137 10138 10139 10140
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10141

10142
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10143
	read_lock(&tasklist_lock);
10144
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10145
	read_unlock(&tasklist_lock);
10146 10147 10148 10149
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10150 10151 10152 10153 10154 10155 10156 10157 10158 10159

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10160
#else /* !CONFIG_RT_GROUP_SCHED */
10161 10162
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10163 10164 10165
	unsigned long flags;
	int i;

10166 10167 10168
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10169 10170 10171 10172 10173 10174 10175
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10176 10177 10178 10179 10180 10181 10182 10183 10184 10185
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10186 10187
	return 0;
}
10188
#endif /* CONFIG_RT_GROUP_SCHED */
10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10219

10220
#ifdef CONFIG_CGROUP_SCHED
10221 10222

/* return corresponding task_group object of a cgroup */
10223
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10224
{
10225 10226
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10227 10228 10229
}

static struct cgroup_subsys_state *
10230
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10231
{
10232
	struct task_group *tg, *parent;
10233

10234
	if (!cgrp->parent) {
10235 10236 10237 10238
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10239 10240
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10241 10242 10243 10244 10245 10246
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10247 10248
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10249
{
10250
	struct task_group *tg = cgroup_tg(cgrp);
10251 10252 10253 10254

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10255 10256 10257
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10258
{
10259
#ifdef CONFIG_RT_GROUP_SCHED
10260
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10261 10262
		return -EINVAL;
#else
10263 10264 10265
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10266
#endif
10267 10268 10269 10270 10271

	return 0;
}

static void
10272
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10273 10274 10275 10276 10277
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10278
#ifdef CONFIG_FAIR_GROUP_SCHED
10279
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10280
				u64 shareval)
10281
{
10282
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10283 10284
}

10285
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10286
{
10287
	struct task_group *tg = cgroup_tg(cgrp);
10288 10289 10290

	return (u64) tg->shares;
}
10291
#endif /* CONFIG_FAIR_GROUP_SCHED */
10292

10293
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10294
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10295
				s64 val)
P
Peter Zijlstra 已提交
10296
{
10297
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10298 10299
}

10300
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10301
{
10302
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10303
}
10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10315
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10316

10317
static struct cftype cpu_files[] = {
10318
#ifdef CONFIG_FAIR_GROUP_SCHED
10319 10320
	{
		.name = "shares",
10321 10322
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10323
	},
10324 10325
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10326
	{
P
Peter Zijlstra 已提交
10327
		.name = "rt_runtime_us",
10328 10329
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10330
	},
10331 10332
	{
		.name = "rt_period_us",
10333 10334
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10335
	},
10336
#endif
10337 10338 10339 10340
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10341
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10342 10343 10344
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10345 10346 10347 10348 10349 10350 10351
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10352 10353 10354
	.early_init	= 1,
};

10355
#endif	/* CONFIG_CGROUP_SCHED */
10356 10357 10358 10359 10360 10361 10362 10363 10364 10365

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10366
/* track cpu usage of a group of tasks and its child groups */
10367 10368 10369 10370
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10371
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10372
	struct cpuacct *parent;
10373 10374 10375 10376 10377
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10378
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10379
{
10380
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10393
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10394 10395
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10396
	int i;
10397 10398

	if (!ca)
10399
		goto out;
10400 10401

	ca->cpuusage = alloc_percpu(u64);
10402 10403 10404 10405 10406 10407
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10408

10409 10410 10411
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10412
	return &ca->css;
10413 10414 10415 10416 10417 10418 10419 10420 10421

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10422 10423 10424
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10425
static void
10426
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10427
{
10428
	struct cpuacct *ca = cgroup_ca(cgrp);
10429
	int i;
10430

10431 10432
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10433 10434 10435 10436
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10437 10438
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10439
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10458
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10472
/* return total cpu usage (in nanoseconds) of a group */
10473
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10474
{
10475
	struct cpuacct *ca = cgroup_ca(cgrp);
10476 10477 10478
	u64 totalcpuusage = 0;
	int i;

10479 10480
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10481 10482 10483 10484

	return totalcpuusage;
}

10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10497 10498
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10499 10500 10501 10502 10503

out:
	return err;
}

10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10538 10539 10540
static struct cftype files[] = {
	{
		.name = "usage",
10541 10542
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10543
	},
10544 10545 10546 10547
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10548 10549 10550 10551
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10552 10553
};

10554
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10555
{
10556
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10557 10558 10559 10560 10561 10562 10563 10564 10565 10566
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10567
	int cpu;
10568

L
Li Zefan 已提交
10569
	if (unlikely(!cpuacct_subsys.active))
10570 10571
		return;

10572
	cpu = task_cpu(tsk);
10573 10574 10575

	rcu_read_lock();

10576 10577
	ca = task_ca(tsk);

10578
	for (; ca; ca = ca->parent) {
10579
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10580 10581
		*cpuusage += cputime;
	}
10582 10583

	rcu_read_unlock();
10584 10585
}

10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10607 10608 10609 10610 10611 10612 10613 10614
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */