sched.c 180.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46
#include <linux/blkdev.h>
#include <linux/delay.h>
47
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
57
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
58 59
#include <linux/syscalls.h>
#include <linux/times.h>
60
#include <linux/tsacct_kern.h>
61
#include <linux/kprobes.h>
62
#include <linux/delayacct.h>
63
#include <linux/reciprocal_div.h>
64
#include <linux/unistd.h>
J
Jens Axboe 已提交
65
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
66

67
#include <asm/tlb.h>
68
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
69

70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
77
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 79
}

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
101 102
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
103

I
Ingo Molnar 已提交
104 105 106
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
107 108 109
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
110
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
111 112 113
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

136 137 138 139 140 141 142 143 144 145 146 147
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
148
/*
I
Ingo Molnar 已提交
149
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
150
 */
I
Ingo Molnar 已提交
151 152 153 154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
156 157
#ifdef CONFIG_FAIR_GROUP_SCHED

158 159
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
160 161 162
struct cfs_rq;

/* task group related information */
163
struct task_group {
164 165 166
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
167 168 169 170 171
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
172 173
	/* spinlock to serialize modification to shares */
	spinlock_t lock;
174
	struct rcu_head rcu;
S
Srivatsa Vaddagiri 已提交
175 176 177 178 179 180 181
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

182 183
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
184 185

/* Default task group.
I
Ingo Molnar 已提交
186
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
187
 */
188
struct task_group init_task_group = {
I
Ingo Molnar 已提交
189 190 191
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
192

193
#ifdef CONFIG_FAIR_USER_SCHED
194
# define INIT_TASK_GROUP_LOAD	2*NICE_0_LOAD
195
#else
196
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
197 198
#endif

199
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
S
Srivatsa Vaddagiri 已提交
200 201

/* return group to which a task belongs */
202
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
203
{
204
	struct task_group *tg;
205

206 207
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
208 209 210
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
211
#else
I
Ingo Molnar 已提交
212
	tg = &init_task_group;
213
#endif
214
	return tg;
S
Srivatsa Vaddagiri 已提交
215 216 217
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
218
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
219
{
220 221
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
S
Srivatsa Vaddagiri 已提交
222 223 224 225
}

#else

226
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
227 228 229

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
230 231 232 233 234 235
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
236
	u64 min_vruntime;
I
Ingo Molnar 已提交
237 238 239 240 241 242 243 244

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
245 246 247

	unsigned long nr_spread_over;

248
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
249 250
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
251 252
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
253 254 255 256 257 258
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
259 260
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
261 262
#endif
};
L
Linus Torvalds 已提交
263

I
Ingo Molnar 已提交
264 265 266 267 268 269 270
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
271 272 273 274 275 276 277
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
278
struct rq {
279 280
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
281 282 283 284 285 286

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
287 288
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
289
	unsigned char idle_at_tick;
290 291 292
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
293 294
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
295 296 297 298 299
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
300 301
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
302
#endif
I
Ingo Molnar 已提交
303
	struct rt_rq rt;
L
Linus Torvalds 已提交
304 305 306 307 308 309 310 311 312

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

313
	struct task_struct *curr, *idle;
314
	unsigned long next_balance;
L
Linus Torvalds 已提交
315
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
316 317 318 319 320

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
321 322
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
323
	u64 tick_timestamp;
I
Ingo Molnar 已提交
324

L
Linus Torvalds 已提交
325 326 327 328 329 330 331 332
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
333 334
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
335

336
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
337 338 339 340 341 342 343 344
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
345 346 347 348
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
349 350

	/* schedule() stats */
351 352 353
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
354 355

	/* try_to_wake_up() stats */
356 357
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
358 359

	/* BKL stats */
360
	unsigned int bkl_count;
L
Linus Torvalds 已提交
361
#endif
362
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
363 364
};

365
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
366
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
367

I
Ingo Molnar 已提交
368 369 370 371 372
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

373 374 375 376 377 378 379 380 381
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
382
/*
I
Ingo Molnar 已提交
383 384
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
385
 */
I
Ingo Molnar 已提交
386
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
387 388 389 390 391 392
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
393 394 395
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
396 397 398 399 400 401 402 403 404 405
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
406 407 408 409 410
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
411 412 413 414 415 416 417 418 419 420
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
421
}
I
Ingo Molnar 已提交
422

I
Ingo Molnar 已提交
423 424 425 426
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
427 428
}

N
Nick Piggin 已提交
429 430
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
432 433 434 435
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
436 437
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
438 439 440 441 442 443

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
457
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
458 459
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
460 461
	SCHED_FEAT_TREE_AVG		= 8,
	SCHED_FEAT_APPROX_AVG		= 16,
I
Ingo Molnar 已提交
462 463 464
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
465
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
466
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
467 468
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
I
Ingo Molnar 已提交
469
		SCHED_FEAT_APPROX_AVG		* 0;
I
Ingo Molnar 已提交
470 471 472

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

473 474 475 476 477 478
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

479 480 481 482 483 484 485 486
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
487
	struct rq *rq;
488

489
	local_irq_save(flags);
I
Ingo Molnar 已提交
490
	rq = cpu_rq(cpu);
491 492 493 494 495 496
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
	if (rq->idle)
		update_rq_clock(rq);
I
Ingo Molnar 已提交
497
	now = rq->clock;
498
	local_irq_restore(flags);
499 500 501

	return now;
}
P
Paul E. McKenney 已提交
502
EXPORT_SYMBOL_GPL(cpu_clock);
503

L
Linus Torvalds 已提交
504
#ifndef prepare_arch_switch
505 506 507 508 509 510
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

511 512 513 514 515
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

516
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
517
static inline int task_running(struct rq *rq, struct task_struct *p)
518
{
519
	return task_current(rq, p);
520 521
}

522
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
523 524 525
{
}

526
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
527
{
528 529 530 531
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
532 533 534 535 536 537 538
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

539 540 541 542
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
543
static inline int task_running(struct rq *rq, struct task_struct *p)
544 545 546 547
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
548
	return task_current(rq, p);
549 550 551
#endif
}

552
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

569
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
570 571 572 573 574 575 576 577 578 579 580 581
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
582
#endif
583 584
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
585

586 587 588 589
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
590
static inline struct rq *__task_rq_lock(struct task_struct *p)
591 592
	__acquires(rq->lock)
{
593 594 595 596 597
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
598 599 600 601
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
602 603
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
604
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
605 606
 * explicitly disabling preemption.
 */
607
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
608 609
	__acquires(rq->lock)
{
610
	struct rq *rq;
L
Linus Torvalds 已提交
611

612 613 614 615 616 617
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
618 619 620 621
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
622
static void __task_rq_unlock(struct rq *rq)
623 624 625 626 627
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

628
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
629 630 631 632 633 634
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
635
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
636
 */
A
Alexey Dobriyan 已提交
637
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
638 639
	__acquires(rq->lock)
{
640
	struct rq *rq;
L
Linus Torvalds 已提交
641 642 643 644 645 646 647 648

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

649
/*
650
 * We are going deep-idle (irqs are disabled):
651
 */
652
void sched_clock_idle_sleep_event(void)
653
{
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
670

671
	touch_softlockup_watchdog();
672 673 674 675 676 677 678 679 680 681 682
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
683
}
684
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
685

I
Ingo Molnar 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

738 739 740 741 742 743 744 745
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
746 747 748
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
749
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
750

751
static unsigned long
752 753 754 755 756 757
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
758
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
759 760 761 762 763

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
764
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
765
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
766 767
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
768
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
769

770
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
771 772 773 774 775 776 777 778
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

779
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
780 781 782 783
{
	lw->weight += inc;
}

784
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
785 786 787 788
{
	lw->weight -= dec;
}

789 790 791 792
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
793
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
794 795 796 797
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
798 799 800 801 802 803 804 805 806 807 808
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
809 810 811
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
812 813
 */
static const int prio_to_weight[40] = {
814 815 816 817 818 819 820 821
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
822 823
};

824 825 826 827 828 829 830
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
831
static const u32 prio_to_wmult[40] = {
832 833 834 835 836 837 838 839
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
840
};
841

I
Ingo Molnar 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

855 856 857 858 859 860 861 862 863 864 865 866
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
867

868 869 870 871 872 873
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

I
Ingo Molnar 已提交
874 875
#include "sched_stats.h"
#include "sched_idletask.c"
876 877
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
878 879 880 881 882 883
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

884
static inline void inc_load(struct rq *rq, const struct task_struct *p)
885
{
886
	update_load_add(&rq->load, p->se.load.weight);
887 888
}

889
static inline void dec_load(struct rq *rq, const struct task_struct *p)
890
{
891
	update_load_sub(&rq->load, p->se.load.weight);
892 893
}

894
static void inc_nr_running(struct task_struct *p, struct rq *rq)
895 896
{
	rq->nr_running++;
897
	inc_load(rq, p);
898 899
}

900
static void dec_nr_running(struct task_struct *p, struct rq *rq)
901 902
{
	rq->nr_running--;
903
	dec_load(rq, p);
904 905
}

906 907 908
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
909 910 911 912
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
913

I
Ingo Molnar 已提交
914 915 916 917 918 919 920 921
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
922

I
Ingo Molnar 已提交
923 924
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
925 926
}

927
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
928
{
I
Ingo Molnar 已提交
929
	sched_info_queued(p);
930
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
931
	p->se.on_rq = 1;
932 933
}

934
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
935
{
936
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
937
	p->se.on_rq = 0;
938 939
}

940
/*
I
Ingo Molnar 已提交
941
 * __normal_prio - return the priority that is based on the static prio
942 943 944
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
945
	return p->static_prio;
946 947
}

948 949 950 951 952 953 954
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
955
static inline int normal_prio(struct task_struct *p)
956 957 958
{
	int prio;

959
	if (task_has_rt_policy(p))
960 961 962 963 964 965 966 967 968 969 970 971 972
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
973
static int effective_prio(struct task_struct *p)
974 975 976 977 978 979 980 981 982 983 984 985
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
986
/*
I
Ingo Molnar 已提交
987
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
988
 */
I
Ingo Molnar 已提交
989
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
990
{
I
Ingo Molnar 已提交
991 992
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
993

994
	enqueue_task(rq, p, wakeup);
995
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
996 997 998 999 1000
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1001
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1002
{
I
Ingo Molnar 已提交
1003 1004 1005
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

1006
	dequeue_task(rq, p, sleep);
1007
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1008 1009 1010 1011 1012 1013
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1014
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1015 1016 1017 1018
{
	return cpu_curr(task_cpu(p)) == p;
}

1019 1020 1021
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1022
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1023 1024 1025 1026
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
1027
	set_task_cfs_rq(p, cpu);
I
Ingo Molnar 已提交
1028
#ifdef CONFIG_SMP
1029 1030 1031 1032 1033 1034
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1035 1036
	task_thread_info(p)->cpu = cpu;
#endif
1037 1038
}

L
Linus Torvalds 已提交
1039
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1052 1053 1054 1055 1056
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1057 1058 1059 1060 1061 1062
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1063
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1064
{
I
Ingo Molnar 已提交
1065 1066
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1067 1068
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1069
	u64 clock_offset;
I
Ingo Molnar 已提交
1070 1071

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1072 1073 1074 1075

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1076 1077 1078 1079
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1080 1081 1082 1083 1084
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1085
#endif
1086 1087
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1088 1089

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1090 1091
}

1092
struct migration_req {
L
Linus Torvalds 已提交
1093 1094
	struct list_head list;

1095
	struct task_struct *task;
L
Linus Torvalds 已提交
1096 1097 1098
	int dest_cpu;

	struct completion done;
1099
};
L
Linus Torvalds 已提交
1100 1101 1102 1103 1104

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1105
static int
1106
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1107
{
1108
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1109 1110 1111 1112 1113

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1114
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1115 1116 1117 1118 1119 1120 1121 1122
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1123

L
Linus Torvalds 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1136
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1137 1138
{
	unsigned long flags;
I
Ingo Molnar 已提交
1139
	int running, on_rq;
1140
	struct rq *rq;
L
Linus Torvalds 已提交
1141

1142 1143 1144 1145 1146 1147 1148 1149
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1164

1165 1166 1167 1168 1169 1170 1171 1172 1173
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1174

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1185

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1199

1200 1201 1202 1203 1204 1205 1206
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1222
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1234 1235
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1236 1237 1238 1239
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1240
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1241
{
1242
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1243
	unsigned long total = weighted_cpuload(cpu);
1244

1245
	if (type == 0)
I
Ingo Molnar 已提交
1246
		return total;
1247

I
Ingo Molnar 已提交
1248
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1249 1250 1251
}

/*
1252 1253
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1254
 */
A
Alexey Dobriyan 已提交
1255
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1256
{
1257
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1258
	unsigned long total = weighted_cpuload(cpu);
1259

N
Nick Piggin 已提交
1260
	if (type == 0)
I
Ingo Molnar 已提交
1261
		return total;
1262

I
Ingo Molnar 已提交
1263
	return max(rq->cpu_load[type-1], total);
1264 1265 1266 1267 1268 1269 1270
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1271
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1272
	unsigned long total = weighted_cpuload(cpu);
1273 1274
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1275
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1276 1277
}

N
Nick Piggin 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1295 1296
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1297
			continue;
1298

N
Nick Piggin 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1315 1316
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1317 1318 1319 1320 1321 1322 1323 1324

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1325
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1326 1327 1328 1329 1330 1331 1332

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1333
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1334
 */
I
Ingo Molnar 已提交
1335 1336
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1337
{
1338
	cpumask_t tmp;
N
Nick Piggin 已提交
1339 1340 1341 1342
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1343 1344 1345 1346
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1347
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1373

1374
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1375 1376 1377
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1378 1379
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1380 1381
		if (tmp->flags & flag)
			sd = tmp;
1382
	}
N
Nick Piggin 已提交
1383 1384 1385 1386

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1387 1388 1389 1390 1391 1392
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1393 1394 1395

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1396 1397 1398 1399
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1400

1401
		new_cpu = find_idlest_cpu(group, t, cpu);
1402 1403 1404 1405 1406
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1407

1408
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1435
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1436 1437 1438 1439 1440
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1451 1452 1453 1454
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1455
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1456
			for_each_cpu_mask(i, tmp) {
1457 1458 1459 1460 1461
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1462
					return i;
1463
				}
L
Linus Torvalds 已提交
1464
			}
I
Ingo Molnar 已提交
1465
		} else {
N
Nick Piggin 已提交
1466
			break;
I
Ingo Molnar 已提交
1467
		}
L
Linus Torvalds 已提交
1468 1469 1470 1471
	}
	return cpu;
}
#else
1472
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1492
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1493
{
1494
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1495 1496
	unsigned long flags;
	long old_state;
1497
	struct rq *rq;
L
Linus Torvalds 已提交
1498
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1499
	struct sched_domain *sd, *this_sd = NULL;
1500
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1501 1502 1503 1504 1505 1506 1507 1508
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1509
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1510 1511 1512
		goto out_running;

	cpu = task_cpu(p);
1513
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1514 1515 1516 1517 1518 1519
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1520 1521
	new_cpu = cpu;

1522
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1523 1524
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1525 1526 1527 1528 1529 1530 1531 1532
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1533 1534 1535
		}
	}

N
Nick Piggin 已提交
1536
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1537 1538 1539
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1540
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1541
	 */
N
Nick Piggin 已提交
1542 1543 1544
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1545

1546 1547
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1548 1549
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1550

N
Nick Piggin 已提交
1551 1552
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1553 1554
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1555 1556
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1557 1558 1559 1560 1561 1562
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1563
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1564
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1565

L
Linus Torvalds 已提交
1566
			/*
1567 1568 1569
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1570
			 */
1571
			if (sync)
I
Ingo Molnar 已提交
1572
				tl -= current->se.load.weight;
1573 1574

			if ((tl <= load &&
1575
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1576
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1577 1578 1579 1580 1581 1582
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1583
				schedstat_inc(p, se.nr_wakeups_affine);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1595
				schedstat_inc(p, se.nr_wakeups_passive);
1596 1597
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1612
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1613 1614 1615 1616 1617 1618 1619 1620
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1621 1622 1623 1624 1625 1626 1627 1628 1629
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1630
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1631
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1632
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1643
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1644 1645 1646 1647 1648 1649
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1650
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655 1656 1657
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1658 1659 1660 1661 1662 1663 1664
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1665
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1666 1667 1668

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1669 1670 1671 1672 1673 1674
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1675
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1676
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1677
#endif
N
Nick Piggin 已提交
1678

I
Ingo Molnar 已提交
1679 1680
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1681

1682 1683 1684 1685
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1686 1687 1688 1689 1690 1691 1692
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1707
	set_task_cpu(p, cpu);
1708 1709 1710 1711 1712

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1713 1714
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1715

1716
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1717
	if (likely(sched_info_on()))
1718
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1719
#endif
1720
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1721 1722
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1723
#ifdef CONFIG_PREEMPT
1724
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1725
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1726
#endif
N
Nick Piggin 已提交
1727
	put_cpu();
L
Linus Torvalds 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1737
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1738 1739
{
	unsigned long flags;
I
Ingo Molnar 已提交
1740
	struct rq *rq;
L
Linus Torvalds 已提交
1741 1742

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1743
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1744
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1745 1746 1747

	p->prio = effective_prio(p);

1748
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1749
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1750 1751
	} else {
		/*
I
Ingo Molnar 已提交
1752 1753
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1754
		 */
1755
		p->sched_class->task_new(rq, p);
1756
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1757
	}
I
Ingo Molnar 已提交
1758 1759
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1760 1761
}

1762 1763 1764
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1765 1766
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1767 1768 1769 1770 1771 1772 1773 1774 1775
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1776
 * @notifier: notifier struct to unregister
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1820 1821 1822
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1823
 * @prev: the current task that is being switched out
1824 1825 1826 1827 1828 1829 1830 1831 1832
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1833 1834 1835
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1836
{
1837
	fire_sched_out_preempt_notifiers(prev, next);
1838 1839 1840 1841
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1842 1843
/**
 * finish_task_switch - clean up after a task-switch
1844
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1845 1846
 * @prev: the thread we just switched away from.
 *
1847 1848 1849 1850
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1851 1852
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1853
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1854 1855 1856
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1857
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1858 1859 1860
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1861
	long prev_state;
L
Linus Torvalds 已提交
1862 1863 1864 1865 1866

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1867
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1868 1869
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1870
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1871 1872 1873 1874 1875
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1876
	prev_state = prev->state;
1877 1878
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1879
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1880 1881
	if (mm)
		mmdrop(mm);
1882
	if (unlikely(prev_state == TASK_DEAD)) {
1883 1884 1885
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1886
		 */
1887
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1888
		put_task_struct(prev);
1889
	}
L
Linus Torvalds 已提交
1890 1891 1892 1893 1894 1895
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1896
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1897 1898
	__releases(rq->lock)
{
1899 1900
	struct rq *rq = this_rq();

1901 1902 1903 1904 1905
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1906
	if (current->set_child_tid)
1907
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1908 1909 1910 1911 1912 1913
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1914
static inline void
1915
context_switch(struct rq *rq, struct task_struct *prev,
1916
	       struct task_struct *next)
L
Linus Torvalds 已提交
1917
{
I
Ingo Molnar 已提交
1918
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1919

1920
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1921 1922
	mm = next->mm;
	oldmm = prev->active_mm;
1923 1924 1925 1926 1927 1928 1929
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1930
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1931 1932 1933 1934 1935 1936
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1937
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1938 1939 1940
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1941 1942 1943 1944 1945 1946 1947
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1948
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1949
#endif
L
Linus Torvalds 已提交
1950 1951 1952 1953

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1954 1955 1956 1957 1958 1959 1960
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1984
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1999 2000
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2001

2002
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2012
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2013 2014 2015 2016 2017
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2033
/*
I
Ingo Molnar 已提交
2034 2035
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2036
 */
I
Ingo Molnar 已提交
2037
static void update_cpu_load(struct rq *this_rq)
2038
{
2039
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2052 2053 2054 2055 2056 2057 2058
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2059 2060
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2061 2062
}

I
Ingo Molnar 已提交
2063 2064
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2065 2066 2067 2068 2069 2070
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2071
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2072 2073 2074
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2075
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2076 2077 2078 2079
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2080
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2081 2082 2083 2084 2085 2086 2087
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2088 2089
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2090 2091 2092 2093 2094 2095 2096 2097
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2098
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2112
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2113 2114 2115 2116
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2117 2118 2119 2120 2121
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2122
	if (unlikely(!spin_trylock(&busiest->lock))) {
2123
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2135
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2136 2137
 * the cpu_allowed mask is restored.
 */
2138
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2139
{
2140
	struct migration_req req;
L
Linus Torvalds 已提交
2141
	unsigned long flags;
2142
	struct rq *rq;
L
Linus Torvalds 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2153

L
Linus Torvalds 已提交
2154 2155 2156 2157 2158
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2159

L
Linus Torvalds 已提交
2160 2161 2162 2163 2164 2165 2166
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2167 2168
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2169 2170 2171 2172
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2173
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2174
	put_cpu();
N
Nick Piggin 已提交
2175 2176
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2177 2178 2179 2180 2181 2182
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2183 2184
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2185
{
2186
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2187
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2188
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2189 2190 2191 2192
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2193
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2194 2195 2196 2197 2198
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2199
static
2200
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2201
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2202
		     int *all_pinned)
L
Linus Torvalds 已提交
2203 2204 2205 2206 2207 2208 2209
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2210 2211
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2212
		return 0;
2213
	}
2214 2215
	*all_pinned = 0;

2216 2217
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2218
		return 0;
2219
	}
L
Linus Torvalds 已提交
2220

2221 2222 2223 2224 2225 2226
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2227 2228
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2229
#ifdef CONFIG_SCHEDSTATS
2230
		if (task_hot(p, rq->clock, sd)) {
2231
			schedstat_inc(sd, lb_hot_gained[idle]);
2232 2233
			schedstat_inc(p, se.nr_forced_migrations);
		}
2234 2235 2236 2237
#endif
		return 1;
	}

2238 2239
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2240
		return 0;
2241
	}
L
Linus Torvalds 已提交
2242 2243 2244
	return 1;
}

2245 2246 2247 2248 2249
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2250
{
2251
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2252 2253
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2254

2255
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2256 2257
		goto out;

2258 2259
	pinned = 1;

L
Linus Torvalds 已提交
2260
	/*
I
Ingo Molnar 已提交
2261
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2262
	 */
I
Ingo Molnar 已提交
2263 2264
	p = iterator->start(iterator->arg);
next:
2265
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2266
		goto out;
2267
	/*
2268
	 * To help distribute high priority tasks across CPUs we don't
2269 2270 2271
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2272 2273
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2274
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2275 2276 2277
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2278 2279
	}

I
Ingo Molnar 已提交
2280
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2281
	pulled++;
I
Ingo Molnar 已提交
2282
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2283

2284
	/*
2285
	 * We only want to steal up to the prescribed amount of weighted load.
2286
	 */
2287
	if (rem_load_move > 0) {
2288 2289
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2290 2291
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2292 2293 2294
	}
out:
	/*
2295
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2296 2297 2298 2299
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2300 2301 2302

	if (all_pinned)
		*all_pinned = pinned;
2303 2304

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2305 2306
}

I
Ingo Molnar 已提交
2307
/*
P
Peter Williams 已提交
2308 2309 2310
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2311 2312 2313 2314
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2315
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2316 2317 2318
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2319
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2320
	unsigned long total_load_moved = 0;
2321
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2322 2323

	do {
P
Peter Williams 已提交
2324 2325
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2326
				max_load_move - total_load_moved,
2327
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2328
		class = class->next;
P
Peter Williams 已提交
2329
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2330

P
Peter Williams 已提交
2331 2332 2333
	return total_load_moved > 0;
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2370
	const struct sched_class *class;
P
Peter Williams 已提交
2371 2372

	for (class = sched_class_highest; class; class = class->next)
2373
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2374 2375 2376
			return 1;

	return 0;
I
Ingo Molnar 已提交
2377 2378
}

L
Linus Torvalds 已提交
2379 2380
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2381 2382
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2383 2384 2385
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2386 2387
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2388 2389 2390
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2391
	unsigned long max_pull;
2392 2393
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2394
	int load_idx, group_imb = 0;
2395 2396 2397 2398 2399 2400
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2401 2402

	max_load = this_load = total_load = total_pwr = 0;
2403 2404
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2405
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2406
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2407
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2408 2409 2410
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2411 2412

	do {
2413
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2414 2415
		int local_group;
		int i;
2416
		int __group_imb = 0;
2417
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2418
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2419 2420 2421

		local_group = cpu_isset(this_cpu, group->cpumask);

2422 2423 2424
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2425
		/* Tally up the load of all CPUs in the group */
2426
		sum_weighted_load = sum_nr_running = avg_load = 0;
2427 2428
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2429 2430

		for_each_cpu_mask(i, group->cpumask) {
2431 2432 2433 2434 2435 2436
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2437

2438
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2439 2440
				*sd_idle = 0;

L
Linus Torvalds 已提交
2441
			/* Bias balancing toward cpus of our domain */
2442 2443 2444 2445 2446 2447
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2448
				load = target_load(i, load_idx);
2449
			} else {
N
Nick Piggin 已提交
2450
				load = source_load(i, load_idx);
2451 2452 2453 2454 2455
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2456 2457

			avg_load += load;
2458
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2459
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2460 2461
		}

2462 2463 2464
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2465 2466
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2467
		 */
2468 2469
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2470 2471 2472 2473
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2474
		total_load += avg_load;
2475
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2476 2477

		/* Adjust by relative CPU power of the group */
2478 2479
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2480

2481 2482 2483
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2484
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2485

L
Linus Torvalds 已提交
2486 2487 2488
		if (local_group) {
			this_load = avg_load;
			this = group;
2489 2490 2491
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2492
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2493 2494
			max_load = avg_load;
			busiest = group;
2495 2496
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2497
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2498
		}
2499 2500 2501 2502 2503 2504

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2505 2506 2507
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2508 2509 2510 2511 2512 2513 2514 2515 2516

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2517
		/*
2518 2519
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2520 2521
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2522
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2523
			goto group_next;
2524

I
Ingo Molnar 已提交
2525
		/*
2526
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2527 2528 2529 2530 2531
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2532 2533
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2534 2535
			group_min = group;
			min_nr_running = sum_nr_running;
2536 2537
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2538
		}
2539

I
Ingo Molnar 已提交
2540
		/*
2541
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2553
		}
2554 2555
group_next:
#endif
L
Linus Torvalds 已提交
2556 2557 2558
		group = group->next;
	} while (group != sd->groups);

2559
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2560 2561 2562 2563 2564 2565 2566 2567
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2568
	busiest_load_per_task /= busiest_nr_running;
2569 2570 2571
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2572 2573 2574 2575 2576 2577 2578 2579
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2580
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2581 2582
	 * appear as very large values with unsigned longs.
	 */
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2595 2596

	/* Don't want to pull so many tasks that a group would go idle */
2597
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2598

L
Linus Torvalds 已提交
2599
	/* How much load to actually move to equalise the imbalance */
2600 2601
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2602 2603
			/ SCHED_LOAD_SCALE;

2604 2605 2606 2607 2608 2609
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2610
	if (*imbalance < busiest_load_per_task) {
2611
		unsigned long tmp, pwr_now, pwr_move;
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2623

I
Ingo Molnar 已提交
2624 2625
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2626
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2627 2628 2629 2630 2631 2632 2633 2634 2635
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2636 2637 2638 2639
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2640 2641 2642
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2643 2644
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2645
		if (max_load > tmp)
2646
			pwr_move += busiest->__cpu_power *
2647
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2648 2649

		/* Amount of load we'd add */
2650
		if (max_load * busiest->__cpu_power <
2651
				busiest_load_per_task * SCHED_LOAD_SCALE)
2652 2653
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2654
		else
2655 2656 2657 2658
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2659 2660 2661
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2662 2663
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2664 2665 2666 2667 2668
	}

	return busiest;

out_balanced:
2669
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2670
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2671
		goto ret;
L
Linus Torvalds 已提交
2672

2673 2674 2675 2676 2677
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2678
ret:
L
Linus Torvalds 已提交
2679 2680 2681 2682 2683 2684 2685
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2686
static struct rq *
I
Ingo Molnar 已提交
2687
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2688
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2689
{
2690
	struct rq *busiest = NULL, *rq;
2691
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2692 2693 2694
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2695
		unsigned long wl;
2696 2697 2698 2699

		if (!cpu_isset(i, *cpus))
			continue;

2700
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2701
		wl = weighted_cpuload(i);
2702

I
Ingo Molnar 已提交
2703
		if (rq->nr_running == 1 && wl > imbalance)
2704
			continue;
L
Linus Torvalds 已提交
2705

I
Ingo Molnar 已提交
2706 2707
		if (wl > max_load) {
			max_load = wl;
2708
			busiest = rq;
L
Linus Torvalds 已提交
2709 2710 2711 2712 2713 2714
		}
	}

	return busiest;
}

2715 2716 2717 2718 2719 2720
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2721 2722 2723 2724
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2725
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2726
			struct sched_domain *sd, enum cpu_idle_type idle,
2727
			int *balance)
L
Linus Torvalds 已提交
2728
{
P
Peter Williams 已提交
2729
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2730 2731
	struct sched_group *group;
	unsigned long imbalance;
2732
	struct rq *busiest;
2733
	cpumask_t cpus = CPU_MASK_ALL;
2734
	unsigned long flags;
N
Nick Piggin 已提交
2735

2736 2737 2738
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2739
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2740
	 * portraying it as CPU_NOT_IDLE.
2741
	 */
I
Ingo Molnar 已提交
2742
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2743
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2744
		sd_idle = 1;
L
Linus Torvalds 已提交
2745

2746
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2747

2748 2749
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2750 2751
				   &cpus, balance);

2752
	if (*balance == 0)
2753 2754
		goto out_balanced;

L
Linus Torvalds 已提交
2755 2756 2757 2758 2759
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2760
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2761 2762 2763 2764 2765
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2766
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2767 2768 2769

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2770
	ld_moved = 0;
L
Linus Torvalds 已提交
2771 2772 2773 2774
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2775
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2776 2777
		 * correctly treated as an imbalance.
		 */
2778
		local_irq_save(flags);
N
Nick Piggin 已提交
2779
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2780
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2781
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2782
		double_rq_unlock(this_rq, busiest);
2783
		local_irq_restore(flags);
2784

2785 2786 2787
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2788
		if (ld_moved && this_cpu != smp_processor_id())
2789 2790
			resched_cpu(this_cpu);

2791
		/* All tasks on this runqueue were pinned by CPU affinity */
2792 2793 2794 2795
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2796
			goto out_balanced;
2797
		}
L
Linus Torvalds 已提交
2798
	}
2799

P
Peter Williams 已提交
2800
	if (!ld_moved) {
L
Linus Torvalds 已提交
2801 2802 2803 2804 2805
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2806
			spin_lock_irqsave(&busiest->lock, flags);
2807 2808 2809 2810 2811

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2812
				spin_unlock_irqrestore(&busiest->lock, flags);
2813 2814 2815 2816
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2817 2818 2819
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2820
				active_balance = 1;
L
Linus Torvalds 已提交
2821
			}
2822
			spin_unlock_irqrestore(&busiest->lock, flags);
2823
			if (active_balance)
L
Linus Torvalds 已提交
2824 2825 2826 2827 2828 2829
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2830
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2831
		}
2832
	} else
L
Linus Torvalds 已提交
2833 2834
		sd->nr_balance_failed = 0;

2835
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2836 2837
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2838 2839 2840 2841 2842 2843 2844 2845 2846
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2847 2848
	}

P
Peter Williams 已提交
2849
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2850
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2851
		return -1;
P
Peter Williams 已提交
2852
	return ld_moved;
L
Linus Torvalds 已提交
2853 2854 2855 2856

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2857
	sd->nr_balance_failed = 0;
2858 2859

out_one_pinned:
L
Linus Torvalds 已提交
2860
	/* tune up the balancing interval */
2861 2862
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2863 2864
		sd->balance_interval *= 2;

2865
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2866
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2867
		return -1;
L
Linus Torvalds 已提交
2868 2869 2870 2871 2872 2873 2874
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2875
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2876 2877
 * this_rq is locked.
 */
2878
static int
2879
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2880 2881
{
	struct sched_group *group;
2882
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2883
	unsigned long imbalance;
P
Peter Williams 已提交
2884
	int ld_moved = 0;
N
Nick Piggin 已提交
2885
	int sd_idle = 0;
2886
	int all_pinned = 0;
2887
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2888

2889 2890 2891 2892
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2893
	 * portraying it as CPU_NOT_IDLE.
2894 2895 2896
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2897
		sd_idle = 1;
L
Linus Torvalds 已提交
2898

2899
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2900
redo:
I
Ingo Molnar 已提交
2901
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2902
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2903
	if (!group) {
I
Ingo Molnar 已提交
2904
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2905
		goto out_balanced;
L
Linus Torvalds 已提交
2906 2907
	}

I
Ingo Molnar 已提交
2908
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2909
				&cpus);
N
Nick Piggin 已提交
2910
	if (!busiest) {
I
Ingo Molnar 已提交
2911
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2912
		goto out_balanced;
L
Linus Torvalds 已提交
2913 2914
	}

N
Nick Piggin 已提交
2915 2916
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2917
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2918

P
Peter Williams 已提交
2919
	ld_moved = 0;
2920 2921 2922
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2923 2924
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2925
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2926 2927
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2928
		spin_unlock(&busiest->lock);
2929

2930
		if (unlikely(all_pinned)) {
2931 2932 2933 2934
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2935 2936
	}

P
Peter Williams 已提交
2937
	if (!ld_moved) {
I
Ingo Molnar 已提交
2938
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2939 2940
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2941 2942
			return -1;
	} else
2943
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2944

P
Peter Williams 已提交
2945
	return ld_moved;
2946 2947

out_balanced:
I
Ingo Molnar 已提交
2948
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2949
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2950
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2951
		return -1;
2952
	sd->nr_balance_failed = 0;
2953

2954
	return 0;
L
Linus Torvalds 已提交
2955 2956 2957 2958 2959 2960
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2961
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2962 2963
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2964 2965
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2966 2967

	for_each_domain(this_cpu, sd) {
2968 2969 2970 2971 2972 2973
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2974
			/* If we've pulled tasks over stop searching: */
2975
			pulled_task = load_balance_newidle(this_cpu,
2976 2977 2978 2979 2980 2981 2982
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2983
	}
I
Ingo Molnar 已提交
2984
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2985 2986 2987 2988 2989
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2990
	}
L
Linus Torvalds 已提交
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3001
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3002
{
3003
	int target_cpu = busiest_rq->push_cpu;
3004 3005
	struct sched_domain *sd;
	struct rq *target_rq;
3006

3007
	/* Is there any task to move? */
3008 3009 3010 3011
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3012 3013

	/*
3014
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3015
	 * we need to fix it. Originally reported by
3016
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3017
	 */
3018
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3019

3020 3021
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3022 3023
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3024 3025

	/* Search for an sd spanning us and the target CPU. */
3026
	for_each_domain(target_cpu, sd) {
3027
		if ((sd->flags & SD_LOAD_BALANCE) &&
3028
		    cpu_isset(busiest_cpu, sd->span))
3029
				break;
3030
	}
3031

3032
	if (likely(sd)) {
3033
		schedstat_inc(sd, alb_count);
3034

P
Peter Williams 已提交
3035 3036
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3037 3038 3039 3040
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3041
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3042 3043
}

3044 3045 3046
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3047
	cpumask_t cpu_mask;
3048 3049 3050 3051 3052
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3053
/*
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3064
 *
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3121 3122 3123 3124 3125
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3126
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3127
{
3128 3129
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3130 3131
	unsigned long interval;
	struct sched_domain *sd;
3132
	/* Earliest time when we have to do rebalance again */
3133
	unsigned long next_balance = jiffies + 60*HZ;
3134
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3135

3136
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3137 3138 3139 3140
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3141
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3142 3143 3144 3145 3146 3147
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3148 3149 3150
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3151

3152 3153 3154 3155 3156
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3157
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3158
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3159 3160
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3161 3162 3163
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3164
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3165
			}
3166
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3167
		}
3168 3169 3170
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3171
		if (time_after(next_balance, sd->last_balance + interval)) {
3172
			next_balance = sd->last_balance + interval;
3173 3174
			update_next_balance = 1;
		}
3175 3176 3177 3178 3179 3180 3181 3182

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3183
	}
3184 3185 3186 3187 3188 3189 3190 3191

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3192 3193 3194 3195 3196 3197 3198 3199 3200
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3201 3202 3203 3204
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3205

I
Ingo Molnar 已提交
3206
	rebalance_domains(this_cpu, idle);
3207 3208 3209 3210 3211 3212 3213

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3214 3215
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3216 3217 3218 3219
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3220
		cpu_clear(this_cpu, cpus);
3221 3222 3223 3224 3225 3226 3227 3228 3229
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3230
			rebalance_domains(balance_cpu, CPU_IDLE);
3231 3232

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3233 3234
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3247
static inline void trigger_load_balance(struct rq *rq, int cpu)
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3299
}
I
Ingo Molnar 已提交
3300 3301 3302

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3303 3304 3305
/*
 * on UP we do not need to balance between CPUs:
 */
3306
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3307 3308
{
}
I
Ingo Molnar 已提交
3309

L
Linus Torvalds 已提交
3310 3311 3312 3313 3314 3315 3316
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3317 3318
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3319
 */
3320
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3321 3322
{
	unsigned long flags;
3323 3324
	u64 ns, delta_exec;
	struct rq *rq;
3325

3326 3327
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3328
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3329 3330
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3331 3332 3333 3334
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3335

L
Linus Torvalds 已提交
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3359 3360 3361 3362 3363
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3364
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3398
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3399 3400
	cputime64_t tmp;

3401 3402
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3403

L
Linus Torvalds 已提交
3404 3405 3406 3407 3408 3409 3410 3411
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3412
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3413
		cpustat->system = cputime64_add(cpustat->system, tmp);
3414
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3415 3416 3417 3418 3419 3420 3421
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3442
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3443 3444 3445 3446 3447 3448 3449

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3450
	} else
L
Linus Torvalds 已提交
3451 3452 3453
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3465
	struct task_struct *curr = rq->curr;
3466
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3467 3468

	spin_lock(&rq->lock);
3469
	__update_rq_clock(rq);
3470 3471 3472 3473 3474 3475
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3476
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3477 3478 3479
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3480

3481
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3482 3483
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3484
#endif
L
Linus Torvalds 已提交
3485 3486 3487 3488 3489 3490 3491 3492 3493
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3494 3495
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3496 3497 3498 3499
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3500 3501
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3502 3503 3504 3505 3506 3507 3508 3509
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3510 3511
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3512 3513 3514
	/*
	 * Is the spinlock portion underflowing?
	 */
3515 3516 3517 3518
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3519 3520 3521 3522 3523 3524 3525
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3526
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3527
 */
I
Ingo Molnar 已提交
3528
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3529
{
3530 3531 3532 3533 3534
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3535 3536 3537
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3538 3539 3540 3541 3542

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3543
}
L
Linus Torvalds 已提交
3544

I
Ingo Molnar 已提交
3545 3546 3547 3548 3549
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3550
	/*
I
Ingo Molnar 已提交
3551
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3552 3553 3554
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3555 3556 3557
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3558 3559
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3560
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3561 3562
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3563 3564
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3565 3566
	}
#endif
I
Ingo Molnar 已提交
3567 3568 3569 3570 3571 3572
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3573
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3574
{
3575
	const struct sched_class *class;
I
Ingo Molnar 已提交
3576
	struct task_struct *p;
L
Linus Torvalds 已提交
3577 3578

	/*
I
Ingo Molnar 已提交
3579 3580
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3581
	 */
I
Ingo Molnar 已提交
3582
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3583
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3584 3585
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3586 3587
	}

I
Ingo Molnar 已提交
3588 3589
	class = sched_class_highest;
	for ( ; ; ) {
3590
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3591 3592 3593 3594 3595 3596 3597 3598 3599
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3600

I
Ingo Molnar 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3623

3624 3625 3626 3627
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3628
	__update_rq_clock(rq);
3629 3630
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3631 3632 3633

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3634
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3635
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3636
		} else {
3637
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3638
		}
I
Ingo Molnar 已提交
3639
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3640 3641
	}

I
Ingo Molnar 已提交
3642
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3643 3644
		idle_balance(cpu, rq);

3645
	prev->sched_class->put_prev_task(rq, prev);
3646
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3647 3648

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3649

L
Linus Torvalds 已提交
3650 3651 3652 3653 3654
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3655
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3656 3657 3658
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3659 3660 3661
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3662
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3663
	}
L
Linus Torvalds 已提交
3664 3665 3666 3667 3668 3669 3670 3671
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3672
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3673
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3685
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3686
	 */
N
Nick Piggin 已提交
3687
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3688 3689
		return;

3690 3691 3692 3693 3694 3695 3696 3697
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3698
#ifdef CONFIG_PREEMPT_BKL
3699 3700
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3701
#endif
3702
		schedule();
L
Linus Torvalds 已提交
3703
#ifdef CONFIG_PREEMPT_BKL
3704
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3705
#endif
3706
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3707

3708 3709 3710 3711 3712 3713
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3714 3715 3716 3717
}
EXPORT_SYMBOL(preempt_schedule);

/*
3718
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3730
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3731 3732
	BUG_ON(ti->preempt_count || !irqs_disabled());

3733 3734 3735 3736 3737 3738 3739 3740
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3741
#ifdef CONFIG_PREEMPT_BKL
3742 3743
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3744
#endif
3745 3746 3747
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3748
#ifdef CONFIG_PREEMPT_BKL
3749
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3750
#endif
3751
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3752

3753 3754 3755 3756 3757 3758
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3759 3760 3761 3762
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3763 3764
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3765
{
3766
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3767 3768 3769 3770
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3771 3772
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3773 3774 3775
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3776
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3777 3778 3779 3780 3781
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3782
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3783

3784
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3785 3786
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3787
		if (curr->func(curr, mode, sync, key) &&
3788
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3798
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3799 3800
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3801
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3820
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3832 3833
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3850
void complete(struct completion *x)
L
Linus Torvalds 已提交
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3862
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3874 3875
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3876 3877 3878 3879 3880 3881 3882
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3883 3884 3885 3886 3887 3888
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3889 3890 3891 3892 3893
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3894
				return timeout;
L
Linus Torvalds 已提交
3895 3896 3897 3898 3899 3900 3901 3902
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3903 3904
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3905 3906 3907 3908
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3909
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3910
	spin_unlock_irq(&x->wait.lock);
3911 3912
	return timeout;
}
L
Linus Torvalds 已提交
3913

3914
void __sched wait_for_completion(struct completion *x)
3915 3916
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3917
}
3918
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3919

3920
unsigned long __sched
3921
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3922
{
3923
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3924
}
3925
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3926

3927
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3928
{
3929 3930 3931 3932
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3933
}
3934
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3935

3936
unsigned long __sched
3937 3938
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3939
{
3940
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3941
}
3942
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3943

3944 3945
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3946
{
I
Ingo Molnar 已提交
3947 3948 3949 3950
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3951

3952
	__set_current_state(state);
L
Linus Torvalds 已提交
3953

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3968 3969 3970
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3971
long __sched
I
Ingo Molnar 已提交
3972
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3973
{
3974
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3975 3976 3977
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3978
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3979
{
3980
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3981 3982 3983
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3984
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3985
{
3986
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3987 3988 3989
}
EXPORT_SYMBOL(sleep_on_timeout);

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4002
void rt_mutex_setprio(struct task_struct *p, int prio)
4003 4004
{
	unsigned long flags;
4005
	int oldprio, on_rq, running;
4006
	struct rq *rq;
4007 4008 4009 4010

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4011
	update_rq_clock(rq);
4012

4013
	oldprio = p->prio;
I
Ingo Molnar 已提交
4014
	on_rq = p->se.on_rq;
4015
	running = task_current(rq, p);
4016
	if (on_rq) {
4017
		dequeue_task(rq, p, 0);
4018 4019 4020
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4021 4022 4023 4024 4025 4026

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4027 4028
	p->prio = prio;

I
Ingo Molnar 已提交
4029
	if (on_rq) {
4030 4031
		if (running)
			p->sched_class->set_curr_task(rq);
4032
		enqueue_task(rq, p, 0);
4033 4034
		/*
		 * Reschedule if we are currently running on this runqueue and
4035 4036
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4037
		 */
4038
		if (running) {
4039 4040
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4041 4042 4043
		} else {
			check_preempt_curr(rq, p);
		}
4044 4045 4046 4047 4048 4049
	}
	task_rq_unlock(rq, &flags);
}

#endif

4050
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4051
{
I
Ingo Molnar 已提交
4052
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4053
	unsigned long flags;
4054
	struct rq *rq;
L
Linus Torvalds 已提交
4055 4056 4057 4058 4059 4060 4061 4062

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4063
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4064 4065 4066 4067
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4068
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4069
	 */
4070
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4071 4072 4073
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4074 4075
	on_rq = p->se.on_rq;
	if (on_rq) {
4076
		dequeue_task(rq, p, 0);
4077
		dec_load(rq, p);
4078
	}
L
Linus Torvalds 已提交
4079 4080

	p->static_prio = NICE_TO_PRIO(nice);
4081
	set_load_weight(p);
4082 4083 4084
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4085

I
Ingo Molnar 已提交
4086
	if (on_rq) {
4087
		enqueue_task(rq, p, 0);
4088
		inc_load(rq, p);
L
Linus Torvalds 已提交
4089
		/*
4090 4091
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4092
		 */
4093
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4094 4095 4096 4097 4098 4099 4100
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4101 4102 4103 4104 4105
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4106
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4107
{
4108 4109
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4110

M
Matt Mackall 已提交
4111 4112 4113 4114
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4126
	long nice, retval;
L
Linus Torvalds 已提交
4127 4128 4129 4130 4131 4132

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4133 4134
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4135 4136 4137 4138 4139 4140 4141 4142 4143
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4144 4145 4146
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4165
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4166 4167 4168 4169 4170 4171 4172 4173
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4174
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4193
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4194 4195 4196 4197 4198 4199 4200 4201
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4202
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4203
{
4204
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4205 4206 4207
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4208 4209
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4210
{
I
Ingo Molnar 已提交
4211
	BUG_ON(p->se.on_rq);
4212

L
Linus Torvalds 已提交
4213
	p->policy = policy;
I
Ingo Molnar 已提交
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4226
	p->rt_priority = prio;
4227 4228 4229
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4230
	set_load_weight(p);
L
Linus Torvalds 已提交
4231 4232 4233
}

/**
4234
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4235 4236 4237
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4238
 *
4239
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4240
 */
I
Ingo Molnar 已提交
4241 4242
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4243
{
4244
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4245
	unsigned long flags;
4246
	struct rq *rq;
L
Linus Torvalds 已提交
4247

4248 4249
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4250 4251 4252 4253 4254
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4255 4256
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4257
		return -EINVAL;
L
Linus Torvalds 已提交
4258 4259
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4260 4261
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4262 4263
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4264
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4265
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4266
		return -EINVAL;
4267
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4268 4269
		return -EINVAL;

4270 4271 4272 4273
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4274
		if (rt_policy(policy)) {
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4291 4292 4293 4294 4295 4296
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4297

4298 4299 4300 4301 4302
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4303 4304 4305 4306

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4307 4308 4309 4310 4311
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4312 4313 4314 4315
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4316
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4317 4318 4319
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4320 4321
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4322 4323
		goto recheck;
	}
I
Ingo Molnar 已提交
4324
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4325
	on_rq = p->se.on_rq;
4326
	running = task_current(rq, p);
4327
	if (on_rq) {
4328
		deactivate_task(rq, p, 0);
4329 4330 4331
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4332

L
Linus Torvalds 已提交
4333
	oldprio = p->prio;
I
Ingo Molnar 已提交
4334
	__setscheduler(rq, p, policy, param->sched_priority);
4335

I
Ingo Molnar 已提交
4336
	if (on_rq) {
4337 4338
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4339
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4340 4341
		/*
		 * Reschedule if we are currently running on this runqueue and
4342 4343
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4344
		 */
4345
		if (running) {
4346 4347
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4348 4349 4350
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4351
	}
4352 4353 4354
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4355 4356
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4357 4358 4359 4360
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4361 4362
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4363 4364 4365
{
	struct sched_param lparam;
	struct task_struct *p;
4366
	int retval;
L
Linus Torvalds 已提交
4367 4368 4369 4370 4371

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4372 4373 4374

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4375
	p = find_process_by_pid(pid);
4376 4377 4378
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4379

L
Linus Torvalds 已提交
4380 4381 4382 4383 4384 4385 4386 4387 4388
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4389 4390
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4391
{
4392 4393 4394 4395
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4415
	struct task_struct *p;
4416
	int retval;
L
Linus Torvalds 已提交
4417 4418

	if (pid < 0)
4419
		return -EINVAL;
L
Linus Torvalds 已提交
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4441
	struct task_struct *p;
4442
	int retval;
L
Linus Torvalds 已提交
4443 4444

	if (!param || pid < 0)
4445
		return -EINVAL;
L
Linus Torvalds 已提交
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4475 4476
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4477

4478
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4479 4480 4481 4482 4483
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4484
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4485 4486 4487 4488 4489
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4490
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4501 4502 4503 4504
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4505 4506
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4507
 again:
L
Linus Torvalds 已提交
4508 4509
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4522 4523
out_unlock:
	put_task_struct(p);
4524
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4565
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4566 4567 4568
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4569
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4570 4571
EXPORT_SYMBOL(cpu_online_map);

4572
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4573
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4574 4575 4576 4577
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4578
	struct task_struct *p;
L
Linus Torvalds 已提交
4579 4580
	int retval;

4581
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4582 4583 4584 4585 4586 4587 4588
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4589 4590 4591 4592
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4593
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4594 4595 4596

out_unlock:
	read_unlock(&tasklist_lock);
4597
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4598

4599
	return retval;
L
Linus Torvalds 已提交
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4630 4631
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4632 4633 4634
 */
asmlinkage long sys_sched_yield(void)
{
4635
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4636

4637
	schedstat_inc(rq, yld_count);
4638
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4639 4640 4641 4642 4643 4644

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4645
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4646 4647 4648 4649 4650 4651 4652 4653
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4654
static void __cond_resched(void)
L
Linus Torvalds 已提交
4655
{
4656 4657 4658
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4659 4660 4661 4662 4663
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4664 4665 4666 4667 4668 4669 4670 4671 4672
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4673 4674
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4686
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4687 4688 4689
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4690
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4691
{
J
Jan Kara 已提交
4692 4693
	int ret = 0;

L
Linus Torvalds 已提交
4694 4695 4696
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4697
		ret = 1;
L
Linus Torvalds 已提交
4698 4699
		spin_lock(lock);
	}
4700
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4701
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4702 4703 4704
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4705
		ret = 1;
L
Linus Torvalds 已提交
4706 4707
		spin_lock(lock);
	}
J
Jan Kara 已提交
4708
	return ret;
L
Linus Torvalds 已提交
4709 4710 4711 4712 4713 4714 4715
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4716
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4717
		local_bh_enable();
L
Linus Torvalds 已提交
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4729
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4740
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4741 4742 4743 4744 4745 4746 4747
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4748
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4749

4750
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4751 4752 4753
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4754
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4755 4756 4757 4758 4759
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4760
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4761 4762
	long ret;

4763
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4764 4765 4766
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4767
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4788
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4789
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4813
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4814
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4831
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4832
	unsigned int time_slice;
4833
	int retval;
L
Linus Torvalds 已提交
4834 4835 4836
	struct timespec t;

	if (pid < 0)
4837
		return -EINVAL;
L
Linus Torvalds 已提交
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4849 4850 4851 4852 4853 4854
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
4855
		time_slice = DEF_TIMESLICE;
4856
	} else {
D
Dmitry Adamushko 已提交
4857 4858 4859 4860 4861
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
4862 4863
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
4864 4865
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4866
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4867
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4868 4869
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4870

L
Linus Torvalds 已提交
4871 4872 4873 4874 4875
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4876
static const char stat_nam[] = "RSDTtZX";
4877 4878

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4879 4880
{
	unsigned long free = 0;
4881
	unsigned state;
L
Linus Torvalds 已提交
4882 4883

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
4884
	printk(KERN_INFO "%-13.13s %c", p->comm,
4885
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4886
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4887
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4888
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4889
	else
I
Ingo Molnar 已提交
4890
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4891 4892
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4893
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4894
	else
I
Ingo Molnar 已提交
4895
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4896 4897 4898
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4899
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4900 4901
		while (!*n)
			n++;
4902
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4903 4904
	}
#endif
4905
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
4906
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
4907 4908 4909 4910 4911

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4912
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4913
{
4914
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4915

4916 4917 4918
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4919
#else
4920 4921
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4922 4923 4924 4925 4926 4927 4928 4929
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4930
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4931
			show_task(p);
L
Linus Torvalds 已提交
4932 4933
	} while_each_thread(g, p);

4934 4935
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4936 4937 4938
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4939
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4940 4941 4942 4943 4944
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4945 4946
}

I
Ingo Molnar 已提交
4947 4948
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4949
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4950 4951
}

4952 4953 4954 4955 4956 4957 4958 4959
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4960
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4961
{
4962
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4963 4964
	unsigned long flags;

I
Ingo Molnar 已提交
4965 4966 4967
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4968
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4969
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4970
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4971 4972 4973

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4974 4975 4976
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4977 4978 4979 4980
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4981
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4982
#else
A
Al Viro 已提交
4983
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4984
#endif
I
Ingo Molnar 已提交
4985 4986 4987 4988
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5026 5027 5028 5029
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5030
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5049
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5050 5051
 * call is not atomic; no spinlocks may be held.
 */
5052
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5053
{
5054
	struct migration_req req;
L
Linus Torvalds 已提交
5055
	unsigned long flags;
5056
	struct rq *rq;
5057
	int ret = 0;
L
Linus Torvalds 已提交
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5080

L
Linus Torvalds 已提交
5081 5082 5083 5084 5085
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5086
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5087 5088 5089 5090 5091 5092
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5093 5094
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5095
 */
5096
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5097
{
5098
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5099
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5100 5101

	if (unlikely(cpu_is_offline(dest_cpu)))
5102
		return ret;
L
Linus Torvalds 已提交
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5115
	on_rq = p->se.on_rq;
5116
	if (on_rq)
5117
		deactivate_task(rq_src, p, 0);
5118

L
Linus Torvalds 已提交
5119
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5120 5121 5122
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5123
	}
5124
	ret = 1;
L
Linus Torvalds 已提交
5125 5126
out:
	double_rq_unlock(rq_src, rq_dest);
5127
	return ret;
L
Linus Torvalds 已提交
5128 5129 5130 5131 5132 5133 5134
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5135
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5136 5137
{
	int cpu = (long)data;
5138
	struct rq *rq;
L
Linus Torvalds 已提交
5139 5140 5141 5142 5143 5144

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5145
		struct migration_req *req;
L
Linus Torvalds 已提交
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5168
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5169 5170
		list_del_init(head->next);

N
Nick Piggin 已提交
5171 5172 5173
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5203
/*
5204
 * Figure out where task on dead CPU should go, use force if necessary.
5205 5206
 * NOTE: interrupts should be disabled by the caller
 */
5207
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5208
{
5209
	unsigned long flags;
L
Linus Torvalds 已提交
5210
	cpumask_t mask;
5211 5212
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5213

5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5226 5227 5228 5229 5230
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5231
			 * cpuset_cpus_allowed() will not block. It must be
5232 5233
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5234
			rq = task_rq_lock(p, &flags);
5235
			p->cpus_allowed = cpus_allowed;
5236 5237
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5238

5239 5240 5241 5242 5243
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5244
			if (p->mm && printk_ratelimit()) {
5245 5246
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5247 5248
					task_pid_nr(p), p->comm, dead_cpu);
			}
5249
		}
5250
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5251 5252 5253 5254 5255 5256 5257 5258 5259
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5260
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5261
{
5262
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5276
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5277

5278
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5279

5280 5281
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5282 5283
			continue;

5284 5285 5286
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5287

5288
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5289 5290
}

I
Ingo Molnar 已提交
5291 5292
/*
 * Schedules idle task to be the next runnable task on current CPU.
5293 5294
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5295 5296 5297
 */
void sched_idle_next(void)
{
5298
	int this_cpu = smp_processor_id();
5299
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5300 5301 5302 5303
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5304
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5305

5306 5307 5308
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5309 5310 5311
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5312
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5313

5314 5315
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5316 5317 5318 5319

	spin_unlock_irqrestore(&rq->lock, flags);
}

5320 5321
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5335
/* called under rq->lock with disabled interrupts */
5336
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5337
{
5338
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5339 5340

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5341
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5342 5343

	/* Cannot have done final schedule yet: would have vanished. */
5344
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5345

5346
	get_task_struct(p);
L
Linus Torvalds 已提交
5347 5348 5349

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5350
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5351 5352
	 * fine.
	 */
5353
	spin_unlock_irq(&rq->lock);
5354
	move_task_off_dead_cpu(dead_cpu, p);
5355
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5356

5357
	put_task_struct(p);
L
Linus Torvalds 已提交
5358 5359 5360 5361 5362
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5363
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5364
	struct task_struct *next;
5365

I
Ingo Molnar 已提交
5366 5367 5368
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5369
		update_rq_clock(rq);
5370
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5371 5372 5373
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5374

L
Linus Torvalds 已提交
5375 5376 5377 5378
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5379 5380 5381
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5382 5383
	{
		.procname	= "sched_domain",
5384
		.mode		= 0555,
5385
	},
I
Ingo Molnar 已提交
5386
	{0, },
5387 5388 5389
};

static struct ctl_table sd_ctl_root[] = {
5390
	{
5391
		.ctl_name	= CTL_KERN,
5392
		.procname	= "kernel",
5393
		.mode		= 0555,
5394 5395
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5396
	{0, },
5397 5398 5399 5400 5401
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5402
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5403 5404 5405 5406

	return entry;
}

5407 5408
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5409
	struct ctl_table *entry;
5410

5411 5412 5413
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5414
	 * will always be set. In the lowest directory the names are
5415 5416 5417
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5418 5419
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5420 5421 5422
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5423 5424 5425 5426 5427

	kfree(*tablep);
	*tablep = NULL;
}

5428
static void
5429
set_table_entry(struct ctl_table *entry,
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5443
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5444

5445 5446 5447
	if (table == NULL)
		return NULL;

5448
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5449
		sizeof(long), 0644, proc_doulongvec_minmax);
5450
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5451
		sizeof(long), 0644, proc_doulongvec_minmax);
5452
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5453
		sizeof(int), 0644, proc_dointvec_minmax);
5454
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5455
		sizeof(int), 0644, proc_dointvec_minmax);
5456
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5457
		sizeof(int), 0644, proc_dointvec_minmax);
5458
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5459
		sizeof(int), 0644, proc_dointvec_minmax);
5460
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5461
		sizeof(int), 0644, proc_dointvec_minmax);
5462
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5463
		sizeof(int), 0644, proc_dointvec_minmax);
5464
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5465
		sizeof(int), 0644, proc_dointvec_minmax);
5466
	set_table_entry(&table[9], "cache_nice_tries",
5467 5468
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5469
	set_table_entry(&table[10], "flags", &sd->flags,
5470
		sizeof(int), 0644, proc_dointvec_minmax);
5471
	/* &table[11] is terminator */
5472 5473 5474 5475

	return table;
}

5476
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5477 5478 5479 5480 5481 5482 5483 5484 5485
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5486 5487
	if (table == NULL)
		return NULL;
5488 5489 5490 5491 5492

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5493
		entry->mode = 0555;
5494 5495 5496 5497 5498 5499 5500 5501
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5502
static void register_sched_domain_sysctl(void)
5503 5504 5505 5506 5507
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5508 5509 5510
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5511 5512 5513
	if (entry == NULL)
		return;

5514
	for_each_online_cpu(i) {
5515 5516
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5517
		entry->mode = 0555;
5518
		entry->child = sd_alloc_ctl_cpu_table(i);
5519
		entry++;
5520
	}
5521 5522

	WARN_ON(sd_sysctl_header);
5523 5524
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5525

5526
/* may be called multiple times per register */
5527 5528
static void unregister_sched_domain_sysctl(void)
{
5529 5530
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5531
	sd_sysctl_header = NULL;
5532 5533
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5534
}
5535
#else
5536 5537 5538 5539
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5540 5541 5542 5543
{
}
#endif

L
Linus Torvalds 已提交
5544 5545 5546 5547
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5548 5549
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5550 5551
{
	struct task_struct *p;
5552
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5553
	unsigned long flags;
5554
	struct rq *rq;
L
Linus Torvalds 已提交
5555 5556

	switch (action) {
5557 5558 5559 5560
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5561
	case CPU_UP_PREPARE:
5562
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5563
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5564 5565 5566 5567 5568
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5569
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5570 5571 5572
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5573

L
Linus Torvalds 已提交
5574
	case CPU_ONLINE:
5575
	case CPU_ONLINE_FROZEN:
5576
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5577 5578
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5579

L
Linus Torvalds 已提交
5580 5581
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5582
	case CPU_UP_CANCELED_FROZEN:
5583 5584
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5585
		/* Unbind it from offline cpu so it can run. Fall thru. */
5586 5587
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5588 5589 5590
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5591

L
Linus Torvalds 已提交
5592
	case CPU_DEAD:
5593
	case CPU_DEAD_FROZEN:
5594
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5595 5596 5597 5598 5599
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5600
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5601
		update_rq_clock(rq);
5602
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5603
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5604 5605
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5606
		migrate_dead_tasks(cpu);
5607
		spin_unlock_irq(&rq->lock);
5608
		cpuset_unlock();
L
Linus Torvalds 已提交
5609 5610 5611
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5612 5613 5614 5615 5616
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5617 5618
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5619 5620
			struct migration_req *req;

L
Linus Torvalds 已提交
5621
			req = list_entry(rq->migration_queue.next,
5622
					 struct migration_req, list);
L
Linus Torvalds 已提交
5623 5624 5625 5626 5627 5628
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5629 5630 5631
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5632 5633 5634 5635 5636 5637 5638
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5639
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5640 5641 5642 5643
	.notifier_call = migration_call,
	.priority = 10
};

5644
void __init migration_init(void)
L
Linus Torvalds 已提交
5645 5646
{
	void *cpu = (void *)(long)smp_processor_id();
5647
	int err;
5648 5649

	/* Start one for the boot CPU: */
5650 5651
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5652 5653 5654 5655 5656 5657
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5658 5659 5660 5661 5662

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5663
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5664 5665

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5666
{
I
Ingo Molnar 已提交
5667 5668 5669
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5670

I
Ingo Molnar 已提交
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5682 5683
	}

I
Ingo Molnar 已提交
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5694

I
Ingo Molnar 已提交
5695
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5696
	do {
I
Ingo Molnar 已提交
5697 5698 5699
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5700 5701 5702
			break;
		}

I
Ingo Molnar 已提交
5703 5704 5705 5706 5707 5708
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5709

I
Ingo Molnar 已提交
5710 5711 5712 5713 5714
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5715

I
Ingo Molnar 已提交
5716 5717 5718 5719 5720
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5721

I
Ingo Molnar 已提交
5722
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5723

I
Ingo Molnar 已提交
5724 5725
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5726

I
Ingo Molnar 已提交
5727 5728 5729
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5730

I
Ingo Molnar 已提交
5731 5732
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5733

I
Ingo Molnar 已提交
5734 5735 5736 5737 5738
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
5739

I
Ingo Molnar 已提交
5740 5741 5742
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5743

I
Ingo Molnar 已提交
5744 5745 5746 5747
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5748

I
Ingo Molnar 已提交
5749 5750 5751 5752 5753
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
5754 5755
		level++;
		sd = sd->parent;
5756
		if (!sd)
I
Ingo Molnar 已提交
5757 5758
			break;
	}
L
Linus Torvalds 已提交
5759 5760
}
#else
5761
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5762 5763
#endif

5764
static int sd_degenerate(struct sched_domain *sd)
5765 5766 5767 5768 5769 5770 5771 5772
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5773 5774 5775
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5789 5790
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5809 5810 5811
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5812 5813 5814 5815 5816 5817 5818
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5819 5820 5821 5822
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5823
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5824
{
5825
	struct rq *rq = cpu_rq(cpu);
5826 5827 5828 5829 5830 5831 5832
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5833
		if (sd_parent_degenerate(tmp, parent)) {
5834
			tmp->parent = parent->parent;
5835 5836 5837
			if (parent->parent)
				parent->parent->child = tmp;
		}
5838 5839
	}

5840
	if (sd && sd_degenerate(sd)) {
5841
		sd = sd->parent;
5842 5843 5844
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5845 5846 5847

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5848
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5849 5850 5851
}

/* cpus with isolated domains */
5852
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5867
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5868 5869

/*
5870 5871 5872 5873
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5874 5875 5876 5877 5878
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5879
static void
5880 5881 5882
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5883 5884 5885 5886 5887 5888
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5889 5890
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5891 5892 5893 5894 5895 5896
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5897
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5898 5899

		for_each_cpu_mask(j, span) {
5900
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5915
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5916

5917
#ifdef CONFIG_NUMA
5918

5919 5920 5921 5922 5923
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
5924
 * Find the next node to include in a given scheduling domain. Simply
5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
5964
 * Given a node, construct a good cpumask for its sched_domain to span. It
5965 5966 5967 5968 5969 5970
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5971 5972
	cpumask_t span, nodemask;
	int i;
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5983

5984 5985 5986 5987 5988 5989 5990 5991
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5992
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5993

5994
/*
5995
 * SMT sched-domains:
5996
 */
L
Linus Torvalds 已提交
5997 5998
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5999
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6000

I
Ingo Molnar 已提交
6001 6002
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6003
{
6004 6005
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6006 6007 6008 6009
	return cpu;
}
#endif

6010 6011 6012
/*
 * multi-core sched-domains:
 */
6013 6014
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6015
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6016 6017 6018
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6019 6020
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6021
{
6022
	int group;
6023
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6024
	cpus_and(mask, mask, *cpu_map);
6025 6026 6027 6028
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6029 6030
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6031 6032
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6033
{
6034 6035
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6036 6037 6038 6039
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6040
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6041
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6042

I
Ingo Molnar 已提交
6043 6044
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6045
{
6046
	int group;
6047
#ifdef CONFIG_SCHED_MC
6048
	cpumask_t mask = cpu_coregroup_map(cpu);
6049
	cpus_and(mask, mask, *cpu_map);
6050
	group = first_cpu(mask);
6051
#elif defined(CONFIG_SCHED_SMT)
6052
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6053
	cpus_and(mask, mask, *cpu_map);
6054
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6055
#else
6056
	group = cpu;
L
Linus Torvalds 已提交
6057
#endif
6058 6059 6060
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6061 6062 6063 6064
}

#ifdef CONFIG_NUMA
/*
6065 6066 6067
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6068
 */
6069
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6070
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6071

6072
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6073
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6074

6075 6076
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6077
{
6078 6079 6080 6081 6082 6083 6084 6085 6086
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6087
}
6088

6089 6090 6091 6092 6093 6094 6095
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6096 6097 6098
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6099

6100 6101 6102 6103 6104 6105 6106 6107
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6108

6109 6110 6111 6112
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6113
}
L
Linus Torvalds 已提交
6114 6115
#endif

6116
#ifdef CONFIG_NUMA
6117 6118 6119
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6120
	int cpu, i;
6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6151 6152 6153 6154 6155
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6156

6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6183 6184
	sd->groups->__cpu_power = 0;

6185 6186 6187 6188 6189 6190 6191 6192 6193 6194
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6195
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6196 6197 6198 6199 6200 6201 6202 6203
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6204
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6205 6206 6207 6208
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6209
/*
6210 6211
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6212
 */
6213
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6214 6215
{
	int i;
6216 6217
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6218
	int sd_allnodes = 0;
6219 6220 6221 6222

	/*
	 * Allocate the per-node list of sched groups
	 */
6223
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6224
				    GFP_KERNEL);
6225 6226
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6227
		return -ENOMEM;
6228 6229 6230
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6231 6232

	/*
6233
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6234
	 */
6235
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6236 6237 6238
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6239
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6240 6241

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6242 6243
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6244 6245 6246
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6247
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6248
			p = sd;
6249
			sd_allnodes = 1;
6250 6251 6252
		} else
			p = NULL;

L
Linus Torvalds 已提交
6253 6254
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6255 6256
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6257 6258
		if (p)
			p->child = sd;
6259
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6260 6261 6262 6263 6264 6265 6266
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6267 6268
		if (p)
			p->child = sd;
6269
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6270

6271 6272 6273 6274 6275 6276 6277
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6278
		p->child = sd;
6279
		cpu_to_core_group(i, cpu_map, &sd->groups);
6280 6281
#endif

L
Linus Torvalds 已提交
6282 6283 6284 6285
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6286
		sd->span = per_cpu(cpu_sibling_map, i);
6287
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6288
		sd->parent = p;
6289
		p->child = sd;
6290
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6291 6292 6293 6294 6295
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6296
	for_each_cpu_mask(i, *cpu_map) {
6297
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6298
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6299 6300 6301
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6302 6303
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6304 6305 6306
	}
#endif

6307 6308 6309 6310 6311 6312 6313
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6314 6315
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6316 6317 6318
	}
#endif

L
Linus Torvalds 已提交
6319 6320 6321 6322
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6323
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6324 6325 6326
		if (cpus_empty(nodemask))
			continue;

6327
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6328 6329 6330 6331
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6332
	if (sd_allnodes)
I
Ingo Molnar 已提交
6333 6334
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6335 6336 6337 6338 6339 6340 6341 6342 6343 6344

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6345 6346
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6347
			continue;
6348
		}
6349 6350 6351 6352

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6353
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6354 6355 6356 6357 6358
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6359 6360 6361
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6362

6363 6364 6365
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6366
		sg->__cpu_power = 0;
6367
		sg->cpumask = nodemask;
6368
		sg->next = sg;
6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6387 6388
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6389 6390 6391
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6392
				goto error;
6393
			}
6394
			sg->__cpu_power = 0;
6395
			sg->cpumask = tmp;
6396
			sg->next = prev->next;
6397 6398 6399 6400 6401
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6402 6403 6404
#endif

	/* Calculate CPU power for physical packages and nodes */
6405
#ifdef CONFIG_SCHED_SMT
6406
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6407 6408
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6409
		init_sched_groups_power(i, sd);
6410
	}
L
Linus Torvalds 已提交
6411
#endif
6412
#ifdef CONFIG_SCHED_MC
6413
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6414 6415
		struct sched_domain *sd = &per_cpu(core_domains, i);

6416
		init_sched_groups_power(i, sd);
6417 6418
	}
#endif
6419

6420
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6421 6422
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6423
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6424 6425
	}

6426
#ifdef CONFIG_NUMA
6427 6428
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6429

6430 6431
	if (sd_allnodes) {
		struct sched_group *sg;
6432

6433
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6434 6435
		init_numa_sched_groups_power(sg);
	}
6436 6437
#endif

L
Linus Torvalds 已提交
6438
	/* Attach the domains */
6439
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6440 6441 6442
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6443 6444
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6445 6446 6447 6448 6449
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6450 6451 6452

	return 0;

6453
#ifdef CONFIG_NUMA
6454 6455 6456
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6457
#endif
L
Linus Torvalds 已提交
6458
}
P
Paul Jackson 已提交
6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6470
/*
I
Ingo Molnar 已提交
6471
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6472 6473
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6474
 */
6475
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6476
{
6477 6478
	int err;

P
Paul Jackson 已提交
6479 6480 6481 6482 6483
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6484
	err = build_sched_domains(doms_cur);
6485
	register_sched_domain_sysctl();
6486 6487

	return err;
6488 6489 6490
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6491
{
6492
	free_sched_groups(cpu_map);
6493
}
L
Linus Torvalds 已提交
6494

6495 6496 6497 6498
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6499
static void detach_destroy_domains(const cpumask_t *cpu_map)
6500 6501 6502
{
	int i;

6503 6504
	unregister_sched_domain_sysctl();

6505 6506 6507 6508 6509 6510
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6511 6512
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6513
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6514 6515 6516 6517
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6518 6519 6520
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6521 6522 6523
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6524 6525
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6536 6537 6538
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6574 6575

	register_sched_domain_sysctl();
P
Paul Jackson 已提交
6576 6577
}

6578
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6579
static int arch_reinit_sched_domains(void)
6580 6581 6582
{
	int err;

6583
	mutex_lock(&sched_hotcpu_mutex);
6584 6585
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6586
	mutex_unlock(&sched_hotcpu_mutex);
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6613 6614
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6615 6616 6617
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6618 6619
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6620 6621 6622 6623 6624 6625 6626
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6627 6628
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6629 6630 6631
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6652 6653
#endif

L
Linus Torvalds 已提交
6654
/*
I
Ingo Molnar 已提交
6655
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
6656
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6657
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6658 6659 6660 6661 6662 6663 6664
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6665
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6666
	case CPU_DOWN_PREPARE:
6667
	case CPU_DOWN_PREPARE_FROZEN:
6668
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6669 6670 6671
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6672
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6673
	case CPU_DOWN_FAILED:
6674
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6675
	case CPU_ONLINE:
6676
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6677
	case CPU_DEAD:
6678
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6679 6680 6681 6682 6683 6684 6685 6686 6687
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6688
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6689 6690 6691 6692 6693 6694

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6695 6696
	cpumask_t non_isolated_cpus;

6697
	mutex_lock(&sched_hotcpu_mutex);
6698
	arch_init_sched_domains(&cpu_online_map);
6699
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6700 6701
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6702
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6703 6704
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6705 6706 6707 6708

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6709
	sched_init_granularity();
L
Linus Torvalds 已提交
6710 6711 6712 6713
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6714
	sched_init_granularity();
L
Linus Torvalds 已提交
6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6725
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6726 6727 6728 6729 6730
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6731
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6732 6733
}

L
Linus Torvalds 已提交
6734 6735
void __init sched_init(void)
{
6736
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6737 6738
	int i, j;

6739
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6740
		struct rt_prio_array *array;
6741
		struct rq *rq;
L
Linus Torvalds 已提交
6742 6743 6744

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6745
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6746
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6747 6748 6749 6750
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6751 6752 6753 6754 6755 6756 6757
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6758
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6759
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6760 6761
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6762 6763 6764
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6765
			se->load.weight = init_task_group_load;
6766
			se->load.inv_weight =
6767
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6768 6769
			se->parent = NULL;
		}
6770
		init_task_group.shares = init_task_group_load;
6771
		spin_lock_init(&init_task_group.lock);
I
Ingo Molnar 已提交
6772
#endif
L
Linus Torvalds 已提交
6773

I
Ingo Molnar 已提交
6774 6775
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6776
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6777
		rq->sd = NULL;
L
Linus Torvalds 已提交
6778
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6779
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6780
		rq->push_cpu = 0;
6781
		rq->cpu = i;
L
Linus Torvalds 已提交
6782 6783 6784 6785 6786
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6787 6788 6789 6790
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6791
		}
6792
		highest_cpu = i;
I
Ingo Molnar 已提交
6793 6794
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6795 6796
	}

6797
	set_load_weight(&init_task);
6798

6799 6800 6801 6802
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6803
#ifdef CONFIG_SMP
6804
	nr_cpu_ids = highest_cpu + 1;
6805 6806 6807
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6808 6809 6810 6811
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6825 6826 6827 6828
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6829 6830 6831 6832 6833
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6834
#ifdef in_atomic
L
Linus Torvalds 已提交
6835 6836 6837 6838 6839 6840 6841
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6842
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6843 6844 6845
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6846
		debug_show_held_locks(current);
6847 6848
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6849 6850 6851 6852 6853 6854 6855 6856
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6871 6872
void normalize_rt_tasks(void)
{
6873
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6874
	unsigned long flags;
6875
	struct rq *rq;
L
Linus Torvalds 已提交
6876 6877

	read_lock_irq(&tasklist_lock);
6878
	do_each_thread(g, p) {
6879 6880 6881 6882 6883 6884
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6885 6886
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6887 6888 6889
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6890
#endif
I
Ingo Molnar 已提交
6891 6892 6893 6894 6895 6896 6897 6898 6899
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6900
			continue;
I
Ingo Molnar 已提交
6901
		}
L
Linus Torvalds 已提交
6902

6903 6904
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6905

6906
		normalize_task(rq, p);
6907

6908 6909
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6910 6911
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6912 6913 6914 6915
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6934
struct task_struct *curr_task(int cpu)
6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6945 6946
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
6947 6948 6949 6950 6951 6952 6953
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6954
void set_curr_task(int cpu, struct task_struct *p)
6955 6956 6957 6958 6959
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6960 6961 6962 6963

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6964
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6965
{
6966
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6967 6968
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6969
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6970 6971 6972 6973 6974 6975
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6976
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6977 6978
	if (!tg->cfs_rq)
		goto err;
6979
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6980 6981 6982 6983
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6984
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

7011 7012 7013 7014 7015
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
7016

7017
	tg->shares = NICE_0_LOAD;
7018
	spin_lock_init(&tg->lock);
S
Srivatsa Vaddagiri 已提交
7019

7020
	return tg;
S
Srivatsa Vaddagiri 已提交
7021 7022 7023

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
7024
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
7025
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
7026
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
7027 7028
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
7029 7030 7031
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
7032 7033 7034 7035

	return ERR_PTR(-ENOMEM);
}

7036 7037
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7038
{
7039 7040
	struct task_group *tg = container_of(rhp, struct task_group, rcu);
	struct cfs_rq *cfs_rq;
S
Srivatsa Vaddagiri 已提交
7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

7058
/* Destroy runqueue etc associated with a task group */
7059
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7060
{
7061
	struct cfs_rq *cfs_rq = NULL;
7062
	int i;
S
Srivatsa Vaddagiri 已提交
7063

7064 7065 7066 7067 7068
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

7069
	BUG_ON(!cfs_rq);
7070 7071

	/* wait for possible concurrent references to cfs_rqs complete */
7072
	call_rcu(&tg->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
7073 7074
}

7075
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7076 7077 7078
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7079 7080
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7081 7082 7083 7084 7085 7086 7087
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7088
	if (tsk->sched_class != &fair_sched_class) {
7089
		set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7090
		goto done;
7091
	}
S
Srivatsa Vaddagiri 已提交
7092 7093 7094

	update_rq_clock(rq);

7095
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7096 7097
	on_rq = tsk->se.on_rq;

7098
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7099
		dequeue_task(rq, tsk, 0);
7100 7101 7102
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7103

7104
	set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7105

7106 7107 7108
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7109
		enqueue_task(rq, tsk, 0);
7110
	}
S
Srivatsa Vaddagiri 已提交
7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

7137
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7138 7139 7140
{
	int i;

7141 7142 7143 7144 7145 7146 7147 7148
	/*
	 * A weight of 0 or 1 can cause arithmetics problems.
	 * (The default weight is 1024 - so there's no practical
	 *  limitation from this.)
	 */
	if (shares < 2)
		shares = 2;

7149
	spin_lock(&tg->lock);
7150
	if (tg->shares == shares)
7151
		goto done;
S
Srivatsa Vaddagiri 已提交
7152

7153
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
7154
	for_each_possible_cpu(i)
7155
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7156

7157 7158
done:
	spin_unlock(&tg->lock);
7159
	return 0;
S
Srivatsa Vaddagiri 已提交
7160 7161
}

7162 7163 7164 7165 7166
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
7167
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7168 7169 7170 7171

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
7172
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7173
{
7174 7175
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7176 7177 7178
}

static struct cgroup_subsys_state *
7179
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7180 7181 7182
{
	struct task_group *tg;

7183
	if (!cgrp->parent) {
7184
		/* This is early initialization for the top cgroup */
7185
		init_task_group.css.cgroup = cgrp;
7186 7187 7188 7189
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7190
	if (cgrp->parent->parent)
7191 7192 7193 7194 7195 7196 7197
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7198
	tg->css.cgroup = cgrp;
7199 7200 7201 7202

	return &tg->css;
}

I
Ingo Molnar 已提交
7203 7204
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7205
{
7206
	struct task_group *tg = cgroup_tg(cgrp);
7207 7208 7209 7210

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7211 7212 7213
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
7214 7215 7216 7217 7218 7219 7220 7221 7222
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
7223
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7224 7225 7226 7227 7228
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7229 7230
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7231
{
7232
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7233 7234
}

7235
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7236
{
7237
	struct task_group *tg = cgroup_tg(cgrp);
7238 7239 7240 7241

	return (u64) tg->shares;
}

7242 7243 7244 7245 7246 7247
static struct cftype cpu_files[] = {
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
7248 7249 7250 7251
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7252
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7253 7254 7255
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7256 7257 7258 7259 7260 7261 7262
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7263 7264 7265 7266
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */
7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7319 7320
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */