sched.c 176.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46
#include <linux/blkdev.h>
#include <linux/delay.h>
47
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
48 49 50 51 52 53 54
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
55
#include <linux/cpu_acct.h>
L
Linus Torvalds 已提交
56 57
#include <linux/kthread.h>
#include <linux/seq_file.h>
58
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
59 60
#include <linux/syscalls.h>
#include <linux/times.h>
61
#include <linux/tsacct_kern.h>
62
#include <linux/kprobes.h>
63
#include <linux/delayacct.h>
64
#include <linux/reciprocal_div.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
67

68
#include <asm/tlb.h>
69
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
70

71 72 73 74 75 76 77 78 79 80
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
D
Dmitry Adamushko 已提交
102
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (1000000000 / HZ))
L
Linus Torvalds 已提交
103 104
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

137 138 139 140 141 142 143 144 145 146 147 148
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
149
/*
I
Ingo Molnar 已提交
150
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
151
 */
I
Ingo Molnar 已提交
152 153 154 155 156
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
157 158
#ifdef CONFIG_FAIR_GROUP_SCHED

159 160
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
161 162 163
struct cfs_rq;

/* task group related information */
164
struct task_group {
165 166 167
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
168 169 170 171 172
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
173 174
	/* spinlock to serialize modification to shares */
	spinlock_t lock;
175
	struct rcu_head rcu;
S
Srivatsa Vaddagiri 已提交
176 177 178 179 180 181 182
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

183 184
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
185 186

/* Default task group.
I
Ingo Molnar 已提交
187
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
188
 */
189
struct task_group init_task_group = {
I
Ingo Molnar 已提交
190 191 192
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
193

194
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
195
# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
196
#else
I
Ingo Molnar 已提交
197
# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
198 199
#endif

200
static int init_task_group_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
201 202

/* return group to which a task belongs */
203
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
204
{
205
	struct task_group *tg;
206

207 208
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
209 210 211
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
212
#else
213
	tg  = &init_task_group;
214
#endif
215 216

	return tg;
S
Srivatsa Vaddagiri 已提交
217 218 219 220 221
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_cfs_rq(struct task_struct *p)
{
222 223
	p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
	p->se.parent = task_group(p)->se[task_cpu(p)];
S
Srivatsa Vaddagiri 已提交
224 225 226 227 228 229 230 231
}

#else

static inline void set_task_cfs_rq(struct task_struct *p) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
232 233 234 235 236 237
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
238
	u64 min_vruntime;
I
Ingo Molnar 已提交
239 240 241 242 243 244 245 246

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
247 248 249

	unsigned long nr_spread_over;

250
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
251 252 253 254 255 256 257 258 259 260
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
261
	struct task_group *tg;    /* group that "owns" this runqueue */
I
Ingo Molnar 已提交
262 263
#endif
};
L
Linus Torvalds 已提交
264

I
Ingo Molnar 已提交
265 266 267 268 269 270 271
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
272 273 274 275 276 277 278
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
279
struct rq {
280 281
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
282 283 284 285 286 287

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
288 289
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
290
	unsigned char idle_at_tick;
291 292 293
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
294 295
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
296 297 298 299 300
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
301 302
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
303
#endif
I
Ingo Molnar 已提交
304
	struct rt_rq  rt;
L
Linus Torvalds 已提交
305 306 307 308 309 310 311 312 313

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

314
	struct task_struct *curr, *idle;
315
	unsigned long next_balance;
L
Linus Torvalds 已提交
316
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
317 318 319 320 321

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
322 323
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
324
	u64 tick_timestamp;
I
Ingo Molnar 已提交
325

L
Linus Torvalds 已提交
326 327 328 329 330 331 332 333
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
334 335
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
336

337
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
338 339 340 341 342 343 344 345
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
346 347 348 349
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
350 351

	/* schedule() stats */
352 353 354
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
355 356

	/* try_to_wake_up() stats */
357 358
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
359 360

	/* BKL stats */
361
	unsigned int bkl_count;
L
Linus Torvalds 已提交
362
#endif
363
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
364 365
};

366
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
367
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
368

I
Ingo Molnar 已提交
369 370 371 372 373
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

374 375 376 377 378 379 380 381 382
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
383
/*
I
Ingo Molnar 已提交
384 385
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
386
 */
I
Ingo Molnar 已提交
387
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
388 389 390 391 392 393
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
394 395 396
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
397 398 399 400 401 402 403 404 405 406
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
407 408 409 410 411
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
412 413 414 415 416 417 418 419 420 421
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
422
}
I
Ingo Molnar 已提交
423

I
Ingo Molnar 已提交
424 425 426 427
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
428 429
}

N
Nick Piggin 已提交
430 431
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
432
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
433 434 435 436
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
437 438
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
439 440 441 442 443 444

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
458 459
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_START_DEBIT		= 2,
460
	SCHED_FEAT_TREE_AVG             = 4,
461
	SCHED_FEAT_APPROX_AVG           = 8,
462
	SCHED_FEAT_WAKEUP_PREEMPT	= 16,
463
	SCHED_FEAT_PREEMPT_RESTRICT	= 32,
I
Ingo Molnar 已提交
464 465 466
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
467 468 469 470 471 472
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
		SCHED_FEAT_APPROX_AVG		* 0 |
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
		SCHED_FEAT_PREEMPT_RESTRICT	* 1;
I
Ingo Molnar 已提交
473 474 475

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

476 477 478 479 480 481 482 483
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
484
	struct rq *rq;
485

486
	local_irq_save(flags);
I
Ingo Molnar 已提交
487 488 489
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
490
	local_irq_restore(flags);
491 492 493

	return now;
}
P
Paul E. McKenney 已提交
494
EXPORT_SYMBOL_GPL(cpu_clock);
495

L
Linus Torvalds 已提交
496
#ifndef prepare_arch_switch
497 498 499 500 501 502 503
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
504
static inline int task_running(struct rq *rq, struct task_struct *p)
505 506 507 508
{
	return rq->curr == p;
}

509
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
510 511 512
{
}

513
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
514
{
515 516 517 518
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
519 520 521 522 523 524 525
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

526 527 528 529
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
530
static inline int task_running(struct rq *rq, struct task_struct *p)
531 532 533 534 535 536 537 538
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

539
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

556
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
557 558 559 560 561 562 563 564 565 566 567 568
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
569
#endif
570 571
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
572

573 574 575 576
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
577
static inline struct rq *__task_rq_lock(struct task_struct *p)
578 579
	__acquires(rq->lock)
{
580 581 582 583 584
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
585 586 587 588
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
589 590 591 592 593
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
594
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
595 596
	__acquires(rq->lock)
{
597
	struct rq *rq;
L
Linus Torvalds 已提交
598

599 600 601 602 603 604
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
605 606 607 608
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
609
static void __task_rq_unlock(struct rq *rq)
610 611 612 613 614
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

615
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
616 617 618 619 620 621
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
622
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
623
 */
A
Alexey Dobriyan 已提交
624
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
625 626
	__acquires(rq->lock)
{
627
	struct rq *rq;
L
Linus Torvalds 已提交
628 629 630 631 632 633 634 635

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

636
/*
637
 * We are going deep-idle (irqs are disabled):
638
 */
639
void sched_clock_idle_sleep_event(void)
640
{
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
657

658 659 660 661 662 663 664 665 666 667 668
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
669
}
670
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
671

I
Ingo Molnar 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

724 725 726 727 728 729 730 731
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
732 733 734
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
735
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
736

737
static unsigned long
738 739 740 741 742 743
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
744
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
745 746 747 748 749

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
750
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
751
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
752 753
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
754
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
755

756
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
757 758 759 760 761 762 763 764
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

765
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
766 767 768 769
{
	lw->weight += inc;
}

770
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
771 772 773 774
{
	lw->weight -= dec;
}

775 776 777 778 779 780 781 782 783
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
784 785 786 787 788 789 790 791 792 793 794
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
795 796 797
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
798 799
 */
static const int prio_to_weight[40] = {
800 801 802 803 804 805 806 807
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
808 809
};

810 811 812 813 814 815 816
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
817
static const u32 prio_to_wmult[40] = {
818 819 820 821 822 823 824 825
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
826
};
827

I
Ingo Molnar 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

841 842 843 844 845 846 847 848 849 850 851 852
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
853 854 855

#include "sched_stats.h"
#include "sched_idletask.c"
856 857
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
858 859 860 861 862 863
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

864 865 866 867
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
868
 * total load (rq->load.weight) on the runqueue, while
869 870 871 872 873 874 875
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
876
 * This function is called /before/ updating rq->load
877 878
 * and when switching tasks.
 */
879
static inline void inc_load(struct rq *rq, const struct task_struct *p)
880
{
881
	update_load_add(&rq->load, p->se.load.weight);
882 883
}

884
static inline void dec_load(struct rq *rq, const struct task_struct *p)
885
{
886
	update_load_sub(&rq->load, p->se.load.weight);
887 888
}

889
static void inc_nr_running(struct task_struct *p, struct rq *rq)
890 891
{
	rq->nr_running++;
892
	inc_load(rq, p);
893 894
}

895
static void dec_nr_running(struct task_struct *p, struct rq *rq)
896 897
{
	rq->nr_running--;
898
	dec_load(rq, p);
899 900
}

901 902 903
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
904 905 906 907
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
908

I
Ingo Molnar 已提交
909 910 911 912 913 914 915 916
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
917

I
Ingo Molnar 已提交
918 919
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
920 921
}

922
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
923
{
I
Ingo Molnar 已提交
924
	sched_info_queued(p);
925
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
926
	p->se.on_rq = 1;
927 928
}

929
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
930
{
931
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
932
	p->se.on_rq = 0;
933 934
}

935
/*
I
Ingo Molnar 已提交
936
 * __normal_prio - return the priority that is based on the static prio
937 938 939
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
940
	return p->static_prio;
941 942
}

943 944 945 946 947 948 949
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
950
static inline int normal_prio(struct task_struct *p)
951 952 953
{
	int prio;

954
	if (task_has_rt_policy(p))
955 956 957 958 959 960 961 962 963 964 965 966 967
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
968
static int effective_prio(struct task_struct *p)
969 970 971 972 973 974 975 976 977 978 979 980
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
981
/*
I
Ingo Molnar 已提交
982
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
983
 */
I
Ingo Molnar 已提交
984
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
985
{
I
Ingo Molnar 已提交
986 987
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
988

989
	enqueue_task(rq, p, wakeup);
990
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
991 992 993 994 995
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
996
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
997
{
I
Ingo Molnar 已提交
998 999 1000
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

1001
	dequeue_task(rq, p, sleep);
1002
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1003 1004 1005 1006 1007 1008
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1009
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1010 1011 1012 1013
{
	return cpu_curr(task_cpu(p)) == p;
}

1014 1015 1016
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1017
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1018 1019 1020 1021 1022 1023 1024
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
#endif
S
Srivatsa Vaddagiri 已提交
1025
	set_task_cfs_rq(p);
1026 1027
}

L
Linus Torvalds 已提交
1028
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1041 1042 1043 1044 1045
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1046 1047 1048 1049 1050 1051
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1052
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1053
{
I
Ingo Molnar 已提交
1054 1055
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1056 1057
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1058
	u64 clock_offset;
I
Ingo Molnar 已提交
1059 1060

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1061 1062 1063 1064

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1065 1066 1067 1068
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1069 1070 1071 1072 1073
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1074
#endif
1075 1076
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1077 1078

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1079 1080
}

1081
struct migration_req {
L
Linus Torvalds 已提交
1082 1083
	struct list_head list;

1084
	struct task_struct *task;
L
Linus Torvalds 已提交
1085 1086 1087
	int dest_cpu;

	struct completion done;
1088
};
L
Linus Torvalds 已提交
1089 1090 1091 1092 1093

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1094
static int
1095
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1096
{
1097
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1098 1099 1100 1101 1102

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1103
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1104 1105 1106 1107 1108 1109 1110 1111
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1112

L
Linus Torvalds 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1125
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1126 1127
{
	unsigned long flags;
I
Ingo Molnar 已提交
1128
	int running, on_rq;
1129
	struct rq *rq;
L
Linus Torvalds 已提交
1130

1131 1132 1133 1134 1135 1136 1137 1138
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1174

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1188

1189 1190 1191 1192 1193 1194 1195
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1211
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1223 1224
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1225 1226 1227 1228
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1229
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1230
{
1231
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1232
	unsigned long total = weighted_cpuload(cpu);
1233

1234
	if (type == 0)
I
Ingo Molnar 已提交
1235
		return total;
1236

I
Ingo Molnar 已提交
1237
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1238 1239 1240
}

/*
1241 1242
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1243
 */
A
Alexey Dobriyan 已提交
1244
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1245
{
1246
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1247
	unsigned long total = weighted_cpuload(cpu);
1248

N
Nick Piggin 已提交
1249
	if (type == 0)
I
Ingo Molnar 已提交
1250
		return total;
1251

I
Ingo Molnar 已提交
1252
	return max(rq->cpu_load[type-1], total);
1253 1254 1255 1256 1257 1258 1259
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1260
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1261
	unsigned long total = weighted_cpuload(cpu);
1262 1263
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1264
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1265 1266
}

N
Nick Piggin 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1284 1285
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1286
			continue;
1287

N
Nick Piggin 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1304 1305
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1306 1307 1308 1309 1310 1311 1312 1313

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1314
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1315 1316 1317 1318 1319 1320 1321

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1322
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1323
 */
I
Ingo Molnar 已提交
1324 1325
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1326
{
1327
	cpumask_t tmp;
N
Nick Piggin 已提交
1328 1329 1330 1331
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1332 1333 1334 1335
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1336
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1362

1363
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1364 1365 1366
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1367 1368
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1369 1370
		if (tmp->flags & flag)
			sd = tmp;
1371
	}
N
Nick Piggin 已提交
1372 1373 1374 1375

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1376 1377 1378 1379 1380 1381
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1382 1383 1384

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1385 1386 1387 1388
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1389

1390
		new_cpu = find_idlest_cpu(group, t, cpu);
1391 1392 1393 1394 1395
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1396

1397
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1424
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1425 1426 1427 1428 1429
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1440 1441 1442 1443
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1444
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1445
			for_each_cpu_mask(i, tmp) {
1446 1447 1448 1449 1450
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1451
					return i;
1452
				}
L
Linus Torvalds 已提交
1453
			}
I
Ingo Molnar 已提交
1454
		} else {
N
Nick Piggin 已提交
1455
			break;
I
Ingo Molnar 已提交
1456
		}
L
Linus Torvalds 已提交
1457 1458 1459 1460
	}
	return cpu;
}
#else
1461
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1481
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1482
{
1483
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1484 1485
	unsigned long flags;
	long old_state;
1486
	struct rq *rq;
L
Linus Torvalds 已提交
1487
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1488
	struct sched_domain *sd, *this_sd = NULL;
1489
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1490 1491 1492 1493 1494 1495 1496 1497
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1498
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1499 1500 1501
		goto out_running;

	cpu = task_cpu(p);
1502
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1503 1504 1505 1506 1507 1508
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1509 1510
	new_cpu = cpu;

1511
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1512 1513
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1514 1515 1516 1517 1518 1519 1520 1521
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1522 1523 1524
		}
	}

N
Nick Piggin 已提交
1525
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1526 1527 1528
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1529
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1530
	 */
N
Nick Piggin 已提交
1531 1532 1533
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1534

1535 1536
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1537 1538
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1539

N
Nick Piggin 已提交
1540 1541
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1542 1543
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1544 1545
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1546 1547 1548 1549 1550 1551
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1552
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1553
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1554

L
Linus Torvalds 已提交
1555
			/*
1556 1557 1558
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1559
			 */
1560
			if (sync)
I
Ingo Molnar 已提交
1561
				tl -= current->se.load.weight;
1562 1563

			if ((tl <= load &&
1564
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1565
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1566 1567 1568 1569 1570 1571
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1572
				schedstat_inc(p, se.nr_wakeups_affine);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1584
				schedstat_inc(p, se.nr_wakeups_passive);
1585 1586
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1601
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1602 1603 1604 1605 1606 1607 1608 1609
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1610 1611 1612 1613 1614 1615 1616 1617 1618
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1619
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1620
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1621
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1632
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1633 1634 1635 1636 1637 1638
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1639
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1640 1641 1642 1643 1644 1645 1646
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1647 1648 1649 1650 1651 1652 1653
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1654
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1655 1656 1657

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1658 1659 1660 1661 1662 1663
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1664
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1665
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1666
#endif
N
Nick Piggin 已提交
1667

I
Ingo Molnar 已提交
1668 1669
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1670

1671 1672 1673 1674
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1675 1676 1677 1678 1679 1680 1681
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1696
	set_task_cpu(p, cpu);
1697 1698 1699 1700 1701

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1702 1703
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1704

1705
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1706
	if (likely(sched_info_on()))
1707
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1708
#endif
1709
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1710 1711
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1712
#ifdef CONFIG_PREEMPT
1713
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1714
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1715
#endif
N
Nick Piggin 已提交
1716
	put_cpu();
L
Linus Torvalds 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1726
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1727 1728
{
	unsigned long flags;
I
Ingo Molnar 已提交
1729
	struct rq *rq;
L
Linus Torvalds 已提交
1730 1731

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1732
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1733
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1734 1735 1736

	p->prio = effective_prio(p);

1737
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1738
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1739 1740
	} else {
		/*
I
Ingo Molnar 已提交
1741 1742
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1743
		 */
1744
		p->sched_class->task_new(rq, p);
1745
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1746
	}
I
Ingo Molnar 已提交
1747 1748
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1749 1750
}

1751 1752 1753
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1754 1755
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1756 1757 1758 1759 1760 1761 1762 1763 1764
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1765
 * @notifier: notifier struct to unregister
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1809 1810 1811
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1812
 * @prev: the current task that is being switched out
1813 1814 1815 1816 1817 1818 1819 1820 1821
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1822 1823 1824
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1825
{
1826
	fire_sched_out_preempt_notifiers(prev, next);
1827 1828 1829 1830
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1831 1832
/**
 * finish_task_switch - clean up after a task-switch
1833
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1834 1835
 * @prev: the thread we just switched away from.
 *
1836 1837 1838 1839
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1840 1841 1842 1843 1844 1845
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1846
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1847 1848 1849
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1850
	long prev_state;
L
Linus Torvalds 已提交
1851 1852 1853 1854 1855

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1856
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1857 1858
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1859
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1860 1861 1862 1863 1864
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1865
	prev_state = prev->state;
1866 1867
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1868
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1869 1870
	if (mm)
		mmdrop(mm);
1871
	if (unlikely(prev_state == TASK_DEAD)) {
1872 1873 1874
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1875
		 */
1876
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1877
		put_task_struct(prev);
1878
	}
L
Linus Torvalds 已提交
1879 1880 1881 1882 1883 1884
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1885
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1886 1887
	__releases(rq->lock)
{
1888 1889
	struct rq *rq = this_rq();

1890 1891 1892 1893 1894
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1895
	if (current->set_child_tid)
1896
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1897 1898 1899 1900 1901 1902
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1903
static inline void
1904
context_switch(struct rq *rq, struct task_struct *prev,
1905
	       struct task_struct *next)
L
Linus Torvalds 已提交
1906
{
I
Ingo Molnar 已提交
1907
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1908

1909
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1910 1911
	mm = next->mm;
	oldmm = prev->active_mm;
1912 1913 1914 1915 1916 1917 1918
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1919
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924 1925
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1926
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1927 1928 1929
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1930 1931 1932 1933 1934 1935 1936
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1937
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1938
#endif
L
Linus Torvalds 已提交
1939 1940 1941 1942

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1943 1944 1945 1946 1947 1948 1949
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1973
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1988 1989
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1990

1991
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2001
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2002 2003 2004 2005 2006
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2022
/*
I
Ingo Molnar 已提交
2023 2024
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2025
 */
I
Ingo Molnar 已提交
2026
static void update_cpu_load(struct rq *this_rq)
2027
{
2028
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2041 2042 2043 2044 2045 2046 2047
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2048 2049
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2050 2051
}

I
Ingo Molnar 已提交
2052 2053
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2054 2055 2056 2057 2058 2059
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2060
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2061 2062 2063
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2064
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2065 2066 2067 2068
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2069
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2070 2071 2072 2073 2074 2075 2076
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2077 2078
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2079 2080 2081 2082 2083 2084 2085 2086
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2087
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2101
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2102 2103 2104 2105
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2106 2107 2108 2109 2110
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2111
	if (unlikely(!spin_trylock(&busiest->lock))) {
2112
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2127
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2128
{
2129
	struct migration_req req;
L
Linus Torvalds 已提交
2130
	unsigned long flags;
2131
	struct rq *rq;
L
Linus Torvalds 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2142

L
Linus Torvalds 已提交
2143 2144 2145 2146 2147
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2148

L
Linus Torvalds 已提交
2149 2150 2151 2152 2153 2154 2155
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2156 2157
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2158 2159 2160 2161
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2162
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2163
	put_cpu();
N
Nick Piggin 已提交
2164 2165
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2166 2167 2168 2169 2170 2171
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2172 2173
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2174
{
2175
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2176
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2177
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2178 2179 2180 2181
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2182
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2183 2184 2185 2186 2187
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2188
static
2189
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2190
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2191
		     int *all_pinned)
L
Linus Torvalds 已提交
2192 2193 2194 2195 2196 2197 2198
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2199 2200
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2201
		return 0;
2202
	}
2203 2204
	*all_pinned = 0;

2205 2206
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2207
		return 0;
2208
	}
L
Linus Torvalds 已提交
2209

2210 2211 2212 2213 2214 2215
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2216 2217
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2218
#ifdef CONFIG_SCHEDSTATS
2219
		if (task_hot(p, rq->clock, sd)) {
2220
			schedstat_inc(sd, lb_hot_gained[idle]);
2221 2222
			schedstat_inc(p, se.nr_forced_migrations);
		}
2223 2224 2225 2226
#endif
		return 1;
	}

2227 2228
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2229
		return 0;
2230
	}
L
Linus Torvalds 已提交
2231 2232 2233
	return 1;
}

2234 2235 2236 2237 2238
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2239
{
I
Ingo Molnar 已提交
2240 2241 2242
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2243

2244
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2245 2246
		goto out;

2247 2248
	pinned = 1;

L
Linus Torvalds 已提交
2249
	/*
I
Ingo Molnar 已提交
2250
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2251
	 */
I
Ingo Molnar 已提交
2252 2253 2254
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2255
		goto out;
2256 2257 2258 2259 2260
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2261 2262
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2263
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2264 2265 2266
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2267 2268
	}

I
Ingo Molnar 已提交
2269
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2270
	pulled++;
I
Ingo Molnar 已提交
2271
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2272

2273 2274 2275 2276
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
2277
	if (rem_load_move > 0) {
2278 2279
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2280 2281
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2282 2283 2284
	}
out:
	/*
2285
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2286 2287 2288 2289
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2290 2291 2292

	if (all_pinned)
		*all_pinned = pinned;
2293 2294

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2295 2296
}

I
Ingo Molnar 已提交
2297
/*
P
Peter Williams 已提交
2298 2299 2300
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2301 2302 2303 2304
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2305
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2306 2307 2308
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2309
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2310
	unsigned long total_load_moved = 0;
2311
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2312 2313

	do {
P
Peter Williams 已提交
2314 2315
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2316
				max_load_move - total_load_moved,
2317
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2318
		class = class->next;
P
Peter Williams 已提交
2319
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2320

P
Peter Williams 已提交
2321 2322 2323
	return total_load_moved > 0;
}

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2360
	const struct sched_class *class;
P
Peter Williams 已提交
2361 2362

	for (class = sched_class_highest; class; class = class->next)
2363
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2364 2365 2366
			return 1;

	return 0;
I
Ingo Molnar 已提交
2367 2368
}

L
Linus Torvalds 已提交
2369 2370
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2371 2372
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2373 2374 2375
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2376 2377
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2378 2379 2380
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2381
	unsigned long max_pull;
2382 2383
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2384
	int load_idx, group_imb = 0;
2385 2386 2387 2388 2389 2390
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2391 2392

	max_load = this_load = total_load = total_pwr = 0;
2393 2394
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2395
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2396
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2397
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2398 2399 2400
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2401 2402

	do {
2403
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2404 2405
		int local_group;
		int i;
2406
		int __group_imb = 0;
2407
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2408
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2409 2410 2411

		local_group = cpu_isset(this_cpu, group->cpumask);

2412 2413 2414
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2415
		/* Tally up the load of all CPUs in the group */
2416
		sum_weighted_load = sum_nr_running = avg_load = 0;
2417 2418
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2419 2420

		for_each_cpu_mask(i, group->cpumask) {
2421 2422 2423 2424 2425 2426
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2427

2428
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2429 2430
				*sd_idle = 0;

L
Linus Torvalds 已提交
2431
			/* Bias balancing toward cpus of our domain */
2432 2433 2434 2435 2436 2437
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2438
				load = target_load(i, load_idx);
2439
			} else {
N
Nick Piggin 已提交
2440
				load = source_load(i, load_idx);
2441 2442 2443 2444 2445
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2446 2447

			avg_load += load;
2448
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2449
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2450 2451
		}

2452 2453 2454
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2455 2456
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2457
		 */
2458 2459
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2460 2461 2462 2463
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2464
		total_load += avg_load;
2465
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2466 2467

		/* Adjust by relative CPU power of the group */
2468 2469
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2470

2471 2472 2473
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2474
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2475

L
Linus Torvalds 已提交
2476 2477 2478
		if (local_group) {
			this_load = avg_load;
			this = group;
2479 2480 2481
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2482
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2483 2484
			max_load = avg_load;
			busiest = group;
2485 2486
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2487
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2488
		}
2489 2490 2491 2492 2493 2494

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2495 2496 2497
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2498 2499 2500 2501 2502 2503 2504 2505 2506

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2507
		/*
2508 2509
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2510 2511
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2512
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2513
			goto group_next;
2514

I
Ingo Molnar 已提交
2515
		/*
2516
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2517 2518 2519 2520 2521
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2522 2523
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2524 2525
			group_min = group;
			min_nr_running = sum_nr_running;
2526 2527
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2528
		}
2529

I
Ingo Molnar 已提交
2530
		/*
2531
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2543
		}
2544 2545
group_next:
#endif
L
Linus Torvalds 已提交
2546 2547 2548
		group = group->next;
	} while (group != sd->groups);

2549
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2550 2551 2552 2553 2554 2555 2556 2557
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2558
	busiest_load_per_task /= busiest_nr_running;
2559 2560 2561
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2585 2586

	/* Don't want to pull so many tasks that a group would go idle */
2587
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2588

L
Linus Torvalds 已提交
2589
	/* How much load to actually move to equalise the imbalance */
2590 2591
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2592 2593
			/ SCHED_LOAD_SCALE;

2594 2595 2596 2597 2598 2599
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2600
	if (*imbalance < busiest_load_per_task) {
2601
		unsigned long tmp, pwr_now, pwr_move;
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2613

I
Ingo Molnar 已提交
2614 2615
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2616
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2626 2627 2628 2629
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2630 2631 2632
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2633 2634
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2635
		if (max_load > tmp)
2636
			pwr_move += busiest->__cpu_power *
2637
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2638 2639

		/* Amount of load we'd add */
2640
		if (max_load * busiest->__cpu_power <
2641
				busiest_load_per_task * SCHED_LOAD_SCALE)
2642 2643
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2644
		else
2645 2646 2647 2648
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2649 2650 2651
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2652 2653
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2654 2655 2656 2657 2658
	}

	return busiest;

out_balanced:
2659
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2660
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2661
		goto ret;
L
Linus Torvalds 已提交
2662

2663 2664 2665 2666 2667
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2668
ret:
L
Linus Torvalds 已提交
2669 2670 2671 2672 2673 2674 2675
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2676
static struct rq *
I
Ingo Molnar 已提交
2677
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2678
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2679
{
2680
	struct rq *busiest = NULL, *rq;
2681
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2682 2683 2684
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2685
		unsigned long wl;
2686 2687 2688 2689

		if (!cpu_isset(i, *cpus))
			continue;

2690
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2691
		wl = weighted_cpuload(i);
2692

I
Ingo Molnar 已提交
2693
		if (rq->nr_running == 1 && wl > imbalance)
2694
			continue;
L
Linus Torvalds 已提交
2695

I
Ingo Molnar 已提交
2696 2697
		if (wl > max_load) {
			max_load = wl;
2698
			busiest = rq;
L
Linus Torvalds 已提交
2699 2700 2701 2702 2703 2704
		}
	}

	return busiest;
}

2705 2706 2707 2708 2709 2710
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2711 2712 2713 2714
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2715
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2716
			struct sched_domain *sd, enum cpu_idle_type idle,
2717
			int *balance)
L
Linus Torvalds 已提交
2718
{
P
Peter Williams 已提交
2719
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2720 2721
	struct sched_group *group;
	unsigned long imbalance;
2722
	struct rq *busiest;
2723
	cpumask_t cpus = CPU_MASK_ALL;
2724
	unsigned long flags;
N
Nick Piggin 已提交
2725

2726 2727 2728
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2729
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2730
	 * portraying it as CPU_NOT_IDLE.
2731
	 */
I
Ingo Molnar 已提交
2732
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2733
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2734
		sd_idle = 1;
L
Linus Torvalds 已提交
2735

2736
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2737

2738 2739
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2740 2741
				   &cpus, balance);

2742
	if (*balance == 0)
2743 2744
		goto out_balanced;

L
Linus Torvalds 已提交
2745 2746 2747 2748 2749
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2750
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2751 2752 2753 2754 2755
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2756
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2757 2758 2759

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2760
	ld_moved = 0;
L
Linus Torvalds 已提交
2761 2762 2763 2764
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2765
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2766 2767
		 * correctly treated as an imbalance.
		 */
2768
		local_irq_save(flags);
N
Nick Piggin 已提交
2769
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2770
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2771
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2772
		double_rq_unlock(this_rq, busiest);
2773
		local_irq_restore(flags);
2774

2775 2776 2777
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2778
		if (ld_moved && this_cpu != smp_processor_id())
2779 2780
			resched_cpu(this_cpu);

2781
		/* All tasks on this runqueue were pinned by CPU affinity */
2782 2783 2784 2785
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2786
			goto out_balanced;
2787
		}
L
Linus Torvalds 已提交
2788
	}
2789

P
Peter Williams 已提交
2790
	if (!ld_moved) {
L
Linus Torvalds 已提交
2791 2792 2793 2794 2795
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2796
			spin_lock_irqsave(&busiest->lock, flags);
2797 2798 2799 2800 2801

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2802
				spin_unlock_irqrestore(&busiest->lock, flags);
2803 2804 2805 2806
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2807 2808 2809
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2810
				active_balance = 1;
L
Linus Torvalds 已提交
2811
			}
2812
			spin_unlock_irqrestore(&busiest->lock, flags);
2813
			if (active_balance)
L
Linus Torvalds 已提交
2814 2815 2816 2817 2818 2819
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2820
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2821
		}
2822
	} else
L
Linus Torvalds 已提交
2823 2824
		sd->nr_balance_failed = 0;

2825
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2826 2827
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2828 2829 2830 2831 2832 2833 2834 2835 2836
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2837 2838
	}

P
Peter Williams 已提交
2839
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2840
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2841
		return -1;
P
Peter Williams 已提交
2842
	return ld_moved;
L
Linus Torvalds 已提交
2843 2844 2845 2846

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2847
	sd->nr_balance_failed = 0;
2848 2849

out_one_pinned:
L
Linus Torvalds 已提交
2850
	/* tune up the balancing interval */
2851 2852
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2853 2854
		sd->balance_interval *= 2;

2855
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2856
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2857
		return -1;
L
Linus Torvalds 已提交
2858 2859 2860 2861 2862 2863 2864
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2865
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2866 2867
 * this_rq is locked.
 */
2868
static int
2869
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2870 2871
{
	struct sched_group *group;
2872
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2873
	unsigned long imbalance;
P
Peter Williams 已提交
2874
	int ld_moved = 0;
N
Nick Piggin 已提交
2875
	int sd_idle = 0;
2876
	int all_pinned = 0;
2877
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2878

2879 2880 2881 2882
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2883
	 * portraying it as CPU_NOT_IDLE.
2884 2885 2886
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2887
		sd_idle = 1;
L
Linus Torvalds 已提交
2888

2889
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2890
redo:
I
Ingo Molnar 已提交
2891
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2892
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2893
	if (!group) {
I
Ingo Molnar 已提交
2894
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2895
		goto out_balanced;
L
Linus Torvalds 已提交
2896 2897
	}

I
Ingo Molnar 已提交
2898
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2899
				&cpus);
N
Nick Piggin 已提交
2900
	if (!busiest) {
I
Ingo Molnar 已提交
2901
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2902
		goto out_balanced;
L
Linus Torvalds 已提交
2903 2904
	}

N
Nick Piggin 已提交
2905 2906
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2907
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2908

P
Peter Williams 已提交
2909
	ld_moved = 0;
2910 2911 2912
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2913 2914
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2915
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2916 2917
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2918
		spin_unlock(&busiest->lock);
2919

2920
		if (unlikely(all_pinned)) {
2921 2922 2923 2924
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2925 2926
	}

P
Peter Williams 已提交
2927
	if (!ld_moved) {
I
Ingo Molnar 已提交
2928
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2929 2930
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2931 2932
			return -1;
	} else
2933
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2934

P
Peter Williams 已提交
2935
	return ld_moved;
2936 2937

out_balanced:
I
Ingo Molnar 已提交
2938
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2939
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2940
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2941
		return -1;
2942
	sd->nr_balance_failed = 0;
2943

2944
	return 0;
L
Linus Torvalds 已提交
2945 2946 2947 2948 2949 2950
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2951
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2952 2953
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2954 2955
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2956 2957

	for_each_domain(this_cpu, sd) {
2958 2959 2960 2961 2962 2963
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2964
			/* If we've pulled tasks over stop searching: */
2965
			pulled_task = load_balance_newidle(this_cpu,
2966 2967 2968 2969 2970 2971 2972
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2973
	}
I
Ingo Molnar 已提交
2974
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2975 2976 2977 2978 2979
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2980
	}
L
Linus Torvalds 已提交
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2991
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2992
{
2993
	int target_cpu = busiest_rq->push_cpu;
2994 2995
	struct sched_domain *sd;
	struct rq *target_rq;
2996

2997
	/* Is there any task to move? */
2998 2999 3000 3001
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3002 3003

	/*
3004 3005 3006
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3007
	 */
3008
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3009

3010 3011
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3012 3013
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3014 3015

	/* Search for an sd spanning us and the target CPU. */
3016
	for_each_domain(target_cpu, sd) {
3017
		if ((sd->flags & SD_LOAD_BALANCE) &&
3018
		    cpu_isset(busiest_cpu, sd->span))
3019
				break;
3020
	}
3021

3022
	if (likely(sd)) {
3023
		schedstat_inc(sd, alb_count);
3024

P
Peter Williams 已提交
3025 3026
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3027 3028 3029 3030
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3031
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3032 3033
}

3034 3035 3036 3037 3038 3039 3040 3041 3042
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3043
/*
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3054
 *
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3111 3112 3113 3114 3115
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3116
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3117
{
3118 3119
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3120 3121
	unsigned long interval;
	struct sched_domain *sd;
3122
	/* Earliest time when we have to do rebalance again */
3123
	unsigned long next_balance = jiffies + 60*HZ;
3124
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3125

3126
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3127 3128 3129 3130
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3131
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3132 3133 3134 3135 3136 3137
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3138 3139 3140
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3141

3142 3143 3144 3145 3146
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3147
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3148
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3149 3150
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3151 3152 3153
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3154
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3155
			}
3156
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3157
		}
3158 3159 3160
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3161
		if (time_after(next_balance, sd->last_balance + interval)) {
3162
			next_balance = sd->last_balance + interval;
3163 3164
			update_next_balance = 1;
		}
3165 3166 3167 3168 3169 3170 3171 3172

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3173
	}
3174 3175 3176 3177 3178 3179 3180 3181

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3182 3183 3184 3185 3186 3187 3188 3189 3190
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3191 3192 3193 3194
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3195

I
Ingo Molnar 已提交
3196
	rebalance_domains(this_cpu, idle);
3197 3198 3199 3200 3201 3202 3203

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3204 3205
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3206 3207 3208 3209
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3210
		cpu_clear(this_cpu, cpus);
3211 3212 3213 3214 3215 3216 3217 3218 3219
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3220
			rebalance_domains(balance_cpu, CPU_IDLE);
3221 3222

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3223 3224
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3237
static inline void trigger_load_balance(struct rq *rq, int cpu)
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3289
}
I
Ingo Molnar 已提交
3290 3291 3292

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3293 3294 3295
/*
 * on UP we do not need to balance between CPUs:
 */
3296
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3297 3298
{
}
I
Ingo Molnar 已提交
3299

L
Linus Torvalds 已提交
3300 3301 3302 3303 3304 3305 3306
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3307 3308
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3309
 */
3310
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3311 3312
{
	unsigned long flags;
3313 3314
	u64 ns, delta_exec;
	struct rq *rq;
3315

3316 3317 3318
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3319 3320
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3321 3322 3323 3324
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3325

L
Linus Torvalds 已提交
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;
3338
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3339 3340 3341

	p->utime = cputime_add(p->utime, cputime);

3342 3343 3344
	if (p != rq->idle)
		cpuacct_charge(p, cputime);

L
Linus Torvalds 已提交
3345 3346 3347 3348 3349 3350 3351 3352
	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3353 3354 3355 3356 3357
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3358
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3392
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3393 3394
	cputime64_t tmp;

3395 3396 3397 3398 3399
	if (p->flags & PF_VCPU) {
		account_guest_time(p, cputime);
		return;
	}

L
Linus Torvalds 已提交
3400 3401 3402 3403 3404 3405 3406 3407
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3408
	else if (p != rq->idle) {
L
Linus Torvalds 已提交
3409
		cpustat->system = cputime64_add(cpustat->system, tmp);
3410 3411
		cpuacct_charge(p, cputime);
	} else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3412 3413 3414 3415 3416 3417 3418
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3430 3431 3432 3433 3434 3435 3436 3437 3438
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3439
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3440 3441 3442 3443 3444 3445 3446

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3447
	} else {
L
Linus Torvalds 已提交
3448
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
3449 3450
		cpuacct_charge(p, -tmp);
	}
L
Linus Torvalds 已提交
3451 3452
}

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3464
	struct task_struct *curr = rq->curr;
3465
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3466 3467

	spin_lock(&rq->lock);
3468
	__update_rq_clock(rq);
3469 3470 3471 3472 3473 3474
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3475
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3476 3477 3478
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3479

3480
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3481 3482
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3483
#endif
L
Linus Torvalds 已提交
3484 3485 3486 3487 3488 3489 3490 3491 3492
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3493 3494
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3495 3496 3497 3498
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3499 3500
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3501 3502 3503 3504 3505 3506 3507 3508
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3509 3510
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3511 3512 3513
	/*
	 * Is the spinlock portion underflowing?
	 */
3514 3515 3516 3517
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3518 3519 3520 3521 3522 3523 3524
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3525
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3526
 */
I
Ingo Molnar 已提交
3527
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3528
{
3529 3530 3531 3532 3533
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3534 3535 3536
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3537 3538 3539 3540 3541

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3542
}
L
Linus Torvalds 已提交
3543

I
Ingo Molnar 已提交
3544 3545 3546 3547 3548
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3549 3550 3551 3552 3553
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3554 3555 3556
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3557 3558
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3559
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3560 3561
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3562 3563
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3564 3565
	}
#endif
I
Ingo Molnar 已提交
3566 3567 3568 3569 3570 3571
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3572
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3573
{
3574
	const struct sched_class *class;
I
Ingo Molnar 已提交
3575
	struct task_struct *p;
L
Linus Torvalds 已提交
3576 3577

	/*
I
Ingo Molnar 已提交
3578 3579
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3580
	 */
I
Ingo Molnar 已提交
3581
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3582
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3583 3584
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3585 3586
	}

I
Ingo Molnar 已提交
3587 3588
	class = sched_class_highest;
	for ( ; ; ) {
3589
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3599

I
Ingo Molnar 已提交
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3622

3623 3624 3625 3626
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3627
	__update_rq_clock(rq);
3628 3629
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3630 3631 3632

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3633
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3634
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3635
		} else {
3636
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3637
		}
I
Ingo Molnar 已提交
3638
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3639 3640
	}

I
Ingo Molnar 已提交
3641
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3642 3643
		idle_balance(cpu, rq);

3644
	prev->sched_class->put_prev_task(rq, prev);
3645
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3646 3647

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3648

L
Linus Torvalds 已提交
3649 3650 3651 3652 3653
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3654
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3655 3656 3657
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3658 3659 3660
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3661
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3662
	}
L
Linus Torvalds 已提交
3663 3664 3665 3666 3667 3668 3669 3670
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3671
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3686
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3687 3688
		return;

3689 3690 3691 3692 3693 3694 3695 3696
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3697
#ifdef CONFIG_PREEMPT_BKL
3698 3699
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3700
#endif
3701
		schedule();
L
Linus Torvalds 已提交
3702
#ifdef CONFIG_PREEMPT_BKL
3703
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3704
#endif
3705
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3706

3707 3708 3709 3710 3711 3712
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3713 3714 3715 3716
}
EXPORT_SYMBOL(preempt_schedule);

/*
3717
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3729
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3730 3731
	BUG_ON(ti->preempt_count || !irqs_disabled());

3732 3733 3734 3735 3736 3737 3738 3739
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3740
#ifdef CONFIG_PREEMPT_BKL
3741 3742
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3743
#endif
3744 3745 3746
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3747
#ifdef CONFIG_PREEMPT_BKL
3748
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3749
#endif
3750
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3751

3752 3753 3754 3755 3756 3757
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3758 3759 3760 3761
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3762 3763
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3764
{
3765
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3781
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3782

3783
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3784 3785
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3786
		if (curr->func(curr, mode, sync, key) &&
3787
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3788 3789 3790 3791 3792 3793 3794 3795 3796
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3797
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3798 3799
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3800
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3819
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3831 3832
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3849
void complete(struct completion *x)
L
Linus Torvalds 已提交
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3861
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3873 3874
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3875 3876 3877 3878 3879 3880 3881
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3882 3883 3884 3885 3886 3887
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3888 3889 3890 3891 3892
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3893
				return timeout;
L
Linus Torvalds 已提交
3894 3895 3896 3897 3898 3899 3900 3901
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3902 3903
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3904 3905 3906 3907
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3908
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3909
	spin_unlock_irq(&x->wait.lock);
3910 3911
	return timeout;
}
L
Linus Torvalds 已提交
3912

3913
void __sched wait_for_completion(struct completion *x)
3914 3915
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3916
}
3917
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3918

3919
unsigned long __sched
3920
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3921
{
3922
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3923
}
3924
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3925

3926
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3927
{
3928 3929 3930 3931
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3932
}
3933
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3934

3935
unsigned long __sched
3936 3937
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3938
{
3939
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3940
}
3941
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3942

3943 3944
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3945
{
I
Ingo Molnar 已提交
3946 3947 3948 3949
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3950

3951
	__set_current_state(state);
L
Linus Torvalds 已提交
3952

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3967 3968 3969
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3970
long __sched
I
Ingo Molnar 已提交
3971
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3972
{
3973
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3974 3975 3976
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3977
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3978
{
3979
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3980 3981 3982
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3983
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3984
{
3985
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3986 3987 3988
}
EXPORT_SYMBOL(sleep_on_timeout);

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4001
void rt_mutex_setprio(struct task_struct *p, int prio)
4002 4003
{
	unsigned long flags;
4004
	int oldprio, on_rq, running;
4005
	struct rq *rq;
4006 4007 4008 4009

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4010
	update_rq_clock(rq);
4011

4012
	oldprio = p->prio;
I
Ingo Molnar 已提交
4013
	on_rq = p->se.on_rq;
4014 4015
	running = task_running(rq, p);
	if (on_rq) {
4016
		dequeue_task(rq, p, 0);
4017 4018 4019
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4020 4021 4022 4023 4024 4025

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4026 4027
	p->prio = prio;

I
Ingo Molnar 已提交
4028
	if (on_rq) {
4029 4030
		if (running)
			p->sched_class->set_curr_task(rq);
4031
		enqueue_task(rq, p, 0);
4032 4033
		/*
		 * Reschedule if we are currently running on this runqueue and
4034 4035
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4036
		 */
4037
		if (running) {
4038 4039
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4040 4041 4042
		} else {
			check_preempt_curr(rq, p);
		}
4043 4044 4045 4046 4047 4048
	}
	task_rq_unlock(rq, &flags);
}

#endif

4049
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4050
{
I
Ingo Molnar 已提交
4051
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4052
	unsigned long flags;
4053
	struct rq *rq;
L
Linus Torvalds 已提交
4054 4055 4056 4057 4058 4059 4060 4061

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4062
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4063 4064 4065 4066
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4067
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4068
	 */
4069
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4070 4071 4072
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4073 4074
	on_rq = p->se.on_rq;
	if (on_rq) {
4075
		dequeue_task(rq, p, 0);
4076
		dec_load(rq, p);
4077
	}
L
Linus Torvalds 已提交
4078 4079

	p->static_prio = NICE_TO_PRIO(nice);
4080
	set_load_weight(p);
4081 4082 4083
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4084

I
Ingo Molnar 已提交
4085
	if (on_rq) {
4086
		enqueue_task(rq, p, 0);
4087
		inc_load(rq, p);
L
Linus Torvalds 已提交
4088
		/*
4089 4090
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4091
		 */
4092
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4093 4094 4095 4096 4097 4098 4099
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4100 4101 4102 4103 4104
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4105
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4106
{
4107 4108
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4109

M
Matt Mackall 已提交
4110 4111 4112 4113
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4125
	long nice, retval;
L
Linus Torvalds 已提交
4126 4127 4128 4129 4130 4131

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4132 4133
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4134 4135 4136 4137 4138 4139 4140 4141 4142
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4143 4144 4145
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4164
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4165 4166 4167 4168 4169 4170 4171 4172
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4173
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4192
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4193 4194 4195 4196 4197 4198 4199 4200
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4201
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4202
{
4203
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4204 4205 4206
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4207 4208
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4209
{
I
Ingo Molnar 已提交
4210
	BUG_ON(p->se.on_rq);
4211

L
Linus Torvalds 已提交
4212
	p->policy = policy;
I
Ingo Molnar 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4225
	p->rt_priority = prio;
4226 4227 4228
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4229
	set_load_weight(p);
L
Linus Torvalds 已提交
4230 4231 4232
}

/**
4233
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4234 4235 4236
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4237
 *
4238
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4239
 */
I
Ingo Molnar 已提交
4240 4241
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4242
{
4243
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4244
	unsigned long flags;
4245
	struct rq *rq;
L
Linus Torvalds 已提交
4246

4247 4248
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4249 4250 4251 4252 4253
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4254 4255
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4256
		return -EINVAL;
L
Linus Torvalds 已提交
4257 4258
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4259 4260
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4261 4262
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4263
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4264
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4265
		return -EINVAL;
4266
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4267 4268
		return -EINVAL;

4269 4270 4271 4272
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4273
		if (rt_policy(policy)) {
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4290 4291 4292 4293 4294 4295
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4296

4297 4298 4299 4300 4301
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4302 4303 4304 4305

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4306 4307 4308 4309 4310
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4311 4312 4313 4314
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4315
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4316 4317 4318
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4319 4320
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4321 4322
		goto recheck;
	}
I
Ingo Molnar 已提交
4323
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4324
	on_rq = p->se.on_rq;
4325 4326
	running = task_running(rq, p);
	if (on_rq) {
4327
		deactivate_task(rq, p, 0);
4328 4329 4330
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4331

L
Linus Torvalds 已提交
4332
	oldprio = p->prio;
I
Ingo Molnar 已提交
4333
	__setscheduler(rq, p, policy, param->sched_priority);
4334

I
Ingo Molnar 已提交
4335
	if (on_rq) {
4336 4337
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4338
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4339 4340
		/*
		 * Reschedule if we are currently running on this runqueue and
4341 4342
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4343
		 */
4344
		if (running) {
4345 4346
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4347 4348 4349
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4350
	}
4351 4352 4353
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4354 4355
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4356 4357 4358 4359
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4360 4361
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4362 4363 4364
{
	struct sched_param lparam;
	struct task_struct *p;
4365
	int retval;
L
Linus Torvalds 已提交
4366 4367 4368 4369 4370

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4371 4372 4373

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4374
	p = find_process_by_pid(pid);
4375 4376 4377
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4378

L
Linus Torvalds 已提交
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4391 4392 4393 4394
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4414
	struct task_struct *p;
4415
	int retval;
L
Linus Torvalds 已提交
4416 4417

	if (pid < 0)
4418
		return -EINVAL;
L
Linus Torvalds 已提交
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4440
	struct task_struct *p;
4441
	int retval;
L
Linus Torvalds 已提交
4442 4443

	if (!param || pid < 0)
4444
		return -EINVAL;
L
Linus Torvalds 已提交
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4474 4475
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4476

4477
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4478 4479 4480 4481 4482
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4483
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4500 4501 4502 4503
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4504 4505
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4506
 again:
L
Linus Torvalds 已提交
4507 4508
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4521 4522
out_unlock:
	put_task_struct(p);
4523
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4564
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4565 4566 4567
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4568
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4569 4570
EXPORT_SYMBOL(cpu_online_map);

4571
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4572
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4573 4574 4575 4576
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4577
	struct task_struct *p;
L
Linus Torvalds 已提交
4578 4579
	int retval;

4580
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4581 4582 4583 4584 4585 4586 4587
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4588 4589 4590 4591
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4592
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4593 4594 4595

out_unlock:
	read_unlock(&tasklist_lock);
4596
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4597

4598
	return retval;
L
Linus Torvalds 已提交
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4629 4630
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4631 4632 4633
 */
asmlinkage long sys_sched_yield(void)
{
4634
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4635

4636
	schedstat_inc(rq, yld_count);
4637
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4638 4639 4640 4641 4642 4643

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4644
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4645 4646 4647 4648 4649 4650 4651 4652
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4653
static void __cond_resched(void)
L
Linus Torvalds 已提交
4654
{
4655 4656 4657
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4658 4659 4660 4661 4662
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4663 4664 4665 4666 4667 4668 4669 4670 4671
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4672 4673
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4689
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4690
{
J
Jan Kara 已提交
4691 4692
	int ret = 0;

L
Linus Torvalds 已提交
4693 4694 4695
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4696
		ret = 1;
L
Linus Torvalds 已提交
4697 4698
		spin_lock(lock);
	}
4699
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4700
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4701 4702 4703
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4704
		ret = 1;
L
Linus Torvalds 已提交
4705 4706
		spin_lock(lock);
	}
J
Jan Kara 已提交
4707
	return ret;
L
Linus Torvalds 已提交
4708 4709 4710 4711 4712 4713 4714
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4715
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4716
		local_bh_enable();
L
Linus Torvalds 已提交
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4728
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4747
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4748

4749
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4750 4751 4752
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4753
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4754 4755 4756 4757 4758
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4759
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4760 4761
	long ret;

4762
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4763 4764 4765
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4766
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4787
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4788
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4812
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4813
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4830
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4831
	unsigned int time_slice;
4832
	int retval;
L
Linus Torvalds 已提交
4833 4834 4835
	struct timespec t;

	if (pid < 0)
4836
		return -EINVAL;
L
Linus Torvalds 已提交
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

D
Dmitry Adamushko 已提交
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
	if (p->policy == SCHED_FIFO)
		time_slice = 0;
	else if (p->policy == SCHED_RR)
		time_slice = DEF_TIMESLICE;
	else {
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
		time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4861
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4862
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4863 4864
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4865

L
Linus Torvalds 已提交
4866 4867 4868 4869 4870
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4871
static const char stat_nam[] = "RSDTtZX";
4872 4873

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4874 4875
{
	unsigned long free = 0;
4876
	unsigned state;
L
Linus Torvalds 已提交
4877 4878

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
4879
	printk(KERN_INFO "%-13.13s %c", p->comm,
4880
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4881
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4882
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4883
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4884
	else
I
Ingo Molnar 已提交
4885
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4886 4887
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4888
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4889
	else
I
Ingo Molnar 已提交
4890
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4891 4892 4893
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4894
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4895 4896
		while (!*n)
			n++;
4897
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4898 4899
	}
#endif
4900 4901
	printk(KERN_CONT "%5lu %5d %6d\n", free,
		task_pid_nr(p), task_pid_nr(p->parent));
L
Linus Torvalds 已提交
4902 4903 4904 4905 4906

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4907
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4908
{
4909
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4910

4911 4912 4913
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4914
#else
4915 4916
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4917 4918 4919 4920 4921 4922 4923 4924
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4925
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4926
			show_task(p);
L
Linus Torvalds 已提交
4927 4928
	} while_each_thread(g, p);

4929 4930
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4931 4932 4933
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4934
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4935 4936 4937 4938 4939
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4940 4941
}

I
Ingo Molnar 已提交
4942 4943
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4944
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4945 4946
}

4947 4948 4949 4950 4951 4952 4953 4954
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4955
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4956
{
4957
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4958 4959
	unsigned long flags;

I
Ingo Molnar 已提交
4960 4961 4962
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4963
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4964
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4965
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4966 4967 4968

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4969 4970 4971
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4972 4973 4974 4975
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4976
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4977
#else
A
Al Viro 已提交
4978
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4979
#endif
I
Ingo Molnar 已提交
4980 4981 4982 4983
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4999
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
5021
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5022
{
5023
	struct migration_req req;
L
Linus Torvalds 已提交
5024
	unsigned long flags;
5025
	struct rq *rq;
5026
	int ret = 0;
L
Linus Torvalds 已提交
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5049

L
Linus Torvalds 已提交
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5062 5063
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5064
 */
5065
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5066
{
5067
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5068
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5069 5070

	if (unlikely(cpu_is_offline(dest_cpu)))
5071
		return ret;
L
Linus Torvalds 已提交
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5084
	on_rq = p->se.on_rq;
5085
	if (on_rq)
5086
		deactivate_task(rq_src, p, 0);
5087

L
Linus Torvalds 已提交
5088
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5089 5090 5091
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5092
	}
5093
	ret = 1;
L
Linus Torvalds 已提交
5094 5095
out:
	double_rq_unlock(rq_src, rq_dest);
5096
	return ret;
L
Linus Torvalds 已提交
5097 5098 5099 5100 5101 5102 5103
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5104
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5105 5106
{
	int cpu = (long)data;
5107
	struct rq *rq;
L
Linus Torvalds 已提交
5108 5109 5110 5111 5112 5113

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5114
		struct migration_req *req;
L
Linus Torvalds 已提交
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5137
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5138 5139
		list_del_init(head->next);

N
Nick Piggin 已提交
5140 5141 5142
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5172
/*
5173
 * Figure out where task on dead CPU should go, use force if necessary.
5174 5175
 * NOTE: interrupts should be disabled by the caller
 */
5176
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5177
{
5178
	unsigned long flags;
L
Linus Torvalds 已提交
5179
	cpumask_t mask;
5180 5181
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5182

5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5195 5196 5197 5198 5199 5200 5201 5202
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
			 * cpuset_cpus_allowed() will not block.  It must be
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5203
			rq = task_rq_lock(p, &flags);
5204
			p->cpus_allowed = cpus_allowed;
5205 5206
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5207

5208 5209 5210 5211 5212 5213 5214 5215
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
			if (p->mm && printk_ratelimit())
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
5216
			       task_pid_nr(p), p->comm, dead_cpu);
5217
		}
5218
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5219 5220 5221 5222 5223 5224 5225 5226 5227
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5228
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5229
{
5230
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5244
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5245

5246
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5247

5248 5249
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5250 5251
			continue;

5252 5253 5254
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5255

5256
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5257 5258
}

A
Alexey Dobriyan 已提交
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
/*
 * activate_idle_task - move idle task to the _front_ of runqueue.
 */
static void activate_idle_task(struct task_struct *p, struct rq *rq)
{
	update_rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;

	enqueue_task(rq, p, 0);
	inc_nr_running(p, rq);
}

I
Ingo Molnar 已提交
5273 5274
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5275
 * It does so by boosting its priority to highest possible and adding it to
5276
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5277 5278 5279
 */
void sched_idle_next(void)
{
5280
	int this_cpu = smp_processor_id();
5281
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5282 5283 5284 5285
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5286
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5287

5288 5289 5290
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5291 5292 5293
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5294
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5295 5296

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5297
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5298 5299 5300 5301

	spin_unlock_irqrestore(&rq->lock, flags);
}

5302 5303
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5317
/* called under rq->lock with disabled interrupts */
5318
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5319
{
5320
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5321 5322

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5323
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5324 5325

	/* Cannot have done final schedule yet: would have vanished. */
5326
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5327

5328
	get_task_struct(p);
L
Linus Torvalds 已提交
5329 5330 5331 5332 5333 5334

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
	 */
5335
	spin_unlock_irq(&rq->lock);
5336
	move_task_off_dead_cpu(dead_cpu, p);
5337
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5338

5339
	put_task_struct(p);
L
Linus Torvalds 已提交
5340 5341 5342 5343 5344
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5345
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5346
	struct task_struct *next;
5347

I
Ingo Molnar 已提交
5348 5349 5350
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5351
		update_rq_clock(rq);
5352
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5353 5354 5355
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5356

L
Linus Torvalds 已提交
5357 5358 5359 5360
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5361 5362 5363
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5364 5365
	{
		.procname	= "sched_domain",
5366
		.mode		= 0555,
5367
	},
5368 5369 5370 5371
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5372
	{
5373
		.ctl_name	= CTL_KERN,
5374
		.procname	= "kernel",
5375
		.mode		= 0555,
5376 5377
		.child		= sd_ctl_dir,
	},
5378 5379 5380 5381 5382 5383
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5384
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5385 5386 5387 5388

	return entry;
}

5389 5390
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5391
	struct ctl_table *entry;
5392

5393 5394 5395 5396 5397 5398 5399
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
	 * will always be set.  In the lowest directory the names are
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5400 5401
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5402 5403 5404
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5405 5406 5407 5408 5409

	kfree(*tablep);
	*tablep = NULL;
}

5410
static void
5411
set_table_entry(struct ctl_table *entry,
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5425
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5426

5427 5428 5429
	if (table == NULL)
		return NULL;

5430
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5431
		sizeof(long), 0644, proc_doulongvec_minmax);
5432
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5433
		sizeof(long), 0644, proc_doulongvec_minmax);
5434
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5435
		sizeof(int), 0644, proc_dointvec_minmax);
5436
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5437
		sizeof(int), 0644, proc_dointvec_minmax);
5438
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5439
		sizeof(int), 0644, proc_dointvec_minmax);
5440
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5441
		sizeof(int), 0644, proc_dointvec_minmax);
5442
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5443
		sizeof(int), 0644, proc_dointvec_minmax);
5444
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5445
		sizeof(int), 0644, proc_dointvec_minmax);
5446
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5447
		sizeof(int), 0644, proc_dointvec_minmax);
5448
	set_table_entry(&table[9], "cache_nice_tries",
5449 5450
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5451
	set_table_entry(&table[10], "flags", &sd->flags,
5452
		sizeof(int), 0644, proc_dointvec_minmax);
5453
	/* &table[11] is terminator */
5454 5455 5456 5457

	return table;
}

I
Ingo Molnar 已提交
5458
static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
5459 5460 5461 5462 5463 5464 5465 5466 5467
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5468 5469
	if (table == NULL)
		return NULL;
5470 5471 5472 5473 5474

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5475
		entry->mode = 0555;
5476 5477 5478 5479 5480 5481 5482 5483
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5484
static void register_sched_domain_sysctl(void)
5485 5486 5487 5488 5489
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5490 5491 5492
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5493 5494 5495
	if (entry == NULL)
		return;

5496
	for_each_online_cpu(i) {
5497 5498
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5499
		entry->mode = 0555;
5500
		entry->child = sd_alloc_ctl_cpu_table(i);
5501
		entry++;
5502
	}
5503 5504

	WARN_ON(sd_sysctl_header);
5505 5506
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5507

5508
/* may be called multiple times per register */
5509 5510
static void unregister_sched_domain_sysctl(void)
{
5511 5512
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5513
	sd_sysctl_header = NULL;
5514 5515
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5516
}
5517
#else
5518 5519 5520 5521
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5522 5523 5524 5525
{
}
#endif

L
Linus Torvalds 已提交
5526 5527 5528 5529
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5530 5531
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5532 5533
{
	struct task_struct *p;
5534
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5535
	unsigned long flags;
5536
	struct rq *rq;
L
Linus Torvalds 已提交
5537 5538

	switch (action) {
5539 5540 5541 5542
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5543
	case CPU_UP_PREPARE:
5544
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5545
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5546 5547 5548 5549 5550
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5551
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5552 5553 5554
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5555

L
Linus Torvalds 已提交
5556
	case CPU_ONLINE:
5557
	case CPU_ONLINE_FROZEN:
5558
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5559 5560
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5561

L
Linus Torvalds 已提交
5562 5563
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5564
	case CPU_UP_CANCELED_FROZEN:
5565 5566
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5567
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5568 5569
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5570 5571 5572
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5573

L
Linus Torvalds 已提交
5574
	case CPU_DEAD:
5575
	case CPU_DEAD_FROZEN:
5576
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5577 5578 5579 5580 5581
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5582
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5583
		update_rq_clock(rq);
5584
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5585
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5586 5587
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5588
		migrate_dead_tasks(cpu);
5589
		spin_unlock_irq(&rq->lock);
5590
		cpuset_unlock();
L
Linus Torvalds 已提交
5591 5592 5593 5594
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5595
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5596 5597 5598
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5599 5600
			struct migration_req *req;

L
Linus Torvalds 已提交
5601
			req = list_entry(rq->migration_queue.next,
5602
					 struct migration_req, list);
L
Linus Torvalds 已提交
5603 5604 5605 5606 5607 5608
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5609 5610 5611
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5612 5613 5614 5615 5616 5617 5618
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5619
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5620 5621 5622 5623 5624 5625 5626
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5627
	int err;
5628 5629

	/* Start one for the boot CPU: */
5630 5631
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5632 5633
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5634

L
Linus Torvalds 已提交
5635 5636 5637 5638 5639
	return 0;
}
#endif

#ifdef CONFIG_SMP
5640 5641 5642 5643 5644

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5645
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5646 5647

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5648
{
I
Ingo Molnar 已提交
5649 5650 5651
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5652

I
Ingo Molnar 已提交
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5664 5665
	}

I
Ingo Molnar 已提交
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5676

I
Ingo Molnar 已提交
5677
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5678
	do {
I
Ingo Molnar 已提交
5679 5680 5681
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5682 5683 5684
			break;
		}

I
Ingo Molnar 已提交
5685 5686 5687 5688 5689 5690
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5691

I
Ingo Molnar 已提交
5692 5693 5694 5695 5696
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5697

I
Ingo Molnar 已提交
5698 5699 5700 5701 5702
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5703

I
Ingo Molnar 已提交
5704
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5705

I
Ingo Molnar 已提交
5706 5707
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5708

I
Ingo Molnar 已提交
5709 5710 5711
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5712

I
Ingo Molnar 已提交
5713 5714
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5715

I
Ingo Molnar 已提交
5716 5717 5718 5719 5720
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
5721

I
Ingo Molnar 已提交
5722 5723 5724
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5725

I
Ingo Molnar 已提交
5726 5727 5728 5729
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5730

I
Ingo Molnar 已提交
5731 5732 5733 5734 5735
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
5736 5737
		level++;
		sd = sd->parent;
5738
		if (!sd)
I
Ingo Molnar 已提交
5739 5740
			break;
	}
L
Linus Torvalds 已提交
5741 5742
}
#else
5743
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5744 5745
#endif

5746
static int sd_degenerate(struct sched_domain *sd)
5747 5748 5749 5750 5751 5752 5753 5754
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5755 5756 5757
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5771 5772
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5791 5792 5793
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5794 5795 5796 5797 5798 5799 5800
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5801 5802 5803 5804
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5805
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5806
{
5807
	struct rq *rq = cpu_rq(cpu);
5808 5809 5810 5811 5812 5813 5814
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5815
		if (sd_parent_degenerate(tmp, parent)) {
5816
			tmp->parent = parent->parent;
5817 5818 5819
			if (parent->parent)
				parent->parent->child = tmp;
		}
5820 5821
	}

5822
	if (sd && sd_degenerate(sd)) {
5823
		sd = sd->parent;
5824 5825 5826
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5827 5828 5829

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5830
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5831 5832 5833
}

/* cpus with isolated domains */
5834
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5849
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5850 5851

/*
5852 5853 5854 5855
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5856 5857 5858 5859 5860
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5861
static void
5862 5863 5864
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5865 5866 5867 5868 5869 5870
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5871 5872
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5873 5874 5875 5876 5877 5878
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5879
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5880 5881

		for_each_cpu_mask(j, span) {
5882
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5897
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5898

5899
#ifdef CONFIG_NUMA
5900

5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5953 5954
	cpumask_t span, nodemask;
	int i;
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5965

5966 5967 5968 5969 5970 5971 5972 5973
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5974
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5975

5976
/*
5977
 * SMT sched-domains:
5978
 */
L
Linus Torvalds 已提交
5979 5980
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5981
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5982

5983 5984
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5985
{
5986 5987
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5988 5989 5990 5991
	return cpu;
}
#endif

5992 5993 5994
/*
 * multi-core sched-domains:
 */
5995 5996
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5997
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5998 5999 6000
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6001 6002
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
6003
{
6004
	int group;
6005
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6006
	cpus_and(mask, mask, *cpu_map);
6007 6008 6009 6010
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6011 6012
}
#elif defined(CONFIG_SCHED_MC)
6013 6014
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
6015
{
6016 6017
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6018 6019 6020 6021
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6022
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6023
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6024

6025 6026
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
6027
{
6028
	int group;
6029
#ifdef CONFIG_SCHED_MC
6030
	cpumask_t mask = cpu_coregroup_map(cpu);
6031
	cpus_and(mask, mask, *cpu_map);
6032
	group = first_cpu(mask);
6033
#elif defined(CONFIG_SCHED_SMT)
6034
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6035
	cpus_and(mask, mask, *cpu_map);
6036
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6037
#else
6038
	group = cpu;
L
Linus Torvalds 已提交
6039
#endif
6040 6041 6042
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6043 6044 6045 6046
}

#ifdef CONFIG_NUMA
/*
6047 6048 6049
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6050
 */
6051
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6052
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6053

6054
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6055
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6056

6057 6058
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6059
{
6060 6061 6062 6063 6064 6065 6066 6067 6068
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6069
}
6070

6071 6072 6073 6074 6075 6076 6077
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6078 6079 6080
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6081

6082 6083 6084 6085 6086 6087 6088 6089
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6090

6091 6092 6093 6094
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6095
}
L
Linus Torvalds 已提交
6096 6097
#endif

6098
#ifdef CONFIG_NUMA
6099 6100 6101
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6102
	int cpu, i;
6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6133 6134 6135 6136 6137
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6138

6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6165 6166
	sd->groups->__cpu_power = 0;

6167 6168 6169 6170 6171 6172 6173 6174 6175 6176
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6177
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6178 6179 6180 6181 6182 6183 6184 6185
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6186
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6187 6188 6189 6190
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6191
/*
6192 6193
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6194
 */
6195
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6196 6197
{
	int i;
6198 6199
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6200
	int sd_allnodes = 0;
6201 6202 6203 6204

	/*
	 * Allocate the per-node list of sched groups
	 */
6205
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6206
					   GFP_KERNEL);
6207 6208
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6209
		return -ENOMEM;
6210 6211 6212
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6213 6214

	/*
6215
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6216
	 */
6217
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6218 6219 6220
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6221
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6222 6223

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6224 6225
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6226 6227 6228
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6229
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6230
			p = sd;
6231
			sd_allnodes = 1;
6232 6233 6234
		} else
			p = NULL;

L
Linus Torvalds 已提交
6235 6236
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6237 6238
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6239 6240
		if (p)
			p->child = sd;
6241
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6242 6243 6244 6245 6246 6247 6248
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6249 6250
		if (p)
			p->child = sd;
6251
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6252

6253 6254 6255 6256 6257 6258 6259
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6260
		p->child = sd;
6261
		cpu_to_core_group(i, cpu_map, &sd->groups);
6262 6263
#endif

L
Linus Torvalds 已提交
6264 6265 6266 6267
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6268
		sd->span = per_cpu(cpu_sibling_map, i);
6269
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6270
		sd->parent = p;
6271
		p->child = sd;
6272
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6273 6274 6275 6276 6277
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6278
	for_each_cpu_mask(i, *cpu_map) {
6279
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6280
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6281 6282 6283
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6284 6285
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6286 6287 6288
	}
#endif

6289 6290 6291 6292 6293 6294 6295
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6296 6297
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6298 6299 6300
	}
#endif

L
Linus Torvalds 已提交
6301 6302 6303 6304
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6305
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6306 6307 6308
		if (cpus_empty(nodemask))
			continue;

6309
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6310 6311 6312 6313
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6314
	if (sd_allnodes)
I
Ingo Molnar 已提交
6315 6316
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6327 6328
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6329
			continue;
6330
		}
6331 6332 6333 6334

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6335
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6336 6337 6338 6339 6340
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6341 6342 6343
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6344

6345 6346 6347
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6348
		sg->__cpu_power = 0;
6349
		sg->cpumask = nodemask;
6350
		sg->next = sg;
6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6369 6370
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6371 6372 6373
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6374
				goto error;
6375
			}
6376
			sg->__cpu_power = 0;
6377
			sg->cpumask = tmp;
6378
			sg->next = prev->next;
6379 6380 6381 6382 6383
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6384 6385 6386
#endif

	/* Calculate CPU power for physical packages and nodes */
6387
#ifdef CONFIG_SCHED_SMT
6388
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6389 6390
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6391
		init_sched_groups_power(i, sd);
6392
	}
L
Linus Torvalds 已提交
6393
#endif
6394
#ifdef CONFIG_SCHED_MC
6395
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6396 6397
		struct sched_domain *sd = &per_cpu(core_domains, i);

6398
		init_sched_groups_power(i, sd);
6399 6400
	}
#endif
6401

6402
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6403 6404
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6405
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6406 6407
	}

6408
#ifdef CONFIG_NUMA
6409 6410
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6411

6412 6413
	if (sd_allnodes) {
		struct sched_group *sg;
6414

6415
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6416 6417
		init_numa_sched_groups_power(sg);
	}
6418 6419
#endif

L
Linus Torvalds 已提交
6420
	/* Attach the domains */
6421
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6422 6423 6424
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6425 6426
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6427 6428 6429 6430 6431
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6432 6433 6434

	return 0;

6435
#ifdef CONFIG_NUMA
6436 6437 6438
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6439
#endif
L
Linus Torvalds 已提交
6440
}
P
Paul Jackson 已提交
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6452 6453
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6454 6455
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6456
 */
6457
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6458
{
6459 6460
	int err;

P
Paul Jackson 已提交
6461 6462 6463 6464 6465
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6466
	err = build_sched_domains(doms_cur);
6467
	register_sched_domain_sysctl();
6468 6469

	return err;
6470 6471 6472
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6473
{
6474
	free_sched_groups(cpu_map);
6475
}
L
Linus Torvalds 已提交
6476

6477 6478 6479 6480
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6481
static void detach_destroy_domains(const cpumask_t *cpu_map)
6482 6483 6484
{
	int i;

6485 6486
	unregister_sched_domain_sysctl();

6487 6488 6489 6490 6491 6492
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517
/*
 * Partition sched domains as specified by the 'ndoms_new'
 * cpumasks in the array doms_new[] of cpumasks.  This compares
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
 * The masks don't intersect (don't overlap.)  We should setup one
 * sched domain for each mask.  CPUs not in any of the cpumasks will
 * not be load balanced.  If the same cpumask appears both in the
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
 * The passed in 'doms_new' should be kmalloc'd.  This routine takes
 * ownership of it and will kfree it when done with it.  If the caller
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6518 6519 6520
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6556 6557

	register_sched_domain_sysctl();
P
Paul Jackson 已提交
6558 6559
}

6560
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6561
static int arch_reinit_sched_domains(void)
6562 6563 6564
{
	int err;

6565
	mutex_lock(&sched_hotcpu_mutex);
6566 6567
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6568
	mutex_unlock(&sched_hotcpu_mutex);
6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6595 6596
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6597 6598 6599
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6600 6601
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6602 6603 6604 6605 6606 6607 6608
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6609 6610
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6611 6612 6613
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6634 6635
#endif

L
Linus Torvalds 已提交
6636 6637 6638
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6639
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6640 6641 6642 6643 6644 6645 6646
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6647
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6648
	case CPU_DOWN_PREPARE:
6649
	case CPU_DOWN_PREPARE_FROZEN:
6650
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6651 6652 6653
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6654
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6655
	case CPU_DOWN_FAILED:
6656
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6657
	case CPU_ONLINE:
6658
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6659
	case CPU_DEAD:
6660
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6661 6662 6663 6664 6665 6666 6667 6668 6669
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6670
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6671 6672 6673 6674 6675 6676

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6677 6678
	cpumask_t non_isolated_cpus;

6679
	mutex_lock(&sched_hotcpu_mutex);
6680
	arch_init_sched_domains(&cpu_online_map);
6681
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6682 6683
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6684
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6685 6686
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6687 6688 6689 6690

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6702

L
Linus Torvalds 已提交
6703 6704 6705 6706 6707
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6708
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6709 6710 6711 6712 6713
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6714
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6715 6716
}

L
Linus Torvalds 已提交
6717 6718
void __init sched_init(void)
{
6719
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6720 6721
	int i, j;

6722
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6723
		struct rt_prio_array *array;
6724
		struct rq *rq;
L
Linus Torvalds 已提交
6725 6726 6727

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6728
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6729
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6730 6731 6732 6733
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6734 6735 6736 6737 6738 6739 6740
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6741
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6742
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6743 6744
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6745 6746 6747
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6748
			se->load.weight = init_task_group_load;
6749
			se->load.inv_weight =
6750
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6751 6752
			se->parent = NULL;
		}
6753
		init_task_group.shares = init_task_group_load;
6754
		spin_lock_init(&init_task_group.lock);
I
Ingo Molnar 已提交
6755
#endif
L
Linus Torvalds 已提交
6756

I
Ingo Molnar 已提交
6757 6758
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6759
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6760
		rq->sd = NULL;
L
Linus Torvalds 已提交
6761
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6762
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6763
		rq->push_cpu = 0;
6764
		rq->cpu = i;
L
Linus Torvalds 已提交
6765 6766 6767 6768 6769
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6770 6771 6772 6773
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6774
		}
6775
		highest_cpu = i;
I
Ingo Molnar 已提交
6776 6777
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6778 6779
	}

6780
	set_load_weight(&init_task);
6781

6782 6783 6784 6785
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6786
#ifdef CONFIG_SMP
6787
	nr_cpu_ids = highest_cpu + 1;
6788 6789 6790
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6791 6792 6793 6794
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6808 6809 6810 6811
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6812 6813 6814 6815 6816
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6817
#ifdef in_atomic
L
Linus Torvalds 已提交
6818 6819 6820 6821 6822 6823 6824
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6825
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6826 6827 6828
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6829
		debug_show_held_locks(current);
6830 6831
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6832 6833 6834 6835 6836 6837 6838 6839
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6854 6855
void normalize_rt_tasks(void)
{
6856
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6857
	unsigned long flags;
6858
	struct rq *rq;
L
Linus Torvalds 已提交
6859 6860

	read_lock_irq(&tasklist_lock);
6861
	do_each_thread(g, p) {
6862 6863 6864 6865 6866 6867
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6868 6869
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6870 6871 6872
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6873
#endif
I
Ingo Molnar 已提交
6874 6875 6876 6877 6878 6879 6880 6881 6882
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6883
			continue;
I
Ingo Molnar 已提交
6884
		}
L
Linus Torvalds 已提交
6885

6886 6887
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6888

6889
		normalize_task(rq, p);
6890

6891 6892
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6893 6894
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6895 6896 6897 6898
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6917
struct task_struct *curr_task(int cpu)
6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6937
void set_curr_task(int cpu, struct task_struct *p)
6938 6939 6940 6941 6942
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6943 6944 6945 6946

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6947
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6948
{
6949
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6950 6951
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6952
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6953 6954 6955 6956 6957 6958
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6959
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6960 6961
	if (!tg->cfs_rq)
		goto err;
6962
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6963 6964 6965 6966
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6967
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

6994 6995 6996 6997 6998
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
6999

7000
	tg->shares = NICE_0_LOAD;
7001
	spin_lock_init(&tg->lock);
S
Srivatsa Vaddagiri 已提交
7002

7003
	return tg;
S
Srivatsa Vaddagiri 已提交
7004 7005 7006

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
7007
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
7008
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
7009
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
7010 7011
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
7012 7013 7014
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
7015 7016 7017 7018

	return ERR_PTR(-ENOMEM);
}

7019 7020
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7021
{
7022 7023
	struct task_group *tg = container_of(rhp, struct task_group, rcu);
	struct cfs_rq *cfs_rq;
S
Srivatsa Vaddagiri 已提交
7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

7041
/* Destroy runqueue etc associated with a task group */
7042
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7043
{
7044
	struct cfs_rq *cfs_rq = NULL;
7045
	int i;
S
Srivatsa Vaddagiri 已提交
7046

7047 7048 7049 7050 7051
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

7052
	BUG_ON(!cfs_rq);
7053 7054

	/* wait for possible concurrent references to cfs_rqs complete */
7055
	call_rcu(&tg->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
7056 7057
}

7058
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7059 7060 7061
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7062 7063
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	if (tsk->sched_class != &fair_sched_class)
		goto done;

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

7079
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7080
		dequeue_task(rq, tsk, 0);
7081 7082 7083
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7084 7085 7086

	set_task_cfs_rq(tsk);

7087 7088 7089
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7090
		enqueue_task(rq, tsk, 0);
7091
	}
S
Srivatsa Vaddagiri 已提交
7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

7118
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7119 7120 7121
{
	int i;

7122
	spin_lock(&tg->lock);
7123
	if (tg->shares == shares)
7124
		goto done;
S
Srivatsa Vaddagiri 已提交
7125

7126
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
7127
	for_each_possible_cpu(i)
7128
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7129

7130 7131
done:
	spin_unlock(&tg->lock);
7132
	return 0;
S
Srivatsa Vaddagiri 已提交
7133 7134
}

7135 7136 7137 7138 7139
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
7140
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7141 7142 7143 7144

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
7145
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7146
{
7147 7148
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7149 7150 7151
}

static struct cgroup_subsys_state *
7152
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7153 7154 7155
{
	struct task_group *tg;

7156
	if (!cgrp->parent) {
7157
		/* This is early initialization for the top cgroup */
7158
		init_task_group.css.cgroup = cgrp;
7159 7160 7161 7162
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7163
	if (cgrp->parent->parent)
7164 7165 7166 7167 7168 7169 7170
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7171
	tg->css.cgroup = cgrp;
7172 7173 7174 7175 7176

	return &tg->css;
}

static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
7177
			       struct cgroup *cgrp)
7178
{
7179
	struct task_group *tg = cgroup_tg(cgrp);
7180 7181 7182 7183 7184

	sched_destroy_group(tg);
}

static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
7185
			     struct cgroup *cgrp, struct task_struct *tsk)
7186 7187 7188 7189 7190 7191 7192 7193 7194
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
7195
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7196 7197 7198 7199 7200
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7201 7202
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7203
{
7204
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7205 7206
}

7207
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7208
{
7209
	struct task_group *tg = cgroup_tg(cgrp);
7210 7211 7212 7213 7214 7215 7216

	return (u64) tg->shares;
}

static struct cftype cpu_shares = {
	.name = "shares",
	.read_uint = cpu_shares_read_uint,
7217
	.write_uint = cpu_shares_write_uint,
7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_file(cont, ss, &cpu_shares);
}

struct cgroup_subsys cpu_cgroup_subsys = {
	.name 	    	= "cpu",
	.create	    	= cpu_cgroup_create,
	.destroy    	= cpu_cgroup_destroy,
	.can_attach 	= cpu_cgroup_can_attach,
	.attach     	= cpu_cgroup_attach,
	.populate   	= cpu_cgroup_populate,
	.subsys_id  	= cpu_cgroup_subsys_id,
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */