sched.c 265.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143 144 145 146 147
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
181 182
	spin_lock_init(&rt_b->rt_runtime_lock);

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219 220 221 222 223 224 225 226 227 228 229
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

236
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
#ifdef CONFIG_CGROUP_SCHED
247 248
	struct cgroup_subsys_state css;
#endif
249

250 251 252 253
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

254
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
255 256 257 258 259
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
275 276
};

D
Dhaval Giani 已提交
277
#ifdef CONFIG_USER_SCHED
278

279 280 281 282 283 284
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

285 286
/*
 * Root task group.
287 288
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
289 290 291
 */
struct task_group root_task_group;

292
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
293 294 295
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
296
static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
297
#endif /* CONFIG_FAIR_GROUP_SCHED */
298 299 300 301

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
302
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
303
#else /* !CONFIG_USER_SCHED */
304
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
305
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
306

307
/* task_group_lock serializes add/remove of task groups and also changes to
308 309
 * a task group's cpu shares.
 */
310
static DEFINE_SPINLOCK(task_group_lock);
311

312 313 314 315 316 317 318
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

319 320 321
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
322
#else /* !CONFIG_USER_SCHED */
323
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
324
#endif /* CONFIG_USER_SCHED */
325

326
/*
327 328 329 330
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
331 332 333
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
334
#define MIN_SHARES	2
335
#define MAX_SHARES	(1UL << 18)
336

337 338 339
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
340
/* Default task group.
I
Ingo Molnar 已提交
341
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
342
 */
343
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
344 345

/* return group to which a task belongs */
346
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
347
{
348
	struct task_group *tg;
349

350
#ifdef CONFIG_USER_SCHED
351 352 353
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
354
#elif defined(CONFIG_CGROUP_SCHED)
355 356
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
357
#else
I
Ingo Molnar 已提交
358
	tg = &init_task_group;
359
#endif
360
	return tg;
S
Srivatsa Vaddagiri 已提交
361 362 363
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
364
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
365
{
366
#ifdef CONFIG_FAIR_GROUP_SCHED
367 368
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
369
#endif
P
Peter Zijlstra 已提交
370

371
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
372 373
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
374
#endif
S
Srivatsa Vaddagiri 已提交
375 376 377 378
}

#else

379 380 381 382 383 384 385
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
386
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
387 388 389 390
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
391

392
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
393

I
Ingo Molnar 已提交
394 395 396 397 398 399
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
400
	u64 min_vruntime;
I
Ingo Molnar 已提交
401 402 403

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
404 405 406 407 408 409

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
410 411
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
412
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
413

P
Peter Zijlstra 已提交
414
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
415

416
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
417 418
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
419 420
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
421 422 423 424 425 426
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
427 428
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
429 430 431

#ifdef CONFIG_SMP
	/*
432
	 * the part of load.weight contributed by tasks
433
	 */
434
	unsigned long task_weight;
435

436 437 438 439 440 441 442
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
443

444 445 446 447
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
448 449 450 451 452

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
453
#endif
I
Ingo Molnar 已提交
454 455
#endif
};
L
Linus Torvalds 已提交
456

I
Ingo Molnar 已提交
457 458 459
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
460
	unsigned long rt_nr_running;
461
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
462 463
	struct {
		int curr; /* highest queued rt task prio */
464
#ifdef CONFIG_SMP
465
		int next; /* next highest */
466
#endif
467
	} highest_prio;
P
Peter Zijlstra 已提交
468
#endif
P
Peter Zijlstra 已提交
469
#ifdef CONFIG_SMP
470
	unsigned long rt_nr_migratory;
471
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
472
	int overloaded;
473
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
474
#endif
P
Peter Zijlstra 已提交
475
	int rt_throttled;
P
Peter Zijlstra 已提交
476
	u64 rt_time;
P
Peter Zijlstra 已提交
477
	u64 rt_runtime;
I
Ingo Molnar 已提交
478
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
479
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
480

481
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
482 483
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
484 485 486 487 488
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
489 490
};

G
Gregory Haskins 已提交
491 492 493 494
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
495 496
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
497 498 499 500 501 502
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
503 504
	cpumask_var_t span;
	cpumask_var_t online;
505

I
Ingo Molnar 已提交
506
	/*
507 508 509
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
510
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
511
	atomic_t rto_count;
512 513 514
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
515 516
};

517 518 519 520
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
521 522 523 524
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
525 526 527 528 529 530 531
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
532
struct rq {
533 534
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
535 536 537 538 539 540

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
541 542
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
543
#ifdef CONFIG_NO_HZ
544
	unsigned long last_tick_seen;
545 546
	unsigned char in_nohz_recently;
#endif
547 548
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
549 550
	unsigned long nr_load_updates;
	u64 nr_switches;
551
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
552 553

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
554 555
	struct rt_rq rt;

I
Ingo Molnar 已提交
556
#ifdef CONFIG_FAIR_GROUP_SCHED
557 558
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
559 560
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
561
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
562 563 564 565 566 567 568 569 570 571
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

572
	struct task_struct *curr, *idle;
573
	unsigned long next_balance;
L
Linus Torvalds 已提交
574
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
575

576
	u64 clock;
I
Ingo Molnar 已提交
577

L
Linus Torvalds 已提交
578 579 580
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
581
	struct root_domain *rd;
L
Linus Torvalds 已提交
582 583
	struct sched_domain *sd;

584
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
585
	/* For active balancing */
586
	int post_schedule;
L
Linus Torvalds 已提交
587 588
	int active_balance;
	int push_cpu;
589 590
	/* cpu of this runqueue: */
	int cpu;
591
	int online;
L
Linus Torvalds 已提交
592

593
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
594

595
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
596
	struct list_head migration_queue;
597 598 599

	u64 rt_avg;
	u64 age_stamp;
L
Linus Torvalds 已提交
600 601
#endif

602 603 604 605
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
606
#ifdef CONFIG_SCHED_HRTICK
607 608 609 610
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
611 612 613
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
614 615 616
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
617 618
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
619 620

	/* sys_sched_yield() stats */
621
	unsigned int yld_count;
L
Linus Torvalds 已提交
622 623

	/* schedule() stats */
624 625 626
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
627 628

	/* try_to_wake_up() stats */
629 630
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
631 632

	/* BKL stats */
633
	unsigned int bkl_count;
L
Linus Torvalds 已提交
634 635 636
#endif
};

637
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
638

639
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
640
{
641
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
642 643
}

644 645 646 647 648 649 650 651 652
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
653 654
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
655
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
656 657 658 659
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
660 661
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
662 663 664 665 666

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
667
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
668

I
Ingo Molnar 已提交
669
inline void update_rq_clock(struct rq *rq)
670 671 672 673
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
674 675 676 677 678 679 680 681 682
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
701 702 703
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
704 705 706 707

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
708
enum {
P
Peter Zijlstra 已提交
709
#include "sched_features.h"
I
Ingo Molnar 已提交
710 711
};

P
Peter Zijlstra 已提交
712 713 714 715 716
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
717
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
718 719 720 721 722 723 724 725 726
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

727
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
728 729 730 731 732 733
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
734
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
735 736 737 738
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
739 740 741
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
742
	}
L
Li Zefan 已提交
743
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
744

L
Li Zefan 已提交
745
	return 0;
P
Peter Zijlstra 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
765
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
790 791 792 793 794
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
795
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
796 797 798 799 800
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
815

816 817 818 819 820 821
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
822 823
/*
 * ratelimit for updating the group shares.
824
 * default: 0.25ms
P
Peter Zijlstra 已提交
825
 */
826
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
827

828 829 830 831 832 833 834
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

835 836 837 838 839 840 841 842
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
843
/*
P
Peter Zijlstra 已提交
844
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
845 846
 * default: 1s
 */
P
Peter Zijlstra 已提交
847
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
848

849 850
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
851 852 853 854 855
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
856

857 858 859 860 861 862 863
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
864
	if (sysctl_sched_rt_runtime < 0)
865 866 867 868
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
869

L
Linus Torvalds 已提交
870
#ifndef prepare_arch_switch
871 872 873 874 875 876
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

877 878 879 880 881
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

882
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
883
static inline int task_running(struct rq *rq, struct task_struct *p)
884
{
885
	return task_current(rq, p);
886 887
}

888
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
889 890 891
{
}

892
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
893
{
894 895 896 897
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
898 899 900 901 902 903 904
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

905 906 907 908
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
909
static inline int task_running(struct rq *rq, struct task_struct *p)
910 911 912 913
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
914
	return task_current(rq, p);
915 916 917
#endif
}

918
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

935
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
936 937 938 939 940 941 942 943 944 945 946 947
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
948
#endif
949 950
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
951

952 953 954 955
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
956
static inline struct rq *__task_rq_lock(struct task_struct *p)
957 958
	__acquires(rq->lock)
{
959 960 961 962 963
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
964 965 966 967
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
968 969
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
970
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
971 972
 * explicitly disabling preemption.
 */
973
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
974 975
	__acquires(rq->lock)
{
976
	struct rq *rq;
L
Linus Torvalds 已提交
977

978 979 980 981 982 983
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
984 985 986 987
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

988 989 990 991 992 993 994 995
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
996
static void __task_rq_unlock(struct rq *rq)
997 998 999 1000 1001
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1002
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1003 1004 1005 1006 1007 1008
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1009
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1010
 */
A
Alexey Dobriyan 已提交
1011
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1012 1013
	__acquires(rq->lock)
{
1014
	struct rq *rq;
L
Linus Torvalds 已提交
1015 1016 1017 1018 1019 1020 1021 1022

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1044
	if (!cpu_active(cpu_of(rq)))
1045
		return 0;
P
Peter Zijlstra 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1066
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1067 1068 1069 1070 1071 1072
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1073
#ifdef CONFIG_SMP
1074 1075 1076 1077
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1078
{
1079
	struct rq *rq = arg;
1080

1081 1082 1083 1084
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1085 1086
}

1087 1088 1089 1090 1091 1092
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1093
{
1094 1095
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1096

1097
	hrtimer_set_expires(timer, time);
1098 1099 1100 1101

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1102
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1103 1104
		rq->hrtick_csd_pending = 1;
	}
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1119
		hrtick_clear(cpu_rq(cpu));
1120 1121 1122 1123 1124 1125
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1126
static __init void init_hrtick(void)
1127 1128 1129
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1130 1131 1132 1133 1134 1135 1136 1137
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1138
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1139
			HRTIMER_MODE_REL_PINNED, 0);
1140
}
1141

A
Andrew Morton 已提交
1142
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1143 1144
{
}
1145
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1146

1147
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1148
{
1149 1150
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1151

1152 1153 1154 1155
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1156

1157 1158
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1159
}
A
Andrew Morton 已提交
1160
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1161 1162 1163 1164 1165 1166 1167 1168
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1169 1170 1171
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1172
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1173

I
Ingo Molnar 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1187
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1188 1189 1190 1191 1192
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1193
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1194 1195
		return;

1196
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1252
	set_tsk_need_resched(rq->idle);
1253 1254 1255 1256 1257 1258

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1259
#endif /* CONFIG_NO_HZ */
1260

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1282
#else /* !CONFIG_SMP */
1283
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1284 1285
{
	assert_spin_locked(&task_rq(p)->lock);
1286
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1287
}
1288 1289 1290 1291

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1292
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1293

1294 1295 1296 1297 1298 1299 1300 1301
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1302 1303 1304
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1305
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1306

1307 1308 1309
/*
 * delta *= weight / lw
 */
1310
static unsigned long
1311 1312 1313 1314 1315
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1316 1317 1318 1319 1320 1321 1322
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1323 1324 1325 1326 1327

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1328
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1329
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1330 1331
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1332
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1333

1334
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1335 1336
}

1337
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1338 1339
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1340
	lw->inv_weight = 0;
1341 1342
}

1343
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1344 1345
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1346
	lw->inv_weight = 0;
1347 1348
}

1349 1350 1351 1352
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1353
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1354 1355 1356 1357
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1358 1359
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1369 1370 1371
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1372 1373
 */
static const int prio_to_weight[40] = {
1374 1375 1376 1377 1378 1379 1380 1381
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1382 1383
};

1384 1385 1386 1387 1388 1389 1390
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1391
static const u32 prio_to_wmult[40] = {
1392 1393 1394 1395 1396 1397 1398 1399
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1400
};
1401

I
Ingo Molnar 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1427

1428 1429 1430 1431 1432 1433 1434 1435
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1436 1437
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1438 1439
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1440 1441
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1442 1443
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1444 1445
#endif

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1456
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1457
typedef int (*tg_visitor)(struct task_group *, void *);
1458 1459 1460 1461 1462

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1463
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1464 1465
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1466
	int ret;
1467 1468 1469 1470

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1471 1472 1473
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1474 1475 1476 1477 1478 1479 1480
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1481 1482 1483
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1484 1485 1486 1487 1488

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1489
out_unlock:
1490
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1491 1492

	return ret;
1493 1494
}

P
Peter Zijlstra 已提交
1495 1496 1497
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1498
}
P
Peter Zijlstra 已提交
1499 1500 1501
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1561 1562 1563 1564 1565
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1566
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1567

1568 1569
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1570 1571
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1572 1573 1574 1575 1576

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1577

1578 1579 1580 1581 1582 1583
struct update_shares_data {
	unsigned long rq_weight[NR_CPUS];
};

static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);

1584 1585 1586 1587 1588
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1589 1590 1591 1592
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
				    struct update_shares_data *usd)
1593
{
1594
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1595
	int boost = 0;
1596

1597
	rq_weight = usd->rq_weight[cpu];
P
Peter Zijlstra 已提交
1598 1599 1600 1601
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1602

1603
	/*
P
Peter Zijlstra 已提交
1604 1605 1606
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1607
	 */
1608
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1609
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1610

1611 1612 1613 1614
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1615

1616
		spin_lock_irqsave(&rq->lock, flags);
1617
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1618
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1619 1620 1621
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1622
}
1623 1624

/*
1625 1626 1627
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1628
 */
P
Peter Zijlstra 已提交
1629
static int tg_shares_up(struct task_group *tg, void *data)
1630
{
1631 1632
	unsigned long weight, rq_weight = 0, shares = 0;
	struct update_shares_data *usd;
P
Peter Zijlstra 已提交
1633
	struct sched_domain *sd = data;
1634
	unsigned long flags;
1635
	int i;
1636

1637 1638 1639 1640 1641 1642
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
	usd = &__get_cpu_var(update_shares_data);

1643
	for_each_cpu(i, sched_domain_span(sd)) {
1644 1645 1646
		weight = tg->cfs_rq[i]->load.weight;
		usd->rq_weight[i] = weight;

1647 1648 1649 1650 1651 1652 1653 1654 1655
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

		rq_weight += weight;
1656
		shares += tg->cfs_rq[i]->shares;
1657 1658
	}

1659 1660 1661 1662 1663
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1664

1665
	for_each_cpu(i, sched_domain_span(sd))
1666 1667 1668
		update_group_shares_cpu(tg, i, shares, rq_weight, usd);

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1669 1670

	return 0;
1671 1672 1673
}

/*
1674 1675 1676
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1677
 */
P
Peter Zijlstra 已提交
1678
static int tg_load_down(struct task_group *tg, void *data)
1679
{
1680
	unsigned long load;
P
Peter Zijlstra 已提交
1681
	long cpu = (long)data;
1682

1683 1684 1685 1686 1687 1688 1689
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1690

1691
	tg->cfs_rq[cpu]->h_load = load;
1692

P
Peter Zijlstra 已提交
1693
	return 0;
1694 1695
}

1696
static void update_shares(struct sched_domain *sd)
1697
{
1698 1699 1700 1701 1702 1703 1704 1705
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1706 1707 1708

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1709
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1710
	}
1711 1712
}

1713 1714
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1715 1716 1717
	if (root_task_group_empty())
		return;

1718 1719 1720 1721 1722
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1723
static void update_h_load(long cpu)
1724
{
1725 1726 1727
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1728
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1729 1730 1731 1732
}

#else

1733
static inline void update_shares(struct sched_domain *sd)
1734 1735 1736
{
}

1737 1738 1739 1740
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1741 1742
#endif

1743 1744
#ifdef CONFIG_PREEMPT

1745 1746
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1747
/*
1748 1749 1750 1751 1752 1753
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1754
 */
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1809 1810 1811 1812 1813 1814
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1815 1816
#endif

V
Vegard Nossum 已提交
1817
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1818 1819
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1820
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1821 1822 1823
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1824
#endif
1825

1826 1827
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1828 1829
#include "sched_stats.h"
#include "sched_idletask.c"
1830 1831
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1832 1833 1834 1835 1836
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1837 1838
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1839

1840
static void inc_nr_running(struct rq *rq)
1841 1842 1843 1844
{
	rq->nr_running++;
}

1845
static void dec_nr_running(struct rq *rq)
1846 1847 1848 1849
{
	rq->nr_running--;
}

1850 1851 1852
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1853 1854 1855 1856
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1857

I
Ingo Molnar 已提交
1858 1859 1860 1861 1862 1863 1864 1865
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1866

I
Ingo Molnar 已提交
1867 1868
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1869 1870
}

1871 1872 1873 1874 1875 1876
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1877
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1878
{
P
Peter Zijlstra 已提交
1879 1880 1881
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1882
	sched_info_queued(p);
1883
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1884
	p->se.on_rq = 1;
1885 1886
}

1887
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1888
{
P
Peter Zijlstra 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1898 1899
	}

1900
	sched_info_dequeued(p);
1901
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1902
	p->se.on_rq = 0;
1903 1904
}

1905
/*
I
Ingo Molnar 已提交
1906
 * __normal_prio - return the priority that is based on the static prio
1907 1908 1909
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1910
	return p->static_prio;
1911 1912
}

1913 1914 1915 1916 1917 1918 1919
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1920
static inline int normal_prio(struct task_struct *p)
1921 1922 1923
{
	int prio;

1924
	if (task_has_rt_policy(p))
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1938
static int effective_prio(struct task_struct *p)
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1951
/*
I
Ingo Molnar 已提交
1952
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1953
 */
I
Ingo Molnar 已提交
1954
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1955
{
1956
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1957
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1958

1959
	enqueue_task(rq, p, wakeup);
1960
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1961 1962 1963 1964 1965
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1966
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1967
{
1968
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1969 1970
		rq->nr_uninterruptible++;

1971
	dequeue_task(rq, p, sleep);
1972
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1973 1974 1975 1976 1977 1978
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1979
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1980 1981 1982 1983
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1984 1985
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1986
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1987
#ifdef CONFIG_SMP
1988 1989 1990 1991 1992 1993
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1994 1995
	task_thread_info(p)->cpu = cpu;
#endif
1996 1997
}

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2010
#ifdef CONFIG_SMP
2011 2012 2013
/*
 * Is this task likely cache-hot:
 */
2014
static int
2015 2016 2017 2018
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2019 2020 2021
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
2022 2023 2024
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2025 2026
		return 1;

2027 2028 2029
	if (p->sched_class != &fair_sched_class)
		return 0;

2030 2031 2032 2033 2034
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2035 2036 2037 2038 2039 2040
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2041
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2042
{
I
Ingo Molnar 已提交
2043 2044
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2045 2046
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2047
	u64 clock_offset;
I
Ingo Molnar 已提交
2048 2049

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2050

2051
	trace_sched_migrate_task(p, new_cpu);
2052

I
Ingo Molnar 已提交
2053 2054 2055
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2056 2057 2058 2059
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2060
#endif
2061
	if (old_cpu != new_cpu) {
2062
		p->se.nr_migrations++;
2063
		new_rq->nr_migrations_in++;
2064
#ifdef CONFIG_SCHEDSTATS
2065 2066
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2067
#endif
2068 2069
		perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
				     1, 1, NULL, 0);
2070
	}
2071 2072
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2073 2074

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2075 2076
}

2077
struct migration_req {
L
Linus Torvalds 已提交
2078 2079
	struct list_head list;

2080
	struct task_struct *task;
L
Linus Torvalds 已提交
2081 2082 2083
	int dest_cpu;

	struct completion done;
2084
};
L
Linus Torvalds 已提交
2085 2086 2087 2088 2089

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2090
static int
2091
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2092
{
2093
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2094 2095 2096 2097 2098

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2099
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2100 2101 2102 2103 2104 2105 2106 2107
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2108

L
Linus Torvalds 已提交
2109 2110 2111
	return 1;
}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2155 2156 2157
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2158 2159 2160 2161 2162 2163 2164
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2165 2166 2167 2168 2169 2170
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2171
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2172 2173
{
	unsigned long flags;
I
Ingo Molnar 已提交
2174
	int running, on_rq;
R
Roland McGrath 已提交
2175
	unsigned long ncsw;
2176
	struct rq *rq;
L
Linus Torvalds 已提交
2177

2178 2179 2180 2181 2182 2183 2184 2185
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2186

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2198 2199 2200
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2201
			cpu_relax();
R
Roland McGrath 已提交
2202
		}
2203

2204 2205 2206 2207 2208 2209
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2210
		trace_sched_wait_task(rq, p);
2211 2212
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2213
		ncsw = 0;
2214
		if (!match_state || p->state == match_state)
2215
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2216
		task_rq_unlock(rq, &flags);
2217

R
Roland McGrath 已提交
2218 2219 2220 2221 2222 2223
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2234

2235 2236 2237 2238 2239
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2240
		 * So if it was still runnable (but just not actively
2241 2242 2243 2244 2245 2246 2247
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2248

2249 2250 2251 2252 2253 2254 2255
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2256 2257

	return ncsw;
L
Linus Torvalds 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2273
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2283
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2284
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2285

T
Thomas Gleixner 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2321
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2322
{
2323
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2324
	unsigned long flags;
2325
	struct rq *rq;
L
Linus Torvalds 已提交
2326

2327 2328 2329
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2330 2331
	this_cpu = get_cpu();

2332
	smp_wmb();
L
Linus Torvalds 已提交
2333
	rq = task_rq_lock(p, &flags);
2334
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2335
	if (!(p->state & state))
L
Linus Torvalds 已提交
2336 2337
		goto out;

I
Ingo Molnar 已提交
2338
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2339 2340 2341
		goto out_running;

	cpu = task_cpu(p);
2342
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2343 2344 2345 2346 2347

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2348 2349 2350 2351 2352 2353 2354
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
	 */
	p->state = TASK_WAKING;
	task_rq_unlock(rq, &flags);

2355
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, sync);
P
Peter Zijlstra 已提交
2356
	if (cpu != orig_cpu)
2357
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2358

P
Peter Zijlstra 已提交
2359 2360 2361
	rq = task_rq_lock(p, &flags);
	WARN_ON(p->state != TASK_WAKING);
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
2362

2363 2364 2365 2366 2367 2368 2369
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2370
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2371 2372 2373 2374 2375
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2376
#endif /* CONFIG_SCHEDSTATS */
2377

L
Linus Torvalds 已提交
2378 2379
out_activate:
#endif /* CONFIG_SMP */
2380 2381 2382 2383 2384 2385 2386 2387 2388
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2389
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2390 2391
	success = 1;

P
Peter Zijlstra 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2408
out_running:
2409
	trace_sched_wakeup(rq, p, success);
2410
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2411

L
Linus Torvalds 已提交
2412
	p->state = TASK_RUNNING;
2413 2414 2415 2416
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2417 2418
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2419
	put_cpu();
L
Linus Torvalds 已提交
2420 2421 2422 2423

	return success;
}

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2435
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2436
{
2437
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2438 2439 2440
}
EXPORT_SYMBOL(wake_up_process);

2441
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2442 2443 2444 2445 2446 2447 2448
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2449 2450 2451 2452 2453 2454 2455
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2456
	p->se.prev_sum_exec_runtime	= 0;
2457
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2458 2459
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2460 2461
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2462 2463

#ifdef CONFIG_SCHEDSTATS
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2495
#endif
N
Nick Piggin 已提交
2496

P
Peter Zijlstra 已提交
2497
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2498
	p->se.on_rq = 0;
2499
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2500

2501 2502 2503 2504
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2505 2506 2507 2508 2509 2510 2511
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

2523
	/*
2524
	 * Make sure we do not leak PI boosting priority to the child.
2525 2526
	 */
	p->prio = current->normal_prio;
2527

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
			p->policy = SCHED_NORMAL;

		if (p->normal_prio < DEFAULT_PRIO)
			p->prio = DEFAULT_PRIO;

2538 2539 2540 2541 2542
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
			set_load_weight(p);
		}

2543 2544 2545 2546 2547 2548
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2549

H
Hiroshi Shimamoto 已提交
2550 2551
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2552

2553 2554 2555 2556 2557
#ifdef CONFIG_SMP
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
#endif
	set_task_cpu(p, cpu);

2558
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2559
	if (likely(sched_info_on()))
2560
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2561
#endif
2562
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2563 2564
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2565
#ifdef CONFIG_PREEMPT
2566
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2567
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2568
#endif
2569 2570
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2571
	put_cpu();
L
Linus Torvalds 已提交
2572 2573 2574 2575 2576 2577 2578 2579 2580
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2581
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2582 2583
{
	unsigned long flags;
I
Ingo Molnar 已提交
2584
	struct rq *rq;
L
Linus Torvalds 已提交
2585 2586

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2587
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2588
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2589 2590 2591

	p->prio = effective_prio(p);

2592
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2593
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2594 2595
	} else {
		/*
I
Ingo Molnar 已提交
2596 2597
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2598
		 */
2599
		p->sched_class->task_new(rq, p);
2600
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2601
	}
2602
	trace_sched_wakeup_new(rq, p, 1);
2603
	check_preempt_curr(rq, p, 0);
2604 2605 2606 2607
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2608
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2609 2610
}

2611 2612 2613
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2614
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2615
 * @notifier: notifier struct to register
2616 2617 2618 2619 2620 2621 2622 2623 2624
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2625
 * @notifier: notifier struct to unregister
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2655
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2667
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2668

2669 2670 2671
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2672
 * @prev: the current task that is being switched out
2673 2674 2675 2676 2677 2678 2679 2680 2681
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2682 2683 2684
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2685
{
2686
	fire_sched_out_preempt_notifiers(prev, next);
2687 2688 2689 2690
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2691 2692
/**
 * finish_task_switch - clean up after a task-switch
2693
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2694 2695
 * @prev: the thread we just switched away from.
 *
2696 2697 2698 2699
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2700 2701
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2702
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2703 2704 2705
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2706
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2707 2708 2709
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2710
	long prev_state;
L
Linus Torvalds 已提交
2711 2712 2713 2714 2715

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2716
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2717 2718
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2719
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2720 2721 2722 2723 2724
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2725
	prev_state = prev->state;
2726
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2727
	perf_counter_task_sched_in(current, cpu_of(rq));
2728
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2729

2730
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2731 2732
	if (mm)
		mmdrop(mm);
2733
	if (unlikely(prev_state == TASK_DEAD)) {
2734 2735 2736
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2737
		 */
2738
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2739
		put_task_struct(prev);
2740
	}
L
Linus Torvalds 已提交
2741 2742
}

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2768

2769 2770 2771 2772 2773 2774
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2775 2776
}

2777 2778
#endif

L
Linus Torvalds 已提交
2779 2780 2781 2782
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2783
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2784 2785
	__releases(rq->lock)
{
2786 2787
	struct rq *rq = this_rq();

2788
	finish_task_switch(rq, prev);
2789

2790 2791 2792 2793 2794
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2795

2796 2797 2798 2799
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2800
	if (current->set_child_tid)
2801
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2802 2803 2804 2805 2806 2807
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2808
static inline void
2809
context_switch(struct rq *rq, struct task_struct *prev,
2810
	       struct task_struct *next)
L
Linus Torvalds 已提交
2811
{
I
Ingo Molnar 已提交
2812
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2813

2814
	prepare_task_switch(rq, prev, next);
2815
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2816 2817
	mm = next->mm;
	oldmm = prev->active_mm;
2818 2819 2820 2821 2822
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2823
	arch_start_context_switch(prev);
2824

I
Ingo Molnar 已提交
2825
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2826 2827 2828 2829 2830 2831
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2832
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2833 2834 2835
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2836 2837 2838 2839 2840 2841 2842
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2843
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2844
#endif
L
Linus Torvalds 已提交
2845 2846 2847 2848

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2849 2850 2851 2852 2853 2854 2855
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2879
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2894 2895
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2896

2897
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2898 2899 2900 2901 2902 2903 2904 2905 2906
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2907
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2908 2909 2910 2911 2912
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2913 2914 2915 2916 2917 2918
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2934 2935
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2936
{
2937 2938 2939 2940
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2941

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
2953

2954 2955
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2956

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
2979 2980
}

2981 2982 2983 2984 2985 2986 2987 2988 2989
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

2990
/*
I
Ingo Molnar 已提交
2991 2992
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2993
 */
I
Ingo Molnar 已提交
2994
static void update_cpu_load(struct rq *this_rq)
2995
{
2996
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3009 3010 3011 3012 3013 3014 3015
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3016 3017
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3018 3019 3020 3021 3022

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3023 3024
}

I
Ingo Molnar 已提交
3025 3026
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3027 3028 3029 3030 3031 3032
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3033
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3034 3035 3036
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3037
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3038 3039 3040 3041
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3042
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3043
			spin_lock(&rq1->lock);
3044
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3045 3046
		} else {
			spin_lock(&rq2->lock);
3047
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3048 3049
		}
	}
3050 3051
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3052 3053 3054 3055 3056 3057 3058 3059
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3060
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3074
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3075 3076
 * the cpu_allowed mask is restored.
 */
3077
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3078
{
3079
	struct migration_req req;
L
Linus Torvalds 已提交
3080
	unsigned long flags;
3081
	struct rq *rq;
L
Linus Torvalds 已提交
3082 3083

	rq = task_rq_lock(p, &flags);
3084
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3085
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3086 3087 3088 3089 3090 3091
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3092

L
Linus Torvalds 已提交
3093 3094 3095 3096 3097
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3098

L
Linus Torvalds 已提交
3099 3100 3101 3102 3103 3104 3105
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3106 3107
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3108 3109 3110 3111
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
3112
	new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
L
Linus Torvalds 已提交
3113
	put_cpu();
N
Nick Piggin 已提交
3114 3115
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3116 3117 3118 3119 3120 3121
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3122 3123
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3124
{
3125
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3126
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3127
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3128 3129 3130 3131
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3132
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3133 3134 3135 3136 3137
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3138
static
3139
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3140
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3141
		     int *all_pinned)
L
Linus Torvalds 已提交
3142
{
3143
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3144 3145 3146 3147 3148 3149
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3150
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3151
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3152
		return 0;
3153
	}
3154 3155
	*all_pinned = 0;

3156 3157
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3158
		return 0;
3159
	}
L
Linus Torvalds 已提交
3160

3161 3162 3163 3164 3165 3166
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3167 3168 3169
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3170
#ifdef CONFIG_SCHEDSTATS
3171
		if (tsk_cache_hot) {
3172
			schedstat_inc(sd, lb_hot_gained[idle]);
3173 3174
			schedstat_inc(p, se.nr_forced_migrations);
		}
3175 3176 3177 3178
#endif
		return 1;
	}

3179
	if (tsk_cache_hot) {
3180
		schedstat_inc(p, se.nr_failed_migrations_hot);
3181
		return 0;
3182
	}
L
Linus Torvalds 已提交
3183 3184 3185
	return 1;
}

3186 3187 3188 3189 3190
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3191
{
3192
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3193 3194
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3195

3196
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3197 3198
		goto out;

3199 3200
	pinned = 1;

L
Linus Torvalds 已提交
3201
	/*
I
Ingo Molnar 已提交
3202
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3203
	 */
I
Ingo Molnar 已提交
3204 3205
	p = iterator->start(iterator->arg);
next:
3206
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3207
		goto out;
3208 3209

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3210 3211 3212
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3213 3214
	}

I
Ingo Molnar 已提交
3215
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3216
	pulled++;
I
Ingo Molnar 已提交
3217
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3218

3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3229
	/*
3230
	 * We only want to steal up to the prescribed amount of weighted load.
3231
	 */
3232
	if (rem_load_move > 0) {
3233 3234
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3235 3236
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3237 3238 3239
	}
out:
	/*
3240
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3241 3242 3243 3244
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3245 3246 3247

	if (all_pinned)
		*all_pinned = pinned;
3248 3249

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3250 3251
}

I
Ingo Molnar 已提交
3252
/*
P
Peter Williams 已提交
3253 3254 3255
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3256 3257 3258 3259
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3260
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3261 3262 3263
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3264
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3265
	unsigned long total_load_moved = 0;
3266
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3267 3268

	do {
P
Peter Williams 已提交
3269 3270
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3271
				max_load_move - total_load_moved,
3272
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3273
		class = class->next;
3274

3275 3276 3277 3278 3279 3280
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3281 3282
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3283
#endif
P
Peter Williams 已提交
3284
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3285

P
Peter Williams 已提交
3286 3287 3288
	return total_load_moved > 0;
}

3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3325
	const struct sched_class *class;
P
Peter Williams 已提交
3326

3327
	for_each_class(class) {
3328
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3329
			return 1;
3330
	}
P
Peter Williams 已提交
3331 3332

	return 0;
I
Ingo Molnar 已提交
3333
}
3334
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3335
/*
3336 3337
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3338
 */
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3357
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3358 3359 3360 3361 3362 3363
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3364
#endif
3365
};
L
Linus Torvalds 已提交
3366

3367
/*
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3378

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3400
		load_idx = sd->busy_idx;
3401 3402 3403
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3404
		load_idx = sd->newidle_idx;
3405 3406
		break;
	default:
N
Nick Piggin 已提交
3407
		load_idx = sd->idle_idx;
3408 3409
		break;
	}
L
Linus Torvalds 已提交
3410

3411 3412
	return load_idx;
}
L
Linus Torvalds 已提交
3413 3414


3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3439

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3453

3454 3455
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3456

3457 3458 3459 3460 3461 3462 3463
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3464

3465 3466 3467 3468 3469 3470 3471 3472
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3473

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3487

3488 3489 3490 3491 3492
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3493
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3494
		return;
L
Linus Torvalds 已提交
3495

3496 3497 3498 3499 3500 3501 3502
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3503

3504
/**
3505
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3506 3507 3508 3509 3510
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3511 3512 3513 3514 3515
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3516 3517 3518 3519 3520 3521 3522 3523
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3524

3525 3526 3527
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3528

3529 3530
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3531

3532
	return 1;
L
Linus Torvalds 已提交
3533

3534 3535 3536 3537 3538 3539 3540
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3541

3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3567 3568 3569 3570 3571 3572 3573 3574 3575
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3576 3577 3578 3579 3580
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3599 3600 3601 3602 3603 3604
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

3605 3606
	power *= arch_scale_freq_power(sd, cpu);
	power >>= SCHED_LOAD_SHIFT;
3607 3608

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3609
		power *= arch_scale_smt_power(sd, cpu);
3610 3611 3612
		power >>= SCHED_LOAD_SHIFT;
	}

3613 3614 3615 3616 3617
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3618

3619
	sdg->cpu_power = power;
3620 3621 3622
}

static void update_group_power(struct sched_domain *sd, int cpu)
3623 3624 3625
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
3626
	unsigned long power;
3627 3628

	if (!child) {
3629
		update_cpu_power(sd, cpu);
3630 3631 3632
		return;
	}

3633
	power = 0;
3634 3635 3636

	group = child->groups;
	do {
3637
		power += group->cpu_power;
3638 3639
		group = group->next;
	} while (group != child->groups);
3640 3641

	sdg->cpu_power = power;
3642
}
3643

3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3656 3657
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3668
	if (local_group) {
3669
		balance_cpu = group_first_cpu(group);
3670
		if (balance_cpu == this_cpu)
3671
			update_group_power(sd, this_cpu);
3672
	}
3673 3674 3675 3676 3677

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3678

3679 3680
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3681

3682 3683
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3684

3685
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3686
		if (local_group) {
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3699
		}
3700

3701 3702 3703
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3704

3705 3706
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3707

3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3719

3720
	/* Adjust by relative CPU power of the group */
3721
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3722

3723 3724 3725 3726 3727 3728 3729 3730 3731 3732

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3733 3734
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3735 3736 3737 3738

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3739
	sgs->group_capacity =
3740
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3741
}
I
Ingo Molnar 已提交
3742

3743 3744 3745 3746 3747 3748 3749 3750 3751
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3752
 */
3753 3754 3755 3756
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3757
{
P
Peter Zijlstra 已提交
3758
	struct sched_domain *child = sd->child;
3759
	struct sched_group *group = sd->groups;
3760
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3761 3762 3763 3764
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3765

3766
	init_sd_power_savings_stats(sd, sds, idle);
3767
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3768 3769 3770 3771

	do {
		int local_group;

3772 3773
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3774
		memset(&sgs, 0, sizeof(sgs));
3775
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3776
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3777

3778 3779
		if (local_group && balance && !(*balance))
			return;
3780

3781
		sds->total_load += sgs.group_load;
3782
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3783

P
Peter Zijlstra 已提交
3784 3785 3786 3787 3788 3789
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3790
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
L
Linus Torvalds 已提交
3791 3792

		if (local_group) {
3793 3794 3795 3796 3797
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3798 3799
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3800 3801 3802 3803 3804
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3805
		}
3806

3807
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3808 3809
		group = group->next;
	} while (group != sd->groups);
3810
}
L
Linus Torvalds 已提交
3811

3812 3813
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3814 3815
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3834

3835 3836 3837 3838 3839
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3840

L
Linus Torvalds 已提交
3841
	/*
3842 3843 3844
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3845
	 */
3846

3847
	pwr_now += sds->busiest->cpu_power *
3848
			min(sds->busiest_load_per_task, sds->max_load);
3849
	pwr_now += sds->this->cpu_power *
3850 3851 3852 3853
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3854 3855
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3856
	if (sds->max_load > tmp)
3857
		pwr_move += sds->busiest->cpu_power *
3858 3859 3860
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3861
	if (sds->max_load * sds->busiest->cpu_power <
3862
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3863 3864
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
3865
	else
3866 3867 3868
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
3869 3870 3871 3872 3873 3874 3875
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3888 3889 3890 3891 3892
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3893
	if (sds->max_load < sds->avg_load) {
3894
		*imbalance = 0;
3895
		return fix_small_imbalance(sds, this_cpu, imbalance);
3896
	}
3897 3898

	/* Don't want to pull so many tasks that a group would go idle */
3899 3900
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3901

L
Linus Torvalds 已提交
3902
	/* How much load to actually move to equalise the imbalance */
3903 3904
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
3905 3906
			/ SCHED_LOAD_SCALE;

3907 3908 3909 3910 3911 3912
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3913 3914
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3915

3916
}
3917
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3918

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3943 3944 3945 3946 3947 3948 3949
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3950

3951
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3952

3953 3954 3955 3956 3957 3958 3959
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3970 3971
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3972

3973 3974
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3975

3976
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3977 3978
		goto out_balanced;

3979
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3980

3981 3982 3983 3984
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3985 3986
		goto out_balanced;

3987 3988 3989 3990
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3991

L
Linus Torvalds 已提交
3992 3993 3994 3995 3996 3997 3998 3999
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4000
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4001 4002
	 * appear as very large values with unsigned longs.
	 */
4003
	if (sds.max_load <= sds.busiest_load_per_task)
4004 4005
		goto out_balanced;

4006 4007
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4008
	return sds.busiest;
L
Linus Torvalds 已提交
4009 4010

out_balanced:
4011 4012 4013 4014 4015 4016
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4017
ret:
L
Linus Torvalds 已提交
4018 4019 4020 4021 4022 4023 4024
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4025
static struct rq *
I
Ingo Molnar 已提交
4026
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4027
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4028
{
4029
	struct rq *busiest = NULL, *rq;
4030
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4031 4032
	int i;

4033
	for_each_cpu(i, sched_group_cpus(group)) {
4034 4035
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4036
		unsigned long wl;
4037

4038
		if (!cpumask_test_cpu(i, cpus))
4039 4040
			continue;

4041
		rq = cpu_rq(i);
4042 4043
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4044

4045
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4046
			continue;
L
Linus Torvalds 已提交
4047

I
Ingo Molnar 已提交
4048 4049
		if (wl > max_load) {
			max_load = wl;
4050
			busiest = rq;
L
Linus Torvalds 已提交
4051 4052 4053 4054 4055 4056
		}
	}

	return busiest;
}

4057 4058 4059 4060 4061 4062
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4063 4064 4065
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4066 4067 4068 4069
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4070
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4071
			struct sched_domain *sd, enum cpu_idle_type idle,
4072
			int *balance)
L
Linus Torvalds 已提交
4073
{
P
Peter Williams 已提交
4074
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4075 4076
	struct sched_group *group;
	unsigned long imbalance;
4077
	struct rq *busiest;
4078
	unsigned long flags;
4079
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4080

4081
	cpumask_setall(cpus);
4082

4083 4084 4085
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4086
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4087
	 * portraying it as CPU_NOT_IDLE.
4088
	 */
I
Ingo Molnar 已提交
4089
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4090
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4091
		sd_idle = 1;
L
Linus Torvalds 已提交
4092

4093
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4094

4095
redo:
4096
	update_shares(sd);
4097
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4098
				   cpus, balance);
4099

4100
	if (*balance == 0)
4101 4102
		goto out_balanced;

L
Linus Torvalds 已提交
4103 4104 4105 4106 4107
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4108
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4109 4110 4111 4112 4113
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4114
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4115 4116 4117

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4118
	ld_moved = 0;
L
Linus Torvalds 已提交
4119 4120 4121 4122
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4123
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4124 4125
		 * correctly treated as an imbalance.
		 */
4126
		local_irq_save(flags);
N
Nick Piggin 已提交
4127
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4128
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4129
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4130
		double_rq_unlock(this_rq, busiest);
4131
		local_irq_restore(flags);
4132

4133 4134 4135
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4136
		if (ld_moved && this_cpu != smp_processor_id())
4137 4138
			resched_cpu(this_cpu);

4139
		/* All tasks on this runqueue were pinned by CPU affinity */
4140
		if (unlikely(all_pinned)) {
4141 4142
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4143
				goto redo;
4144
			goto out_balanced;
4145
		}
L
Linus Torvalds 已提交
4146
	}
4147

P
Peter Williams 已提交
4148
	if (!ld_moved) {
L
Linus Torvalds 已提交
4149 4150 4151 4152 4153
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4154
			spin_lock_irqsave(&busiest->lock, flags);
4155 4156 4157 4158

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4159 4160
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4161
				spin_unlock_irqrestore(&busiest->lock, flags);
4162 4163 4164 4165
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4166 4167 4168
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4169
				active_balance = 1;
L
Linus Torvalds 已提交
4170
			}
4171
			spin_unlock_irqrestore(&busiest->lock, flags);
4172
			if (active_balance)
L
Linus Torvalds 已提交
4173 4174 4175 4176 4177 4178
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4179
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4180
		}
4181
	} else
L
Linus Torvalds 已提交
4182 4183
		sd->nr_balance_failed = 0;

4184
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4185 4186
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4187 4188 4189 4190 4191 4192 4193 4194 4195
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4196 4197
	}

P
Peter Williams 已提交
4198
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4199
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4200 4201 4202
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4203 4204 4205 4206

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4207
	sd->nr_balance_failed = 0;
4208 4209

out_one_pinned:
L
Linus Torvalds 已提交
4210
	/* tune up the balancing interval */
4211 4212
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4213 4214
		sd->balance_interval *= 2;

4215
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4216
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4217 4218 4219 4220
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4221 4222
	if (ld_moved)
		update_shares(sd);
4223
	return ld_moved;
L
Linus Torvalds 已提交
4224 4225 4226 4227 4228 4229
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4230
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4231 4232
 * this_rq is locked.
 */
4233
static int
4234
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4235 4236
{
	struct sched_group *group;
4237
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4238
	unsigned long imbalance;
P
Peter Williams 已提交
4239
	int ld_moved = 0;
N
Nick Piggin 已提交
4240
	int sd_idle = 0;
4241
	int all_pinned = 0;
4242
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4243

4244
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4245

4246 4247 4248 4249
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4250
	 * portraying it as CPU_NOT_IDLE.
4251 4252 4253
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4254
		sd_idle = 1;
L
Linus Torvalds 已提交
4255

4256
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4257
redo:
4258
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4259
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4260
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4261
	if (!group) {
I
Ingo Molnar 已提交
4262
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4263
		goto out_balanced;
L
Linus Torvalds 已提交
4264 4265
	}

4266
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4267
	if (!busiest) {
I
Ingo Molnar 已提交
4268
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4269
		goto out_balanced;
L
Linus Torvalds 已提交
4270 4271
	}

N
Nick Piggin 已提交
4272 4273
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4274
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4275

P
Peter Williams 已提交
4276
	ld_moved = 0;
4277 4278 4279
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4280 4281
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4282
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4283 4284
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4285
		double_unlock_balance(this_rq, busiest);
4286

4287
		if (unlikely(all_pinned)) {
4288 4289
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4290 4291
				goto redo;
		}
4292 4293
	}

P
Peter Williams 已提交
4294
	if (!ld_moved) {
4295
		int active_balance = 0;
4296

I
Ingo Molnar 已提交
4297
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4298 4299
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4300
			return -1;
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4337
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4350 4351 4352 4353
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4354 4355
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4356
		spin_lock(&this_rq->lock);
4357

N
Nick Piggin 已提交
4358
	} else
4359
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4360

4361
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4362
	return ld_moved;
4363 4364

out_balanced:
I
Ingo Molnar 已提交
4365
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4366
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4367
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4368
		return -1;
4369
	sd->nr_balance_failed = 0;
4370

4371
	return 0;
L
Linus Torvalds 已提交
4372 4373 4374 4375 4376 4377
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4378
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4379 4380
{
	struct sched_domain *sd;
4381
	int pulled_task = 0;
I
Ingo Molnar 已提交
4382
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4383 4384

	for_each_domain(this_cpu, sd) {
4385 4386 4387 4388 4389 4390
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4391
			/* If we've pulled tasks over stop searching: */
4392
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4393
							   sd);
4394 4395 4396 4397 4398 4399

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4400
	}
I
Ingo Molnar 已提交
4401
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4402 4403 4404 4405 4406
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4407
	}
L
Linus Torvalds 已提交
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4418
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4419
{
4420
	int target_cpu = busiest_rq->push_cpu;
4421 4422
	struct sched_domain *sd;
	struct rq *target_rq;
4423

4424
	/* Is there any task to move? */
4425 4426 4427 4428
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4429 4430

	/*
4431
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4432
	 * we need to fix it. Originally reported by
4433
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4434
	 */
4435
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4436

4437 4438
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4439 4440
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4441 4442

	/* Search for an sd spanning us and the target CPU. */
4443
	for_each_domain(target_cpu, sd) {
4444
		if ((sd->flags & SD_LOAD_BALANCE) &&
4445
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4446
				break;
4447
	}
4448

4449
	if (likely(sd)) {
4450
		schedstat_inc(sd, alb_count);
4451

P
Peter Williams 已提交
4452 4453
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4454 4455 4456 4457
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4458
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4459 4460
}

4461 4462 4463
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4464
	cpumask_var_t cpu_mask;
4465
	cpumask_var_t ilb_grp_nohz_mask;
4466 4467 4468 4469
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4470 4471 4472 4473 4474
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4586
	return cpumask_first(nohz.cpu_mask);
4587 4588 4589
}
#endif

4590
/*
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4601
 *
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4617 4618 4619 4620 4621 4622 4623 4624
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4625 4626
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4627

4628 4629 4630
			return 0;
		}

4631 4632
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4633
		/* time for ilb owner also to sleep */
4634
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4635 4636 4637 4638 4639 4640 4641 4642 4643
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4660
			return 1;
4661
		}
4662
	} else {
4663
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4664 4665
			return 0;

4666
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4679 4680 4681 4682 4683
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4684
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4685
{
4686 4687
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4688 4689
	unsigned long interval;
	struct sched_domain *sd;
4690
	/* Earliest time when we have to do rebalance again */
4691
	unsigned long next_balance = jiffies + 60*HZ;
4692
	int update_next_balance = 0;
4693
	int need_serialize;
L
Linus Torvalds 已提交
4694

4695
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4696 4697 4698 4699
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4700
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4701 4702 4703 4704 4705 4706
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4707 4708 4709
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4710
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4711

4712
		if (need_serialize) {
4713 4714 4715 4716
			if (!spin_trylock(&balancing))
				goto out;
		}

4717
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4718
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4719 4720
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4721 4722 4723
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4724
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4725
			}
4726
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4727
		}
4728
		if (need_serialize)
4729 4730
			spin_unlock(&balancing);
out:
4731
		if (time_after(next_balance, sd->last_balance + interval)) {
4732
			next_balance = sd->last_balance + interval;
4733 4734
			update_next_balance = 1;
		}
4735 4736 4737 4738 4739 4740 4741 4742

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4743
	}
4744 4745 4746 4747 4748 4749 4750 4751

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4752 4753 4754 4755 4756 4757 4758 4759 4760
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4761 4762 4763 4764
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4765

I
Ingo Molnar 已提交
4766
	rebalance_domains(this_cpu, idle);
4767 4768 4769 4770 4771 4772 4773

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4774 4775
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4776 4777 4778
		struct rq *rq;
		int balance_cpu;

4779 4780 4781 4782
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4783 4784 4785 4786 4787 4788 4789 4790
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4791
			rebalance_domains(balance_cpu, CPU_IDLE);
4792 4793

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4794 4795
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4796 4797 4798 4799 4800
		}
	}
#endif
}

4801 4802 4803 4804 4805
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4806 4807 4808 4809 4810 4811 4812
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4813
static inline void trigger_load_balance(struct rq *rq, int cpu)
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4825
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4826 4827 4828 4829
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4830
			int ilb = find_new_ilb(cpu);
4831

4832
			if (ilb < nr_cpu_ids)
4833 4834 4835 4836 4837 4838 4839 4840 4841
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4842
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4843 4844 4845 4846 4847 4848 4849 4850 4851
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4852
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4853 4854
		return;
#endif
4855 4856 4857
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4858
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4859
}
I
Ingo Molnar 已提交
4860 4861 4862

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4863 4864 4865
/*
 * on UP we do not need to balance between CPUs:
 */
4866
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4867 4868
{
}
I
Ingo Molnar 已提交
4869

L
Linus Torvalds 已提交
4870 4871 4872 4873 4874 4875 4876
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4877
 * Return any ns on the sched_clock that have not yet been accounted in
4878
 * @p in case that task is currently running.
4879 4880
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4881
 */
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4896
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4897 4898
{
	unsigned long flags;
4899
	struct rq *rq;
4900
	u64 ns = 0;
4901

4902
	rq = task_rq_lock(p, &flags);
4903 4904
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4905

4906 4907
	return ns;
}
4908

4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4926

4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4946
	task_rq_unlock(rq, &flags);
4947

L
Linus Torvalds 已提交
4948 4949 4950 4951 4952 4953 4954
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4955
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4956
 */
4957 4958
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4959 4960 4961 4962
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4963
	/* Add user time to process. */
L
Linus Torvalds 已提交
4964
	p->utime = cputime_add(p->utime, cputime);
4965
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4966
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4967 4968 4969 4970 4971 4972 4973

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4974 4975

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4976 4977
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4978 4979
}

4980 4981 4982 4983
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4984
 * @cputime_scaled: cputime scaled by cpu frequency
4985
 */
4986 4987
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4988 4989 4990 4991 4992 4993
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4994
	/* Add guest time to process. */
4995
	p->utime = cputime_add(p->utime, cputime);
4996
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4997
	account_group_user_time(p, cputime);
4998 4999
	p->gtime = cputime_add(p->gtime, cputime);

5000
	/* Add guest time to cpustat. */
5001 5002 5003 5004
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
5005 5006 5007 5008 5009
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5010
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5011 5012
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5013
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5014 5015 5016 5017
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5018
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5019
		account_guest_time(p, cputime, cputime_scaled);
5020 5021
		return;
	}
5022

5023
	/* Add system time to process. */
L
Linus Torvalds 已提交
5024
	p->stime = cputime_add(p->stime, cputime);
5025
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5026
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5027 5028 5029 5030 5031 5032 5033 5034

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5035 5036
		cpustat->system = cputime64_add(cpustat->system, tmp);

5037 5038
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5039 5040 5041 5042
	/* Account for system time used */
	acct_update_integrals(p);
}

5043
/*
L
Linus Torvalds 已提交
5044 5045
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5046
 */
5047
void account_steal_time(cputime_t cputime)
5048
{
5049 5050 5051 5052
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5053 5054
}

L
Linus Torvalds 已提交
5055
/*
5056 5057
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5058
 */
5059
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5060 5061
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5062
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5063
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5064

5065 5066 5067 5068
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5069 5070
}

5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
5086
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5110 5111
}

5112 5113
#endif

5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5184
	struct task_struct *curr = rq->curr;
5185 5186

	sched_clock_tick();
I
Ingo Molnar 已提交
5187 5188

	spin_lock(&rq->lock);
5189
	update_rq_clock(rq);
5190
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5191
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5192
	spin_unlock(&rq->lock);
5193

5194 5195
	perf_counter_task_tick(curr, cpu);

5196
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5197 5198
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5199
#endif
L
Linus Torvalds 已提交
5200 5201
}

5202
notrace unsigned long get_parent_ip(unsigned long addr)
5203 5204 5205 5206 5207 5208 5209 5210
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5211

5212 5213 5214
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5215
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5216
{
5217
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5218 5219 5220
	/*
	 * Underflow?
	 */
5221 5222
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5223
#endif
L
Linus Torvalds 已提交
5224
	preempt_count() += val;
5225
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5226 5227 5228
	/*
	 * Spinlock count overflowing soon?
	 */
5229 5230
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5231 5232 5233
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5234 5235 5236
}
EXPORT_SYMBOL(add_preempt_count);

5237
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5238
{
5239
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5240 5241 5242
	/*
	 * Underflow?
	 */
5243
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5244
		return;
L
Linus Torvalds 已提交
5245 5246 5247
	/*
	 * Is the spinlock portion underflowing?
	 */
5248 5249 5250
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5251
#endif
5252

5253 5254
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5255 5256 5257 5258 5259 5260 5261
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5262
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5263
 */
I
Ingo Molnar 已提交
5264
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5265
{
5266 5267 5268 5269 5270
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5271
	debug_show_held_locks(prev);
5272
	print_modules();
I
Ingo Molnar 已提交
5273 5274
	if (irqs_disabled())
		print_irqtrace_events(prev);
5275 5276 5277 5278 5279

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5280
}
L
Linus Torvalds 已提交
5281

I
Ingo Molnar 已提交
5282 5283 5284 5285 5286
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5287
	/*
I
Ingo Molnar 已提交
5288
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5289 5290 5291
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5292
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5293 5294
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5295 5296
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5297
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5298 5299
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5300 5301
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5302 5303
	}
#endif
I
Ingo Molnar 已提交
5304 5305
}

M
Mike Galbraith 已提交
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5328 5329 5330 5331
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5332
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5333
{
5334
	const struct sched_class *class;
I
Ingo Molnar 已提交
5335
	struct task_struct *p;
L
Linus Torvalds 已提交
5336 5337

	/*
I
Ingo Molnar 已提交
5338 5339
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5340
	 */
I
Ingo Molnar 已提交
5341
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5342
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5343 5344
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5345 5346
	}

I
Ingo Molnar 已提交
5347 5348
	class = sched_class_highest;
	for ( ; ; ) {
5349
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5350 5351 5352 5353 5354 5355 5356 5357 5358
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5359

I
Ingo Molnar 已提交
5360 5361 5362
/*
 * schedule() is the main scheduler function.
 */
5363
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5364 5365
{
	struct task_struct *prev, *next;
5366
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5367
	struct rq *rq;
5368
	int cpu;
I
Ingo Molnar 已提交
5369

5370 5371
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5372 5373
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
5374
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
5375 5376 5377 5378 5379 5380 5381
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5382

5383
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5384
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5385

5386
	spin_lock_irq(&rq->lock);
5387
	update_rq_clock(rq);
5388
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5389 5390

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5391
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5392
			prev->state = TASK_RUNNING;
5393
		else
5394
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5395
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5396 5397
	}

5398
	pre_schedule(rq, prev);
5399

I
Ingo Molnar 已提交
5400
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5401 5402
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5403
	put_prev_task(rq, prev);
5404
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5405 5406

	if (likely(prev != next)) {
5407
		sched_info_switch(prev, next);
5408
		perf_counter_task_sched_out(prev, next, cpu);
5409

L
Linus Torvalds 已提交
5410 5411 5412 5413
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5414
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5415 5416 5417 5418 5419 5420
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5421 5422 5423
	} else
		spin_unlock_irq(&rq->lock);

5424
	post_schedule(rq);
L
Linus Torvalds 已提交
5425

P
Peter Zijlstra 已提交
5426
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5427
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5428

L
Linus Torvalds 已提交
5429
	preempt_enable_no_resched();
5430
	if (need_resched())
L
Linus Torvalds 已提交
5431 5432 5433 5434
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5496 5497
#ifdef CONFIG_PREEMPT
/*
5498
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5499
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5500 5501 5502 5503 5504
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5505

L
Linus Torvalds 已提交
5506 5507
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5508
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5509
	 */
N
Nick Piggin 已提交
5510
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5511 5512
		return;

5513 5514 5515 5516
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5517

5518 5519 5520 5521 5522
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5523
	} while (need_resched());
L
Linus Torvalds 已提交
5524 5525 5526 5527
}
EXPORT_SYMBOL(preempt_schedule);

/*
5528
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5529 5530 5531 5532 5533 5534 5535
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5536

5537
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5538 5539
	BUG_ON(ti->preempt_count || !irqs_disabled());

5540 5541 5542 5543 5544 5545
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5546

5547 5548 5549 5550 5551
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5552
	} while (need_resched());
L
Linus Torvalds 已提交
5553 5554 5555 5556
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5557 5558
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5559
{
5560
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5561 5562 5563 5564
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5565 5566
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5567 5568 5569
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5570
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5571 5572
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5573
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5574
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5575
{
5576
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5577

5578
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5579 5580
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5581
		if (curr->func(curr, mode, sync, key) &&
5582
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5583 5584 5585 5586 5587 5588 5589 5590 5591
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5592
 * @key: is directly passed to the wakeup function
5593 5594 5595
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5596
 */
5597
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5598
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5611
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5612 5613 5614 5615
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5616 5617 5618 5619 5620
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5621
/**
5622
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5623 5624 5625
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5626
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5627 5628 5629 5630 5631 5632 5633
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5634 5635 5636
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5637
 */
5638 5639
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5651
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5652 5653
	spin_unlock_irqrestore(&q->lock, flags);
}
5654 5655 5656 5657 5658 5659 5660 5661 5662
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5663 5664
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5665 5666 5667 5668 5669 5670 5671 5672
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5673 5674 5675
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5676
 */
5677
void complete(struct completion *x)
L
Linus Torvalds 已提交
5678 5679 5680 5681 5682
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5683
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5684 5685 5686 5687
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5688 5689 5690 5691 5692
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5693 5694 5695
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5696
 */
5697
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5698 5699 5700 5701 5702
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5703
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5704 5705 5706 5707
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5708 5709
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5710 5711 5712 5713 5714 5715 5716
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5717
			if (signal_pending_state(state, current)) {
5718 5719
				timeout = -ERESTARTSYS;
				break;
5720 5721
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5722 5723 5724
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5725
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5726
		__remove_wait_queue(&x->wait, &wait);
5727 5728
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5729 5730
	}
	x->done--;
5731
	return timeout ?: 1;
L
Linus Torvalds 已提交
5732 5733
}

5734 5735
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5736 5737 5738 5739
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5740
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5741
	spin_unlock_irq(&x->wait.lock);
5742 5743
	return timeout;
}
L
Linus Torvalds 已提交
5744

5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5755
void __sched wait_for_completion(struct completion *x)
5756 5757
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5758
}
5759
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5760

5761 5762 5763 5764 5765 5766 5767 5768 5769
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5770
unsigned long __sched
5771
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5772
{
5773
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5774
}
5775
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5776

5777 5778 5779 5780 5781 5782 5783
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5784
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5785
{
5786 5787 5788 5789
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5790
}
5791
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5792

5793 5794 5795 5796 5797 5798 5799 5800
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5801
unsigned long __sched
5802 5803
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5804
{
5805
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5806
}
5807
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5808

5809 5810 5811 5812 5813 5814 5815
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5816 5817 5818 5819 5820 5821 5822 5823 5824
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5871 5872
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5873
{
I
Ingo Molnar 已提交
5874 5875 5876 5877
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5878

5879
	__set_current_state(state);
L
Linus Torvalds 已提交
5880

5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5895 5896 5897
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5898
long __sched
I
Ingo Molnar 已提交
5899
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5900
{
5901
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5902 5903 5904
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5905
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5906
{
5907
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5908 5909 5910
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5911
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5912
{
5913
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5914 5915 5916
}
EXPORT_SYMBOL(sleep_on_timeout);

5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5929
void rt_mutex_setprio(struct task_struct *p, int prio)
5930 5931
{
	unsigned long flags;
5932
	int oldprio, on_rq, running;
5933
	struct rq *rq;
5934
	const struct sched_class *prev_class = p->sched_class;
5935 5936 5937 5938

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5939
	update_rq_clock(rq);
5940

5941
	oldprio = p->prio;
I
Ingo Molnar 已提交
5942
	on_rq = p->se.on_rq;
5943
	running = task_current(rq, p);
5944
	if (on_rq)
5945
		dequeue_task(rq, p, 0);
5946 5947
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5948 5949 5950 5951 5952 5953

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5954 5955
	p->prio = prio;

5956 5957
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5958
	if (on_rq) {
5959
		enqueue_task(rq, p, 0);
5960 5961

		check_class_changed(rq, p, prev_class, oldprio, running);
5962 5963 5964 5965 5966 5967
	}
	task_rq_unlock(rq, &flags);
}

#endif

5968
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5969
{
I
Ingo Molnar 已提交
5970
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5971
	unsigned long flags;
5972
	struct rq *rq;
L
Linus Torvalds 已提交
5973 5974 5975 5976 5977 5978 5979 5980

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5981
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5982 5983 5984 5985
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5986
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5987
	 */
5988
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5989 5990 5991
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5992
	on_rq = p->se.on_rq;
5993
	if (on_rq)
5994
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5995 5996

	p->static_prio = NICE_TO_PRIO(nice);
5997
	set_load_weight(p);
5998 5999 6000
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6001

I
Ingo Molnar 已提交
6002
	if (on_rq) {
6003
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6004
		/*
6005 6006
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6007
		 */
6008
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6009 6010 6011 6012 6013 6014 6015
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6016 6017 6018 6019 6020
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6021
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6022
{
6023 6024
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6025

M
Matt Mackall 已提交
6026 6027 6028 6029
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6030 6031 6032 6033 6034 6035 6036 6037 6038
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6039
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6040
{
6041
	long nice, retval;
L
Linus Torvalds 已提交
6042 6043 6044 6045 6046 6047

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6048 6049
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6050 6051 6052
	if (increment > 40)
		increment = 40;

6053
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6054 6055 6056 6057 6058
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6059 6060 6061
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6080
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6081 6082 6083 6084 6085 6086 6087 6088
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6089
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6090 6091 6092
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6093
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6108
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6109 6110 6111 6112 6113 6114 6115 6116
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6117
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6118
{
6119
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6120 6121 6122
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6123 6124
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6125
{
I
Ingo Molnar 已提交
6126
	BUG_ON(p->se.on_rq);
6127

L
Linus Torvalds 已提交
6128
	p->policy = policy;
I
Ingo Molnar 已提交
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6141
	p->rt_priority = prio;
6142 6143 6144
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6145
	set_load_weight(p);
L
Linus Torvalds 已提交
6146 6147
}

6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6164 6165
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6166
{
6167
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6168
	unsigned long flags;
6169
	const struct sched_class *prev_class = p->sched_class;
6170
	struct rq *rq;
6171
	int reset_on_fork;
L
Linus Torvalds 已提交
6172

6173 6174
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6175 6176
recheck:
	/* double check policy once rq lock held */
6177 6178
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6179
		policy = oldpolicy = p->policy;
6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6190 6191
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6192 6193
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6194 6195
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6196
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6197
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6198
		return -EINVAL;
6199
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6200 6201
		return -EINVAL;

6202 6203 6204
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6205
	if (user && !capable(CAP_SYS_NICE)) {
6206
		if (rt_policy(policy)) {
6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6223 6224 6225 6226 6227 6228
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6229

6230
		/* can't change other user's priorities */
6231
		if (!check_same_owner(p))
6232
			return -EPERM;
6233 6234 6235 6236

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6237
	}
L
Linus Torvalds 已提交
6238

6239
	if (user) {
6240
#ifdef CONFIG_RT_GROUP_SCHED
6241 6242 6243 6244
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6245 6246
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6247
			return -EPERM;
6248 6249
#endif

6250 6251 6252 6253 6254
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6255 6256 6257 6258 6259
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6260 6261 6262 6263
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6264
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6265 6266 6267
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6268 6269
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6270 6271
		goto recheck;
	}
I
Ingo Molnar 已提交
6272
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6273
	on_rq = p->se.on_rq;
6274
	running = task_current(rq, p);
6275
	if (on_rq)
6276
		deactivate_task(rq, p, 0);
6277 6278
	if (running)
		p->sched_class->put_prev_task(rq, p);
6279

6280 6281
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6282
	oldprio = p->prio;
I
Ingo Molnar 已提交
6283
	__setscheduler(rq, p, policy, param->sched_priority);
6284

6285 6286
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6287 6288
	if (on_rq) {
		activate_task(rq, p, 0);
6289 6290

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6291
	}
6292 6293 6294
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6295 6296
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6297 6298
	return 0;
}
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6313 6314
EXPORT_SYMBOL_GPL(sched_setscheduler);

6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6332 6333
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6334 6335 6336
{
	struct sched_param lparam;
	struct task_struct *p;
6337
	int retval;
L
Linus Torvalds 已提交
6338 6339 6340 6341 6342

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6343 6344 6345

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6346
	p = find_process_by_pid(pid);
6347 6348 6349
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6350

L
Linus Torvalds 已提交
6351 6352 6353 6354 6355 6356 6357 6358 6359
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6360 6361
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6362
{
6363 6364 6365 6366
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6367 6368 6369 6370 6371 6372 6373 6374
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6375
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6376 6377 6378 6379 6380 6381 6382 6383
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6384
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6385
{
6386
	struct task_struct *p;
6387
	int retval;
L
Linus Torvalds 已提交
6388 6389

	if (pid < 0)
6390
		return -EINVAL;
L
Linus Torvalds 已提交
6391 6392 6393 6394 6395 6396 6397

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6398 6399
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6400 6401 6402 6403 6404 6405
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6406
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6407 6408 6409
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6410
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6411 6412
{
	struct sched_param lp;
6413
	struct task_struct *p;
6414
	int retval;
L
Linus Torvalds 已提交
6415 6416

	if (!param || pid < 0)
6417
		return -EINVAL;
L
Linus Torvalds 已提交
6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6444
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6445
{
6446
	cpumask_var_t cpus_allowed, new_mask;
6447 6448
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6449

6450
	get_online_cpus();
L
Linus Torvalds 已提交
6451 6452 6453 6454 6455
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6456
		put_online_cpus();
L
Linus Torvalds 已提交
6457 6458 6459 6460 6461
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6462
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6463 6464 6465 6466 6467
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6468 6469 6470 6471 6472 6473 6474 6475
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6476
	retval = -EPERM;
6477
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6478 6479
		goto out_unlock;

6480 6481 6482 6483
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6484 6485
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6486
 again:
6487
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6488

P
Paul Menage 已提交
6489
	if (!retval) {
6490 6491
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6492 6493 6494 6495 6496
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6497
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6498 6499 6500
			goto again;
		}
	}
L
Linus Torvalds 已提交
6501
out_unlock:
6502 6503 6504 6505
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6506
	put_task_struct(p);
6507
	put_online_cpus();
L
Linus Torvalds 已提交
6508 6509 6510 6511
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6512
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6513
{
6514 6515 6516 6517 6518
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6519 6520 6521 6522 6523 6524 6525 6526 6527
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6528 6529
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6530
{
6531
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6532 6533
	int retval;

6534 6535
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6536

6537 6538 6539 6540 6541
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6542 6543
}

6544
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6545
{
6546
	struct task_struct *p;
L
Linus Torvalds 已提交
6547 6548
	int retval;

6549
	get_online_cpus();
L
Linus Torvalds 已提交
6550 6551 6552 6553 6554 6555 6556
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6557 6558 6559 6560
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6561
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6562 6563 6564

out_unlock:
	read_unlock(&tasklist_lock);
6565
	put_online_cpus();
L
Linus Torvalds 已提交
6566

6567
	return retval;
L
Linus Torvalds 已提交
6568 6569 6570 6571 6572 6573 6574 6575
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6576 6577
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6578 6579
{
	int ret;
6580
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6581

6582
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6583 6584
		return -EINVAL;

6585 6586
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6587

6588 6589 6590 6591 6592 6593 6594 6595
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6596

6597
	return ret;
L
Linus Torvalds 已提交
6598 6599 6600 6601 6602
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6603 6604
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6605
 */
6606
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6607
{
6608
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6609

6610
	schedstat_inc(rq, yld_count);
6611
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6612 6613 6614 6615 6616 6617

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6618
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6619 6620 6621 6622 6623 6624 6625 6626
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6627 6628 6629 6630 6631
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6632
static void __cond_resched(void)
L
Linus Torvalds 已提交
6633
{
6634 6635 6636
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6637 6638
}

6639
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6640
{
P
Peter Zijlstra 已提交
6641
	if (should_resched()) {
L
Linus Torvalds 已提交
6642 6643 6644 6645 6646
		__cond_resched();
		return 1;
	}
	return 0;
}
6647
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6648 6649

/*
6650
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6651 6652
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6653
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6654 6655 6656
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6657
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6658
{
P
Peter Zijlstra 已提交
6659
	int resched = should_resched();
J
Jan Kara 已提交
6660 6661
	int ret = 0;

6662 6663
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
6664
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6665
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6666
		if (resched)
N
Nick Piggin 已提交
6667 6668 6669
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6670
		ret = 1;
L
Linus Torvalds 已提交
6671 6672
		spin_lock(lock);
	}
J
Jan Kara 已提交
6673
	return ret;
L
Linus Torvalds 已提交
6674
}
6675
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6676

6677
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6678 6679 6680
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6681
	if (should_resched()) {
6682
		local_bh_enable();
L
Linus Torvalds 已提交
6683 6684 6685 6686 6687 6688
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6689
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6690 6691 6692 6693

/**
 * yield - yield the current processor to other threads.
 *
6694
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6705
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6706 6707 6708 6709 6710 6711 6712
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6713
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6714

6715
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6716
	atomic_inc(&rq->nr_iowait);
6717
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6718
	schedule();
6719
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6720
	atomic_dec(&rq->nr_iowait);
6721
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6722 6723 6724 6725 6726
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6727
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6728 6729
	long ret;

6730
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6731
	atomic_inc(&rq->nr_iowait);
6732
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6733
	ret = schedule_timeout(timeout);
6734
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6735
	atomic_dec(&rq->nr_iowait);
6736
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6737 6738 6739 6740 6741 6742 6743 6744 6745 6746
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6747
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6748 6749 6750 6751 6752 6753 6754 6755 6756
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6757
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6758
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6772
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6773 6774 6775 6776 6777 6778 6779 6780 6781
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6782
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6783
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6797
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6798
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6799
{
6800
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6801
	unsigned int time_slice;
6802
	int retval;
L
Linus Torvalds 已提交
6803 6804 6805
	struct timespec t;

	if (pid < 0)
6806
		return -EINVAL;
L
Linus Torvalds 已提交
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6818 6819 6820 6821 6822 6823
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6824
		time_slice = DEF_TIMESLICE;
6825
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6826 6827 6828 6829 6830
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6831 6832
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6833 6834
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6835
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6836
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6837 6838
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6839

L
Linus Torvalds 已提交
6840 6841 6842 6843 6844
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6845
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6846

6847
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6848 6849
{
	unsigned long free = 0;
6850
	unsigned state;
L
Linus Torvalds 已提交
6851 6852

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6853
	printk(KERN_INFO "%-13.13s %c", p->comm,
6854
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6855
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6856
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6857
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6858
	else
I
Ingo Molnar 已提交
6859
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6860 6861
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6862
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6863
	else
I
Ingo Molnar 已提交
6864
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6865 6866
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6867
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6868
#endif
6869 6870 6871
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6872

6873
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6874 6875
}

I
Ingo Molnar 已提交
6876
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6877
{
6878
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6879

6880 6881 6882
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6883
#else
6884 6885
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6886 6887 6888 6889 6890 6891 6892 6893
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6894
		if (!state_filter || (p->state & state_filter))
6895
			sched_show_task(p);
L
Linus Torvalds 已提交
6896 6897
	} while_each_thread(g, p);

6898 6899
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6900 6901 6902
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6903
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6904 6905 6906 6907 6908
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6909 6910
}

I
Ingo Molnar 已提交
6911 6912
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6913
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6914 6915
}

6916 6917 6918 6919 6920 6921 6922 6923
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6924
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6925
{
6926
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6927 6928
	unsigned long flags;

6929 6930
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6931 6932 6933
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6934
	idle->prio = idle->normal_prio = MAX_PRIO;
6935
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6936
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6937 6938

	rq->curr = rq->idle = idle;
6939 6940 6941
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6942 6943 6944
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6945 6946 6947
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6948
	task_thread_info(idle)->preempt_count = 0;
6949
#endif
I
Ingo Molnar 已提交
6950 6951 6952 6953
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6954
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6955 6956 6957 6958 6959 6960 6961
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6962
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6963
 */
6964
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6965

I
Ingo Molnar 已提交
6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6989 6990

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6991 6992
}

L
Linus Torvalds 已提交
6993 6994 6995 6996
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6997
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7016
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7017 7018
 * call is not atomic; no spinlocks may be held.
 */
7019
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7020
{
7021
	struct migration_req req;
L
Linus Torvalds 已提交
7022
	unsigned long flags;
7023
	struct rq *rq;
7024
	int ret = 0;
L
Linus Torvalds 已提交
7025 7026

	rq = task_rq_lock(p, &flags);
7027
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
7028 7029 7030 7031
		ret = -EINVAL;
		goto out;
	}

7032
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7033
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7034 7035 7036 7037
		ret = -EINVAL;
		goto out;
	}

7038
	if (p->sched_class->set_cpus_allowed)
7039
		p->sched_class->set_cpus_allowed(p, new_mask);
7040
	else {
7041 7042
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7043 7044
	}

L
Linus Torvalds 已提交
7045
	/* Can the task run on the task's current CPU? If so, we're done */
7046
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7047 7048
		goto out;

R
Rusty Russell 已提交
7049
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7050
		/* Need help from migration thread: drop lock and wait. */
7051 7052 7053
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7054 7055
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7056
		put_task_struct(mt);
L
Linus Torvalds 已提交
7057 7058 7059 7060 7061 7062
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7063

L
Linus Torvalds 已提交
7064 7065
	return ret;
}
7066
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7067 7068

/*
I
Ingo Molnar 已提交
7069
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7070 7071 7072 7073 7074 7075
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7076 7077
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7078
 */
7079
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7080
{
7081
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7082
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7083

7084
	if (unlikely(!cpu_active(dest_cpu)))
7085
		return ret;
L
Linus Torvalds 已提交
7086 7087 7088 7089 7090 7091 7092

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7093
		goto done;
L
Linus Torvalds 已提交
7094
	/* Affinity changed (again). */
7095
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7096
		goto fail;
L
Linus Torvalds 已提交
7097

I
Ingo Molnar 已提交
7098
	on_rq = p->se.on_rq;
7099
	if (on_rq)
7100
		deactivate_task(rq_src, p, 0);
7101

L
Linus Torvalds 已提交
7102
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7103 7104
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7105
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7106
	}
L
Linus Torvalds 已提交
7107
done:
7108
	ret = 1;
L
Linus Torvalds 已提交
7109
fail:
L
Linus Torvalds 已提交
7110
	double_rq_unlock(rq_src, rq_dest);
7111
	return ret;
L
Linus Torvalds 已提交
7112 7113
}

7114 7115 7116 7117 7118
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
7119 7120 7121 7122 7123
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7124
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7125
{
7126
	int badcpu;
L
Linus Torvalds 已提交
7127
	int cpu = (long)data;
7128
	struct rq *rq;
L
Linus Torvalds 已提交
7129 7130 7131 7132 7133 7134

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7135
		struct migration_req *req;
L
Linus Torvalds 已提交
7136 7137 7138 7139 7140 7141
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7142
			break;
L
Linus Torvalds 已提交
7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7158
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7159 7160
		list_del_init(head->next);

7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
		if (req->task != NULL) {
			spin_unlock(&rq->lock);
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
			spin_unlock(&rq->lock);
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
			spin_unlock(&rq->lock);
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
7172
		local_irq_enable();
L
Linus Torvalds 已提交
7173 7174 7175 7176 7177 7178 7179 7180 7181

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7193
/*
7194
 * Figure out where task on dead CPU should go, use force if necessary.
7195
 */
7196
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7197
{
7198
	int dest_cpu;
7199
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7216

7217 7218 7219 7220 7221 7222 7223 7224 7225
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7226
		}
7227 7228 7229 7230 7231 7232
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7233 7234 7235 7236 7237 7238 7239 7240 7241
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7242
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7243
{
R
Rusty Russell 已提交
7244
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7258
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7259

7260
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7261

7262 7263
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7264 7265
			continue;

7266 7267 7268
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7269

7270
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7271 7272
}

I
Ingo Molnar 已提交
7273 7274
/*
 * Schedules idle task to be the next runnable task on current CPU.
7275 7276
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7277 7278 7279
 */
void sched_idle_next(void)
{
7280
	int this_cpu = smp_processor_id();
7281
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7282 7283 7284 7285
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7286
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7287

7288 7289 7290
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7291 7292 7293
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7294
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7295

7296 7297
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7298 7299 7300 7301

	spin_unlock_irqrestore(&rq->lock, flags);
}

7302 7303
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7317
/* called under rq->lock with disabled interrupts */
7318
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7319
{
7320
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7321 7322

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7323
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7324 7325

	/* Cannot have done final schedule yet: would have vanished. */
7326
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7327

7328
	get_task_struct(p);
L
Linus Torvalds 已提交
7329 7330 7331

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7332
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7333 7334
	 * fine.
	 */
7335
	spin_unlock_irq(&rq->lock);
7336
	move_task_off_dead_cpu(dead_cpu, p);
7337
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7338

7339
	put_task_struct(p);
L
Linus Torvalds 已提交
7340 7341 7342 7343 7344
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7345
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7346
	struct task_struct *next;
7347

I
Ingo Molnar 已提交
7348 7349 7350
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7351
		update_rq_clock(rq);
7352
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7353 7354
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7355
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7356
		migrate_dead(dead_cpu, next);
7357

L
Linus Torvalds 已提交
7358 7359
	}
}
7360 7361 7362 7363 7364 7365 7366

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7367
	rq->calc_load_active = 0;
7368
}
L
Linus Torvalds 已提交
7369 7370
#endif /* CONFIG_HOTPLUG_CPU */

7371 7372 7373
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7374 7375
	{
		.procname	= "sched_domain",
7376
		.mode		= 0555,
7377
	},
I
Ingo Molnar 已提交
7378
	{0, },
7379 7380 7381
};

static struct ctl_table sd_ctl_root[] = {
7382
	{
7383
		.ctl_name	= CTL_KERN,
7384
		.procname	= "kernel",
7385
		.mode		= 0555,
7386 7387
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7388
	{0, },
7389 7390 7391 7392 7393
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7394
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7395 7396 7397 7398

	return entry;
}

7399 7400
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7401
	struct ctl_table *entry;
7402

7403 7404 7405
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7406
	 * will always be set. In the lowest directory the names are
7407 7408 7409
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7410 7411
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7412 7413 7414
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7415 7416 7417 7418 7419

	kfree(*tablep);
	*tablep = NULL;
}

7420
static void
7421
set_table_entry(struct ctl_table *entry,
7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7435
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7436

7437 7438 7439
	if (table == NULL)
		return NULL;

7440
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7441
		sizeof(long), 0644, proc_doulongvec_minmax);
7442
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7443
		sizeof(long), 0644, proc_doulongvec_minmax);
7444
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7445
		sizeof(int), 0644, proc_dointvec_minmax);
7446
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7447
		sizeof(int), 0644, proc_dointvec_minmax);
7448
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7449
		sizeof(int), 0644, proc_dointvec_minmax);
7450
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7451
		sizeof(int), 0644, proc_dointvec_minmax);
7452
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7453
		sizeof(int), 0644, proc_dointvec_minmax);
7454
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7455
		sizeof(int), 0644, proc_dointvec_minmax);
7456
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7457
		sizeof(int), 0644, proc_dointvec_minmax);
7458
	set_table_entry(&table[9], "cache_nice_tries",
7459 7460
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7461
	set_table_entry(&table[10], "flags", &sd->flags,
7462
		sizeof(int), 0644, proc_dointvec_minmax);
7463 7464 7465
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7466 7467 7468 7469

	return table;
}

7470
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7471 7472 7473 7474 7475 7476 7477 7478 7479
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7480 7481
	if (table == NULL)
		return NULL;
7482 7483 7484 7485 7486

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7487
		entry->mode = 0555;
7488 7489 7490 7491 7492 7493 7494 7495
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7496
static void register_sched_domain_sysctl(void)
7497 7498 7499 7500 7501
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7502 7503 7504
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7505 7506 7507
	if (entry == NULL)
		return;

7508
	for_each_online_cpu(i) {
7509 7510
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7511
		entry->mode = 0555;
7512
		entry->child = sd_alloc_ctl_cpu_table(i);
7513
		entry++;
7514
	}
7515 7516

	WARN_ON(sd_sysctl_header);
7517 7518
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7519

7520
/* may be called multiple times per register */
7521 7522
static void unregister_sched_domain_sysctl(void)
{
7523 7524
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7525
	sd_sysctl_header = NULL;
7526 7527
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7528
}
7529
#else
7530 7531 7532 7533
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7534 7535 7536 7537
{
}
#endif

7538 7539 7540 7541 7542
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7543
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7563
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7564 7565 7566 7567
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7568 7569 7570 7571
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7572 7573
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7574 7575
{
	struct task_struct *p;
7576
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7577
	unsigned long flags;
7578
	struct rq *rq;
L
Linus Torvalds 已提交
7579 7580

	switch (action) {
7581

L
Linus Torvalds 已提交
7582
	case CPU_UP_PREPARE:
7583
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7584
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7585 7586 7587 7588 7589
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7590
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7591
		task_rq_unlock(rq, &flags);
7592
		get_task_struct(p);
L
Linus Torvalds 已提交
7593
		cpu_rq(cpu)->migration_thread = p;
7594
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7595
		break;
7596

L
Linus Torvalds 已提交
7597
	case CPU_ONLINE:
7598
	case CPU_ONLINE_FROZEN:
7599
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7600
		wake_up_process(cpu_rq(cpu)->migration_thread);
7601 7602 7603 7604 7605

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7606
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7607 7608

			set_rq_online(rq);
7609 7610
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7611
		break;
7612

L
Linus Torvalds 已提交
7613 7614
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7615
	case CPU_UP_CANCELED_FROZEN:
7616 7617
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7618
		/* Unbind it from offline cpu so it can run. Fall thru. */
7619
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7620
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7621
		kthread_stop(cpu_rq(cpu)->migration_thread);
7622
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7623 7624
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7625

L
Linus Torvalds 已提交
7626
	case CPU_DEAD:
7627
	case CPU_DEAD_FROZEN:
7628
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7629 7630 7631
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7632
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7633 7634
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7635
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7636
		update_rq_clock(rq);
7637
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7638
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7639 7640
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7641
		migrate_dead_tasks(cpu);
7642
		spin_unlock_irq(&rq->lock);
7643
		cpuset_unlock();
L
Linus Torvalds 已提交
7644 7645
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7646
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7647 7648 7649 7650 7651
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7652 7653
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7654 7655
			struct migration_req *req;

L
Linus Torvalds 已提交
7656
			req = list_entry(rq->migration_queue.next,
7657
					 struct migration_req, list);
L
Linus Torvalds 已提交
7658
			list_del_init(&req->list);
B
Brian King 已提交
7659
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7660
			complete(&req->done);
B
Brian King 已提交
7661
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7662 7663 7664
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7665

7666 7667
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7668 7669 7670 7671
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7672
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7673
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7674 7675 7676
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7677 7678 7679 7680 7681
#endif
	}
	return NOTIFY_OK;
}

7682 7683 7684 7685
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
 * the notifier in the perf_counter subsystem, though.
L
Linus Torvalds 已提交
7686
 */
7687
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7688 7689 7690 7691
	.notifier_call = migration_call,
	.priority = 10
};

7692
static int __init migration_init(void)
L
Linus Torvalds 已提交
7693 7694
{
	void *cpu = (void *)(long)smp_processor_id();
7695
	int err;
7696 7697

	/* Start one for the boot CPU: */
7698 7699
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7700 7701
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7702

7703
	return 0;
L
Linus Torvalds 已提交
7704
}
7705
early_initcall(migration_init);
L
Linus Torvalds 已提交
7706 7707 7708
#endif

#ifdef CONFIG_SMP
7709

7710
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7711

7712
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7713
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7714
{
I
Ingo Molnar 已提交
7715
	struct sched_group *group = sd->groups;
7716
	char str[256];
L
Linus Torvalds 已提交
7717

R
Rusty Russell 已提交
7718
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7719
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7720 7721 7722 7723 7724 7725 7726 7727 7728

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7729 7730
	}

7731
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7732

7733
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7734 7735 7736
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7737
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7738 7739 7740
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7741

I
Ingo Molnar 已提交
7742
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7743
	do {
I
Ingo Molnar 已提交
7744 7745 7746
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7747 7748 7749
			break;
		}

7750
		if (!group->cpu_power) {
I
Ingo Molnar 已提交
7751 7752 7753 7754 7755
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7756

7757
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7758 7759 7760 7761
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7762

7763
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7764 7765 7766 7767
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7768

7769
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7770

R
Rusty Russell 已提交
7771
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7772 7773

		printk(KERN_CONT " %s", str);
7774 7775 7776
		if (group->cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
7777
		}
L
Linus Torvalds 已提交
7778

I
Ingo Molnar 已提交
7779 7780 7781
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7782

7783
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7784
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7785

7786 7787
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7788 7789 7790 7791
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7792

I
Ingo Molnar 已提交
7793 7794
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7795
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7796
	int level = 0;
L
Linus Torvalds 已提交
7797

I
Ingo Molnar 已提交
7798 7799 7800 7801
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7802

I
Ingo Molnar 已提交
7803 7804
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7805
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7806 7807 7808 7809
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7810
	for (;;) {
7811
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7812
			break;
L
Linus Torvalds 已提交
7813 7814
		level++;
		sd = sd->parent;
7815
		if (!sd)
I
Ingo Molnar 已提交
7816 7817
			break;
	}
7818
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7819
}
7820
#else /* !CONFIG_SCHED_DEBUG */
7821
# define sched_domain_debug(sd, cpu) do { } while (0)
7822
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7823

7824
static int sd_degenerate(struct sched_domain *sd)
7825
{
7826
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7827 7828 7829 7830 7831 7832
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7833 7834 7835
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7836 7837 7838 7839 7840
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
7841
	if (sd->flags & (SD_WAKE_AFFINE))
7842 7843 7844 7845 7846
		return 0;

	return 1;
}

7847 7848
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7849 7850 7851 7852 7853 7854
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7855
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7856 7857 7858 7859 7860 7861 7862
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7863 7864 7865
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7866 7867
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7868 7869 7870 7871 7872 7873 7874
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7875 7876
static void free_rootdomain(struct root_domain *rd)
{
7877 7878
	cpupri_cleanup(&rd->cpupri);

7879 7880 7881 7882 7883 7884
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7885 7886
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7887
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7888 7889 7890 7891 7892
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7893
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7894

7895
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7896
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7897

7898
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7899

I
Ingo Molnar 已提交
7900 7901 7902 7903 7904 7905 7906
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7907 7908 7909 7910 7911
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7912
	cpumask_set_cpu(rq->cpu, rd->span);
7913
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7914
		set_rq_online(rq);
G
Gregory Haskins 已提交
7915 7916

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7917 7918 7919

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7920 7921
}

L
Li Zefan 已提交
7922
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7923
{
7924 7925
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7926 7927
	memset(rd, 0, sizeof(*rd));

7928 7929
	if (bootmem)
		gfp = GFP_NOWAIT;
7930

7931
	if (!alloc_cpumask_var(&rd->span, gfp))
7932
		goto out;
7933
	if (!alloc_cpumask_var(&rd->online, gfp))
7934
		goto free_span;
7935
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7936
		goto free_online;
7937

P
Pekka Enberg 已提交
7938
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7939
		goto free_rto_mask;
7940
	return 0;
7941

7942 7943
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7944 7945 7946 7947
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7948
out:
7949
	return -ENOMEM;
G
Gregory Haskins 已提交
7950 7951 7952 7953
}

static void init_defrootdomain(void)
{
7954 7955
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7956 7957 7958
	atomic_set(&def_root_domain.refcount, 1);
}

7959
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7960 7961 7962 7963 7964 7965 7966
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7967 7968 7969 7970
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7971 7972 7973 7974

	return rd;
}

L
Linus Torvalds 已提交
7975
/*
I
Ingo Molnar 已提交
7976
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7977 7978
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7979 7980
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7981
{
7982
	struct rq *rq = cpu_rq(cpu);
7983 7984 7985
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7986
	for (tmp = sd; tmp; ) {
7987 7988 7989
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7990

7991
		if (sd_parent_degenerate(tmp, parent)) {
7992
			tmp->parent = parent->parent;
7993 7994
			if (parent->parent)
				parent->parent->child = tmp;
7995 7996
		} else
			tmp = tmp->parent;
7997 7998
	}

7999
	if (sd && sd_degenerate(sd)) {
8000
		sd = sd->parent;
8001 8002 8003
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8004 8005 8006

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8007
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8008
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8009 8010 8011
}

/* cpus with isolated domains */
8012
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8013 8014 8015 8016

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8017
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8018 8019 8020
	return 1;
}

I
Ingo Molnar 已提交
8021
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8022 8023

/*
8024 8025
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8026 8027
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8028 8029 8030 8031 8032
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8033
static void
8034 8035 8036
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8037
					struct sched_group **sg,
8038 8039
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8040 8041 8042 8043
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8044
	cpumask_clear(covered);
8045

8046
	for_each_cpu(i, span) {
8047
		struct sched_group *sg;
8048
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8049 8050
		int j;

8051
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8052 8053
			continue;

8054
		cpumask_clear(sched_group_cpus(sg));
8055
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8056

8057
		for_each_cpu(j, span) {
8058
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8059 8060
				continue;

8061
			cpumask_set_cpu(j, covered);
8062
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8063 8064 8065 8066 8067 8068 8069 8070 8071 8072
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8073
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8074

8075
#ifdef CONFIG_NUMA
8076

8077 8078 8079 8080 8081
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8082
 * Find the next node to include in a given scheduling domain. Simply
8083 8084 8085 8086
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8087
static int find_next_best_node(int node, nodemask_t *used_nodes)
8088 8089 8090 8091 8092
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8093
	for (i = 0; i < nr_node_ids; i++) {
8094
		/* Start at @node */
8095
		n = (node + i) % nr_node_ids;
8096 8097 8098 8099 8100

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8101
		if (node_isset(n, *used_nodes))
8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8113
	node_set(best_node, *used_nodes);
8114 8115 8116 8117 8118 8119
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8120
 * @span: resulting cpumask
8121
 *
I
Ingo Molnar 已提交
8122
 * Given a node, construct a good cpumask for its sched_domain to span. It
8123 8124 8125
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8126
static void sched_domain_node_span(int node, struct cpumask *span)
8127
{
8128
	nodemask_t used_nodes;
8129
	int i;
8130

8131
	cpumask_clear(span);
8132
	nodes_clear(used_nodes);
8133

8134
	cpumask_or(span, span, cpumask_of_node(node));
8135
	node_set(node, used_nodes);
8136 8137

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8138
		int next_node = find_next_best_node(node, &used_nodes);
8139

8140
		cpumask_or(span, span, cpumask_of_node(next_node));
8141 8142
	}
}
8143
#endif /* CONFIG_NUMA */
8144

8145
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8146

8147 8148
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8149 8150 8151
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8196
/*
8197
 * SMT sched-domains:
8198
 */
L
Linus Torvalds 已提交
8199
#ifdef CONFIG_SCHED_SMT
8200 8201
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8202

I
Ingo Molnar 已提交
8203
static int
8204 8205
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8206
{
8207
	if (sg)
8208
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8209 8210
	return cpu;
}
8211
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8212

8213 8214 8215
/*
 * multi-core sched-domains:
 */
8216
#ifdef CONFIG_SCHED_MC
8217 8218
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8219
#endif /* CONFIG_SCHED_MC */
8220 8221

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8222
static int
8223 8224
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8225
{
8226
	int group;
8227

8228
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8229
	group = cpumask_first(mask);
8230
	if (sg)
8231
		*sg = &per_cpu(sched_group_core, group).sg;
8232
	return group;
8233 8234
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8235
static int
8236 8237
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8238
{
8239
	if (sg)
8240
		*sg = &per_cpu(sched_group_core, cpu).sg;
8241 8242 8243 8244
	return cpu;
}
#endif

8245 8246
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8247

I
Ingo Molnar 已提交
8248
static int
8249 8250
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8251
{
8252
	int group;
8253
#ifdef CONFIG_SCHED_MC
8254
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8255
	group = cpumask_first(mask);
8256
#elif defined(CONFIG_SCHED_SMT)
8257
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8258
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8259
#else
8260
	group = cpu;
L
Linus Torvalds 已提交
8261
#endif
8262
	if (sg)
8263
		*sg = &per_cpu(sched_group_phys, group).sg;
8264
	return group;
L
Linus Torvalds 已提交
8265 8266 8267 8268
}

#ifdef CONFIG_NUMA
/*
8269 8270 8271
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8272
 */
8273
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8274
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8275

8276
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8277
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8278

8279 8280 8281
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8282
{
8283 8284
	int group;

8285
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8286
	group = cpumask_first(nodemask);
8287 8288

	if (sg)
8289
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8290
	return group;
L
Linus Torvalds 已提交
8291
}
8292

8293 8294 8295 8296 8297 8298 8299
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8300
	do {
8301
		for_each_cpu(j, sched_group_cpus(sg)) {
8302
			struct sched_domain *sd;
8303

8304
			sd = &per_cpu(phys_domains, j).sd;
8305
			if (j != group_first_cpu(sd->groups)) {
8306 8307 8308 8309 8310 8311
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8312

8313
			sg->cpu_power += sd->groups->cpu_power;
8314 8315 8316
		}
		sg = sg->next;
	} while (sg != group_head);
8317
}
8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8350
	sg->cpu_power = 0;
8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
8373
		sg->cpu_power = 0;
8374 8375 8376 8377 8378 8379 8380 8381 8382
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8383
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8384

8385
#ifdef CONFIG_NUMA
8386
/* Free memory allocated for various sched_group structures */
8387 8388
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8389
{
8390
	int cpu, i;
8391

8392
	for_each_cpu(cpu, cpu_map) {
8393 8394 8395 8396 8397 8398
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8399
		for (i = 0; i < nr_node_ids; i++) {
8400 8401
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8402
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8403
			if (cpumask_empty(nodemask))
8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8420
#else /* !CONFIG_NUMA */
8421 8422
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8423 8424
{
}
8425
#endif /* CONFIG_NUMA */
8426

8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8441 8442
	long power;
	int weight;
8443 8444 8445

	WARN_ON(!sd || !sd->groups);

8446
	if (cpu != group_first_cpu(sd->groups))
8447 8448 8449 8450
		return;

	child = sd->child;

8451
	sd->groups->cpu_power = 0;
8452

8453 8454 8455 8456 8457
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8458 8459 8460
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8461
		 */
P
Peter Zijlstra 已提交
8462 8463
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8464
			power /= weight;
P
Peter Zijlstra 已提交
8465 8466
			power >>= SCHED_LOAD_SHIFT;
		}
8467
		sd->groups->cpu_power += power;
8468 8469 8470 8471
		return;
	}

	/*
8472
	 * Add cpu_power of each child group to this groups cpu_power.
8473 8474 8475
	 */
	group = child->groups;
	do {
8476
		sd->groups->cpu_power += group->cpu_power;
8477 8478 8479 8480
		group = group->next;
	} while (group != child->groups);
}

8481 8482 8483 8484 8485
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8486 8487 8488 8489 8490 8491
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8492
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8493

8494 8495 8496 8497 8498
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8499
	sd->level = SD_LV_##type;				\
8500
	SD_INIT_NAME(sd, type);					\
8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8515 8516 8517 8518
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8519 8520 8521 8522 8523 8524
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
8543
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8544 8545
	} else {
		/* turn on idle balance on this domain */
8546
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8547 8548 8549
	}
}

8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8570
#ifdef CONFIG_NUMA
8571 8572 8573 8574 8575 8576 8577
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8578
#endif
8579 8580 8581 8582
	case sa_none:
		break;
	}
}
8583

8584 8585 8586
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8587
#ifdef CONFIG_NUMA
8588 8589 8590 8591 8592 8593 8594 8595 8596 8597
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
8598
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8599
		return sa_notcovered;
8600
	}
8601
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8602
#endif
8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
G
Gregory Haskins 已提交
8615
		printk(KERN_WARNING "Cannot alloc root domain\n");
8616
		return sa_tmpmask;
G
Gregory Haskins 已提交
8617
	}
8618 8619
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8620

8621 8622 8623 8624
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8625
#ifdef CONFIG_NUMA
8626
	struct sched_domain *parent;
L
Linus Torvalds 已提交
8627

8628 8629 8630 8631 8632
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8633
		set_domain_attribute(sd, attr);
8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8648
#endif
8649 8650
	return sd;
}
L
Linus Torvalds 已提交
8651

8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8667

8668 8669 8670 8671 8672
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8673
#ifdef CONFIG_SCHED_MC
8674 8675 8676 8677 8678 8679 8680
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8681
#endif
8682 8683
	return sd;
}
8684

8685 8686 8687 8688 8689
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8690
#ifdef CONFIG_SCHED_SMT
8691 8692 8693 8694 8695 8696 8697
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8698
#endif
8699 8700
	return sd;
}
L
Linus Torvalds 已提交
8701

8702 8703 8704 8705
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8706
#ifdef CONFIG_SCHED_SMT
8707 8708 8709 8710 8711 8712 8713 8714
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8715
#endif
8716
#ifdef CONFIG_SCHED_MC
8717 8718 8719 8720 8721 8722 8723
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8724
#endif
8725 8726 8727 8728 8729 8730 8731
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8732
#ifdef CONFIG_NUMA
8733 8734 8735 8736 8737
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8738 8739
	default:
		break;
8740
	}
8741
}
8742

8743 8744 8745 8746 8747 8748 8749 8750 8751
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8752
	struct sched_domain *sd;
8753
	int i;
8754
#ifdef CONFIG_NUMA
8755
	d.sd_allnodes = 0;
8756
#endif
8757

8758 8759 8760 8761
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8762

L
Linus Torvalds 已提交
8763
	/*
8764
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8765
	 */
8766
	for_each_cpu(i, cpu_map) {
8767 8768
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8769

8770
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8771
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8772
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8773
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8774
	}
8775

8776
	for_each_cpu(i, cpu_map) {
8777
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8778
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8779
	}
8780

L
Linus Torvalds 已提交
8781
	/* Set up physical groups */
8782 8783
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8784

L
Linus Torvalds 已提交
8785 8786
#ifdef CONFIG_NUMA
	/* Set up node groups */
8787 8788
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8789

8790 8791
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8792
			goto error;
L
Linus Torvalds 已提交
8793 8794 8795
#endif

	/* Calculate CPU power for physical packages and nodes */
8796
#ifdef CONFIG_SCHED_SMT
8797
	for_each_cpu(i, cpu_map) {
8798
		sd = &per_cpu(cpu_domains, i).sd;
8799
		init_sched_groups_power(i, sd);
8800
	}
L
Linus Torvalds 已提交
8801
#endif
8802
#ifdef CONFIG_SCHED_MC
8803
	for_each_cpu(i, cpu_map) {
8804
		sd = &per_cpu(core_domains, i).sd;
8805
		init_sched_groups_power(i, sd);
8806 8807
	}
#endif
8808

8809
	for_each_cpu(i, cpu_map) {
8810
		sd = &per_cpu(phys_domains, i).sd;
8811
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8812 8813
	}

8814
#ifdef CONFIG_NUMA
8815
	for (i = 0; i < nr_node_ids; i++)
8816
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8817

8818
	if (d.sd_allnodes) {
8819
		struct sched_group *sg;
8820

8821
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8822
								d.tmpmask);
8823 8824
		init_numa_sched_groups_power(sg);
	}
8825 8826
#endif

L
Linus Torvalds 已提交
8827
	/* Attach the domains */
8828
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8829
#ifdef CONFIG_SCHED_SMT
8830
		sd = &per_cpu(cpu_domains, i).sd;
8831
#elif defined(CONFIG_SCHED_MC)
8832
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8833
#else
8834
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8835
#endif
8836
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8837
	}
8838

8839 8840 8841
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8842 8843

error:
8844 8845
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8846
}
P
Paul Jackson 已提交
8847

8848
static int build_sched_domains(const struct cpumask *cpu_map)
8849 8850 8851 8852
{
	return __build_sched_domains(cpu_map, NULL);
}

8853
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8854
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8855 8856
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8857 8858 8859

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8860 8861
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8862
 */
8863
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8864

8865 8866 8867 8868 8869 8870
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8871
{
8872
	return 0;
8873 8874
}

8875
/*
I
Ingo Molnar 已提交
8876
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8877 8878
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8879
 */
8880
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8881
{
8882 8883
	int err;

8884
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8885
	ndoms_cur = 1;
8886
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8887
	if (!doms_cur)
8888
		doms_cur = fallback_doms;
8889
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8890
	dattr_cur = NULL;
8891
	err = build_sched_domains(doms_cur);
8892
	register_sched_domain_sysctl();
8893 8894

	return err;
8895 8896
}

8897 8898
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8899
{
8900
	free_sched_groups(cpu_map, tmpmask);
8901
}
L
Linus Torvalds 已提交
8902

8903 8904 8905 8906
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8907
static void detach_destroy_domains(const struct cpumask *cpu_map)
8908
{
8909 8910
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8911 8912
	int i;

8913
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8914
		cpu_attach_domain(NULL, &def_root_domain, i);
8915
	synchronize_sched();
8916
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8917 8918
}

8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8935 8936
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8937
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8938 8939 8940
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8941
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8942 8943 8944
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8945 8946 8947
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8948 8949
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8950 8951 8952 8953
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8954
 *
8955
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8956 8957
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8958
 *
P
Paul Jackson 已提交
8959 8960
 * Call with hotplug lock held
 */
8961 8962
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8963
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8964
{
8965
	int i, j, n;
8966
	int new_topology;
P
Paul Jackson 已提交
8967

8968
	mutex_lock(&sched_domains_mutex);
8969

8970 8971 8972
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8973 8974 8975
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8976
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8977 8978 8979

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8980
		for (j = 0; j < n && !new_topology; j++) {
8981
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8982
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8983 8984 8985 8986 8987 8988 8989 8990
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8991 8992
	if (doms_new == NULL) {
		ndoms_cur = 0;
8993
		doms_new = fallback_doms;
8994
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8995
		WARN_ON_ONCE(dattr_new);
8996 8997
	}

P
Paul Jackson 已提交
8998 8999
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9000
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9001
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
9002
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9003 9004 9005
				goto match2;
		}
		/* no match - add a new doms_new */
9006 9007
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9008 9009 9010 9011 9012
match2:
		;
	}

	/* Remember the new sched domains */
9013
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
9014
		kfree(doms_cur);
9015
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9016
	doms_cur = doms_new;
9017
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9018
	ndoms_cur = ndoms_new;
9019 9020

	register_sched_domain_sysctl();
9021

9022
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9023 9024
}

9025
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9026
static void arch_reinit_sched_domains(void)
9027
{
9028
	get_online_cpus();
9029 9030 9031 9032

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9033
	rebuild_sched_domains();
9034
	put_online_cpus();
9035 9036 9037 9038
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9039
	unsigned int level = 0;
9040

9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9052 9053 9054
		return -EINVAL;

	if (smt)
9055
		sched_smt_power_savings = level;
9056
	else
9057
		sched_mc_power_savings = level;
9058

9059
	arch_reinit_sched_domains();
9060

9061
	return count;
9062 9063 9064
}

#ifdef CONFIG_SCHED_MC
9065 9066
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9067 9068 9069
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9070
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9071
					    const char *buf, size_t count)
9072 9073 9074
{
	return sched_power_savings_store(buf, count, 0);
}
9075 9076 9077
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9078 9079 9080
#endif

#ifdef CONFIG_SCHED_SMT
9081 9082
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9083 9084 9085
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9086
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9087
					     const char *buf, size_t count)
9088 9089 9090
{
	return sched_power_savings_store(buf, count, 1);
}
9091 9092
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9093 9094 9095
		   sched_smt_power_savings_store);
#endif

9096
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9112
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9113

9114
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9115
/*
9116 9117
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9118 9119 9120
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9121 9122 9123 9124 9125 9126
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
9127
		partition_sched_domains(1, NULL, NULL);
9128 9129 9130 9131 9132 9133 9134 9135 9136 9137
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9138
{
P
Peter Zijlstra 已提交
9139 9140
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9141 9142
	switch (action) {
	case CPU_DOWN_PREPARE:
9143
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9144
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9145 9146 9147
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9148
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9149
	case CPU_ONLINE:
9150
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9151
		enable_runtime(cpu_rq(cpu));
9152 9153
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9154 9155 9156 9157 9158 9159 9160
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9161 9162 9163
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9164

9165 9166 9167 9168 9169
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9170
	get_online_cpus();
9171
	mutex_lock(&sched_domains_mutex);
9172 9173 9174 9175
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9176
	mutex_unlock(&sched_domains_mutex);
9177
	put_online_cpus();
9178 9179

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9180 9181
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9182 9183 9184 9185 9186
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9187
	init_hrtick();
9188 9189

	/* Move init over to a non-isolated CPU */
9190
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9191
		BUG();
I
Ingo Molnar 已提交
9192
	sched_init_granularity();
9193
	free_cpumask_var(non_isolated_cpus);
9194 9195

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9196
	init_sched_rt_class();
L
Linus Torvalds 已提交
9197 9198 9199 9200
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9201
	sched_init_granularity();
L
Linus Torvalds 已提交
9202 9203 9204
}
#endif /* CONFIG_SMP */

9205 9206
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9207 9208 9209 9210 9211 9212 9213
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9214
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9215 9216
{
	cfs_rq->tasks_timeline = RB_ROOT;
9217
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9218 9219 9220
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9221
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9222 9223
}

P
Peter Zijlstra 已提交
9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9237
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9238
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9239
#ifdef CONFIG_SMP
9240
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9241 9242
#endif
#endif
P
Peter Zijlstra 已提交
9243 9244 9245
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9246
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9247 9248 9249 9250
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9251 9252
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9253

9254
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9255
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9256 9257
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9258 9259
}

P
Peter Zijlstra 已提交
9260
#ifdef CONFIG_FAIR_GROUP_SCHED
9261 9262 9263
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9264
{
9265
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9266 9267 9268 9269 9270 9271 9272
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9273 9274 9275 9276
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9277 9278 9279 9280 9281
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9282 9283
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9284
	se->load.inv_weight = 0;
9285
	se->parent = parent;
P
Peter Zijlstra 已提交
9286
}
9287
#endif
P
Peter Zijlstra 已提交
9288

9289
#ifdef CONFIG_RT_GROUP_SCHED
9290 9291 9292
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9293
{
9294 9295
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9296 9297 9298 9299
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9300
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9301 9302 9303 9304
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9305 9306 9307
	if (!rt_se)
		return;

9308 9309 9310 9311 9312
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9313
	rt_se->my_q = rt_rq;
9314
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9315 9316 9317 9318
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9319 9320
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9321
	int i, j;
9322 9323 9324 9325 9326 9327 9328
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9329 9330 9331
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9332 9333
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9334
	alloc_size += num_possible_cpus() * cpumask_size();
9335 9336 9337 9338 9339 9340
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9341
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9342 9343 9344 9345 9346 9347 9348

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9349 9350 9351 9352 9353 9354 9355

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9356 9357
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9358 9359 9360 9361 9362
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9363 9364 9365 9366 9367 9368 9369 9370
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9371 9372
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9373 9374 9375 9376 9377 9378
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9379
	}
I
Ingo Molnar 已提交
9380

G
Gregory Haskins 已提交
9381 9382 9383 9384
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9385 9386 9387 9388 9389 9390
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9391 9392 9393
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9394 9395
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9396

9397
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9398
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9399 9400 9401 9402 9403 9404
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9405 9406
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9407

9408
	for_each_possible_cpu(i) {
9409
		struct rq *rq;
L
Linus Torvalds 已提交
9410 9411 9412

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9413
		rq->nr_running = 0;
9414 9415
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9416
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9417
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9418
#ifdef CONFIG_FAIR_GROUP_SCHED
9419
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9420
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9436
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9437 9438 9439 9440
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9441
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9442
#elif defined CONFIG_USER_SCHED
9443 9444
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9445 9446 9447 9448 9449 9450 9451 9452
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9453
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9454 9455
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9456
		init_tg_cfs_entry(&init_task_group,
9457
				&per_cpu(init_tg_cfs_rq, i),
9458 9459
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9460

9461
#endif
D
Dhaval Giani 已提交
9462 9463 9464
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9465
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9466
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9467
#ifdef CONFIG_CGROUP_SCHED
9468
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9469
#elif defined CONFIG_USER_SCHED
9470
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9471
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9472
				&per_cpu(init_rt_rq, i),
9473 9474
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9475
#endif
I
Ingo Molnar 已提交
9476
#endif
L
Linus Torvalds 已提交
9477

I
Ingo Molnar 已提交
9478 9479
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9480
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9481
		rq->sd = NULL;
G
Gregory Haskins 已提交
9482
		rq->rd = NULL;
9483
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9484
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9485
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9486
		rq->push_cpu = 0;
9487
		rq->cpu = i;
9488
		rq->online = 0;
L
Linus Torvalds 已提交
9489 9490
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9491
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9492
#endif
P
Peter Zijlstra 已提交
9493
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9494 9495 9496
		atomic_set(&rq->nr_iowait, 0);
	}

9497
	set_load_weight(&init_task);
9498

9499 9500 9501 9502
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9503
#ifdef CONFIG_SMP
9504
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9505 9506
#endif

9507 9508 9509 9510
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9524 9525 9526

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9527 9528 9529 9530
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9531

9532
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9533
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9534
#ifdef CONFIG_SMP
9535
#ifdef CONFIG_NO_HZ
9536 9537
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9538
#endif
9539
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9540
#endif /* SMP */
9541

9542 9543
	perf_counter_init();

9544
	scheduler_running = 1;
L
Linus Torvalds 已提交
9545 9546 9547
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9548 9549 9550 9551 9552 9553 9554 9555
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9556
{
9557
#ifdef in_atomic
L
Linus Torvalds 已提交
9558 9559
	static unsigned long prev_jiffy;	/* ratelimiting */

9560 9561
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9579 9580 9581 9582 9583 9584
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9585 9586 9587
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9588

9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9600 9601
void normalize_rt_tasks(void)
{
9602
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9603
	unsigned long flags;
9604
	struct rq *rq;
L
Linus Torvalds 已提交
9605

9606
	read_lock_irqsave(&tasklist_lock, flags);
9607
	do_each_thread(g, p) {
9608 9609 9610 9611 9612 9613
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9614 9615
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9616 9617 9618
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9619
#endif
I
Ingo Molnar 已提交
9620 9621 9622 9623 9624 9625 9626 9627

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9628
			continue;
I
Ingo Molnar 已提交
9629
		}
L
Linus Torvalds 已提交
9630

9631
		spin_lock(&p->pi_lock);
9632
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9633

9634
		normalize_task(rq, p);
9635

9636
		__task_rq_unlock(rq);
9637
		spin_unlock(&p->pi_lock);
9638 9639
	} while_each_thread(g, p);

9640
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9641 9642 9643
}

#endif /* CONFIG_MAGIC_SYSRQ */
9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9662
struct task_struct *curr_task(int cpu)
9663 9664 9665 9666 9667 9668 9669 9670 9671 9672
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9673 9674
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9675 9676 9677 9678 9679 9680 9681
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9682
void set_curr_task(int cpu, struct task_struct *p)
9683 9684 9685 9686 9687
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9688

9689 9690
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9705 9706
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9707 9708
{
	struct cfs_rq *cfs_rq;
9709
	struct sched_entity *se;
9710
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9711 9712
	int i;

9713
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9714 9715
	if (!tg->cfs_rq)
		goto err;
9716
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9717 9718
	if (!tg->se)
		goto err;
9719 9720

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9721 9722

	for_each_possible_cpu(i) {
9723
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9724

9725 9726
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9727 9728 9729
		if (!cfs_rq)
			goto err;

9730 9731
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9732 9733 9734
		if (!se)
			goto err;

9735
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9754
#else /* !CONFG_FAIR_GROUP_SCHED */
9755 9756 9757 9758
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9759 9760
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9772
#endif /* CONFIG_FAIR_GROUP_SCHED */
9773 9774

#ifdef CONFIG_RT_GROUP_SCHED
9775 9776 9777 9778
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9779 9780
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9792 9793
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9794 9795
{
	struct rt_rq *rt_rq;
9796
	struct sched_rt_entity *rt_se;
9797 9798 9799
	struct rq *rq;
	int i;

9800
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9801 9802
	if (!tg->rt_rq)
		goto err;
9803
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9804 9805 9806
	if (!tg->rt_se)
		goto err;

9807 9808
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9809 9810 9811 9812

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9813 9814
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9815 9816
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9817

9818 9819
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9820 9821
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9822

9823
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9824 9825
	}

9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9842
#else /* !CONFIG_RT_GROUP_SCHED */
9843 9844 9845 9846
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9847 9848
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9860
#endif /* CONFIG_RT_GROUP_SCHED */
9861

9862
#ifdef CONFIG_GROUP_SCHED
9863 9864 9865 9866 9867 9868 9869 9870
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9871
struct task_group *sched_create_group(struct task_group *parent)
9872 9873 9874 9875 9876 9877 9878 9879 9880
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9881
	if (!alloc_fair_sched_group(tg, parent))
9882 9883
		goto err;

9884
	if (!alloc_rt_sched_group(tg, parent))
9885 9886
		goto err;

9887
	spin_lock_irqsave(&task_group_lock, flags);
9888
	for_each_possible_cpu(i) {
9889 9890
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9891
	}
P
Peter Zijlstra 已提交
9892
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9893 9894 9895 9896 9897

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9898
	list_add_rcu(&tg->siblings, &parent->children);
9899
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9900

9901
	return tg;
S
Srivatsa Vaddagiri 已提交
9902 9903

err:
P
Peter Zijlstra 已提交
9904
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9905 9906 9907
	return ERR_PTR(-ENOMEM);
}

9908
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9909
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9910 9911
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9912
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9913 9914
}

9915
/* Destroy runqueue etc associated with a task group */
9916
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9917
{
9918
	unsigned long flags;
9919
	int i;
S
Srivatsa Vaddagiri 已提交
9920

9921
	spin_lock_irqsave(&task_group_lock, flags);
9922
	for_each_possible_cpu(i) {
9923 9924
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9925
	}
P
Peter Zijlstra 已提交
9926
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9927
	list_del_rcu(&tg->siblings);
9928
	spin_unlock_irqrestore(&task_group_lock, flags);
9929 9930

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9931
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9932 9933
}

9934
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9935 9936 9937
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9938 9939
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9940 9941 9942 9943 9944 9945 9946 9947 9948
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9949
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9950 9951
	on_rq = tsk->se.on_rq;

9952
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9953
		dequeue_task(rq, tsk, 0);
9954 9955
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9956

P
Peter Zijlstra 已提交
9957
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9958

P
Peter Zijlstra 已提交
9959 9960 9961 9962 9963
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9964 9965 9966
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9967
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9968 9969 9970

	task_rq_unlock(rq, &flags);
}
9971
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9972

9973
#ifdef CONFIG_FAIR_GROUP_SCHED
9974
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9975 9976 9977 9978 9979
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9980
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9981 9982 9983
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9984
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9985

9986
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9987
		enqueue_entity(cfs_rq, se, 0);
9988
}
9989

9990 9991 9992 9993 9994 9995 9996 9997 9998
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9999 10000
}

10001 10002
static DEFINE_MUTEX(shares_mutex);

10003
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10004 10005
{
	int i;
10006
	unsigned long flags;
10007

10008 10009 10010 10011 10012 10013
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10014 10015
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10016 10017
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10018

10019
	mutex_lock(&shares_mutex);
10020
	if (tg->shares == shares)
10021
		goto done;
S
Srivatsa Vaddagiri 已提交
10022

10023
	spin_lock_irqsave(&task_group_lock, flags);
10024 10025
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10026
	list_del_rcu(&tg->siblings);
10027
	spin_unlock_irqrestore(&task_group_lock, flags);
10028 10029 10030 10031 10032 10033 10034 10035

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10036
	tg->shares = shares;
10037 10038 10039 10040 10041
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10042
		set_se_shares(tg->se[i], shares);
10043
	}
S
Srivatsa Vaddagiri 已提交
10044

10045 10046 10047 10048
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10049
	spin_lock_irqsave(&task_group_lock, flags);
10050 10051
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10052
	list_add_rcu(&tg->siblings, &tg->parent->children);
10053
	spin_unlock_irqrestore(&task_group_lock, flags);
10054
done:
10055
	mutex_unlock(&shares_mutex);
10056
	return 0;
S
Srivatsa Vaddagiri 已提交
10057 10058
}

10059 10060 10061 10062
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10063
#endif
10064

10065
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10066
/*
P
Peter Zijlstra 已提交
10067
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10068
 */
P
Peter Zijlstra 已提交
10069 10070 10071 10072 10073
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10074
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10075

P
Peter Zijlstra 已提交
10076
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10077 10078
}

P
Peter Zijlstra 已提交
10079 10080
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10081
{
P
Peter Zijlstra 已提交
10082
	struct task_struct *g, *p;
10083

P
Peter Zijlstra 已提交
10084 10085 10086 10087
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10088

P
Peter Zijlstra 已提交
10089 10090
	return 0;
}
10091

P
Peter Zijlstra 已提交
10092 10093 10094 10095 10096
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10097

P
Peter Zijlstra 已提交
10098 10099 10100 10101 10102 10103
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10104

P
Peter Zijlstra 已提交
10105 10106
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10107

P
Peter Zijlstra 已提交
10108 10109 10110
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10111 10112
	}

10113 10114 10115 10116 10117 10118 10119
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10120 10121 10122 10123 10124
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10125

10126 10127 10128
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10129 10130
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10131

P
Peter Zijlstra 已提交
10132
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10133

10134 10135 10136 10137 10138
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10139

10140 10141 10142
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10143 10144 10145
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10146

P
Peter Zijlstra 已提交
10147 10148 10149 10150
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10151

P
Peter Zijlstra 已提交
10152
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10153
	}
P
Peter Zijlstra 已提交
10154

P
Peter Zijlstra 已提交
10155 10156 10157 10158
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10159 10160
}

P
Peter Zijlstra 已提交
10161
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10162
{
P
Peter Zijlstra 已提交
10163 10164 10165 10166 10167 10168 10169
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10170 10171
}

10172 10173
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10174
{
P
Peter Zijlstra 已提交
10175
	int i, err = 0;
P
Peter Zijlstra 已提交
10176 10177

	mutex_lock(&rt_constraints_mutex);
10178
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10179 10180
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10181
		goto unlock;
P
Peter Zijlstra 已提交
10182 10183

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10184 10185
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10186 10187 10188 10189 10190 10191 10192 10193 10194

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10195
 unlock:
10196
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10197 10198 10199
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10200 10201
}

10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10214 10215 10216 10217
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10218
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10219 10220
		return -1;

10221
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10222 10223 10224
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10225 10226 10227 10228 10229 10230 10231 10232

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10233 10234 10235
	if (rt_period == 0)
		return -EINVAL;

10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10250
	u64 runtime, period;
10251 10252
	int ret = 0;

10253 10254 10255
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10256 10257 10258 10259 10260 10261 10262 10263
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10264

10265
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10266
	read_lock(&tasklist_lock);
10267
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10268
	read_unlock(&tasklist_lock);
10269 10270 10271 10272
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10273 10274 10275 10276 10277 10278 10279 10280 10281 10282

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10283
#else /* !CONFIG_RT_GROUP_SCHED */
10284 10285
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10286 10287 10288
	unsigned long flags;
	int i;

10289 10290 10291
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10292 10293 10294 10295 10296 10297 10298
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10299 10300 10301 10302 10303 10304 10305 10306 10307 10308
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10309 10310
	return 0;
}
10311
#endif /* CONFIG_RT_GROUP_SCHED */
10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10342

10343
#ifdef CONFIG_CGROUP_SCHED
10344 10345

/* return corresponding task_group object of a cgroup */
10346
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10347
{
10348 10349
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10350 10351 10352
}

static struct cgroup_subsys_state *
10353
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10354
{
10355
	struct task_group *tg, *parent;
10356

10357
	if (!cgrp->parent) {
10358 10359 10360 10361
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10362 10363
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10364 10365 10366 10367 10368 10369
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10370 10371
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10372
{
10373
	struct task_group *tg = cgroup_tg(cgrp);
10374 10375 10376 10377

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10378 10379 10380
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10381
{
10382
#ifdef CONFIG_RT_GROUP_SCHED
10383
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10384 10385
		return -EINVAL;
#else
10386 10387 10388
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10389
#endif
10390 10391 10392 10393 10394

	return 0;
}

static void
10395
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10396 10397 10398 10399 10400
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10401
#ifdef CONFIG_FAIR_GROUP_SCHED
10402
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10403
				u64 shareval)
10404
{
10405
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10406 10407
}

10408
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10409
{
10410
	struct task_group *tg = cgroup_tg(cgrp);
10411 10412 10413

	return (u64) tg->shares;
}
10414
#endif /* CONFIG_FAIR_GROUP_SCHED */
10415

10416
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10417
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10418
				s64 val)
P
Peter Zijlstra 已提交
10419
{
10420
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10421 10422
}

10423
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10424
{
10425
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10426
}
10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10438
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10439

10440
static struct cftype cpu_files[] = {
10441
#ifdef CONFIG_FAIR_GROUP_SCHED
10442 10443
	{
		.name = "shares",
10444 10445
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10446
	},
10447 10448
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10449
	{
P
Peter Zijlstra 已提交
10450
		.name = "rt_runtime_us",
10451 10452
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10453
	},
10454 10455
	{
		.name = "rt_period_us",
10456 10457
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10458
	},
10459
#endif
10460 10461 10462 10463
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10464
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10465 10466 10467
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10468 10469 10470 10471 10472 10473 10474
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10475 10476 10477
	.early_init	= 1,
};

10478
#endif	/* CONFIG_CGROUP_SCHED */
10479 10480 10481 10482 10483 10484 10485 10486 10487 10488

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10489
/* track cpu usage of a group of tasks and its child groups */
10490 10491 10492 10493
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10494
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10495
	struct cpuacct *parent;
10496 10497 10498 10499 10500
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10501
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10502
{
10503
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10516
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10517 10518
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10519
	int i;
10520 10521

	if (!ca)
10522
		goto out;
10523 10524

	ca->cpuusage = alloc_percpu(u64);
10525 10526 10527 10528 10529 10530
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10531

10532 10533 10534
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10535
	return &ca->css;
10536 10537 10538 10539 10540 10541 10542 10543 10544

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10545 10546 10547
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10548
static void
10549
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10550
{
10551
	struct cpuacct *ca = cgroup_ca(cgrp);
10552
	int i;
10553

10554 10555
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10556 10557 10558 10559
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10560 10561
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10562
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10581
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10595
/* return total cpu usage (in nanoseconds) of a group */
10596
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10597
{
10598
	struct cpuacct *ca = cgroup_ca(cgrp);
10599 10600 10601
	u64 totalcpuusage = 0;
	int i;

10602 10603
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10604 10605 10606 10607

	return totalcpuusage;
}

10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10620 10621
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10622 10623 10624 10625 10626

out:
	return err;
}

10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10661 10662 10663
static struct cftype files[] = {
	{
		.name = "usage",
10664 10665
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10666
	},
10667 10668 10669 10670
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10671 10672 10673 10674
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10675 10676
};

10677
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10678
{
10679
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10680 10681 10682 10683 10684 10685 10686 10687 10688 10689
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10690
	int cpu;
10691

L
Li Zefan 已提交
10692
	if (unlikely(!cpuacct_subsys.active))
10693 10694
		return;

10695
	cpu = task_cpu(tsk);
10696 10697 10698

	rcu_read_lock();

10699 10700
	ca = task_ca(tsk);

10701
	for (; ca; ca = ca->parent) {
10702
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10703 10704
		*cpuusage += cputime;
	}
10705 10706

	rcu_read_unlock();
10707 10708
}

10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10730 10731 10732 10733 10734 10735 10736 10737
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
		spin_lock_irqsave(&rq->lock, flags);
		list_add(&req->list, &rq->migration_queue);
		spin_unlock_irqrestore(&rq->lock, flags);
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
		spin_lock_irqsave(&rq->lock, flags);
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
		spin_unlock_irqrestore(&rq->lock, flags);
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */