sched.c 253.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127
#ifdef CONFIG_SMP
128 129 130

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

151 152
static inline int rt_policy(int policy)
{
153
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 155 156 157 158 159 160 161 162
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
163
/*
I
Ingo Molnar 已提交
164
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
165
 */
I
Ingo Molnar 已提交
166 167 168 169 170
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

171
struct rt_bandwidth {
I
Ingo Molnar 已提交
172 173 174 175 176
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
210 211
	spin_lock_init(&rt_b->rt_runtime_lock);

212 213 214 215 216
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

217 218 219
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
220 221 222 223 224 225
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

226
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 228 229 230 231 232 233
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
234 235 236
		unsigned long delta;
		ktime_t soft, hard;

237 238 239 240 241
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
242 243 244 245 246 247

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
				HRTIMER_MODE_ABS, 0);
248 249 250 251 252 253 254 255 256 257 258
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

259 260 261 262 263 264
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

265
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
266

267 268
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
269 270
struct cfs_rq;

P
Peter Zijlstra 已提交
271 272
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
273
/* task group related information */
274
struct task_group {
275
#ifdef CONFIG_CGROUP_SCHED
276 277
	struct cgroup_subsys_state css;
#endif
278

279 280 281 282
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

283
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
284 285 286 287 288
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
289 290 291 292 293 294
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

295
	struct rt_bandwidth rt_bandwidth;
296
#endif
297

298
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
299
	struct list_head list;
P
Peter Zijlstra 已提交
300 301 302 303

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
304 305
};

D
Dhaval Giani 已提交
306
#ifdef CONFIG_USER_SCHED
307

308 309 310 311 312 313
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

314 315 316 317 318 319 320
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

321
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
322 323 324 325
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
326
#endif /* CONFIG_FAIR_GROUP_SCHED */
327 328 329 330

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
331
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
332
#else /* !CONFIG_USER_SCHED */
333
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
334
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
335

336
/* task_group_lock serializes add/remove of task groups and also changes to
337 338
 * a task group's cpu shares.
 */
339
static DEFINE_SPINLOCK(task_group_lock);
340

341 342 343 344 345 346 347
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

348 349 350
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
351
#else /* !CONFIG_USER_SCHED */
352
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
353
#endif /* CONFIG_USER_SCHED */
354

355
/*
356 357 358 359
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
360 361 362
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
363
#define MIN_SHARES	2
364
#define MAX_SHARES	(1UL << 18)
365

366 367 368
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
369
/* Default task group.
I
Ingo Molnar 已提交
370
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
371
 */
372
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
373 374

/* return group to which a task belongs */
375
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
376
{
377
	struct task_group *tg;
378

379
#ifdef CONFIG_USER_SCHED
380 381 382
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
383
#elif defined(CONFIG_CGROUP_SCHED)
384 385
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
386
#else
I
Ingo Molnar 已提交
387
	tg = &init_task_group;
388
#endif
389
	return tg;
S
Srivatsa Vaddagiri 已提交
390 391 392
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
393
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
394
{
395
#ifdef CONFIG_FAIR_GROUP_SCHED
396 397
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
398
#endif
P
Peter Zijlstra 已提交
399

400
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
401 402
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
403
#endif
S
Srivatsa Vaddagiri 已提交
404 405 406 407
}

#else

408 409 410 411 412 413 414
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
415
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
416 417 418 419
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
420

421
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
422

I
Ingo Molnar 已提交
423 424 425 426 427 428
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
429
	u64 min_vruntime;
I
Ingo Molnar 已提交
430 431 432

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
433 434 435 436 437 438

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
439 440
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
441
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
442

P
Peter Zijlstra 已提交
443
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
444

445
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
446 447
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
448 449
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
450 451 452 453 454 455
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
456 457
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
458 459 460

#ifdef CONFIG_SMP
	/*
461
	 * the part of load.weight contributed by tasks
462
	 */
463
	unsigned long task_weight;
464

465 466 467 468 469 470 471
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
472

473 474 475 476
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
477 478 479 480 481

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
482
#endif
I
Ingo Molnar 已提交
483 484
#endif
};
L
Linus Torvalds 已提交
485

I
Ingo Molnar 已提交
486 487 488
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
489
	unsigned long rt_nr_running;
490
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
491 492
	struct {
		int curr; /* highest queued rt task prio */
493
#ifdef CONFIG_SMP
494
		int next; /* next highest */
495
#endif
496
	} highest_prio;
P
Peter Zijlstra 已提交
497
#endif
P
Peter Zijlstra 已提交
498
#ifdef CONFIG_SMP
499
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
500
	int overloaded;
501
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
502
#endif
P
Peter Zijlstra 已提交
503
	int rt_throttled;
P
Peter Zijlstra 已提交
504
	u64 rt_time;
P
Peter Zijlstra 已提交
505
	u64 rt_runtime;
I
Ingo Molnar 已提交
506
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
507
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
508

509
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
510 511
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
512 513 514 515 516
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
517 518
};

G
Gregory Haskins 已提交
519 520 521 522
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
523 524
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
525 526 527 528 529 530
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
531 532
	cpumask_var_t span;
	cpumask_var_t online;
533

I
Ingo Molnar 已提交
534
	/*
535 536 537
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
538
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
539
	atomic_t rto_count;
540 541 542
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
543 544 545 546 547 548 549 550
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
551 552
};

553 554 555 556
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
557 558 559 560
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
561 562 563 564 565 566 567
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
568
struct rq {
569 570
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
571 572 573 574 575 576

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
577 578
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
579
#ifdef CONFIG_NO_HZ
580
	unsigned long last_tick_seen;
581 582
	unsigned char in_nohz_recently;
#endif
583 584
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
585 586 587 588
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
589 590
	struct rt_rq rt;

I
Ingo Molnar 已提交
591
#ifdef CONFIG_FAIR_GROUP_SCHED
592 593
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
594 595
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
596
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
597 598 599 600 601 602 603 604 605 606
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

607
	struct task_struct *curr, *idle;
608
	unsigned long next_balance;
L
Linus Torvalds 已提交
609
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
610

611
	u64 clock;
I
Ingo Molnar 已提交
612

L
Linus Torvalds 已提交
613 614 615
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
616
	struct root_domain *rd;
L
Linus Torvalds 已提交
617 618
	struct sched_domain *sd;

619
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
620 621 622
	/* For active balancing */
	int active_balance;
	int push_cpu;
623 624
	/* cpu of this runqueue: */
	int cpu;
625
	int online;
L
Linus Torvalds 已提交
626

627
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
628

629
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
630 631 632
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
633
#ifdef CONFIG_SCHED_HRTICK
634 635 636 637
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
638 639 640
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
641 642 643
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
644 645
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
646 647

	/* sys_sched_yield() stats */
648
	unsigned int yld_count;
L
Linus Torvalds 已提交
649 650

	/* schedule() stats */
651 652 653
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
654 655

	/* try_to_wake_up() stats */
656 657
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
658 659

	/* BKL stats */
660
	unsigned int bkl_count;
L
Linus Torvalds 已提交
661 662 663
#endif
};

664
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
665

666
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
667
{
668
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
669 670
}

671 672 673 674 675 676 677 678 679
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
680 681
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
682
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
683 684 685 686
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
687 688
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
689 690 691 692 693 694

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

695 696 697 698 699
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
700 701 702 703 704 705 706 707 708
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
727 728 729
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
730 731 732 733

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
734
enum {
P
Peter Zijlstra 已提交
735
#include "sched_features.h"
I
Ingo Molnar 已提交
736 737
};

P
Peter Zijlstra 已提交
738 739 740 741 742
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
743
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
744 745 746 747 748 749 750 751 752
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

753
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
754 755 756 757 758 759
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
760
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
761 762 763 764
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
765 766 767
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
768
	}
L
Li Zefan 已提交
769
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
770

L
Li Zefan 已提交
771
	return 0;
P
Peter Zijlstra 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
791
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
816 817 818 819 820
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
821
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
822 823 824 825 826
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
841

842 843 844 845 846 847
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
848 849
/*
 * ratelimit for updating the group shares.
850
 * default: 0.25ms
P
Peter Zijlstra 已提交
851
 */
852
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
853

854 855 856 857 858 859 860
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
861
/*
P
Peter Zijlstra 已提交
862
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
863 864
 * default: 1s
 */
P
Peter Zijlstra 已提交
865
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
866

867 868
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
869 870 871 872 873
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
874

875 876 877 878 879 880 881
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
882
	if (sysctl_sched_rt_runtime < 0)
883 884 885 886
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
887

L
Linus Torvalds 已提交
888
#ifndef prepare_arch_switch
889 890 891 892 893 894
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

895 896 897 898 899
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

900
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
901
static inline int task_running(struct rq *rq, struct task_struct *p)
902
{
903
	return task_current(rq, p);
904 905
}

906
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 908 909
{
}

910
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
911
{
912 913 914 915
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
916 917 918 919 920 921 922
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

923 924 925 926
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
927
static inline int task_running(struct rq *rq, struct task_struct *p)
928 929 930 931
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
932
	return task_current(rq, p);
933 934 935
#endif
}

936
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

953
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
954 955 956 957 958 959 960 961 962 963 964 965
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
966
#endif
967 968
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
969

970 971 972 973
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
974
static inline struct rq *__task_rq_lock(struct task_struct *p)
975 976
	__acquires(rq->lock)
{
977 978 979 980 981
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
982 983 984 985
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
986 987
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
988
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
989 990
 * explicitly disabling preemption.
 */
991
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
992 993
	__acquires(rq->lock)
{
994
	struct rq *rq;
L
Linus Torvalds 已提交
995

996 997 998 999 1000 1001
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1002 1003 1004 1005
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

1006 1007 1008 1009 1010 1011 1012 1013
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1014
static void __task_rq_unlock(struct rq *rq)
1015 1016 1017 1018 1019
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1020
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1021 1022 1023 1024 1025 1026
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1027
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1028
 */
A
Alexey Dobriyan 已提交
1029
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1030 1031
	__acquires(rq->lock)
{
1032
	struct rq *rq;
L
Linus Torvalds 已提交
1033 1034 1035 1036 1037 1038 1039 1040

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1062
	if (!cpu_active(cpu_of(rq)))
1063
		return 0;
P
Peter Zijlstra 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1084
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1085 1086 1087 1088 1089 1090
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1091
#ifdef CONFIG_SMP
1092 1093 1094 1095
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1096
{
1097
	struct rq *rq = arg;
1098

1099 1100 1101 1102
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1103 1104
}

1105 1106 1107 1108 1109 1110
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1111
{
1112 1113
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1114

1115
	hrtimer_set_expires(timer, time);
1116 1117 1118 1119

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1120
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1121 1122
		rq->hrtick_csd_pending = 1;
	}
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1137
		hrtick_clear(cpu_rq(cpu));
1138 1139 1140 1141 1142 1143
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1144
static __init void init_hrtick(void)
1145 1146 1147
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1148 1149 1150 1151 1152 1153 1154 1155
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1156 1157
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
			HRTIMER_MODE_REL, 0);
1158
}
1159

A
Andrew Morton 已提交
1160
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1161 1162
{
}
1163
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1164

1165
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1166
{
1167 1168
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1169

1170 1171 1172 1173
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1174

1175 1176
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1177
}
A
Andrew Morton 已提交
1178
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1179 1180 1181 1182 1183 1184 1185 1186
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1187 1188 1189
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1190
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1191

I
Ingo Molnar 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1205
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1206 1207 1208 1209 1210
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1211
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1212 1213
		return;

1214
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1270
	set_tsk_need_resched(rq->idle);
1271 1272 1273 1274 1275 1276

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1277
#endif /* CONFIG_NO_HZ */
1278

1279
#else /* !CONFIG_SMP */
1280
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1281 1282
{
	assert_spin_locked(&task_rq(p)->lock);
1283
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1284
}
1285
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1286

1287 1288 1289 1290 1291 1292 1293 1294
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1295 1296 1297
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1298
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1299

1300 1301 1302
/*
 * delta *= weight / lw
 */
1303
static unsigned long
1304 1305 1306 1307 1308
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1309 1310 1311 1312 1313 1314 1315
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1316 1317 1318 1319 1320

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1321
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1322
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1323 1324
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1325
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1326

1327
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1328 1329
}

1330
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1331 1332
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1333
	lw->inv_weight = 0;
1334 1335
}

1336
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1337 1338
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1339
	lw->inv_weight = 0;
1340 1341
}

1342 1343 1344 1345
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1346
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 1348 1349 1350
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1351 1352
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 1363 1364
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1365 1366
 */
static const int prio_to_weight[40] = {
1367 1368 1369 1370 1371 1372 1373 1374
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1375 1376
};

1377 1378 1379 1380 1381 1382 1383
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1384
static const u32 prio_to_wmult[40] = {
1385 1386 1387 1388 1389 1390 1391 1392
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1393
};
1394

I
Ingo Molnar 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1420

1421 1422 1423 1424 1425 1426 1427 1428
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1429 1430
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 1432
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1433 1434
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 1436
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1437 1438
#endif

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1449
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1450
typedef int (*tg_visitor)(struct task_group *, void *);
1451 1452 1453 1454 1455

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1456
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1457 1458
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1459
	int ret;
1460 1461 1462 1463

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1464 1465 1466
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1467 1468 1469 1470 1471 1472 1473
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1474 1475 1476
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1477 1478 1479 1480 1481

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1482
out_unlock:
1483
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1484 1485

	return ret;
1486 1487
}

P
Peter Zijlstra 已提交
1488 1489 1490
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1491
}
P
Peter Zijlstra 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1502
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1503

1504 1505
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1506 1507
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1508 1509 1510 1511 1512

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1513 1514 1515 1516 1517 1518 1519

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1520 1521
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1522
{
1523 1524 1525
	unsigned long shares;
	unsigned long rq_weight;

1526
	if (!tg->se[cpu])
1527 1528
		return;

1529
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1530

1531 1532 1533 1534 1535 1536
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1537
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1538
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1539

1540 1541 1542 1543
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1544

1545
		spin_lock_irqsave(&rq->lock, flags);
1546
		tg->cfs_rq[cpu]->shares = shares;
1547

1548 1549 1550
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1551
}
1552 1553

/*
1554 1555 1556
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1557
 */
P
Peter Zijlstra 已提交
1558
static int tg_shares_up(struct task_group *tg, void *data)
1559
{
1560
	unsigned long weight, rq_weight = 0;
1561
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1562
	struct sched_domain *sd = data;
1563
	int i;
1564

1565
	for_each_cpu(i, sched_domain_span(sd)) {
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1577
		shares += tg->cfs_rq[i]->shares;
1578 1579
	}

1580 1581 1582 1583 1584
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1585

1586
	for_each_cpu(i, sched_domain_span(sd))
1587
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1588 1589

	return 0;
1590 1591 1592
}

/*
1593 1594 1595
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1596
 */
P
Peter Zijlstra 已提交
1597
static int tg_load_down(struct task_group *tg, void *data)
1598
{
1599
	unsigned long load;
P
Peter Zijlstra 已提交
1600
	long cpu = (long)data;
1601

1602 1603 1604 1605 1606 1607 1608
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1609

1610
	tg->cfs_rq[cpu]->h_load = load;
1611

P
Peter Zijlstra 已提交
1612
	return 0;
1613 1614
}

1615
static void update_shares(struct sched_domain *sd)
1616
{
P
Peter Zijlstra 已提交
1617 1618 1619 1620 1621
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1622
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1623
	}
1624 1625
}

1626 1627 1628 1629 1630 1631 1632
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1633
static void update_h_load(long cpu)
1634
{
P
Peter Zijlstra 已提交
1635
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1636 1637 1638 1639
}

#else

1640
static inline void update_shares(struct sched_domain *sd)
1641 1642 1643
{
}

1644 1645 1646 1647
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1648 1649
#endif

1650 1651
#ifdef CONFIG_PREEMPT

1652
/*
1653 1654 1655 1656 1657 1658
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1659
 */
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1714 1715 1716 1717 1718 1719
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1720 1721
#endif

V
Vegard Nossum 已提交
1722
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1723 1724
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1725
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1726 1727 1728
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1729
#endif
1730

I
Ingo Molnar 已提交
1731 1732
#include "sched_stats.h"
#include "sched_idletask.c"
1733 1734
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1735 1736 1737 1738 1739
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1740 1741
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1742

1743
static void inc_nr_running(struct rq *rq)
1744 1745 1746 1747
{
	rq->nr_running++;
}

1748
static void dec_nr_running(struct rq *rq)
1749 1750 1751 1752
{
	rq->nr_running--;
}

1753 1754 1755
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1756 1757 1758 1759
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1760

I
Ingo Molnar 已提交
1761 1762 1763 1764 1765 1766 1767 1768
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1769

I
Ingo Molnar 已提交
1770 1771
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1772 1773
}

1774 1775 1776 1777 1778 1779
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1780
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1781
{
P
Peter Zijlstra 已提交
1782 1783 1784
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1785
	sched_info_queued(p);
1786
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1787
	p->se.on_rq = 1;
1788 1789
}

1790
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1791
{
P
Peter Zijlstra 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1801 1802
	}

1803
	sched_info_dequeued(p);
1804
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1805
	p->se.on_rq = 0;
1806 1807
}

1808
/*
I
Ingo Molnar 已提交
1809
 * __normal_prio - return the priority that is based on the static prio
1810 1811 1812
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1813
	return p->static_prio;
1814 1815
}

1816 1817 1818 1819 1820 1821 1822
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1823
static inline int normal_prio(struct task_struct *p)
1824 1825 1826
{
	int prio;

1827
	if (task_has_rt_policy(p))
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1841
static int effective_prio(struct task_struct *p)
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1854
/*
I
Ingo Molnar 已提交
1855
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1856
 */
I
Ingo Molnar 已提交
1857
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1858
{
1859
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1860
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1861

1862
	enqueue_task(rq, p, wakeup);
1863
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1864 1865 1866 1867 1868
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1869
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1870
{
1871
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1872 1873
		rq->nr_uninterruptible++;

1874
	dequeue_task(rq, p, sleep);
1875
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1876 1877 1878 1879 1880 1881
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1882
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1883 1884 1885 1886
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1887 1888
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1889
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1890
#ifdef CONFIG_SMP
1891 1892 1893 1894 1895 1896
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1897 1898
	task_thread_info(p)->cpu = cpu;
#endif
1899 1900
}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1913
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1914

1915 1916 1917 1918 1919 1920
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1921 1922 1923
/*
 * Is this task likely cache-hot:
 */
1924
static int
1925 1926 1927 1928
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1929 1930 1931
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1932 1933 1934
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1935 1936
		return 1;

1937 1938 1939
	if (p->sched_class != &fair_sched_class)
		return 0;

1940 1941 1942 1943 1944
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1945 1946 1947 1948 1949 1950
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1951
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1952
{
I
Ingo Molnar 已提交
1953 1954
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1955 1956
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1957
	u64 clock_offset;
I
Ingo Molnar 已提交
1958 1959

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1960

1961 1962
	trace_sched_migrate_task(p, task_cpu(p), new_cpu);

I
Ingo Molnar 已提交
1963 1964 1965
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1966 1967 1968 1969
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1970 1971 1972 1973 1974
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1975
#endif
1976 1977
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1978 1979

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1980 1981
}

1982
struct migration_req {
L
Linus Torvalds 已提交
1983 1984
	struct list_head list;

1985
	struct task_struct *task;
L
Linus Torvalds 已提交
1986 1987 1988
	int dest_cpu;

	struct completion done;
1989
};
L
Linus Torvalds 已提交
1990 1991 1992 1993 1994

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1995
static int
1996
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1997
{
1998
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1999 2000 2001 2002 2003

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2004
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2005 2006 2007 2008 2009 2010 2011 2012
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2013

L
Linus Torvalds 已提交
2014 2015 2016 2017 2018 2019
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2020 2021 2022 2023 2024 2025 2026
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2027 2028 2029 2030 2031 2032
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2033
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2034 2035
{
	unsigned long flags;
I
Ingo Molnar 已提交
2036
	int running, on_rq;
R
Roland McGrath 已提交
2037
	unsigned long ncsw;
2038
	struct rq *rq;
L
Linus Torvalds 已提交
2039

2040 2041 2042 2043 2044 2045 2046 2047
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2048

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2060 2061 2062
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2063
			cpu_relax();
R
Roland McGrath 已提交
2064
		}
2065

2066 2067 2068 2069 2070 2071
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2072
		trace_sched_wait_task(rq, p);
2073 2074
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2075
		ncsw = 0;
2076
		if (!match_state || p->state == match_state)
2077
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2078
		task_rq_unlock(rq, &flags);
2079

R
Roland McGrath 已提交
2080 2081 2082 2083 2084 2085
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2096

2097 2098 2099 2100 2101
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2102
		 * So if it was still runnable (but just not actively
2103 2104 2105 2106 2107 2108 2109
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2110

2111 2112 2113 2114 2115 2116 2117
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2118 2119

	return ncsw;
L
Linus Torvalds 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2135
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2147 2148
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2149 2150 2151 2152
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2153
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2154
{
2155
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2156
	unsigned long total = weighted_cpuload(cpu);
2157

2158
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2159
		return total;
2160

I
Ingo Molnar 已提交
2161
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2162 2163 2164
}

/*
2165 2166
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2167
 */
A
Alexey Dobriyan 已提交
2168
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2169
{
2170
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2171
	unsigned long total = weighted_cpuload(cpu);
2172

2173
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2174
		return total;
2175

I
Ingo Molnar 已提交
2176
	return max(rq->cpu_load[type-1], total);
2177 2178
}

N
Nick Piggin 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2196
		/* Skip over this group if it has no CPUs allowed */
2197 2198
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2199
			continue;
2200

2201 2202
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2203 2204 2205 2206

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2207
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2218 2219
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2220 2221 2222 2223 2224 2225 2226 2227

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2228
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2229 2230 2231 2232 2233 2234 2235

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2236
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2237
 */
I
Ingo Molnar 已提交
2238
static int
2239
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2240 2241 2242 2243 2244
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2245
	/* Traverse only the allowed CPUs */
2246
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2247
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2273

2274
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2275 2276 2277
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2278 2279
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2280 2281
		if (tmp->flags & flag)
			sd = tmp;
2282
	}
N
Nick Piggin 已提交
2283

2284 2285 2286
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2287 2288
	while (sd) {
		struct sched_group *group;
2289 2290 2291 2292 2293 2294
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2295 2296

		group = find_idlest_group(sd, t, cpu);
2297 2298 2299 2300
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2301

2302
		new_cpu = find_idlest_cpu(group, t, cpu);
2303 2304 2305 2306 2307
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2308

2309
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2310
		cpu = new_cpu;
2311
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2312 2313
		sd = NULL;
		for_each_domain(cpu, tmp) {
2314
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2341
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2342
{
2343
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2344 2345
	unsigned long flags;
	long old_state;
2346
	struct rq *rq;
L
Linus Torvalds 已提交
2347

2348 2349 2350
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2351
#ifdef CONFIG_SMP
2352
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2353 2354 2355 2356 2357 2358
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2359
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2360 2361 2362 2363 2364 2365 2366
				update_shares(sd);
				break;
			}
		}
	}
#endif

2367
	smp_wmb();
L
Linus Torvalds 已提交
2368
	rq = task_rq_lock(p, &flags);
2369
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2370 2371 2372 2373
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2374
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2375 2376 2377
		goto out_running;

	cpu = task_cpu(p);
2378
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2379 2380 2381 2382 2383 2384
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2385 2386 2387
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2388 2389 2390 2391 2392 2393
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2394
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2395 2396 2397 2398 2399 2400
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2401 2402 2403 2404 2405 2406 2407
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2408
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2409 2410 2411 2412 2413
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2414
#endif /* CONFIG_SCHEDSTATS */
2415

L
Linus Torvalds 已提交
2416 2417
out_activate:
#endif /* CONFIG_SMP */
2418 2419 2420 2421 2422 2423 2424 2425 2426
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2427
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2428 2429
	success = 1;

P
Peter Zijlstra 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2446
out_running:
2447
	trace_sched_wakeup(rq, p, success);
2448
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2449

L
Linus Torvalds 已提交
2450
	p->state = TASK_RUNNING;
2451 2452 2453 2454
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2455 2456 2457 2458 2459 2460
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2461
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2462
{
2463
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2464 2465 2466
}
EXPORT_SYMBOL(wake_up_process);

2467
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2468 2469 2470 2471 2472 2473 2474
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2475 2476 2477 2478 2479 2480 2481
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2482
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2483 2484
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2485 2486
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2487 2488 2489

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2490 2491 2492 2493 2494 2495
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2496
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2497
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2498
#endif
N
Nick Piggin 已提交
2499

P
Peter Zijlstra 已提交
2500
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2501
	p->se.on_rq = 0;
2502
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2503

2504 2505 2506 2507
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2508 2509 2510 2511 2512 2513 2514
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2529
	set_task_cpu(p, cpu);
2530 2531 2532 2533 2534

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2535 2536
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2537

2538
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2539
	if (likely(sched_info_on()))
2540
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2541
#endif
2542
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2543 2544
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2545
#ifdef CONFIG_PREEMPT
2546
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2547
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2548
#endif
2549 2550
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2551
	put_cpu();
L
Linus Torvalds 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2561
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2562 2563
{
	unsigned long flags;
I
Ingo Molnar 已提交
2564
	struct rq *rq;
L
Linus Torvalds 已提交
2565 2566

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2567
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2568
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2569 2570 2571

	p->prio = effective_prio(p);

2572
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2573
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2574 2575
	} else {
		/*
I
Ingo Molnar 已提交
2576 2577
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2578
		 */
2579
		p->sched_class->task_new(rq, p);
2580
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2581
	}
2582
	trace_sched_wakeup_new(rq, p, 1);
2583
	check_preempt_curr(rq, p, 0);
2584 2585 2586 2587
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2588
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2589 2590
}

2591 2592 2593
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2594
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2595
 * @notifier: notifier struct to register
2596 2597 2598 2599 2600 2601 2602 2603 2604
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2605
 * @notifier: notifier struct to unregister
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2635
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2647
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2648

2649 2650 2651
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2652
 * @prev: the current task that is being switched out
2653 2654 2655 2656 2657 2658 2659 2660 2661
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2662 2663 2664
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2665
{
2666
	fire_sched_out_preempt_notifiers(prev, next);
2667 2668 2669 2670
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2671 2672
/**
 * finish_task_switch - clean up after a task-switch
2673
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2674 2675
 * @prev: the thread we just switched away from.
 *
2676 2677 2678 2679
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2680 2681
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2682
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2683 2684 2685
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2686
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2687 2688 2689
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2690
	long prev_state;
2691 2692 2693 2694 2695 2696
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2697 2698 2699 2700 2701

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2702
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2703 2704
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2705
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2706 2707 2708 2709 2710
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2711
	prev_state = prev->state;
2712 2713
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2714
#ifdef CONFIG_SMP
2715
	if (post_schedule)
2716 2717
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2718

2719
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2720 2721
	if (mm)
		mmdrop(mm);
2722
	if (unlikely(prev_state == TASK_DEAD)) {
2723 2724 2725
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2726
		 */
2727
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2728
		put_task_struct(prev);
2729
	}
L
Linus Torvalds 已提交
2730 2731 2732 2733 2734 2735
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2736
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2737 2738
	__releases(rq->lock)
{
2739 2740
	struct rq *rq = this_rq();

2741 2742 2743 2744 2745
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2746
	if (current->set_child_tid)
2747
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2748 2749 2750 2751 2752 2753
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2754
static inline void
2755
context_switch(struct rq *rq, struct task_struct *prev,
2756
	       struct task_struct *next)
L
Linus Torvalds 已提交
2757
{
I
Ingo Molnar 已提交
2758
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2759

2760
	prepare_task_switch(rq, prev, next);
2761
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2762 2763
	mm = next->mm;
	oldmm = prev->active_mm;
2764 2765 2766 2767 2768 2769 2770
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2771
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2772 2773 2774 2775 2776 2777
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2778
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2779 2780 2781
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2782 2783 2784 2785 2786 2787 2788
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2789
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2790
#endif
L
Linus Torvalds 已提交
2791 2792 2793 2794

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2795 2796 2797 2798 2799 2800 2801
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2825
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2840 2841
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2842

2843
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2844 2845 2846 2847 2848 2849 2850 2851 2852
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2853
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2854 2855 2856 2857 2858
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2874
/*
I
Ingo Molnar 已提交
2875 2876
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2877
 */
I
Ingo Molnar 已提交
2878
static void update_cpu_load(struct rq *this_rq)
2879
{
2880
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2893 2894 2895 2896 2897 2898 2899
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2900 2901
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2902 2903
}

I
Ingo Molnar 已提交
2904 2905
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2906 2907 2908 2909 2910 2911
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2912
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2913 2914 2915
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2916
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2917 2918 2919 2920
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2921
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2922
			spin_lock(&rq1->lock);
2923
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2924 2925
		} else {
			spin_lock(&rq2->lock);
2926
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2927 2928
		}
	}
2929 2930
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2931 2932 2933 2934 2935 2936 2937 2938
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2939
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2953
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2954 2955
 * the cpu_allowed mask is restored.
 */
2956
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2957
{
2958
	struct migration_req req;
L
Linus Torvalds 已提交
2959
	unsigned long flags;
2960
	struct rq *rq;
L
Linus Torvalds 已提交
2961 2962

	rq = task_rq_lock(p, &flags);
2963
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2964
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2965 2966 2967 2968 2969 2970
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2971

L
Linus Torvalds 已提交
2972 2973 2974 2975 2976
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2977

L
Linus Torvalds 已提交
2978 2979 2980 2981 2982 2983 2984
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2985 2986
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2987 2988 2989 2990
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2991
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2992
	put_cpu();
N
Nick Piggin 已提交
2993 2994
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2995 2996 2997 2998 2999 3000
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3001 3002
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3003
{
3004
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3005
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3006
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3007 3008 3009 3010
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3011
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3012 3013 3014 3015 3016
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3017
static
3018
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3019
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3020
		     int *all_pinned)
L
Linus Torvalds 已提交
3021
{
3022
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3023 3024 3025 3026 3027 3028
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3029
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3030
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3031
		return 0;
3032
	}
3033 3034
	*all_pinned = 0;

3035 3036
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3037
		return 0;
3038
	}
L
Linus Torvalds 已提交
3039

3040 3041 3042 3043 3044 3045
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3046 3047 3048
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3049
#ifdef CONFIG_SCHEDSTATS
3050
		if (tsk_cache_hot) {
3051
			schedstat_inc(sd, lb_hot_gained[idle]);
3052 3053
			schedstat_inc(p, se.nr_forced_migrations);
		}
3054 3055 3056 3057
#endif
		return 1;
	}

3058
	if (tsk_cache_hot) {
3059
		schedstat_inc(p, se.nr_failed_migrations_hot);
3060
		return 0;
3061
	}
L
Linus Torvalds 已提交
3062 3063 3064
	return 1;
}

3065 3066 3067 3068 3069
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3070
{
3071
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3072 3073
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3074

3075
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3076 3077
		goto out;

3078 3079
	pinned = 1;

L
Linus Torvalds 已提交
3080
	/*
I
Ingo Molnar 已提交
3081
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3082
	 */
I
Ingo Molnar 已提交
3083 3084
	p = iterator->start(iterator->arg);
next:
3085
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3086
		goto out;
3087 3088

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3089 3090 3091
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3092 3093
	}

I
Ingo Molnar 已提交
3094
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3095
	pulled++;
I
Ingo Molnar 已提交
3096
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3097

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3108
	/*
3109
	 * We only want to steal up to the prescribed amount of weighted load.
3110
	 */
3111
	if (rem_load_move > 0) {
3112 3113
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3114 3115
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3116 3117 3118
	}
out:
	/*
3119
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3120 3121 3122 3123
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3124 3125 3126

	if (all_pinned)
		*all_pinned = pinned;
3127 3128

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3129 3130
}

I
Ingo Molnar 已提交
3131
/*
P
Peter Williams 已提交
3132 3133 3134
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3135 3136 3137 3138
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3139
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3140 3141 3142
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3143
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3144
	unsigned long total_load_moved = 0;
3145
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3146 3147

	do {
P
Peter Williams 已提交
3148 3149
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3150
				max_load_move - total_load_moved,
3151
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3152
		class = class->next;
3153

3154 3155 3156 3157 3158 3159
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3160 3161
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3162
#endif
P
Peter Williams 已提交
3163
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3164

P
Peter Williams 已提交
3165 3166 3167
	return total_load_moved > 0;
}

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3204
	const struct sched_class *class;
P
Peter Williams 已提交
3205 3206

	for (class = sched_class_highest; class; class = class->next)
3207
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3208 3209 3210
			return 1;

	return 0;
I
Ingo Molnar 已提交
3211
}
3212
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3213
/*
3214 3215
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3216
 */
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3235
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3236 3237 3238 3239 3240 3241
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3242
#endif
3243
};
L
Linus Torvalds 已提交
3244

3245
/*
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3256

3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3278
		load_idx = sd->busy_idx;
3279 3280 3281
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3282
		load_idx = sd->newidle_idx;
3283 3284
		break;
	default:
N
Nick Piggin 已提交
3285
		load_idx = sd->idle_idx;
3286 3287
		break;
	}
L
Linus Torvalds 已提交
3288

3289 3290
	return load_idx;
}
L
Linus Torvalds 已提交
3291 3292


3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3317

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3331

3332 3333
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3334

3335 3336 3337 3338 3339 3340 3341
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3342

3343 3344 3345 3346 3347 3348 3349 3350
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3351

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3365

3366 3367 3368 3369 3370 3371 3372
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running > sgs->group_capacity - 1)
		return;
L
Linus Torvalds 已提交
3373

3374 3375 3376 3377 3378 3379 3380
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3381

3382
/**
3383
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3384 3385 3386 3387 3388
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3389 3390 3391 3392 3393
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3394 3395 3396 3397 3398 3399 3400 3401
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3402

3403 3404 3405
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3406

3407 3408
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3409

3410 3411 3412 3413 3414 3415
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;
L
Linus Torvalds 已提交
3416

3417 3418 3419 3420 3421 3422 3423
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3424

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

	if (local_group)
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3469

3470 3471
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3472

3473 3474
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3475

3476
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3477
		if (local_group) {
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3490
		}
3491

3492 3493 3494
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3495

3496 3497
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3498

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3510

3511 3512 3513
	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);
3514

3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3534

3535 3536 3537 3538 3539 3540 3541 3542 3543
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3544
 */
3545 3546 3547 3548
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3549
{
3550
	struct sched_group *group = sd->groups;
3551
	struct sg_lb_stats sgs;
3552 3553
	int load_idx;

3554
	init_sd_power_savings_stats(sd, sds, idle);
3555
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3556 3557 3558 3559

	do {
		int local_group;

3560 3561
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3562
		memset(&sgs, 0, sizeof(sgs));
3563 3564
		update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3565

3566 3567
		if (local_group && balance && !(*balance))
			return;
3568

3569 3570
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3571 3572

		if (local_group) {
3573 3574 3575 3576 3577
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3578 3579
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3580 3581 3582 3583 3584
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3585
		}
3586

3587
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3588 3589 3590
		group = group->next;
	} while (group != sd->groups);

3591
}
L
Linus Torvalds 已提交
3592

3593 3594
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3595 3596
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3615

3616 3617 3618 3619 3620
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3621

L
Linus Torvalds 已提交
3622
	/*
3623 3624 3625
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3626
	 */
3627

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3669 3670 3671 3672 3673
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3674
	if (sds->max_load < sds->avg_load) {
3675
		*imbalance = 0;
3676
		return fix_small_imbalance(sds, this_cpu, imbalance);
3677
	}
3678 3679

	/* Don't want to pull so many tasks that a group would go idle */
3680 3681
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3682

L
Linus Torvalds 已提交
3683
	/* How much load to actually move to equalise the imbalance */
3684 3685
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
L
Linus Torvalds 已提交
3686 3687
			/ SCHED_LOAD_SCALE;

3688 3689 3690 3691 3692 3693
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3694 3695
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3696

3697
}
3698
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3699

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3724 3725 3726 3727 3728 3729 3730
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3731

3732
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3733

3734 3735 3736 3737 3738 3739 3740
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3751 3752
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3753

3754 3755
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3756

3757
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3758 3759
		goto out_balanced;

3760
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3761

3762 3763 3764 3765
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3766 3767
		goto out_balanced;

3768 3769 3770 3771
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3772

L
Linus Torvalds 已提交
3773 3774 3775 3776 3777 3778 3779 3780
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3781
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3782 3783
	 * appear as very large values with unsigned longs.
	 */
3784
	if (sds.max_load <= sds.busiest_load_per_task)
3785 3786
		goto out_balanced;

3787 3788
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
3789
	return sds.busiest;
L
Linus Torvalds 已提交
3790 3791

out_balanced:
3792 3793 3794 3795 3796 3797
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
3798
ret:
L
Linus Torvalds 已提交
3799 3800 3801 3802 3803 3804 3805
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3806
static struct rq *
I
Ingo Molnar 已提交
3807
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3808
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3809
{
3810
	struct rq *busiest = NULL, *rq;
3811
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3812 3813
	int i;

3814
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3815
		unsigned long wl;
3816

3817
		if (!cpumask_test_cpu(i, cpus))
3818 3819
			continue;

3820
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3821
		wl = weighted_cpuload(i);
3822

I
Ingo Molnar 已提交
3823
		if (rq->nr_running == 1 && wl > imbalance)
3824
			continue;
L
Linus Torvalds 已提交
3825

I
Ingo Molnar 已提交
3826 3827
		if (wl > max_load) {
			max_load = wl;
3828
			busiest = rq;
L
Linus Torvalds 已提交
3829 3830 3831 3832 3833 3834
		}
	}

	return busiest;
}

3835 3836 3837 3838 3839 3840
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

3841 3842 3843
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
3844 3845 3846 3847
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3848
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3849
			struct sched_domain *sd, enum cpu_idle_type idle,
3850
			int *balance)
L
Linus Torvalds 已提交
3851
{
P
Peter Williams 已提交
3852
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3853 3854
	struct sched_group *group;
	unsigned long imbalance;
3855
	struct rq *busiest;
3856
	unsigned long flags;
3857
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
3858

3859
	cpumask_setall(cpus);
3860

3861 3862 3863
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3864
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3865
	 * portraying it as CPU_NOT_IDLE.
3866
	 */
I
Ingo Molnar 已提交
3867
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3868
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3869
		sd_idle = 1;
L
Linus Torvalds 已提交
3870

3871
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3872

3873
redo:
3874
	update_shares(sd);
3875
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3876
				   cpus, balance);
3877

3878
	if (*balance == 0)
3879 3880
		goto out_balanced;

L
Linus Torvalds 已提交
3881 3882 3883 3884 3885
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3886
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3887 3888 3889 3890 3891
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3892
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3893 3894 3895

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3896
	ld_moved = 0;
L
Linus Torvalds 已提交
3897 3898 3899 3900
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3901
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3902 3903
		 * correctly treated as an imbalance.
		 */
3904
		local_irq_save(flags);
N
Nick Piggin 已提交
3905
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3906
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3907
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3908
		double_rq_unlock(this_rq, busiest);
3909
		local_irq_restore(flags);
3910

3911 3912 3913
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3914
		if (ld_moved && this_cpu != smp_processor_id())
3915 3916
			resched_cpu(this_cpu);

3917
		/* All tasks on this runqueue were pinned by CPU affinity */
3918
		if (unlikely(all_pinned)) {
3919 3920
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3921
				goto redo;
3922
			goto out_balanced;
3923
		}
L
Linus Torvalds 已提交
3924
	}
3925

P
Peter Williams 已提交
3926
	if (!ld_moved) {
L
Linus Torvalds 已提交
3927 3928 3929 3930 3931
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3932
			spin_lock_irqsave(&busiest->lock, flags);
3933 3934 3935 3936

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3937 3938
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3939
				spin_unlock_irqrestore(&busiest->lock, flags);
3940 3941 3942 3943
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3944 3945 3946
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3947
				active_balance = 1;
L
Linus Torvalds 已提交
3948
			}
3949
			spin_unlock_irqrestore(&busiest->lock, flags);
3950
			if (active_balance)
L
Linus Torvalds 已提交
3951 3952 3953 3954 3955 3956
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3957
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3958
		}
3959
	} else
L
Linus Torvalds 已提交
3960 3961
		sd->nr_balance_failed = 0;

3962
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3963 3964
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3965 3966 3967 3968 3969 3970 3971 3972 3973
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3974 3975
	}

P
Peter Williams 已提交
3976
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3977
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3978 3979 3980
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3981 3982 3983 3984

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3985
	sd->nr_balance_failed = 0;
3986 3987

out_one_pinned:
L
Linus Torvalds 已提交
3988
	/* tune up the balancing interval */
3989 3990
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3991 3992
		sd->balance_interval *= 2;

3993
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3994
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3995 3996 3997 3998
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3999 4000
	if (ld_moved)
		update_shares(sd);
4001
	return ld_moved;
L
Linus Torvalds 已提交
4002 4003 4004 4005 4006 4007
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4008
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4009 4010
 * this_rq is locked.
 */
4011
static int
4012
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4013 4014
{
	struct sched_group *group;
4015
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4016
	unsigned long imbalance;
P
Peter Williams 已提交
4017
	int ld_moved = 0;
N
Nick Piggin 已提交
4018
	int sd_idle = 0;
4019
	int all_pinned = 0;
4020
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4021

4022
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4023

4024 4025 4026 4027
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4028
	 * portraying it as CPU_NOT_IDLE.
4029 4030 4031
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4032
		sd_idle = 1;
L
Linus Torvalds 已提交
4033

4034
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4035
redo:
4036
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4037
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4038
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4039
	if (!group) {
I
Ingo Molnar 已提交
4040
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4041
		goto out_balanced;
L
Linus Torvalds 已提交
4042 4043
	}

4044
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4045
	if (!busiest) {
I
Ingo Molnar 已提交
4046
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4047
		goto out_balanced;
L
Linus Torvalds 已提交
4048 4049
	}

N
Nick Piggin 已提交
4050 4051
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4052
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4053

P
Peter Williams 已提交
4054
	ld_moved = 0;
4055 4056 4057
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4058 4059
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4060
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4061 4062
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4063
		double_unlock_balance(this_rq, busiest);
4064

4065
		if (unlikely(all_pinned)) {
4066 4067
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4068 4069
				goto redo;
		}
4070 4071
	}

P
Peter Williams 已提交
4072
	if (!ld_moved) {
4073
		int active_balance = 0;
4074

I
Ingo Molnar 已提交
4075
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4076 4077
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4078
			return -1;
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4115
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4128 4129 4130 4131
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4132 4133
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4134
		spin_lock(&this_rq->lock);
4135

N
Nick Piggin 已提交
4136
	} else
4137
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4138

4139
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4140
	return ld_moved;
4141 4142

out_balanced:
I
Ingo Molnar 已提交
4143
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4144
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4145
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4146
		return -1;
4147
	sd->nr_balance_failed = 0;
4148

4149
	return 0;
L
Linus Torvalds 已提交
4150 4151 4152 4153 4154 4155
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4156
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4157 4158
{
	struct sched_domain *sd;
4159
	int pulled_task = 0;
I
Ingo Molnar 已提交
4160
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4161 4162

	for_each_domain(this_cpu, sd) {
4163 4164 4165 4166 4167 4168
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4169
			/* If we've pulled tasks over stop searching: */
4170
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4171
							   sd);
4172 4173 4174 4175 4176 4177

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4178
	}
I
Ingo Molnar 已提交
4179
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4180 4181 4182 4183 4184
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4185
	}
L
Linus Torvalds 已提交
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4196
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4197
{
4198
	int target_cpu = busiest_rq->push_cpu;
4199 4200
	struct sched_domain *sd;
	struct rq *target_rq;
4201

4202
	/* Is there any task to move? */
4203 4204 4205 4206
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4207 4208

	/*
4209
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4210
	 * we need to fix it. Originally reported by
4211
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4212
	 */
4213
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4214

4215 4216
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4217 4218
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4219 4220

	/* Search for an sd spanning us and the target CPU. */
4221
	for_each_domain(target_cpu, sd) {
4222
		if ((sd->flags & SD_LOAD_BALANCE) &&
4223
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4224
				break;
4225
	}
4226

4227
	if (likely(sd)) {
4228
		schedstat_inc(sd, alb_count);
4229

P
Peter Williams 已提交
4230 4231
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4232 4233 4234 4235
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4236
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4237 4238
}

4239 4240 4241
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4242
	cpumask_var_t cpu_mask;
4243
	cpumask_var_t ilb_grp_nohz_mask;
4244 4245 4246 4247
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
	return first_cpu(nohz.cpu_mask);
}
#endif

4363
/*
4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4374
 *
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4390 4391 4392 4393 4394 4395 4396 4397
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4398 4399
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4400

4401 4402 4403
			return 0;
		}

4404 4405
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4406
		/* time for ilb owner also to sleep */
4407
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4408 4409 4410 4411 4412 4413 4414 4415 4416
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4433
			return 1;
4434
		}
4435
	} else {
4436
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4437 4438
			return 0;

4439
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4452 4453 4454 4455 4456
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4457
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4458
{
4459 4460
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4461 4462
	unsigned long interval;
	struct sched_domain *sd;
4463
	/* Earliest time when we have to do rebalance again */
4464
	unsigned long next_balance = jiffies + 60*HZ;
4465
	int update_next_balance = 0;
4466
	int need_serialize;
L
Linus Torvalds 已提交
4467

4468
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4469 4470 4471 4472
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4473
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4474 4475 4476 4477 4478 4479
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4480 4481 4482
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4483
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4484

4485
		if (need_serialize) {
4486 4487 4488 4489
			if (!spin_trylock(&balancing))
				goto out;
		}

4490
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4491
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4492 4493
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4494 4495 4496
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4497
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4498
			}
4499
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4500
		}
4501
		if (need_serialize)
4502 4503
			spin_unlock(&balancing);
out:
4504
		if (time_after(next_balance, sd->last_balance + interval)) {
4505
			next_balance = sd->last_balance + interval;
4506 4507
			update_next_balance = 1;
		}
4508 4509 4510 4511 4512 4513 4514 4515

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4516
	}
4517 4518 4519 4520 4521 4522 4523 4524

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4525 4526 4527 4528 4529 4530 4531 4532 4533
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4534 4535 4536 4537
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4538

I
Ingo Molnar 已提交
4539
	rebalance_domains(this_cpu, idle);
4540 4541 4542 4543 4544 4545 4546

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4547 4548
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4549 4550 4551
		struct rq *rq;
		int balance_cpu;

4552 4553 4554 4555
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4556 4557 4558 4559 4560 4561 4562 4563
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4564
			rebalance_domains(balance_cpu, CPU_IDLE);
4565 4566

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4567 4568
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4569 4570 4571 4572 4573
		}
	}
#endif
}

4574 4575 4576 4577 4578
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4579 4580 4581 4582 4583 4584 4585
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4586
static inline void trigger_load_balance(struct rq *rq, int cpu)
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4598
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4599 4600 4601 4602
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4603
			int ilb = find_new_ilb(cpu);
4604

4605
			if (ilb < nr_cpu_ids)
4606 4607 4608 4609 4610 4611 4612 4613 4614
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4615
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4616 4617 4618 4619 4620 4621 4622 4623 4624
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4625
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4626 4627
		return;
#endif
4628 4629 4630
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4631
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4632
}
I
Ingo Molnar 已提交
4633 4634 4635

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4636 4637 4638
/*
 * on UP we do not need to balance between CPUs:
 */
4639
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4640 4641
{
}
I
Ingo Molnar 已提交
4642

L
Linus Torvalds 已提交
4643 4644 4645 4646 4647 4648 4649
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4650
 * Return any ns on the sched_clock that have not yet been accounted in
4651
 * @p in case that task is currently running.
4652 4653
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4654
 */
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4669
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4670 4671
{
	unsigned long flags;
4672
	struct rq *rq;
4673
	u64 ns = 0;
4674

4675
	rq = task_rq_lock(p, &flags);
4676 4677
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4678

4679 4680
	return ns;
}
4681

4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4699

4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4719
	task_rq_unlock(rq, &flags);
4720

L
Linus Torvalds 已提交
4721 4722 4723 4724 4725 4726 4727
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4728
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4729
 */
4730 4731
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4732 4733 4734 4735
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4736
	/* Add user time to process. */
L
Linus Torvalds 已提交
4737
	p->utime = cputime_add(p->utime, cputime);
4738
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4739
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4740 4741 4742 4743 4744 4745 4746

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4747 4748

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4749 4750
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4751 4752
}

4753 4754 4755 4756
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4757
 * @cputime_scaled: cputime scaled by cpu frequency
4758
 */
4759 4760
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4761 4762 4763 4764 4765 4766
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4767
	/* Add guest time to process. */
4768
	p->utime = cputime_add(p->utime, cputime);
4769
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4770
	account_group_user_time(p, cputime);
4771 4772
	p->gtime = cputime_add(p->gtime, cputime);

4773
	/* Add guest time to cpustat. */
4774 4775 4776 4777
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4778 4779 4780 4781 4782
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4783
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4784 4785
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4786
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4787 4788 4789 4790
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4791
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4792
		account_guest_time(p, cputime, cputime_scaled);
4793 4794
		return;
	}
4795

4796
	/* Add system time to process. */
L
Linus Torvalds 已提交
4797
	p->stime = cputime_add(p->stime, cputime);
4798
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4799
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4800 4801 4802 4803 4804 4805 4806 4807

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4808 4809
		cpustat->system = cputime64_add(cpustat->system, tmp);

4810 4811
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
4812 4813 4814 4815
	/* Account for system time used */
	acct_update_integrals(p);
}

4816
/*
L
Linus Torvalds 已提交
4817 4818
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4819
 */
4820
void account_steal_time(cputime_t cputime)
4821
{
4822 4823 4824 4825
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4826 4827
}

L
Linus Torvalds 已提交
4828
/*
4829 4830
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4831
 */
4832
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
4833 4834
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4835
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4836
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4837

4838 4839 4840 4841
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
4842 4843
}

4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
	else if (p != rq->idle)
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4883 4884
}

4885 4886
#endif

4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4957
	struct task_struct *curr = rq->curr;
4958 4959

	sched_clock_tick();
I
Ingo Molnar 已提交
4960 4961

	spin_lock(&rq->lock);
4962
	update_rq_clock(rq);
4963
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4964
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4965
	spin_unlock(&rq->lock);
4966

4967
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4968 4969
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4970
#endif
L
Linus Torvalds 已提交
4971 4972
}

4973
unsigned long get_parent_ip(unsigned long addr)
4974 4975 4976 4977 4978 4979 4980 4981
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4982

4983 4984 4985
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

4986
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4987
{
4988
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4989 4990 4991
	/*
	 * Underflow?
	 */
4992 4993
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4994
#endif
L
Linus Torvalds 已提交
4995
	preempt_count() += val;
4996
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4997 4998 4999
	/*
	 * Spinlock count overflowing soon?
	 */
5000 5001
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5002 5003 5004
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5005 5006 5007
}
EXPORT_SYMBOL(add_preempt_count);

5008
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5009
{
5010
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5011 5012 5013
	/*
	 * Underflow?
	 */
5014
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5015
		return;
L
Linus Torvalds 已提交
5016 5017 5018
	/*
	 * Is the spinlock portion underflowing?
	 */
5019 5020 5021
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5022
#endif
5023

5024 5025
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5026 5027 5028 5029 5030 5031 5032
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5033
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5034
 */
I
Ingo Molnar 已提交
5035
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5036
{
5037 5038 5039 5040 5041
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5042
	debug_show_held_locks(prev);
5043
	print_modules();
I
Ingo Molnar 已提交
5044 5045
	if (irqs_disabled())
		print_irqtrace_events(prev);
5046 5047 5048 5049 5050

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5051
}
L
Linus Torvalds 已提交
5052

I
Ingo Molnar 已提交
5053 5054 5055 5056 5057
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5058
	/*
I
Ingo Molnar 已提交
5059
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5060 5061 5062
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5063
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5064 5065
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5066 5067
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5068
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5069 5070
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5071 5072
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5073 5074
	}
#endif
I
Ingo Molnar 已提交
5075 5076
}

M
Mike Galbraith 已提交
5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5099 5100 5101 5102
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5103
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5104
{
5105
	const struct sched_class *class;
I
Ingo Molnar 已提交
5106
	struct task_struct *p;
L
Linus Torvalds 已提交
5107 5108

	/*
I
Ingo Molnar 已提交
5109 5110
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5111
	 */
I
Ingo Molnar 已提交
5112
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5113
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5114 5115
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5116 5117
	}

I
Ingo Molnar 已提交
5118 5119
	class = sched_class_highest;
	for ( ; ; ) {
5120
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5121 5122 5123 5124 5125 5126 5127 5128 5129
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5130

I
Ingo Molnar 已提交
5131 5132 5133
/*
 * schedule() is the main scheduler function.
 */
P
Peter Zijlstra 已提交
5134
asmlinkage void __sched __schedule(void)
I
Ingo Molnar 已提交
5135 5136
{
	struct task_struct *prev, *next;
5137
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5138
	struct rq *rq;
5139
	int cpu;
I
Ingo Molnar 已提交
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5151

5152
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5153
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5154

5155
	spin_lock_irq(&rq->lock);
5156
	update_rq_clock(rq);
5157
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5158 5159

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5160
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5161
			prev->state = TASK_RUNNING;
5162
		else
5163
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5164
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5165 5166
	}

5167 5168 5169 5170
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
5171

I
Ingo Molnar 已提交
5172
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5173 5174
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5175
	put_prev_task(rq, prev);
5176
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5177 5178

	if (likely(prev != next)) {
5179 5180
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
5181 5182 5183 5184
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5185
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5186 5187 5188 5189 5190 5191
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5192 5193 5194
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
5195
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5196
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5197
}
P
Peter Zijlstra 已提交
5198

P
Peter Zijlstra 已提交
5199 5200 5201 5202 5203
asmlinkage void __sched schedule(void)
{
need_resched:
	preempt_disable();
	__schedule();
L
Linus Torvalds 已提交
5204 5205 5206 5207 5208 5209
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5271 5272
#ifdef CONFIG_PREEMPT
/*
5273
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5274
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5275 5276 5277 5278 5279
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5280

L
Linus Torvalds 已提交
5281 5282
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5283
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5284
	 */
N
Nick Piggin 已提交
5285
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5286 5287
		return;

5288 5289 5290 5291
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5292

5293 5294 5295 5296 5297
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5298
	} while (need_resched());
L
Linus Torvalds 已提交
5299 5300 5301 5302
}
EXPORT_SYMBOL(preempt_schedule);

/*
5303
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5304 5305 5306 5307 5308 5309 5310
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5311

5312
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5313 5314
	BUG_ON(ti->preempt_count || !irqs_disabled());

5315 5316 5317 5318 5319 5320
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5321

5322 5323 5324 5325 5326
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5327
	} while (need_resched());
L
Linus Torvalds 已提交
5328 5329 5330 5331
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5332 5333
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5334
{
5335
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5336 5337 5338 5339
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5340 5341
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5342 5343 5344
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5345
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5346 5347
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5348
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5349
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5350
{
5351
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5352

5353
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5354 5355
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5356
		if (curr->func(curr, mode, sync, key) &&
5357
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5358 5359 5360 5361 5362 5363 5364 5365 5366
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5367
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
5368
 */
5369
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5370
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5383
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5384 5385 5386 5387
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5388 5389 5390 5391 5392
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5393
/**
5394
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5395 5396 5397
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5398
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5399 5400 5401 5402 5403 5404 5405 5406
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
5407 5408
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5420
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5421 5422
	spin_unlock_irqrestore(&q->lock, flags);
}
5423 5424 5425 5426 5427 5428 5429 5430 5431
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5432 5433
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5434 5435 5436 5437 5438 5439 5440 5441 5442
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
5443
void complete(struct completion *x)
L
Linus Torvalds 已提交
5444 5445 5446 5447 5448
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5449
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5450 5451 5452 5453
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5454 5455 5456 5457 5458 5459
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
5460
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5461 5462 5463 5464 5465
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5466
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5467 5468 5469 5470
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5471 5472
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5473 5474 5475 5476 5477 5478 5479
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5480
			if (signal_pending_state(state, current)) {
5481 5482
				timeout = -ERESTARTSYS;
				break;
5483 5484
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5485 5486 5487
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5488
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5489
		__remove_wait_queue(&x->wait, &wait);
5490 5491
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5492 5493
	}
	x->done--;
5494
	return timeout ?: 1;
L
Linus Torvalds 已提交
5495 5496
}

5497 5498
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5499 5500 5501 5502
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5503
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5504
	spin_unlock_irq(&x->wait.lock);
5505 5506
	return timeout;
}
L
Linus Torvalds 已提交
5507

5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5518
void __sched wait_for_completion(struct completion *x)
5519 5520
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5521
}
5522
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5523

5524 5525 5526 5527 5528 5529 5530 5531 5532
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5533
unsigned long __sched
5534
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5535
{
5536
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5537
}
5538
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5539

5540 5541 5542 5543 5544 5545 5546
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5547
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5548
{
5549 5550 5551 5552
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5553
}
5554
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5555

5556 5557 5558 5559 5560 5561 5562 5563
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5564
unsigned long __sched
5565 5566
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5567
{
5568
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5569
}
5570
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5571

5572 5573 5574 5575 5576 5577 5578
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5579 5580 5581 5582 5583 5584 5585 5586 5587
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5634 5635
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5636
{
I
Ingo Molnar 已提交
5637 5638 5639 5640
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5641

5642
	__set_current_state(state);
L
Linus Torvalds 已提交
5643

5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5658 5659 5660
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5661
long __sched
I
Ingo Molnar 已提交
5662
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5663
{
5664
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5665 5666 5667
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5668
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5669
{
5670
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5671 5672 5673
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5674
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5675
{
5676
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5677 5678 5679
}
EXPORT_SYMBOL(sleep_on_timeout);

5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5692
void rt_mutex_setprio(struct task_struct *p, int prio)
5693 5694
{
	unsigned long flags;
5695
	int oldprio, on_rq, running;
5696
	struct rq *rq;
5697
	const struct sched_class *prev_class = p->sched_class;
5698 5699 5700 5701

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5702
	update_rq_clock(rq);
5703

5704
	oldprio = p->prio;
I
Ingo Molnar 已提交
5705
	on_rq = p->se.on_rq;
5706
	running = task_current(rq, p);
5707
	if (on_rq)
5708
		dequeue_task(rq, p, 0);
5709 5710
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5711 5712 5713 5714 5715 5716

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5717 5718
	p->prio = prio;

5719 5720
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5721
	if (on_rq) {
5722
		enqueue_task(rq, p, 0);
5723 5724

		check_class_changed(rq, p, prev_class, oldprio, running);
5725 5726 5727 5728 5729 5730
	}
	task_rq_unlock(rq, &flags);
}

#endif

5731
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5732
{
I
Ingo Molnar 已提交
5733
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5734
	unsigned long flags;
5735
	struct rq *rq;
L
Linus Torvalds 已提交
5736 5737 5738 5739 5740 5741 5742 5743

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5744
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5745 5746 5747 5748
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5749
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5750
	 */
5751
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5752 5753 5754
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5755
	on_rq = p->se.on_rq;
5756
	if (on_rq)
5757
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5758 5759

	p->static_prio = NICE_TO_PRIO(nice);
5760
	set_load_weight(p);
5761 5762 5763
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5764

I
Ingo Molnar 已提交
5765
	if (on_rq) {
5766
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5767
		/*
5768 5769
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5770
		 */
5771
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5772 5773 5774 5775 5776 5777 5778
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5779 5780 5781 5782 5783
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5784
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5785
{
5786 5787
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5788

M
Matt Mackall 已提交
5789 5790 5791 5792
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5793 5794 5795 5796 5797 5798 5799 5800 5801
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5802
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5803
{
5804
	long nice, retval;
L
Linus Torvalds 已提交
5805 5806 5807 5808 5809 5810

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5811 5812
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5813 5814 5815
	if (increment > 40)
		increment = 40;

5816
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
5817 5818 5819 5820 5821
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5822 5823 5824
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5843
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5844 5845 5846 5847 5848 5849 5850 5851
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5852
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5853 5854 5855
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5856
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5871
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5872 5873 5874 5875 5876 5877 5878 5879
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5880
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5881
{
5882
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5883 5884 5885
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5886 5887
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5888
{
I
Ingo Molnar 已提交
5889
	BUG_ON(p->se.on_rq);
5890

L
Linus Torvalds 已提交
5891
	p->policy = policy;
I
Ingo Molnar 已提交
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5904
	p->rt_priority = prio;
5905 5906 5907
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5908
	set_load_weight(p);
L
Linus Torvalds 已提交
5909 5910
}

5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

5927 5928
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5929
{
5930
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5931
	unsigned long flags;
5932
	const struct sched_class *prev_class = p->sched_class;
5933
	struct rq *rq;
L
Linus Torvalds 已提交
5934

5935 5936
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5937 5938 5939 5940 5941
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5942 5943
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5944
		return -EINVAL;
L
Linus Torvalds 已提交
5945 5946
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5947 5948
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5949 5950
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5951
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5952
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5953
		return -EINVAL;
5954
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5955 5956
		return -EINVAL;

5957 5958 5959
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5960
	if (user && !capable(CAP_SYS_NICE)) {
5961
		if (rt_policy(policy)) {
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5978 5979 5980 5981 5982 5983
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5984

5985
		/* can't change other user's priorities */
5986
		if (!check_same_owner(p))
5987 5988
			return -EPERM;
	}
L
Linus Torvalds 已提交
5989

5990
	if (user) {
5991
#ifdef CONFIG_RT_GROUP_SCHED
5992 5993 5994 5995
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5996 5997
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5998
			return -EPERM;
5999 6000
#endif

6001 6002 6003 6004 6005
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6006 6007 6008 6009 6010
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6011 6012 6013 6014
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6015
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6016 6017 6018
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6019 6020
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6021 6022
		goto recheck;
	}
I
Ingo Molnar 已提交
6023
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6024
	on_rq = p->se.on_rq;
6025
	running = task_current(rq, p);
6026
	if (on_rq)
6027
		deactivate_task(rq, p, 0);
6028 6029
	if (running)
		p->sched_class->put_prev_task(rq, p);
6030

L
Linus Torvalds 已提交
6031
	oldprio = p->prio;
I
Ingo Molnar 已提交
6032
	__setscheduler(rq, p, policy, param->sched_priority);
6033

6034 6035
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6036 6037
	if (on_rq) {
		activate_task(rq, p, 0);
6038 6039

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6040
	}
6041 6042 6043
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6044 6045
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6046 6047
	return 0;
}
6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6062 6063
EXPORT_SYMBOL_GPL(sched_setscheduler);

6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6081 6082
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6083 6084 6085
{
	struct sched_param lparam;
	struct task_struct *p;
6086
	int retval;
L
Linus Torvalds 已提交
6087 6088 6089 6090 6091

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6092 6093 6094

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6095
	p = find_process_by_pid(pid);
6096 6097 6098
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6099

L
Linus Torvalds 已提交
6100 6101 6102 6103 6104 6105 6106 6107 6108
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6109 6110
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6111
{
6112 6113 6114 6115
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6116 6117 6118 6119 6120 6121 6122 6123
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6124
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6125 6126 6127 6128 6129 6130 6131 6132
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6133
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6134
{
6135
	struct task_struct *p;
6136
	int retval;
L
Linus Torvalds 已提交
6137 6138

	if (pid < 0)
6139
		return -EINVAL;
L
Linus Torvalds 已提交
6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6158
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6159 6160
{
	struct sched_param lp;
6161
	struct task_struct *p;
6162
	int retval;
L
Linus Torvalds 已提交
6163 6164

	if (!param || pid < 0)
6165
		return -EINVAL;
L
Linus Torvalds 已提交
6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6192
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6193
{
6194
	cpumask_var_t cpus_allowed, new_mask;
6195 6196
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6197

6198
	get_online_cpus();
L
Linus Torvalds 已提交
6199 6200 6201 6202 6203
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6204
		put_online_cpus();
L
Linus Torvalds 已提交
6205 6206 6207 6208 6209
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6210
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6211 6212 6213 6214 6215
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6216 6217 6218 6219 6220 6221 6222 6223
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6224
	retval = -EPERM;
6225
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6226 6227
		goto out_unlock;

6228 6229 6230 6231
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6232 6233
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6234
 again:
6235
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6236

P
Paul Menage 已提交
6237
	if (!retval) {
6238 6239
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6240 6241 6242 6243 6244
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6245
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6246 6247 6248
			goto again;
		}
	}
L
Linus Torvalds 已提交
6249
out_unlock:
6250 6251 6252 6253
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6254
	put_task_struct(p);
6255
	put_online_cpus();
L
Linus Torvalds 已提交
6256 6257 6258 6259
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6260
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6261
{
6262 6263 6264 6265 6266
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6267 6268 6269 6270 6271 6272 6273 6274 6275
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6276 6277
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6278
{
6279
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6280 6281
	int retval;

6282 6283
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6284

6285 6286 6287 6288 6289
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6290 6291
}

6292
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6293
{
6294
	struct task_struct *p;
L
Linus Torvalds 已提交
6295 6296
	int retval;

6297
	get_online_cpus();
L
Linus Torvalds 已提交
6298 6299 6300 6301 6302 6303 6304
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6305 6306 6307 6308
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6309
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6310 6311 6312

out_unlock:
	read_unlock(&tasklist_lock);
6313
	put_online_cpus();
L
Linus Torvalds 已提交
6314

6315
	return retval;
L
Linus Torvalds 已提交
6316 6317 6318 6319 6320 6321 6322 6323
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6324 6325
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6326 6327
{
	int ret;
6328
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6329

6330
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6331 6332
		return -EINVAL;

6333 6334
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6335

6336 6337 6338 6339 6340 6341 6342 6343
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6344

6345
	return ret;
L
Linus Torvalds 已提交
6346 6347 6348 6349 6350
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6351 6352
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6353
 */
6354
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6355
{
6356
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6357

6358
	schedstat_inc(rq, yld_count);
6359
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6360 6361 6362 6363 6364 6365

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6366
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6367 6368 6369 6370 6371 6372 6373 6374
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
6375
static void __cond_resched(void)
L
Linus Torvalds 已提交
6376
{
6377 6378 6379
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
6380 6381 6382 6383 6384
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
6385 6386 6387 6388 6389 6390 6391
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

6392
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6393
{
6394 6395
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
6396 6397 6398 6399 6400
		__cond_resched();
		return 1;
	}
	return 0;
}
6401
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6402 6403 6404 6405 6406

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6407
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6408 6409 6410
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
6411
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6412
{
N
Nick Piggin 已提交
6413
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
6414 6415
	int ret = 0;

N
Nick Piggin 已提交
6416
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6417
		spin_unlock(lock);
N
Nick Piggin 已提交
6418 6419 6420 6421
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6422
		ret = 1;
L
Linus Torvalds 已提交
6423 6424
		spin_lock(lock);
	}
J
Jan Kara 已提交
6425
	return ret;
L
Linus Torvalds 已提交
6426 6427 6428 6429 6430 6431 6432
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

6433
	if (need_resched() && system_state == SYSTEM_RUNNING) {
6434
		local_bh_enable();
L
Linus Torvalds 已提交
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
6446
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6447 6448 6449 6450 6451 6452 6453 6454 6455 6456
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6457
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6458 6459 6460 6461 6462 6463 6464
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6465
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6466

6467
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6468 6469 6470
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
6471
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6472 6473 6474 6475 6476
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6477
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6478 6479
	long ret;

6480
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6481 6482 6483
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
6484
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6495
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6496 6497 6498 6499 6500 6501 6502 6503 6504
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6505
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6506
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6520
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6521 6522 6523 6524 6525 6526 6527 6528 6529
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6530
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6531
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6545
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6546
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6547
{
6548
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6549
	unsigned int time_slice;
6550
	int retval;
L
Linus Torvalds 已提交
6551 6552 6553
	struct timespec t;

	if (pid < 0)
6554
		return -EINVAL;
L
Linus Torvalds 已提交
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6566 6567 6568 6569 6570 6571
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6572
		time_slice = DEF_TIMESLICE;
6573
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6574 6575 6576 6577 6578
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6579 6580
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6581 6582
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6583
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6584
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6585 6586
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6587

L
Linus Torvalds 已提交
6588 6589 6590 6591 6592
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6593
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6594

6595
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6596 6597
{
	unsigned long free = 0;
6598
	unsigned state;
L
Linus Torvalds 已提交
6599 6600

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6601
	printk(KERN_INFO "%-13.13s %c", p->comm,
6602
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6603
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6604
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6605
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6606
	else
I
Ingo Molnar 已提交
6607
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6608 6609
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6610
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6611
	else
I
Ingo Molnar 已提交
6612
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6613 6614
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6615
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6616
#endif
6617
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
6618
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
6619

6620
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6621 6622
}

I
Ingo Molnar 已提交
6623
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6624
{
6625
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6626

6627 6628 6629
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6630
#else
6631 6632
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6633 6634 6635 6636 6637 6638 6639 6640
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6641
		if (!state_filter || (p->state & state_filter))
6642
			sched_show_task(p);
L
Linus Torvalds 已提交
6643 6644
	} while_each_thread(g, p);

6645 6646
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6647 6648 6649
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6650
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6651 6652 6653 6654 6655
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6656 6657
}

I
Ingo Molnar 已提交
6658 6659
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6660
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6661 6662
}

6663 6664 6665 6666 6667 6668 6669 6670
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6671
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6672
{
6673
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6674 6675
	unsigned long flags;

6676 6677
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6678 6679 6680
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6681
	idle->prio = idle->normal_prio = MAX_PRIO;
6682
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6683
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6684 6685

	rq->curr = rq->idle = idle;
6686 6687 6688
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6689 6690 6691
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6692 6693 6694
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6695
	task_thread_info(idle)->preempt_count = 0;
6696
#endif
I
Ingo Molnar 已提交
6697 6698 6699 6700
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6701
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6702 6703 6704 6705 6706 6707 6708
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6709
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6710
 */
6711
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6712

I
Ingo Molnar 已提交
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6736 6737

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6738 6739
}

L
Linus Torvalds 已提交
6740 6741 6742 6743
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6744
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6763
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6764 6765
 * call is not atomic; no spinlocks may be held.
 */
6766
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6767
{
6768
	struct migration_req req;
L
Linus Torvalds 已提交
6769
	unsigned long flags;
6770
	struct rq *rq;
6771
	int ret = 0;
L
Linus Torvalds 已提交
6772 6773

	rq = task_rq_lock(p, &flags);
6774
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6775 6776 6777 6778
		ret = -EINVAL;
		goto out;
	}

6779
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6780
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6781 6782 6783 6784
		ret = -EINVAL;
		goto out;
	}

6785
	if (p->sched_class->set_cpus_allowed)
6786
		p->sched_class->set_cpus_allowed(p, new_mask);
6787
	else {
6788 6789
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6790 6791
	}

L
Linus Torvalds 已提交
6792
	/* Can the task run on the task's current CPU? If so, we're done */
6793
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6794 6795
		goto out;

R
Rusty Russell 已提交
6796
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6797 6798 6799 6800 6801 6802 6803 6804 6805
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6806

L
Linus Torvalds 已提交
6807 6808
	return ret;
}
6809
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6810 6811

/*
I
Ingo Molnar 已提交
6812
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6813 6814 6815 6816 6817 6818
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6819 6820
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6821
 */
6822
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6823
{
6824
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6825
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6826

6827
	if (unlikely(!cpu_active(dest_cpu)))
6828
		return ret;
L
Linus Torvalds 已提交
6829 6830 6831 6832 6833 6834 6835

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6836
		goto done;
L
Linus Torvalds 已提交
6837
	/* Affinity changed (again). */
6838
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6839
		goto fail;
L
Linus Torvalds 已提交
6840

I
Ingo Molnar 已提交
6841
	on_rq = p->se.on_rq;
6842
	if (on_rq)
6843
		deactivate_task(rq_src, p, 0);
6844

L
Linus Torvalds 已提交
6845
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6846 6847
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6848
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6849
	}
L
Linus Torvalds 已提交
6850
done:
6851
	ret = 1;
L
Linus Torvalds 已提交
6852
fail:
L
Linus Torvalds 已提交
6853
	double_rq_unlock(rq_src, rq_dest);
6854
	return ret;
L
Linus Torvalds 已提交
6855 6856 6857 6858 6859 6860 6861
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6862
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6863 6864
{
	int cpu = (long)data;
6865
	struct rq *rq;
L
Linus Torvalds 已提交
6866 6867 6868 6869 6870 6871

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6872
		struct migration_req *req;
L
Linus Torvalds 已提交
6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6895
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6896 6897
		list_del_init(head->next);

N
Nick Piggin 已提交
6898 6899 6900
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6930
/*
6931
 * Figure out where task on dead CPU should go, use force if necessary.
6932
 */
6933
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6934
{
6935
	int dest_cpu;
6936
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
6953

6954 6955 6956 6957 6958 6959 6960 6961 6962
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6963
		}
6964 6965 6966 6967 6968 6969
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6970 6971 6972 6973 6974 6975 6976 6977 6978
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6979
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6980
{
R
Rusty Russell 已提交
6981
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6995
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6996

6997
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6998

6999 7000
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7001 7002
			continue;

7003 7004 7005
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7006

7007
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7008 7009
}

I
Ingo Molnar 已提交
7010 7011
/*
 * Schedules idle task to be the next runnable task on current CPU.
7012 7013
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7014 7015 7016
 */
void sched_idle_next(void)
{
7017
	int this_cpu = smp_processor_id();
7018
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7019 7020 7021 7022
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7023
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7024

7025 7026 7027
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7028 7029 7030
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7031
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7032

7033 7034
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7035 7036 7037 7038

	spin_unlock_irqrestore(&rq->lock, flags);
}

7039 7040
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7054
/* called under rq->lock with disabled interrupts */
7055
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7056
{
7057
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7058 7059

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7060
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7061 7062

	/* Cannot have done final schedule yet: would have vanished. */
7063
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7064

7065
	get_task_struct(p);
L
Linus Torvalds 已提交
7066 7067 7068

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7069
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7070 7071
	 * fine.
	 */
7072
	spin_unlock_irq(&rq->lock);
7073
	move_task_off_dead_cpu(dead_cpu, p);
7074
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7075

7076
	put_task_struct(p);
L
Linus Torvalds 已提交
7077 7078 7079 7080 7081
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7082
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7083
	struct task_struct *next;
7084

I
Ingo Molnar 已提交
7085 7086 7087
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7088
		update_rq_clock(rq);
7089
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7090 7091
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7092
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7093
		migrate_dead(dead_cpu, next);
7094

L
Linus Torvalds 已提交
7095 7096 7097 7098
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

7099 7100 7101
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7102 7103
	{
		.procname	= "sched_domain",
7104
		.mode		= 0555,
7105
	},
I
Ingo Molnar 已提交
7106
	{0, },
7107 7108 7109
};

static struct ctl_table sd_ctl_root[] = {
7110
	{
7111
		.ctl_name	= CTL_KERN,
7112
		.procname	= "kernel",
7113
		.mode		= 0555,
7114 7115
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7116
	{0, },
7117 7118 7119 7120 7121
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7122
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7123 7124 7125 7126

	return entry;
}

7127 7128
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7129
	struct ctl_table *entry;
7130

7131 7132 7133
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7134
	 * will always be set. In the lowest directory the names are
7135 7136 7137
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7138 7139
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7140 7141 7142
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7143 7144 7145 7146 7147

	kfree(*tablep);
	*tablep = NULL;
}

7148
static void
7149
set_table_entry(struct ctl_table *entry,
7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7163
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7164

7165 7166 7167
	if (table == NULL)
		return NULL;

7168
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7169
		sizeof(long), 0644, proc_doulongvec_minmax);
7170
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7171
		sizeof(long), 0644, proc_doulongvec_minmax);
7172
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7173
		sizeof(int), 0644, proc_dointvec_minmax);
7174
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7175
		sizeof(int), 0644, proc_dointvec_minmax);
7176
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7177
		sizeof(int), 0644, proc_dointvec_minmax);
7178
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7179
		sizeof(int), 0644, proc_dointvec_minmax);
7180
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7181
		sizeof(int), 0644, proc_dointvec_minmax);
7182
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7183
		sizeof(int), 0644, proc_dointvec_minmax);
7184
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7185
		sizeof(int), 0644, proc_dointvec_minmax);
7186
	set_table_entry(&table[9], "cache_nice_tries",
7187 7188
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7189
	set_table_entry(&table[10], "flags", &sd->flags,
7190
		sizeof(int), 0644, proc_dointvec_minmax);
7191 7192 7193
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7194 7195 7196 7197

	return table;
}

7198
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7199 7200 7201 7202 7203 7204 7205 7206 7207
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7208 7209
	if (table == NULL)
		return NULL;
7210 7211 7212 7213 7214

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7215
		entry->mode = 0555;
7216 7217 7218 7219 7220 7221 7222 7223
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7224
static void register_sched_domain_sysctl(void)
7225 7226 7227 7228 7229
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7230 7231 7232
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7233 7234 7235
	if (entry == NULL)
		return;

7236
	for_each_online_cpu(i) {
7237 7238
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7239
		entry->mode = 0555;
7240
		entry->child = sd_alloc_ctl_cpu_table(i);
7241
		entry++;
7242
	}
7243 7244

	WARN_ON(sd_sysctl_header);
7245 7246
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7247

7248
/* may be called multiple times per register */
7249 7250
static void unregister_sched_domain_sysctl(void)
{
7251 7252
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7253
	sd_sysctl_header = NULL;
7254 7255
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7256
}
7257
#else
7258 7259 7260 7261
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7262 7263 7264 7265
{
}
#endif

7266 7267 7268 7269 7270
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7271
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7291
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7292 7293 7294 7295
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7296 7297 7298 7299
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7300 7301
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7302 7303
{
	struct task_struct *p;
7304
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7305
	unsigned long flags;
7306
	struct rq *rq;
L
Linus Torvalds 已提交
7307 7308

	switch (action) {
7309

L
Linus Torvalds 已提交
7310
	case CPU_UP_PREPARE:
7311
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7312
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7313 7314 7315 7316 7317
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7318
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7319 7320 7321
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
7322

L
Linus Torvalds 已提交
7323
	case CPU_ONLINE:
7324
	case CPU_ONLINE_FROZEN:
7325
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7326
		wake_up_process(cpu_rq(cpu)->migration_thread);
7327 7328 7329 7330 7331

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7332
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7333 7334

			set_rq_online(rq);
7335 7336
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7337
		break;
7338

L
Linus Torvalds 已提交
7339 7340
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7341
	case CPU_UP_CANCELED_FROZEN:
7342 7343
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7344
		/* Unbind it from offline cpu so it can run. Fall thru. */
7345
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7346
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7347 7348 7349
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7350

L
Linus Torvalds 已提交
7351
	case CPU_DEAD:
7352
	case CPU_DEAD_FROZEN:
7353
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7354 7355 7356 7357 7358
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7359
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7360
		update_rq_clock(rq);
7361
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7362
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7363 7364
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7365
		migrate_dead_tasks(cpu);
7366
		spin_unlock_irq(&rq->lock);
7367
		cpuset_unlock();
L
Linus Torvalds 已提交
7368 7369 7370
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
7371 7372 7373 7374 7375
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7376 7377
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7378 7379
			struct migration_req *req;

L
Linus Torvalds 已提交
7380
			req = list_entry(rq->migration_queue.next,
7381
					 struct migration_req, list);
L
Linus Torvalds 已提交
7382
			list_del_init(&req->list);
B
Brian King 已提交
7383
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7384
			complete(&req->done);
B
Brian King 已提交
7385
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7386 7387 7388
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7389

7390 7391
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7392 7393 7394 7395
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7396
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7397
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7398 7399 7400
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7401 7402 7403 7404 7405 7406 7407 7408
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
7409
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7410 7411 7412 7413
	.notifier_call = migration_call,
	.priority = 10
};

7414
static int __init migration_init(void)
L
Linus Torvalds 已提交
7415 7416
{
	void *cpu = (void *)(long)smp_processor_id();
7417
	int err;
7418 7419

	/* Start one for the boot CPU: */
7420 7421
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7422 7423
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7424 7425

	return err;
L
Linus Torvalds 已提交
7426
}
7427
early_initcall(migration_init);
L
Linus Torvalds 已提交
7428 7429 7430
#endif

#ifdef CONFIG_SMP
7431

7432
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7433

7434
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7435
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7436
{
I
Ingo Molnar 已提交
7437
	struct sched_group *group = sd->groups;
7438
	char str[256];
L
Linus Torvalds 已提交
7439

R
Rusty Russell 已提交
7440
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7441
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7442 7443 7444 7445 7446 7447 7448 7449 7450

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7451 7452
	}

7453
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7454

7455
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7456 7457 7458
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7459
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7460 7461 7462
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7463

I
Ingo Molnar 已提交
7464
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7465
	do {
I
Ingo Molnar 已提交
7466 7467 7468
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7469 7470 7471
			break;
		}

I
Ingo Molnar 已提交
7472 7473 7474 7475 7476 7477
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7478

7479
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7480 7481 7482 7483
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7484

7485
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7486 7487 7488 7489
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7490

7491
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7492

R
Rusty Russell 已提交
7493
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7494 7495
		printk(KERN_CONT " %s (__cpu_power = %d)", str,
						group->__cpu_power);
L
Linus Torvalds 已提交
7496

I
Ingo Molnar 已提交
7497 7498 7499
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7500

7501
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7502
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7503

7504 7505
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7506 7507 7508 7509
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7510

I
Ingo Molnar 已提交
7511 7512
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7513
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7514
	int level = 0;
L
Linus Torvalds 已提交
7515

I
Ingo Molnar 已提交
7516 7517 7518 7519
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7520

I
Ingo Molnar 已提交
7521 7522
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7523
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7524 7525 7526 7527
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7528
	for (;;) {
7529
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7530
			break;
L
Linus Torvalds 已提交
7531 7532
		level++;
		sd = sd->parent;
7533
		if (!sd)
I
Ingo Molnar 已提交
7534 7535
			break;
	}
7536
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7537
}
7538
#else /* !CONFIG_SCHED_DEBUG */
7539
# define sched_domain_debug(sd, cpu) do { } while (0)
7540
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7541

7542
static int sd_degenerate(struct sched_domain *sd)
7543
{
7544
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7545 7546 7547 7548 7549 7550
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7551 7552 7553
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7567 7568
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7569 7570 7571 7572 7573 7574
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7575
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7587 7588 7589
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7590 7591
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7592 7593 7594 7595 7596 7597 7598
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7599 7600
static void free_rootdomain(struct root_domain *rd)
{
7601 7602
	cpupri_cleanup(&rd->cpupri);

7603 7604 7605 7606 7607 7608
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7609 7610
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7611
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7612 7613 7614 7615 7616
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7617
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7618

7619
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7620
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7621

7622
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7623

I
Ingo Molnar 已提交
7624 7625 7626 7627 7628 7629 7630
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7631 7632 7633 7634 7635
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7636 7637
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7638
		set_rq_online(rq);
G
Gregory Haskins 已提交
7639 7640

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7641 7642 7643

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7644 7645
}

L
Li Zefan 已提交
7646
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7647 7648 7649
{
	memset(rd, 0, sizeof(*rd));

7650 7651 7652 7653
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7654
		cpupri_init(&rd->cpupri, true);
7655 7656 7657 7658
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7659
		goto out;
7660 7661 7662 7663
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
7664

7665 7666
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
7667
	return 0;
7668

7669 7670
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7671 7672 7673 7674
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7675
out:
7676
	return -ENOMEM;
G
Gregory Haskins 已提交
7677 7678 7679 7680
}

static void init_defrootdomain(void)
{
7681 7682
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7683 7684 7685
	atomic_set(&def_root_domain.refcount, 1);
}

7686
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7687 7688 7689 7690 7691 7692 7693
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7694 7695 7696 7697
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7698 7699 7700 7701

	return rd;
}

L
Linus Torvalds 已提交
7702
/*
I
Ingo Molnar 已提交
7703
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7704 7705
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7706 7707
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7708
{
7709
	struct rq *rq = cpu_rq(cpu);
7710 7711 7712
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7713
	for (tmp = sd; tmp; ) {
7714 7715 7716
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7717

7718
		if (sd_parent_degenerate(tmp, parent)) {
7719
			tmp->parent = parent->parent;
7720 7721
			if (parent->parent)
				parent->parent->child = tmp;
7722 7723
		} else
			tmp = tmp->parent;
7724 7725
	}

7726
	if (sd && sd_degenerate(sd)) {
7727
		sd = sd->parent;
7728 7729 7730
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7731 7732 7733

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7734
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7735
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7736 7737 7738
}

/* cpus with isolated domains */
7739
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7740 7741 7742 7743

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7744
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7745 7746 7747
	return 1;
}

I
Ingo Molnar 已提交
7748
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7749 7750

/*
7751 7752
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7753 7754
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7755 7756 7757 7758 7759
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7760
static void
7761 7762 7763
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7764
					struct sched_group **sg,
7765 7766
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7767 7768 7769 7770
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7771
	cpumask_clear(covered);
7772

7773
	for_each_cpu(i, span) {
7774
		struct sched_group *sg;
7775
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7776 7777
		int j;

7778
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7779 7780
			continue;

7781
		cpumask_clear(sched_group_cpus(sg));
7782
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7783

7784
		for_each_cpu(j, span) {
7785
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7786 7787
				continue;

7788
			cpumask_set_cpu(j, covered);
7789
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7790 7791 7792 7793 7794 7795 7796 7797 7798 7799
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7800
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7801

7802
#ifdef CONFIG_NUMA
7803

7804 7805 7806 7807 7808
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7809
 * Find the next node to include in a given scheduling domain. Simply
7810 7811 7812 7813
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7814
static int find_next_best_node(int node, nodemask_t *used_nodes)
7815 7816 7817 7818 7819
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7820
	for (i = 0; i < nr_node_ids; i++) {
7821
		/* Start at @node */
7822
		n = (node + i) % nr_node_ids;
7823 7824 7825 7826 7827

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7828
		if (node_isset(n, *used_nodes))
7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7840
	node_set(best_node, *used_nodes);
7841 7842 7843 7844 7845 7846
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7847
 * @span: resulting cpumask
7848
 *
I
Ingo Molnar 已提交
7849
 * Given a node, construct a good cpumask for its sched_domain to span. It
7850 7851 7852
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7853
static void sched_domain_node_span(int node, struct cpumask *span)
7854
{
7855
	nodemask_t used_nodes;
7856
	int i;
7857

7858
	cpumask_clear(span);
7859
	nodes_clear(used_nodes);
7860

7861
	cpumask_or(span, span, cpumask_of_node(node));
7862
	node_set(node, used_nodes);
7863 7864

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7865
		int next_node = find_next_best_node(node, &used_nodes);
7866

7867
		cpumask_or(span, span, cpumask_of_node(next_node));
7868 7869
	}
}
7870
#endif /* CONFIG_NUMA */
7871

7872
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7873

7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7889
/*
7890
 * SMT sched-domains:
7891
 */
L
Linus Torvalds 已提交
7892
#ifdef CONFIG_SCHED_SMT
7893 7894
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7895

I
Ingo Molnar 已提交
7896
static int
7897 7898
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7899
{
7900
	if (sg)
7901
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7902 7903
	return cpu;
}
7904
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7905

7906 7907 7908
/*
 * multi-core sched-domains:
 */
7909
#ifdef CONFIG_SCHED_MC
7910 7911
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7912
#endif /* CONFIG_SCHED_MC */
7913 7914

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7915
static int
7916 7917
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7918
{
7919
	int group;
7920

7921
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7922
	group = cpumask_first(mask);
7923
	if (sg)
7924
		*sg = &per_cpu(sched_group_core, group).sg;
7925
	return group;
7926 7927
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7928
static int
7929 7930
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7931
{
7932
	if (sg)
7933
		*sg = &per_cpu(sched_group_core, cpu).sg;
7934 7935 7936 7937
	return cpu;
}
#endif

7938 7939
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7940

I
Ingo Molnar 已提交
7941
static int
7942 7943
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7944
{
7945
	int group;
7946
#ifdef CONFIG_SCHED_MC
7947
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7948
	group = cpumask_first(mask);
7949
#elif defined(CONFIG_SCHED_SMT)
7950
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7951
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7952
#else
7953
	group = cpu;
L
Linus Torvalds 已提交
7954
#endif
7955
	if (sg)
7956
		*sg = &per_cpu(sched_group_phys, group).sg;
7957
	return group;
L
Linus Torvalds 已提交
7958 7959 7960 7961
}

#ifdef CONFIG_NUMA
/*
7962 7963 7964
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7965
 */
7966
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7967
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7968

7969
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7970
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7971

7972 7973 7974
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7975
{
7976 7977
	int group;

7978
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7979
	group = cpumask_first(nodemask);
7980 7981

	if (sg)
7982
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7983
	return group;
L
Linus Torvalds 已提交
7984
}
7985

7986 7987 7988 7989 7990 7991 7992
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7993
	do {
7994
		for_each_cpu(j, sched_group_cpus(sg)) {
7995
			struct sched_domain *sd;
7996

7997
			sd = &per_cpu(phys_domains, j).sd;
7998
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7999 8000 8001 8002 8003 8004
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8005

8006 8007 8008 8009
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
8010
}
8011
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8012

8013
#ifdef CONFIG_NUMA
8014
/* Free memory allocated for various sched_group structures */
8015 8016
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8017
{
8018
	int cpu, i;
8019

8020
	for_each_cpu(cpu, cpu_map) {
8021 8022 8023 8024 8025 8026
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8027
		for (i = 0; i < nr_node_ids; i++) {
8028 8029
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8030
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8031
			if (cpumask_empty(nodemask))
8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8048
#else /* !CONFIG_NUMA */
8049 8050
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8051 8052
{
}
8053
#endif /* CONFIG_NUMA */
8054

8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

8076
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
8077 8078 8079 8080
		return;

	child = sd->child;

8081 8082
	sd->groups->__cpu_power = 0;

8083 8084 8085 8086 8087 8088 8089 8090 8091 8092
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8093
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8094 8095 8096 8097 8098 8099 8100 8101
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
8102
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
8103 8104 8105 8106
		group = group->next;
	} while (group != child->groups);
}

8107 8108 8109 8110 8111
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8112 8113 8114 8115 8116 8117
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8118
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8119

8120 8121 8122 8123 8124
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8125
	sd->level = SD_LV_##type;				\
8126
	SD_INIT_NAME(sd, type);					\
8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8141 8142 8143 8144
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8145 8146 8147 8148 8149 8150
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
8176
/*
8177 8178
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
8179
 */
8180
static int __build_sched_domains(const struct cpumask *cpu_map,
8181
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
8182
{
8183
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
8184
	struct root_domain *rd;
8185 8186
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
8187
#ifdef CONFIG_NUMA
8188
	cpumask_var_t domainspan, covered, notcovered;
8189
	struct sched_group **sched_group_nodes = NULL;
8190
	int sd_allnodes = 0;
8191

8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
8212 8213 8214
	/*
	 * Allocate the per-node list of sched groups
	 */
8215
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
8216
				    GFP_KERNEL);
8217 8218
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8219
		goto free_tmpmask;
8220 8221
	}
#endif
L
Linus Torvalds 已提交
8222

8223
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
8224 8225
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
8226
		goto free_sched_groups;
G
Gregory Haskins 已提交
8227 8228
	}

8229
#ifdef CONFIG_NUMA
8230
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8231 8232
#endif

L
Linus Torvalds 已提交
8233
	/*
8234
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8235
	 */
8236
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8237 8238
		struct sched_domain *sd = NULL, *p;

8239
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
8240 8241

#ifdef CONFIG_NUMA
8242 8243
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8244
			sd = &per_cpu(allnodes_domains, i).sd;
8245
			SD_INIT(sd, ALLNODES);
8246
			set_domain_attribute(sd, attr);
8247
			cpumask_copy(sched_domain_span(sd), cpu_map);
8248
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8249
			p = sd;
8250
			sd_allnodes = 1;
8251 8252 8253
		} else
			p = NULL;

8254
		sd = &per_cpu(node_domains, i).sd;
8255
		SD_INIT(sd, NODE);
8256
		set_domain_attribute(sd, attr);
8257
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8258
		sd->parent = p;
8259 8260
		if (p)
			p->child = sd;
8261 8262
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8263 8264 8265
#endif

		p = sd;
8266
		sd = &per_cpu(phys_domains, i).sd;
8267
		SD_INIT(sd, CPU);
8268
		set_domain_attribute(sd, attr);
8269
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
8270
		sd->parent = p;
8271 8272
		if (p)
			p->child = sd;
8273
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8274

8275 8276
#ifdef CONFIG_SCHED_MC
		p = sd;
8277
		sd = &per_cpu(core_domains, i).sd;
8278
		SD_INIT(sd, MC);
8279
		set_domain_attribute(sd, attr);
8280 8281
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
8282
		sd->parent = p;
8283
		p->child = sd;
8284
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8285 8286
#endif

L
Linus Torvalds 已提交
8287 8288
#ifdef CONFIG_SCHED_SMT
		p = sd;
8289
		sd = &per_cpu(cpu_domains, i).sd;
8290
		SD_INIT(sd, SIBLING);
8291
		set_domain_attribute(sd, attr);
8292
		cpumask_and(sched_domain_span(sd),
8293
			    topology_thread_cpumask(i), cpu_map);
L
Linus Torvalds 已提交
8294
		sd->parent = p;
8295
		p->child = sd;
8296
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8297 8298 8299 8300 8301
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
8302
	for_each_cpu(i, cpu_map) {
8303
		cpumask_and(this_sibling_map,
8304
			    topology_thread_cpumask(i), cpu_map);
8305
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
8306 8307
			continue;

I
Ingo Molnar 已提交
8308
		init_sched_build_groups(this_sibling_map, cpu_map,
8309 8310
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8311 8312 8313
	}
#endif

8314 8315
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
8316
	for_each_cpu(i, cpu_map) {
8317
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8318
		if (i != cpumask_first(this_core_map))
8319
			continue;
8320

I
Ingo Molnar 已提交
8321
		init_sched_build_groups(this_core_map, cpu_map,
8322 8323
					&cpu_to_core_group,
					send_covered, tmpmask);
8324 8325 8326
	}
#endif

L
Linus Torvalds 已提交
8327
	/* Set up physical groups */
8328
	for (i = 0; i < nr_node_ids; i++) {
8329
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8330
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
8331 8332
			continue;

8333 8334 8335
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8336 8337 8338 8339
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
8340 8341 8342 8343 8344
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
8345

8346
	for (i = 0; i < nr_node_ids; i++) {
8347 8348 8349 8350
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

8351
		cpumask_clear(covered);
8352
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8353
		if (cpumask_empty(nodemask)) {
8354
			sched_group_nodes[i] = NULL;
8355
			continue;
8356
		}
8357

8358
		sched_domain_node_span(i, domainspan);
8359
		cpumask_and(domainspan, domainspan, cpu_map);
8360

8361 8362
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
8363 8364 8365 8366 8367
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
8368
		sched_group_nodes[i] = sg;
8369
		for_each_cpu(j, nodemask) {
8370
			struct sched_domain *sd;
I
Ingo Molnar 已提交
8371

8372
			sd = &per_cpu(node_domains, j).sd;
8373 8374
			sd->groups = sg;
		}
8375
		sg->__cpu_power = 0;
8376
		cpumask_copy(sched_group_cpus(sg), nodemask);
8377
		sg->next = sg;
8378
		cpumask_or(covered, covered, nodemask);
8379 8380
		prev = sg;

8381 8382
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
8383

8384 8385 8386 8387
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
8388 8389
				break;

8390
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8391
			if (cpumask_empty(tmpmask))
8392 8393
				continue;

8394 8395
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
8396
					  GFP_KERNEL, i);
8397 8398 8399
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
8400
				goto error;
8401
			}
8402
			sg->__cpu_power = 0;
8403
			cpumask_copy(sched_group_cpus(sg), tmpmask);
8404
			sg->next = prev->next;
8405
			cpumask_or(covered, covered, tmpmask);
8406 8407 8408 8409
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
8410 8411 8412
#endif

	/* Calculate CPU power for physical packages and nodes */
8413
#ifdef CONFIG_SCHED_SMT
8414
	for_each_cpu(i, cpu_map) {
8415
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
8416

8417
		init_sched_groups_power(i, sd);
8418
	}
L
Linus Torvalds 已提交
8419
#endif
8420
#ifdef CONFIG_SCHED_MC
8421
	for_each_cpu(i, cpu_map) {
8422
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
8423

8424
		init_sched_groups_power(i, sd);
8425 8426
	}
#endif
8427

8428
	for_each_cpu(i, cpu_map) {
8429
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
8430

8431
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8432 8433
	}

8434
#ifdef CONFIG_NUMA
8435
	for (i = 0; i < nr_node_ids; i++)
8436
		init_numa_sched_groups_power(sched_group_nodes[i]);
8437

8438 8439
	if (sd_allnodes) {
		struct sched_group *sg;
8440

8441
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8442
								tmpmask);
8443 8444
		init_numa_sched_groups_power(sg);
	}
8445 8446
#endif

L
Linus Torvalds 已提交
8447
	/* Attach the domains */
8448
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8449 8450
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
8451
		sd = &per_cpu(cpu_domains, i).sd;
8452
#elif defined(CONFIG_SCHED_MC)
8453
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8454
#else
8455
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8456
#endif
G
Gregory Haskins 已提交
8457
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
8458
	}
8459

8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
8488

8489
#ifdef CONFIG_NUMA
8490
error:
8491
	free_sched_groups(cpu_map, tmpmask);
8492
	free_rootdomain(rd);
8493
	goto free_tmpmask;
8494
#endif
L
Linus Torvalds 已提交
8495
}
P
Paul Jackson 已提交
8496

8497
static int build_sched_domains(const struct cpumask *cpu_map)
8498 8499 8500 8501
{
	return __build_sched_domains(cpu_map, NULL);
}

8502
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8503
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8504 8505
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8506 8507 8508

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8509 8510
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8511
 */
8512
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8513

8514 8515 8516 8517 8518 8519
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8520
{
8521
	return 0;
8522 8523
}

8524
/*
I
Ingo Molnar 已提交
8525
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8526 8527
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8528
 */
8529
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8530
{
8531 8532
	int err;

8533
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8534
	ndoms_cur = 1;
8535
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8536
	if (!doms_cur)
8537
		doms_cur = fallback_doms;
8538
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8539
	dattr_cur = NULL;
8540
	err = build_sched_domains(doms_cur);
8541
	register_sched_domain_sysctl();
8542 8543

	return err;
8544 8545
}

8546 8547
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8548
{
8549
	free_sched_groups(cpu_map, tmpmask);
8550
}
L
Linus Torvalds 已提交
8551

8552 8553 8554 8555
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8556
static void detach_destroy_domains(const struct cpumask *cpu_map)
8557
{
8558 8559
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8560 8561
	int i;

8562
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8563
		cpu_attach_domain(NULL, &def_root_domain, i);
8564
	synchronize_sched();
8565
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8566 8567
}

8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8584 8585
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8586
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8587 8588 8589
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8590
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8591 8592 8593
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8594 8595 8596
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8597 8598
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8599 8600 8601 8602
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8603
 *
8604
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8605 8606
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8607
 *
P
Paul Jackson 已提交
8608 8609
 * Call with hotplug lock held
 */
8610 8611
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8612
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8613
{
8614
	int i, j, n;
8615
	int new_topology;
P
Paul Jackson 已提交
8616

8617
	mutex_lock(&sched_domains_mutex);
8618

8619 8620 8621
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8622 8623 8624
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8625
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8626 8627 8628

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8629
		for (j = 0; j < n && !new_topology; j++) {
8630
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8631
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8632 8633 8634 8635 8636 8637 8638 8639
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8640 8641
	if (doms_new == NULL) {
		ndoms_cur = 0;
8642
		doms_new = fallback_doms;
8643
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8644
		WARN_ON_ONCE(dattr_new);
8645 8646
	}

P
Paul Jackson 已提交
8647 8648
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8649
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8650
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8651
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8652 8653 8654
				goto match2;
		}
		/* no match - add a new doms_new */
8655 8656
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8657 8658 8659 8660 8661
match2:
		;
	}

	/* Remember the new sched domains */
8662
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8663
		kfree(doms_cur);
8664
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8665
	doms_cur = doms_new;
8666
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8667
	ndoms_cur = ndoms_new;
8668 8669

	register_sched_domain_sysctl();
8670

8671
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8672 8673
}

8674
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8675
static void arch_reinit_sched_domains(void)
8676
{
8677
	get_online_cpus();
8678 8679 8680 8681

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8682
	rebuild_sched_domains();
8683
	put_online_cpus();
8684 8685 8686 8687
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8688
	unsigned int level = 0;
8689

8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8701 8702 8703
		return -EINVAL;

	if (smt)
8704
		sched_smt_power_savings = level;
8705
	else
8706
		sched_mc_power_savings = level;
8707

8708
	arch_reinit_sched_domains();
8709

8710
	return count;
8711 8712 8713
}

#ifdef CONFIG_SCHED_MC
8714 8715
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8716 8717 8718
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8719
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8720
					    const char *buf, size_t count)
8721 8722 8723
{
	return sched_power_savings_store(buf, count, 0);
}
8724 8725 8726
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8727 8728 8729
#endif

#ifdef CONFIG_SCHED_SMT
8730 8731
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8732 8733 8734
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8735
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8736
					     const char *buf, size_t count)
8737 8738 8739
{
	return sched_power_savings_store(buf, count, 1);
}
8740 8741
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8742 8743 8744
		   sched_smt_power_savings_store);
#endif

8745
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8761
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8762

8763
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8764
/*
8765 8766
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8767 8768 8769
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8770 8771 8772 8773 8774 8775
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8776
		partition_sched_domains(1, NULL, NULL);
8777 8778 8779 8780 8781 8782 8783 8784 8785 8786
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8787
{
P
Peter Zijlstra 已提交
8788 8789
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8790 8791
	switch (action) {
	case CPU_DOWN_PREPARE:
8792
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8793
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8794 8795 8796
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8797
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8798
	case CPU_ONLINE:
8799
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8800
		enable_runtime(cpu_rq(cpu));
8801 8802
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8803 8804 8805 8806 8807 8808 8809
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8810 8811 8812
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8813

8814 8815 8816 8817 8818
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8819
	get_online_cpus();
8820
	mutex_lock(&sched_domains_mutex);
8821 8822 8823 8824
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8825
	mutex_unlock(&sched_domains_mutex);
8826
	put_online_cpus();
8827 8828

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8829 8830
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8831 8832 8833 8834 8835
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8836
	init_hrtick();
8837 8838

	/* Move init over to a non-isolated CPU */
8839
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8840
		BUG();
I
Ingo Molnar 已提交
8841
	sched_init_granularity();
8842
	free_cpumask_var(non_isolated_cpus);
8843 8844

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8845
	init_sched_rt_class();
L
Linus Torvalds 已提交
8846 8847 8848 8849
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8850
	sched_init_granularity();
L
Linus Torvalds 已提交
8851 8852 8853 8854 8855 8856 8857 8858 8859 8860
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8861
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8862 8863
{
	cfs_rq->tasks_timeline = RB_ROOT;
8864
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8865 8866 8867
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8868
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8869 8870
}

P
Peter Zijlstra 已提交
8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8884
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8885
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
8886
#ifdef CONFIG_SMP
8887
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
8888 8889
#endif
#endif
P
Peter Zijlstra 已提交
8890 8891 8892
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
8893
	plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
8894 8895 8896 8897
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8898 8899
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8900

8901
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8902
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8903 8904
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8905 8906
}

P
Peter Zijlstra 已提交
8907
#ifdef CONFIG_FAIR_GROUP_SCHED
8908 8909 8910
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8911
{
8912
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8913 8914 8915 8916 8917 8918 8919
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8920 8921 8922 8923
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8924 8925 8926 8927 8928
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8929 8930
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8931
	se->load.inv_weight = 0;
8932
	se->parent = parent;
P
Peter Zijlstra 已提交
8933
}
8934
#endif
P
Peter Zijlstra 已提交
8935

8936
#ifdef CONFIG_RT_GROUP_SCHED
8937 8938 8939
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8940
{
8941 8942
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8943 8944 8945 8946
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8947
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8948 8949 8950 8951
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8952 8953 8954
	if (!rt_se)
		return;

8955 8956 8957 8958 8959
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8960
	rt_se->my_q = rt_rq;
8961
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8962 8963 8964 8965
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8966 8967
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8968
	int i, j;
8969 8970 8971 8972 8973 8974 8975
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8976 8977 8978
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8979 8980
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
8981
	alloc_size += num_possible_cpus() * cpumask_size();
8982 8983 8984 8985 8986 8987
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8988
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8989 8990 8991 8992 8993 8994 8995

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8996 8997 8998 8999 9000 9001 9002

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9003 9004
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9005 9006 9007 9008 9009
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9010 9011 9012 9013 9014 9015 9016 9017
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9018 9019
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9020 9021 9022 9023 9024 9025
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9026
	}
I
Ingo Molnar 已提交
9027

G
Gregory Haskins 已提交
9028 9029 9030 9031
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9032 9033 9034 9035 9036 9037
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9038 9039 9040
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9041 9042
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9043

9044
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9045
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9046 9047 9048 9049 9050 9051
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9052 9053
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9054

9055
	for_each_possible_cpu(i) {
9056
		struct rq *rq;
L
Linus Torvalds 已提交
9057 9058 9059

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9060
		rq->nr_running = 0;
I
Ingo Molnar 已提交
9061
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9062
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9063
#ifdef CONFIG_FAIR_GROUP_SCHED
9064
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9065
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9086
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9087
#elif defined CONFIG_USER_SCHED
9088 9089
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9101
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
9102
				&per_cpu(init_cfs_rq, i),
9103 9104
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9105

9106
#endif
D
Dhaval Giani 已提交
9107 9108 9109
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9110
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9111
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9112
#ifdef CONFIG_CGROUP_SCHED
9113
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9114
#elif defined CONFIG_USER_SCHED
9115
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9116
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9117
				&per_cpu(init_rt_rq, i),
9118 9119
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9120
#endif
I
Ingo Molnar 已提交
9121
#endif
L
Linus Torvalds 已提交
9122

I
Ingo Molnar 已提交
9123 9124
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9125
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9126
		rq->sd = NULL;
G
Gregory Haskins 已提交
9127
		rq->rd = NULL;
L
Linus Torvalds 已提交
9128
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9129
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9130
		rq->push_cpu = 0;
9131
		rq->cpu = i;
9132
		rq->online = 0;
L
Linus Torvalds 已提交
9133 9134
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9135
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9136
#endif
P
Peter Zijlstra 已提交
9137
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9138 9139 9140
		atomic_set(&rq->nr_iowait, 0);
	}

9141
	set_load_weight(&init_task);
9142

9143 9144 9145 9146
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9147
#ifdef CONFIG_SMP
9148
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9149 9150
#endif

9151 9152 9153 9154
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
9168 9169 9170 9171
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9172

9173 9174
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
9175
#ifdef CONFIG_SMP
9176 9177
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
9178
	alloc_bootmem_cpumask_var(&nohz.ilb_grp_nohz_mask);
9179
#endif
9180
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
9181
#endif /* SMP */
9182

9183
	scheduler_running = 1;
L
Linus Torvalds 已提交
9184 9185 9186 9187 9188
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
9189
#ifdef in_atomic
L
Linus Torvalds 已提交
9190 9191
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9211 9212 9213 9214 9215 9216
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9217 9218 9219
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9220

9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9232 9233
void normalize_rt_tasks(void)
{
9234
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9235
	unsigned long flags;
9236
	struct rq *rq;
L
Linus Torvalds 已提交
9237

9238
	read_lock_irqsave(&tasklist_lock, flags);
9239
	do_each_thread(g, p) {
9240 9241 9242 9243 9244 9245
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9246 9247
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9248 9249 9250
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9251
#endif
I
Ingo Molnar 已提交
9252 9253 9254 9255 9256 9257 9258 9259

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9260
			continue;
I
Ingo Molnar 已提交
9261
		}
L
Linus Torvalds 已提交
9262

9263
		spin_lock(&p->pi_lock);
9264
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9265

9266
		normalize_task(rq, p);
9267

9268
		__task_rq_unlock(rq);
9269
		spin_unlock(&p->pi_lock);
9270 9271
	} while_each_thread(g, p);

9272
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9273 9274 9275
}

#endif /* CONFIG_MAGIC_SYSRQ */
9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9294
struct task_struct *curr_task(int cpu)
9295 9296 9297 9298 9299 9300 9301 9302 9303 9304
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9305 9306
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9307 9308 9309 9310 9311 9312 9313
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9314
void set_curr_task(int cpu, struct task_struct *p)
9315 9316 9317 9318 9319
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9320

9321 9322
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9337 9338
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9339 9340
{
	struct cfs_rq *cfs_rq;
9341
	struct sched_entity *se;
9342
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9343 9344
	int i;

9345
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9346 9347
	if (!tg->cfs_rq)
		goto err;
9348
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9349 9350
	if (!tg->se)
		goto err;
9351 9352

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9353 9354

	for_each_possible_cpu(i) {
9355
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9356

9357 9358
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9359 9360 9361
		if (!cfs_rq)
			goto err;

9362 9363
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9364 9365 9366
		if (!se)
			goto err;

9367
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9386
#else /* !CONFG_FAIR_GROUP_SCHED */
9387 9388 9389 9390
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9391 9392
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9404
#endif /* CONFIG_FAIR_GROUP_SCHED */
9405 9406

#ifdef CONFIG_RT_GROUP_SCHED
9407 9408 9409 9410
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9411 9412
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9424 9425
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9426 9427
{
	struct rt_rq *rt_rq;
9428
	struct sched_rt_entity *rt_se;
9429 9430 9431
	struct rq *rq;
	int i;

9432
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9433 9434
	if (!tg->rt_rq)
		goto err;
9435
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9436 9437 9438
	if (!tg->rt_se)
		goto err;

9439 9440
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9441 9442 9443 9444

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9445 9446
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9447 9448
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9449

9450 9451
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9452 9453
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9454

9455
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9456 9457
	}

9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9474
#else /* !CONFIG_RT_GROUP_SCHED */
9475 9476 9477 9478
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9479 9480
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9492
#endif /* CONFIG_RT_GROUP_SCHED */
9493

9494
#ifdef CONFIG_GROUP_SCHED
9495 9496 9497 9498 9499 9500 9501 9502
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9503
struct task_group *sched_create_group(struct task_group *parent)
9504 9505 9506 9507 9508 9509 9510 9511 9512
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9513
	if (!alloc_fair_sched_group(tg, parent))
9514 9515
		goto err;

9516
	if (!alloc_rt_sched_group(tg, parent))
9517 9518
		goto err;

9519
	spin_lock_irqsave(&task_group_lock, flags);
9520
	for_each_possible_cpu(i) {
9521 9522
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9523
	}
P
Peter Zijlstra 已提交
9524
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9525 9526 9527 9528 9529

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9530
	list_add_rcu(&tg->siblings, &parent->children);
9531
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9532

9533
	return tg;
S
Srivatsa Vaddagiri 已提交
9534 9535

err:
P
Peter Zijlstra 已提交
9536
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9537 9538 9539
	return ERR_PTR(-ENOMEM);
}

9540
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9541
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9542 9543
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9544
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9545 9546
}

9547
/* Destroy runqueue etc associated with a task group */
9548
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9549
{
9550
	unsigned long flags;
9551
	int i;
S
Srivatsa Vaddagiri 已提交
9552

9553
	spin_lock_irqsave(&task_group_lock, flags);
9554
	for_each_possible_cpu(i) {
9555 9556
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9557
	}
P
Peter Zijlstra 已提交
9558
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9559
	list_del_rcu(&tg->siblings);
9560
	spin_unlock_irqrestore(&task_group_lock, flags);
9561 9562

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9563
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9564 9565
}

9566
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9567 9568 9569
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9570 9571
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9572 9573 9574 9575 9576 9577 9578 9579 9580
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9581
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9582 9583
	on_rq = tsk->se.on_rq;

9584
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9585
		dequeue_task(rq, tsk, 0);
9586 9587
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9588

P
Peter Zijlstra 已提交
9589
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9590

P
Peter Zijlstra 已提交
9591 9592 9593 9594 9595
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9596 9597 9598
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9599
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9600 9601 9602

	task_rq_unlock(rq, &flags);
}
9603
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9604

9605
#ifdef CONFIG_FAIR_GROUP_SCHED
9606
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9607 9608 9609 9610 9611
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9612
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9613 9614 9615
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9616
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9617

9618
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9619
		enqueue_entity(cfs_rq, se, 0);
9620
}
9621

9622 9623 9624 9625 9626 9627 9628 9629 9630
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9631 9632
}

9633 9634
static DEFINE_MUTEX(shares_mutex);

9635
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9636 9637
{
	int i;
9638
	unsigned long flags;
9639

9640 9641 9642 9643 9644 9645
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9646 9647
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9648 9649
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9650

9651
	mutex_lock(&shares_mutex);
9652
	if (tg->shares == shares)
9653
		goto done;
S
Srivatsa Vaddagiri 已提交
9654

9655
	spin_lock_irqsave(&task_group_lock, flags);
9656 9657
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9658
	list_del_rcu(&tg->siblings);
9659
	spin_unlock_irqrestore(&task_group_lock, flags);
9660 9661 9662 9663 9664 9665 9666 9667

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9668
	tg->shares = shares;
9669 9670 9671 9672 9673
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9674
		set_se_shares(tg->se[i], shares);
9675
	}
S
Srivatsa Vaddagiri 已提交
9676

9677 9678 9679 9680
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9681
	spin_lock_irqsave(&task_group_lock, flags);
9682 9683
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9684
	list_add_rcu(&tg->siblings, &tg->parent->children);
9685
	spin_unlock_irqrestore(&task_group_lock, flags);
9686
done:
9687
	mutex_unlock(&shares_mutex);
9688
	return 0;
S
Srivatsa Vaddagiri 已提交
9689 9690
}

9691 9692 9693 9694
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9695
#endif
9696

9697
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9698
/*
P
Peter Zijlstra 已提交
9699
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9700
 */
P
Peter Zijlstra 已提交
9701 9702 9703 9704 9705
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9706
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9707

P
Peter Zijlstra 已提交
9708
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9709 9710
}

P
Peter Zijlstra 已提交
9711 9712
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9713
{
P
Peter Zijlstra 已提交
9714
	struct task_struct *g, *p;
9715

P
Peter Zijlstra 已提交
9716 9717 9718 9719
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9720

P
Peter Zijlstra 已提交
9721 9722
	return 0;
}
9723

P
Peter Zijlstra 已提交
9724 9725 9726 9727 9728
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9729

P
Peter Zijlstra 已提交
9730 9731 9732 9733 9734 9735
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9736

P
Peter Zijlstra 已提交
9737 9738
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9739

P
Peter Zijlstra 已提交
9740 9741 9742
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9743 9744
	}

9745 9746 9747 9748 9749 9750 9751
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9752 9753 9754 9755 9756
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9757

9758 9759 9760
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9761 9762
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9763

P
Peter Zijlstra 已提交
9764
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9765

9766 9767 9768 9769 9770
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9771

9772 9773 9774
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9775 9776 9777
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9778

P
Peter Zijlstra 已提交
9779 9780 9781 9782
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9783

P
Peter Zijlstra 已提交
9784
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9785
	}
P
Peter Zijlstra 已提交
9786

P
Peter Zijlstra 已提交
9787 9788 9789 9790
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9791 9792
}

P
Peter Zijlstra 已提交
9793
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9794
{
P
Peter Zijlstra 已提交
9795 9796 9797 9798 9799 9800 9801
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9802 9803
}

9804 9805
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9806
{
P
Peter Zijlstra 已提交
9807
	int i, err = 0;
P
Peter Zijlstra 已提交
9808 9809

	mutex_lock(&rt_constraints_mutex);
9810
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9811 9812
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9813
		goto unlock;
P
Peter Zijlstra 已提交
9814 9815

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9816 9817
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9818 9819 9820 9821 9822 9823 9824 9825 9826

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9827
 unlock:
9828
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9829 9830 9831
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9832 9833
}

9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9846 9847 9848 9849
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9850
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9851 9852
		return -1;

9853
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9854 9855 9856
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9857 9858 9859 9860 9861 9862 9863 9864

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9865 9866 9867
	if (rt_period == 0)
		return -EINVAL;

9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9882
	u64 runtime, period;
9883 9884
	int ret = 0;

9885 9886 9887
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9888 9889 9890 9891 9892 9893 9894 9895
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9896

9897
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9898
	read_lock(&tasklist_lock);
9899
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9900
	read_unlock(&tasklist_lock);
9901 9902 9903 9904
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9905 9906 9907 9908 9909 9910 9911 9912 9913 9914

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

9915
#else /* !CONFIG_RT_GROUP_SCHED */
9916 9917
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9918 9919 9920
	unsigned long flags;
	int i;

9921 9922 9923
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9924 9925 9926 9927 9928 9929 9930 9931 9932 9933
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9934 9935
	return 0;
}
9936
#endif /* CONFIG_RT_GROUP_SCHED */
9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9967

9968
#ifdef CONFIG_CGROUP_SCHED
9969 9970

/* return corresponding task_group object of a cgroup */
9971
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9972
{
9973 9974
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9975 9976 9977
}

static struct cgroup_subsys_state *
9978
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9979
{
9980
	struct task_group *tg, *parent;
9981

9982
	if (!cgrp->parent) {
9983 9984 9985 9986
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9987 9988
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9989 9990 9991 9992 9993 9994
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9995 9996
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9997
{
9998
	struct task_group *tg = cgroup_tg(cgrp);
9999 10000 10001 10002

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10003 10004 10005
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10006
{
10007
#ifdef CONFIG_RT_GROUP_SCHED
10008
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10009 10010
		return -EINVAL;
#else
10011 10012 10013
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10014
#endif
10015 10016 10017 10018 10019

	return 0;
}

static void
10020
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10021 10022 10023 10024 10025
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10026
#ifdef CONFIG_FAIR_GROUP_SCHED
10027
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10028
				u64 shareval)
10029
{
10030
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10031 10032
}

10033
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10034
{
10035
	struct task_group *tg = cgroup_tg(cgrp);
10036 10037 10038

	return (u64) tg->shares;
}
10039
#endif /* CONFIG_FAIR_GROUP_SCHED */
10040

10041
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10042
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10043
				s64 val)
P
Peter Zijlstra 已提交
10044
{
10045
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10046 10047
}

10048
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10049
{
10050
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10051
}
10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10063
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10064

10065
static struct cftype cpu_files[] = {
10066
#ifdef CONFIG_FAIR_GROUP_SCHED
10067 10068
	{
		.name = "shares",
10069 10070
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10071
	},
10072 10073
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10074
	{
P
Peter Zijlstra 已提交
10075
		.name = "rt_runtime_us",
10076 10077
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10078
	},
10079 10080
	{
		.name = "rt_period_us",
10081 10082
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10083
	},
10084
#endif
10085 10086 10087 10088
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10089
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10090 10091 10092
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10093 10094 10095 10096 10097 10098 10099
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10100 10101 10102
	.early_init	= 1,
};

10103
#endif	/* CONFIG_CGROUP_SCHED */
10104 10105 10106 10107 10108 10109 10110 10111 10112 10113

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10114
/* track cpu usage of a group of tasks and its child groups */
10115 10116 10117 10118
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10119
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10120
	struct cpuacct *parent;
10121 10122 10123 10124 10125
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10126
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10127
{
10128
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10141
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10142 10143
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10144
	int i;
10145 10146

	if (!ca)
10147
		goto out;
10148 10149

	ca->cpuusage = alloc_percpu(u64);
10150 10151 10152 10153 10154 10155
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10156

10157 10158 10159
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10160
	return &ca->css;
10161 10162 10163 10164 10165 10166 10167 10168 10169

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10170 10171 10172
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10173
static void
10174
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10175
{
10176
	struct cpuacct *ca = cgroup_ca(cgrp);
10177
	int i;
10178

10179 10180
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10181 10182 10183 10184
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10185 10186
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10187
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10206
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10220
/* return total cpu usage (in nanoseconds) of a group */
10221
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10222
{
10223
	struct cpuacct *ca = cgroup_ca(cgrp);
10224 10225 10226
	u64 totalcpuusage = 0;
	int i;

10227 10228
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10229 10230 10231 10232

	return totalcpuusage;
}

10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10245 10246
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10247 10248 10249 10250 10251

out:
	return err;
}

10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10286 10287 10288
static struct cftype files[] = {
	{
		.name = "usage",
10289 10290
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10291
	},
10292 10293 10294 10295
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10296 10297 10298 10299
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10300 10301
};

10302
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10303
{
10304
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10305 10306 10307 10308 10309 10310 10311 10312 10313 10314
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10315
	int cpu;
10316

L
Li Zefan 已提交
10317
	if (unlikely(!cpuacct_subsys.active))
10318 10319
		return;

10320
	cpu = task_cpu(tsk);
10321 10322 10323

	rcu_read_lock();

10324 10325
	ca = task_ca(tsk);

10326
	for (; ca; ca = ca->parent) {
10327
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10328 10329
		*cpuusage += cputime;
	}
10330 10331

	rcu_read_unlock();
10332 10333
}

10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10355 10356 10357 10358 10359 10360 10361 10362
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */