sched.c 232.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127
#ifdef CONFIG_SMP
128 129 130

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

151 152
static inline int rt_policy(int policy)
{
153
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 155 156 157 158 159 160 161 162
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
163
/*
I
Ingo Molnar 已提交
164
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
165
 */
I
Ingo Molnar 已提交
166 167 168 169 170
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

171
struct rt_bandwidth {
I
Ingo Molnar 已提交
172 173 174 175 176
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
210 211
	spin_lock_init(&rt_b->rt_runtime_lock);

212 213 214 215 216
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

217 218 219
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
220 221 222 223 224 225
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

226
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
227 228 229 230 231 232 233 234 235 236 237 238
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 240
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
241 242 243 244 245 246 247 248 249 250 251
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

252 253 254 255 256 257
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

258
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
259

260 261
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
262 263
struct cfs_rq;

P
Peter Zijlstra 已提交
264 265
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
266
/* task group related information */
267
struct task_group {
268
#ifdef CONFIG_CGROUP_SCHED
269 270
	struct cgroup_subsys_state css;
#endif
271

272 273 274 275
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

276
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
277 278 279 280 281
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
282 283 284 285 286 287
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

288
	struct rt_bandwidth rt_bandwidth;
289
#endif
290

291
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
292
	struct list_head list;
P
Peter Zijlstra 已提交
293 294 295 296

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
297 298
};

D
Dhaval Giani 已提交
299
#ifdef CONFIG_USER_SCHED
300

301 302 303 304 305 306
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

307 308 309 310 311 312 313
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

314
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
315 316 317 318
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319
#endif /* CONFIG_FAIR_GROUP_SCHED */
320 321 322 323

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
325
#else /* !CONFIG_USER_SCHED */
326
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
327
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
328

329
/* task_group_lock serializes add/remove of task groups and also changes to
330 331
 * a task group's cpu shares.
 */
332
static DEFINE_SPINLOCK(task_group_lock);
333

334 335 336
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
337
#else /* !CONFIG_USER_SCHED */
338
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
339
#endif /* CONFIG_USER_SCHED */
340

341
/*
342 343 344 345
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
346 347 348
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
349
#define MIN_SHARES	2
350
#define MAX_SHARES	(1UL << 18)
351

352 353 354
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
355
/* Default task group.
I
Ingo Molnar 已提交
356
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
357
 */
358
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
359 360

/* return group to which a task belongs */
361
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
362
{
363
	struct task_group *tg;
364

365
#ifdef CONFIG_USER_SCHED
366 367 368
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
369
#elif defined(CONFIG_CGROUP_SCHED)
370 371
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
372
#else
I
Ingo Molnar 已提交
373
	tg = &init_task_group;
374
#endif
375
	return tg;
S
Srivatsa Vaddagiri 已提交
376 377 378
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
379
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
380
{
381
#ifdef CONFIG_FAIR_GROUP_SCHED
382 383
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
384
#endif
P
Peter Zijlstra 已提交
385

386
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
387 388
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
389
#endif
S
Srivatsa Vaddagiri 已提交
390 391 392 393
}

#else

P
Peter Zijlstra 已提交
394
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
395 396 397 398
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
399

400
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
401

I
Ingo Molnar 已提交
402 403 404 405 406 407
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
408
	u64 min_vruntime;
I
Ingo Molnar 已提交
409 410 411

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
412 413 414 415 416 417

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
418 419
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
420
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
421

P
Peter Zijlstra 已提交
422
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
423

424
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
425 426
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
427 428
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
429 430 431 432 433 434
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
435 436
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
437 438 439

#ifdef CONFIG_SMP
	/*
440
	 * the part of load.weight contributed by tasks
441
	 */
442
	unsigned long task_weight;
443

444 445 446 447 448 449 450
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
451

452 453 454 455
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
456 457 458 459 460

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
461
#endif
I
Ingo Molnar 已提交
462 463
#endif
};
L
Linus Torvalds 已提交
464

I
Ingo Molnar 已提交
465 466 467
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
468
	unsigned long rt_nr_running;
469
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
470 471
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
472
#ifdef CONFIG_SMP
473
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
474
	int overloaded;
P
Peter Zijlstra 已提交
475
#endif
P
Peter Zijlstra 已提交
476
	int rt_throttled;
P
Peter Zijlstra 已提交
477
	u64 rt_time;
P
Peter Zijlstra 已提交
478
	u64 rt_runtime;
I
Ingo Molnar 已提交
479
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
480
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
481

482
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
483 484
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
485 486 487 488 489
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
490 491
};

G
Gregory Haskins 已提交
492 493 494 495
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
496 497
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
498 499 500 501 502 503
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
504 505
	cpumask_var_t span;
	cpumask_var_t online;
506

I
Ingo Molnar 已提交
507
	/*
508 509 510
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
511
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
512
	atomic_t rto_count;
513 514 515
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
516 517 518 519 520 521 522 523
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
524 525
};

526 527 528 529
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
530 531 532 533
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
534 535 536 537 538 539 540
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
541
struct rq {
542 543
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
544 545 546 547 548 549

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
550 551
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
552
	unsigned char idle_at_tick;
553
#ifdef CONFIG_NO_HZ
554
	unsigned long last_tick_seen;
555 556
	unsigned char in_nohz_recently;
#endif
557 558
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
559 560 561 562
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
563 564
	struct rt_rq rt;

I
Ingo Molnar 已提交
565
#ifdef CONFIG_FAIR_GROUP_SCHED
566 567
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
568 569
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
570
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
571 572 573 574 575 576 577 578 579 580
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

581
	struct task_struct *curr, *idle;
582
	unsigned long next_balance;
L
Linus Torvalds 已提交
583
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
584

585
	u64 clock;
I
Ingo Molnar 已提交
586

L
Linus Torvalds 已提交
587 588 589
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
590
	struct root_domain *rd;
L
Linus Torvalds 已提交
591 592 593 594 595
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
596 597
	/* cpu of this runqueue: */
	int cpu;
598
	int online;
L
Linus Torvalds 已提交
599

600
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
601

602
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
603 604 605
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
606
#ifdef CONFIG_SCHED_HRTICK
607 608 609 610
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
611 612 613
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
614 615 616
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
617 618
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
619 620

	/* sys_sched_yield() stats */
621 622 623 624
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
625 626

	/* schedule() stats */
627 628 629
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
630 631

	/* try_to_wake_up() stats */
632 633
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
634 635

	/* BKL stats */
636
	unsigned int bkl_count;
L
Linus Torvalds 已提交
637 638 639
#endif
};

640
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
641

642
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
643
{
644
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
645 646
}

647 648 649 650 651 652 653 654 655
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
656 657
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
658
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
659 660 661 662
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
663 664
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
665 666 667 668 669 670

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

671 672 673 674 675
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
676 677 678 679 680 681 682 683 684
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
703 704 705
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
706 707 708 709

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
710
enum {
P
Peter Zijlstra 已提交
711
#include "sched_features.h"
I
Ingo Molnar 已提交
712 713
};

P
Peter Zijlstra 已提交
714 715 716 717 718
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
719
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
720 721 722 723 724 725 726 727 728
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

729
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
730 731 732 733 734 735
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
736
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
737 738 739 740
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
741 742 743
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
744
	}
L
Li Zefan 已提交
745
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
746

L
Li Zefan 已提交
747
	return 0;
P
Peter Zijlstra 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
767
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
792 793 794 795 796
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
797
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
798 799 800 801 802
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
817

818 819 820 821 822 823
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
824 825
/*
 * ratelimit for updating the group shares.
826
 * default: 0.25ms
P
Peter Zijlstra 已提交
827
 */
828
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
829

830 831 832 833 834 835 836
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
837
/*
P
Peter Zijlstra 已提交
838
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
839 840
 * default: 1s
 */
P
Peter Zijlstra 已提交
841
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
842

843 844
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
845 846 847 848 849
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
850

851 852 853 854 855 856 857
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
858
	if (sysctl_sched_rt_runtime < 0)
859 860 861 862
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
863

L
Linus Torvalds 已提交
864
#ifndef prepare_arch_switch
865 866 867 868 869 870
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

871 872 873 874 875
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

876
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
877
static inline int task_running(struct rq *rq, struct task_struct *p)
878
{
879
	return task_current(rq, p);
880 881
}

882
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 884 885
{
}

886
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
887
{
888 889 890 891
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
892 893 894 895 896 897 898
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

899 900 901 902
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
903
static inline int task_running(struct rq *rq, struct task_struct *p)
904 905 906 907
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
908
	return task_current(rq, p);
909 910 911
#endif
}

912
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

929
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
930 931 932 933 934 935 936 937 938 939 940 941
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
942
#endif
943 944
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
945

946 947 948 949
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
950
static inline struct rq *__task_rq_lock(struct task_struct *p)
951 952
	__acquires(rq->lock)
{
953 954 955 956 957
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
958 959 960 961
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
962 963
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
964
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
965 966
 * explicitly disabling preemption.
 */
967
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
968 969
	__acquires(rq->lock)
{
970
	struct rq *rq;
L
Linus Torvalds 已提交
971

972 973 974 975 976 977
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
978 979 980 981
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

982 983 984 985 986 987 988 989
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
990
static void __task_rq_unlock(struct rq *rq)
991 992 993 994 995
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

996
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
997 998 999 1000 1001 1002
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1003
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1004
 */
A
Alexey Dobriyan 已提交
1005
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1006 1007
	__acquires(rq->lock)
{
1008
	struct rq *rq;
L
Linus Torvalds 已提交
1009 1010 1011 1012 1013 1014 1015 1016

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1038
	if (!cpu_active(cpu_of(rq)))
1039
		return 0;
P
Peter Zijlstra 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1060
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1061 1062 1063 1064 1065 1066
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1067
#ifdef CONFIG_SMP
1068 1069 1070 1071
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1072
{
1073
	struct rq *rq = arg;
1074

1075 1076 1077 1078
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1079 1080
}

1081 1082 1083 1084 1085 1086
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1087
{
1088 1089
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1090

1091
	hrtimer_set_expires(timer, time);
1092 1093 1094 1095 1096 1097 1098

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1113
		hrtick_clear(cpu_rq(cpu));
1114 1115 1116 1117 1118 1119
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1120
static __init void init_hrtick(void)
1121 1122 1123
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1134

A
Andrew Morton 已提交
1135
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1136 1137
{
}
1138
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1139

1140
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1141
{
1142 1143
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1144

1145 1146 1147 1148
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1149

1150 1151
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1152
}
A
Andrew Morton 已提交
1153
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1154 1155 1156 1157 1158 1159 1160 1161
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1162 1163 1164
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1165
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1166

I
Ingo Molnar 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1180
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1181 1182 1183 1184 1185
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1186
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1187 1188
		return;

1189
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1252
#endif /* CONFIG_NO_HZ */
1253

1254
#else /* !CONFIG_SMP */
1255
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1256 1257
{
	assert_spin_locked(&task_rq(p)->lock);
1258
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1259
}
1260
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1261

1262 1263 1264 1265 1266 1267 1268 1269
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1270 1271 1272
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1273
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1274

1275 1276 1277
/*
 * delta *= weight / lw
 */
1278
static unsigned long
1279 1280 1281 1282 1283
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1284 1285 1286 1287 1288 1289 1290
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1291 1292 1293 1294 1295

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1296
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1297
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1298 1299
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1300
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1301

1302
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1303 1304
}

1305
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1306 1307
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1308
	lw->inv_weight = 0;
1309 1310
}

1311
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1312 1313
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1314
	lw->inv_weight = 0;
1315 1316
}

1317 1318 1319 1320
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1321
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1322 1323 1324 1325
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1326 1327
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1337 1338 1339
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1340 1341
 */
static const int prio_to_weight[40] = {
1342 1343 1344 1345 1346 1347 1348 1349
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1350 1351
};

1352 1353 1354 1355 1356 1357 1358
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1359
static const u32 prio_to_wmult[40] = {
1360 1361 1362 1363 1364 1365 1366 1367
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1368
};
1369

I
Ingo Molnar 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1395

1396 1397 1398 1399 1400 1401
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1412
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1413
typedef int (*tg_visitor)(struct task_group *, void *);
1414 1415 1416 1417 1418

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1419
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1420 1421
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1422
	int ret;
1423 1424 1425 1426

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1427 1428 1429
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1430 1431 1432 1433 1434 1435 1436
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1437 1438 1439
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1440 1441 1442 1443 1444

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1445
out_unlock:
1446
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1447 1448

	return ret;
1449 1450
}

P
Peter Zijlstra 已提交
1451 1452 1453
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1454
}
P
Peter Zijlstra 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1465
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1466

1467 1468
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1469 1470
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1471 1472 1473 1474 1475

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1476 1477 1478 1479 1480 1481 1482

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1483 1484
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1485
{
1486 1487 1488
	unsigned long shares;
	unsigned long rq_weight;

1489
	if (!tg->se[cpu])
1490 1491
		return;

1492
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1493

1494 1495 1496 1497 1498 1499
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1500
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1501
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1502

1503 1504 1505 1506
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1507

1508
		spin_lock_irqsave(&rq->lock, flags);
1509
		tg->cfs_rq[cpu]->shares = shares;
1510

1511 1512 1513
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1514
}
1515 1516

/*
1517 1518 1519
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1520
 */
P
Peter Zijlstra 已提交
1521
static int tg_shares_up(struct task_group *tg, void *data)
1522
{
1523
	unsigned long weight, rq_weight = 0;
1524
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1525
	struct sched_domain *sd = data;
1526
	int i;
1527

1528
	for_each_cpu(i, sched_domain_span(sd)) {
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1540
		shares += tg->cfs_rq[i]->shares;
1541 1542
	}

1543 1544 1545 1546 1547
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1548

1549
	for_each_cpu(i, sched_domain_span(sd))
1550
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1551 1552

	return 0;
1553 1554 1555
}

/*
1556 1557 1558
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1559
 */
P
Peter Zijlstra 已提交
1560
static int tg_load_down(struct task_group *tg, void *data)
1561
{
1562
	unsigned long load;
P
Peter Zijlstra 已提交
1563
	long cpu = (long)data;
1564

1565 1566 1567 1568 1569 1570 1571
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1572

1573
	tg->cfs_rq[cpu]->h_load = load;
1574

P
Peter Zijlstra 已提交
1575
	return 0;
1576 1577
}

1578
static void update_shares(struct sched_domain *sd)
1579
{
P
Peter Zijlstra 已提交
1580 1581
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;
1582

P
Peter Zijlstra 已提交
1583 1584
	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1585
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1586
	}
1587 1588
}

1589 1590 1591 1592 1593 1594 1595
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1596
static void update_h_load(long cpu)
1597
{
P
Peter Zijlstra 已提交
1598
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1599
}
I
Ingo Molnar 已提交
1600

1601 1602
#else

1603
static inline void update_shares(struct sched_domain *sd)
1604 1605 1606
{
}

1607
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1608 1609 1610 1611 1612
{
}

#endif

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1646 1647 1648 1649 1650
#endif

#ifdef CONFIG_FAIR_GROUP_SCHED
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1651
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1652 1653
	cfs_rq->shares = shares;
#endif
1654 1655 1656
}
#endif

I
Ingo Molnar 已提交
1657 1658
#include "sched_stats.h"
#include "sched_idletask.c"
1659 1660
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1661 1662 1663 1664 1665
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1666 1667
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1668

1669
static void inc_nr_running(struct rq *rq)
1670 1671 1672 1673
{
	rq->nr_running++;
}

1674
static void dec_nr_running(struct rq *rq)
1675 1676 1677 1678
{
	rq->nr_running--;
}

1679 1680 1681
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1682 1683 1684 1685
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1686

I
Ingo Molnar 已提交
1687 1688 1689 1690 1691 1692 1693 1694
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1695

I
Ingo Molnar 已提交
1696 1697
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1698 1699
}

1700 1701 1702 1703 1704 1705
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1706
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1707
{
I
Ingo Molnar 已提交
1708
	sched_info_queued(p);
1709
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1710
	p->se.on_rq = 1;
1711 1712
}

1713
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1714
{
1715 1716 1717 1718 1719 1720
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1721
	sched_info_dequeued(p);
1722
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1723
	p->se.on_rq = 0;
1724 1725
}

1726
/*
I
Ingo Molnar 已提交
1727
 * __normal_prio - return the priority that is based on the static prio
1728 1729 1730
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1731
	return p->static_prio;
1732 1733
}

1734 1735 1736 1737 1738 1739 1740
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1741
static inline int normal_prio(struct task_struct *p)
1742 1743 1744
{
	int prio;

1745
	if (task_has_rt_policy(p))
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1759
static int effective_prio(struct task_struct *p)
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1772
/*
I
Ingo Molnar 已提交
1773
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1774
 */
I
Ingo Molnar 已提交
1775
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1776
{
1777
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1778
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1779

1780
	enqueue_task(rq, p, wakeup);
1781
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1782 1783 1784 1785 1786
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1787
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1788
{
1789
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1790 1791
		rq->nr_uninterruptible++;

1792
	dequeue_task(rq, p, sleep);
1793
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1794 1795 1796 1797 1798 1799
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1800
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1801 1802 1803 1804
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1805 1806
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1807
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1808
#ifdef CONFIG_SMP
1809 1810 1811 1812 1813 1814
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1815 1816
	task_thread_info(p)->cpu = cpu;
#endif
1817 1818
}

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1831
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1832

1833 1834 1835 1836 1837 1838
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1839 1840 1841
/*
 * Is this task likely cache-hot:
 */
1842
static int
1843 1844 1845 1846
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1847 1848 1849
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1850 1851 1852
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1853 1854
		return 1;

1855 1856 1857
	if (p->sched_class != &fair_sched_class)
		return 0;

1858 1859 1860 1861 1862
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1863 1864 1865 1866 1867 1868
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1869
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1870
{
I
Ingo Molnar 已提交
1871 1872
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1873 1874
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1875
	u64 clock_offset;
I
Ingo Molnar 已提交
1876 1877

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1878

1879 1880
	trace_sched_migrate_task(p, task_cpu(p), new_cpu);

I
Ingo Molnar 已提交
1881 1882 1883
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1884 1885 1886 1887
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1888 1889 1890 1891 1892
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1893
#endif
1894 1895
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1896 1897

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1898 1899
}

1900
struct migration_req {
L
Linus Torvalds 已提交
1901 1902
	struct list_head list;

1903
	struct task_struct *task;
L
Linus Torvalds 已提交
1904 1905 1906
	int dest_cpu;

	struct completion done;
1907
};
L
Linus Torvalds 已提交
1908 1909 1910 1911 1912

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1913
static int
1914
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1915
{
1916
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1917 1918 1919 1920 1921

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1922
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1923 1924 1925 1926 1927 1928 1929 1930
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1931

L
Linus Torvalds 已提交
1932 1933 1934 1935 1936 1937
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1938 1939 1940 1941 1942 1943 1944
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1945 1946 1947 1948 1949 1950
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1951
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1952 1953
{
	unsigned long flags;
I
Ingo Molnar 已提交
1954
	int running, on_rq;
R
Roland McGrath 已提交
1955
	unsigned long ncsw;
1956
	struct rq *rq;
L
Linus Torvalds 已提交
1957

1958 1959 1960 1961 1962 1963 1964 1965
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1966

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1978 1979 1980
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1981
			cpu_relax();
R
Roland McGrath 已提交
1982
		}
1983

1984 1985 1986 1987 1988 1989
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1990
		trace_sched_wait_task(rq, p);
1991 1992
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1993
		ncsw = 0;
1994
		if (!match_state || p->state == match_state)
1995
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1996
		task_rq_unlock(rq, &flags);
1997

R
Roland McGrath 已提交
1998 1999 2000 2001 2002 2003
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2014

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2028

2029 2030 2031 2032 2033 2034 2035
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2036 2037

	return ncsw;
L
Linus Torvalds 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2053
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2065 2066
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2067 2068 2069 2070
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2071
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2072
{
2073
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2074
	unsigned long total = weighted_cpuload(cpu);
2075

2076
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2077
		return total;
2078

I
Ingo Molnar 已提交
2079
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2080 2081 2082
}

/*
2083 2084
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2085
 */
A
Alexey Dobriyan 已提交
2086
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2087
{
2088
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2089
	unsigned long total = weighted_cpuload(cpu);
2090

2091
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2092
		return total;
2093

I
Ingo Molnar 已提交
2094
	return max(rq->cpu_load[type-1], total);
2095 2096
}

N
Nick Piggin 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2114
		/* Skip over this group if it has no CPUs allowed */
2115 2116
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2117
			continue;
2118

2119 2120
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2121 2122 2123 2124

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2125
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2136 2137
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2138 2139 2140 2141 2142 2143 2144 2145

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2146
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2147 2148 2149 2150 2151 2152 2153

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2154
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2155
 */
I
Ingo Molnar 已提交
2156
static int
2157
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2158 2159 2160 2161 2162
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2163
	/* Traverse only the allowed CPUs */
2164
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2165
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2191

2192
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2193 2194 2195
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2196 2197
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2198 2199
		if (tmp->flags & flag)
			sd = tmp;
2200
	}
N
Nick Piggin 已提交
2201

2202 2203 2204
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2205 2206
	while (sd) {
		struct sched_group *group;
2207 2208 2209 2210 2211 2212
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2213 2214

		group = find_idlest_group(sd, t, cpu);
2215 2216 2217 2218
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2219

2220
		new_cpu = find_idlest_cpu(group, t, cpu);
2221 2222 2223 2224 2225
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2226

2227
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2228
		cpu = new_cpu;
2229
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2230 2231
		sd = NULL;
		for_each_domain(cpu, tmp) {
2232
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2259
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2260
{
2261
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2262 2263
	unsigned long flags;
	long old_state;
2264
	struct rq *rq;
L
Linus Torvalds 已提交
2265

2266 2267 2268
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2269 2270 2271 2272 2273 2274 2275 2276 2277
	if (!sync) {
		if (current->se.avg_overlap < sysctl_sched_migration_cost &&
			  p->se.avg_overlap < sysctl_sched_migration_cost)
			sync = 1;
	} else {
		if (current->se.avg_overlap >= sysctl_sched_migration_cost ||
			  p->se.avg_overlap >= sysctl_sched_migration_cost)
			sync = 0;
	}
P
Peter Zijlstra 已提交
2278

P
Peter Zijlstra 已提交
2279 2280 2281 2282 2283 2284 2285 2286
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2287
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2288 2289 2290 2291 2292 2293 2294
				update_shares(sd);
				break;
			}
		}
	}
#endif

2295
	smp_wmb();
L
Linus Torvalds 已提交
2296
	rq = task_rq_lock(p, &flags);
2297
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2298 2299 2300 2301
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2302
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2303 2304 2305
		goto out_running;

	cpu = task_cpu(p);
2306
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2307 2308 2309 2310 2311 2312
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2313 2314 2315
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2316 2317 2318 2319 2320 2321
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2322
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2323 2324 2325 2326 2327 2328
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2329 2330 2331 2332 2333 2334 2335
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2336
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2337 2338 2339 2340 2341
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2342
#endif /* CONFIG_SCHEDSTATS */
2343

L
Linus Torvalds 已提交
2344 2345
out_activate:
#endif /* CONFIG_SMP */
2346 2347 2348 2349 2350 2351 2352 2353 2354
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2355
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2356 2357 2358
	success = 1;

out_running:
2359
	trace_sched_wakeup(rq, p, success);
2360
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2361

L
Linus Torvalds 已提交
2362
	p->state = TASK_RUNNING;
2363 2364 2365 2366
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2367
out:
2368 2369
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2370 2371 2372 2373 2374
	task_rq_unlock(rq, &flags);

	return success;
}

2375
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2376
{
2377
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2378 2379 2380
}
EXPORT_SYMBOL(wake_up_process);

2381
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2382 2383 2384 2385 2386 2387 2388
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2389 2390 2391 2392 2393 2394 2395
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2396
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2397 2398
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2399 2400 2401

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2402 2403 2404 2405 2406 2407
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2408
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2409
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2410
#endif
N
Nick Piggin 已提交
2411

P
Peter Zijlstra 已提交
2412
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2413
	p->se.on_rq = 0;
2414
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2415

2416 2417 2418 2419
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2420 2421 2422 2423 2424 2425 2426
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2441
	set_task_cpu(p, cpu);
2442 2443 2444 2445 2446

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2447 2448
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2449

2450
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2451
	if (likely(sched_info_on()))
2452
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2453
#endif
2454
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2455 2456
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2457
#ifdef CONFIG_PREEMPT
2458
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2459
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2460
#endif
N
Nick Piggin 已提交
2461
	put_cpu();
L
Linus Torvalds 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2471
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2472 2473
{
	unsigned long flags;
I
Ingo Molnar 已提交
2474
	struct rq *rq;
L
Linus Torvalds 已提交
2475 2476

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2477
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2478
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2479 2480 2481

	p->prio = effective_prio(p);

2482
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2483
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2484 2485
	} else {
		/*
I
Ingo Molnar 已提交
2486 2487
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2488
		 */
2489
		p->sched_class->task_new(rq, p);
2490
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2491
	}
2492
	trace_sched_wakeup_new(rq, p, 1);
2493
	check_preempt_curr(rq, p, 0);
2494 2495 2496 2497
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2498
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2499 2500
}

2501 2502 2503
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2504 2505
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2506 2507 2508 2509 2510 2511 2512 2513 2514
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2515
 * @notifier: notifier struct to unregister
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2545
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2557
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2558

2559 2560 2561
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2562
 * @prev: the current task that is being switched out
2563 2564 2565 2566 2567 2568 2569 2570 2571
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2572 2573 2574
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2575
{
2576
	fire_sched_out_preempt_notifiers(prev, next);
2577 2578 2579 2580
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2581 2582
/**
 * finish_task_switch - clean up after a task-switch
2583
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2584 2585
 * @prev: the thread we just switched away from.
 *
2586 2587 2588 2589
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2590 2591
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2592
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2593 2594 2595
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2596
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2597 2598 2599
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2600
	long prev_state;
L
Linus Torvalds 已提交
2601 2602 2603 2604 2605

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2606
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2607 2608
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2609
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2610 2611 2612 2613 2614
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2615
	prev_state = prev->state;
2616 2617
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2618 2619 2620 2621
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2622

2623
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2624 2625
	if (mm)
		mmdrop(mm);
2626
	if (unlikely(prev_state == TASK_DEAD)) {
2627 2628 2629
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2630
		 */
2631
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2632
		put_task_struct(prev);
2633
	}
L
Linus Torvalds 已提交
2634 2635 2636 2637 2638 2639
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2640
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2641 2642
	__releases(rq->lock)
{
2643 2644
	struct rq *rq = this_rq();

2645 2646 2647 2648 2649
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2650
	if (current->set_child_tid)
2651
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2652 2653 2654 2655 2656 2657
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2658
static inline void
2659
context_switch(struct rq *rq, struct task_struct *prev,
2660
	       struct task_struct *next)
L
Linus Torvalds 已提交
2661
{
I
Ingo Molnar 已提交
2662
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2663

2664
	prepare_task_switch(rq, prev, next);
2665
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2666 2667
	mm = next->mm;
	oldmm = prev->active_mm;
2668 2669 2670 2671 2672 2673 2674
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2675
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2676 2677 2678 2679 2680 2681
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2682
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2683 2684 2685
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2686 2687 2688 2689 2690 2691 2692
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2693
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2694
#endif
L
Linus Torvalds 已提交
2695 2696 2697 2698

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2699 2700 2701 2702 2703 2704 2705
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2729
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2744 2745
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2746

2747
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2757
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2758 2759 2760 2761 2762
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2778
/*
I
Ingo Molnar 已提交
2779 2780
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2781
 */
I
Ingo Molnar 已提交
2782
static void update_cpu_load(struct rq *this_rq)
2783
{
2784
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2797 2798 2799 2800 2801 2802 2803
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2804 2805
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2806 2807
}

I
Ingo Molnar 已提交
2808 2809
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2810 2811 2812 2813 2814 2815
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2816
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2817 2818 2819
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2820
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2821 2822 2823 2824
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2825
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2826
			spin_lock(&rq1->lock);
2827
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2828 2829
		} else {
			spin_lock(&rq2->lock);
2830
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2831 2832
		}
	}
2833 2834
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2835 2836 2837 2838 2839 2840 2841 2842
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2843
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2857
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2858 2859
 * the cpu_allowed mask is restored.
 */
2860
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2861
{
2862
	struct migration_req req;
L
Linus Torvalds 已提交
2863
	unsigned long flags;
2864
	struct rq *rq;
L
Linus Torvalds 已提交
2865 2866

	rq = task_rq_lock(p, &flags);
2867
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2868
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2869 2870 2871 2872 2873 2874
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2875

L
Linus Torvalds 已提交
2876 2877 2878 2879 2880
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2881

L
Linus Torvalds 已提交
2882 2883 2884 2885 2886 2887 2888
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2889 2890
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2891 2892 2893 2894
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2895
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2896
	put_cpu();
N
Nick Piggin 已提交
2897 2898
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2899 2900 2901 2902 2903 2904
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2905 2906
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2907
{
2908
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2909
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2910
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2911 2912 2913 2914
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2915
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2916 2917 2918 2919 2920
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2921
static
2922
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2923
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2924
		     int *all_pinned)
L
Linus Torvalds 已提交
2925 2926 2927 2928 2929 2930 2931
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2932
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2933
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2934
		return 0;
2935
	}
2936 2937
	*all_pinned = 0;

2938 2939
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2940
		return 0;
2941
	}
L
Linus Torvalds 已提交
2942

2943 2944 2945 2946 2947 2948
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2949 2950
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2951
#ifdef CONFIG_SCHEDSTATS
2952
		if (task_hot(p, rq->clock, sd)) {
2953
			schedstat_inc(sd, lb_hot_gained[idle]);
2954 2955
			schedstat_inc(p, se.nr_forced_migrations);
		}
2956 2957 2958 2959
#endif
		return 1;
	}

2960 2961
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2962
		return 0;
2963
	}
L
Linus Torvalds 已提交
2964 2965 2966
	return 1;
}

2967 2968 2969 2970 2971
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2972
{
2973
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2974 2975
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2976

2977
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2978 2979
		goto out;

2980 2981
	pinned = 1;

L
Linus Torvalds 已提交
2982
	/*
I
Ingo Molnar 已提交
2983
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2984
	 */
I
Ingo Molnar 已提交
2985 2986
	p = iterator->start(iterator->arg);
next:
2987
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2988
		goto out;
2989 2990

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2991 2992 2993
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2994 2995
	}

I
Ingo Molnar 已提交
2996
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2997
	pulled++;
I
Ingo Molnar 已提交
2998
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2999

3000
	/*
3001
	 * We only want to steal up to the prescribed amount of weighted load.
3002
	 */
3003
	if (rem_load_move > 0) {
3004 3005
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3006 3007
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3008 3009 3010
	}
out:
	/*
3011
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3012 3013 3014 3015
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3016 3017 3018

	if (all_pinned)
		*all_pinned = pinned;
3019 3020

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3021 3022
}

I
Ingo Molnar 已提交
3023
/*
P
Peter Williams 已提交
3024 3025 3026
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3027 3028 3029 3030
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3031
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3032 3033 3034
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3035
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3036
	unsigned long total_load_moved = 0;
3037
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3038 3039

	do {
P
Peter Williams 已提交
3040 3041
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3042
				max_load_move - total_load_moved,
3043
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3044
		class = class->next;
3045 3046 3047 3048

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3049
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3050

P
Peter Williams 已提交
3051 3052 3053
	return total_load_moved > 0;
}

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3090
	const struct sched_class *class;
P
Peter Williams 已提交
3091 3092

	for (class = sched_class_highest; class; class = class->next)
3093
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3094 3095 3096
			return 1;

	return 0;
I
Ingo Molnar 已提交
3097 3098
}

L
Linus Torvalds 已提交
3099 3100
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3101 3102
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3103 3104 3105
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3106
		   unsigned long *imbalance, enum cpu_idle_type idle,
3107
		   int *sd_idle, const struct cpumask *cpus, int *balance)
L
Linus Torvalds 已提交
3108 3109 3110
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3111
	unsigned long max_pull;
3112 3113
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3114
	int load_idx, group_imb = 0;
3115 3116 3117 3118 3119 3120
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3121 3122

	max_load = this_load = total_load = total_pwr = 0;
3123 3124
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3125

I
Ingo Molnar 已提交
3126
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3127
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3128
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3129 3130 3131
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3132 3133

	do {
3134
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3135 3136
		int local_group;
		int i;
3137
		int __group_imb = 0;
3138
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3139
		unsigned long sum_nr_running, sum_weighted_load;
3140 3141
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3142

3143 3144
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
L
Linus Torvalds 已提交
3145

3146
		if (local_group)
3147
			balance_cpu = cpumask_first(sched_group_cpus(group));
3148

L
Linus Torvalds 已提交
3149
		/* Tally up the load of all CPUs in the group */
3150
		sum_weighted_load = sum_nr_running = avg_load = 0;
3151 3152
		sum_avg_load_per_task = avg_load_per_task = 0;

3153 3154
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3155

3156 3157
		for_each_cpu_and(i, sched_group_cpus(group), cpus) {
			struct rq *rq = cpu_rq(i);
3158

3159
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3160 3161
				*sd_idle = 0;

L
Linus Torvalds 已提交
3162
			/* Bias balancing toward cpus of our domain */
3163 3164 3165 3166 3167 3168
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3169
				load = target_load(i, load_idx);
3170
			} else {
N
Nick Piggin 已提交
3171
				load = source_load(i, load_idx);
3172 3173 3174 3175 3176
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3177 3178

			avg_load += load;
3179
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3180
			sum_weighted_load += weighted_cpuload(i);
3181 3182

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3183 3184
		}

3185 3186 3187
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3188 3189
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3190
		 */
3191 3192
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3193 3194 3195 3196
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3197
		total_load += avg_load;
3198
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3199 3200

		/* Adjust by relative CPU power of the group */
3201 3202
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3203

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3218 3219
			__group_imb = 1;

3220
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3221

L
Linus Torvalds 已提交
3222 3223 3224
		if (local_group) {
			this_load = avg_load;
			this = group;
3225 3226 3227
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3228
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3229 3230
			max_load = avg_load;
			busiest = group;
3231 3232
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3233
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3234
		}
3235 3236 3237 3238 3239 3240

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3241 3242 3243
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3244 3245 3246 3247 3248 3249 3250 3251 3252

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3253
		/*
3254 3255
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3256 3257
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3258
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3259
			goto group_next;
3260

I
Ingo Molnar 已提交
3261
		/*
3262
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3263 3264 3265 3266 3267
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3268
		     cpumask_first(sched_group_cpus(group)) >
3269
		     cpumask_first(sched_group_cpus(group_min)))) {
I
Ingo Molnar 已提交
3270 3271
			group_min = group;
			min_nr_running = sum_nr_running;
3272 3273
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3274
		}
3275

I
Ingo Molnar 已提交
3276
		/*
3277
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3278 3279 3280 3281 3282 3283
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
3284
			     cpumask_first(sched_group_cpus(group)) <
3285
			     cpumask_first(sched_group_cpus(group_leader)))) {
I
Ingo Molnar 已提交
3286 3287 3288
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3289
		}
3290 3291
group_next:
#endif
L
Linus Torvalds 已提交
3292 3293 3294
		group = group->next;
	} while (group != sd->groups);

3295
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3296 3297 3298 3299 3300 3301 3302 3303
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3304
	busiest_load_per_task /= busiest_nr_running;
3305 3306 3307
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3308 3309 3310 3311 3312 3313 3314 3315
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3316
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3317 3318
	 * appear as very large values with unsigned longs.
	 */
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3331 3332

	/* Don't want to pull so many tasks that a group would go idle */
3333
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3334

L
Linus Torvalds 已提交
3335
	/* How much load to actually move to equalise the imbalance */
3336 3337
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3338 3339
			/ SCHED_LOAD_SCALE;

3340 3341 3342 3343 3344 3345
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3346
	if (*imbalance < busiest_load_per_task) {
3347
		unsigned long tmp, pwr_now, pwr_move;
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3358
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3359

3360
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3361
					busiest_load_per_task * imbn) {
3362
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3363 3364 3365 3366 3367 3368 3369 3370 3371
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3372 3373 3374 3375
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3376 3377 3378
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3379 3380
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3381
		if (max_load > tmp)
3382
			pwr_move += busiest->__cpu_power *
3383
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3384 3385

		/* Amount of load we'd add */
3386
		if (max_load * busiest->__cpu_power <
3387
				busiest_load_per_task * SCHED_LOAD_SCALE)
3388 3389
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3390
		else
3391 3392 3393 3394
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3395 3396 3397
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3398 3399
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3400 3401 3402 3403 3404
	}

	return busiest;

out_balanced:
3405
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3406
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3407
		goto ret;
L
Linus Torvalds 已提交
3408

3409 3410
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
3411 3412
		if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
			cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
I
Ingo Molnar 已提交
3413
				cpumask_first(sched_group_cpus(group_leader));
3414
		}
3415 3416 3417
		return group_min;
	}
#endif
3418
ret:
L
Linus Torvalds 已提交
3419 3420 3421 3422 3423 3424 3425
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3426
static struct rq *
I
Ingo Molnar 已提交
3427
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3428
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3429
{
3430
	struct rq *busiest = NULL, *rq;
3431
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3432 3433
	int i;

3434
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3435
		unsigned long wl;
3436

3437
		if (!cpumask_test_cpu(i, cpus))
3438 3439
			continue;

3440
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3441
		wl = weighted_cpuload(i);
3442

I
Ingo Molnar 已提交
3443
		if (rq->nr_running == 1 && wl > imbalance)
3444
			continue;
L
Linus Torvalds 已提交
3445

I
Ingo Molnar 已提交
3446 3447
		if (wl > max_load) {
			max_load = wl;
3448
			busiest = rq;
L
Linus Torvalds 已提交
3449 3450 3451 3452 3453 3454
		}
	}

	return busiest;
}

3455 3456 3457 3458 3459 3460
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3461 3462 3463 3464
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3465
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3466
			struct sched_domain *sd, enum cpu_idle_type idle,
3467
			int *balance, struct cpumask *cpus)
L
Linus Torvalds 已提交
3468
{
P
Peter Williams 已提交
3469
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3470 3471
	struct sched_group *group;
	unsigned long imbalance;
3472
	struct rq *busiest;
3473
	unsigned long flags;
N
Nick Piggin 已提交
3474

3475
	cpumask_setall(cpus);
3476

3477 3478 3479
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3480
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3481
	 * portraying it as CPU_NOT_IDLE.
3482
	 */
I
Ingo Molnar 已提交
3483
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3484
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3485
		sd_idle = 1;
L
Linus Torvalds 已提交
3486

3487
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3488

3489
redo:
3490
	update_shares(sd);
3491
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3492
				   cpus, balance);
3493

3494
	if (*balance == 0)
3495 3496
		goto out_balanced;

L
Linus Torvalds 已提交
3497 3498 3499 3500 3501
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3502
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3503 3504 3505 3506 3507
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3508
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3509 3510 3511

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3512
	ld_moved = 0;
L
Linus Torvalds 已提交
3513 3514 3515 3516
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3517
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3518 3519
		 * correctly treated as an imbalance.
		 */
3520
		local_irq_save(flags);
N
Nick Piggin 已提交
3521
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3522
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3523
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3524
		double_rq_unlock(this_rq, busiest);
3525
		local_irq_restore(flags);
3526

3527 3528 3529
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3530
		if (ld_moved && this_cpu != smp_processor_id())
3531 3532
			resched_cpu(this_cpu);

3533
		/* All tasks on this runqueue were pinned by CPU affinity */
3534
		if (unlikely(all_pinned)) {
3535 3536
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3537
				goto redo;
3538
			goto out_balanced;
3539
		}
L
Linus Torvalds 已提交
3540
	}
3541

P
Peter Williams 已提交
3542
	if (!ld_moved) {
L
Linus Torvalds 已提交
3543 3544 3545 3546 3547
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3548
			spin_lock_irqsave(&busiest->lock, flags);
3549 3550 3551 3552

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3553 3554
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3555
				spin_unlock_irqrestore(&busiest->lock, flags);
3556 3557 3558 3559
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3560 3561 3562
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3563
				active_balance = 1;
L
Linus Torvalds 已提交
3564
			}
3565
			spin_unlock_irqrestore(&busiest->lock, flags);
3566
			if (active_balance)
L
Linus Torvalds 已提交
3567 3568 3569 3570 3571 3572
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3573
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3574
		}
3575
	} else
L
Linus Torvalds 已提交
3576 3577
		sd->nr_balance_failed = 0;

3578
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3579 3580
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3581 3582 3583 3584 3585 3586 3587 3588 3589
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3590 3591
	}

P
Peter Williams 已提交
3592
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3593
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3594 3595 3596
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3597 3598 3599 3600

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3601
	sd->nr_balance_failed = 0;
3602 3603

out_one_pinned:
L
Linus Torvalds 已提交
3604
	/* tune up the balancing interval */
3605 3606
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3607 3608
		sd->balance_interval *= 2;

3609
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3610
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3611 3612 3613 3614
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3615 3616
	if (ld_moved)
		update_shares(sd);
3617
	return ld_moved;
L
Linus Torvalds 已提交
3618 3619 3620 3621 3622 3623
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3624
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3625 3626
 * this_rq is locked.
 */
3627
static int
3628
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3629
			struct cpumask *cpus)
L
Linus Torvalds 已提交
3630 3631
{
	struct sched_group *group;
3632
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3633
	unsigned long imbalance;
P
Peter Williams 已提交
3634
	int ld_moved = 0;
N
Nick Piggin 已提交
3635
	int sd_idle = 0;
3636
	int all_pinned = 0;
3637

3638
	cpumask_setall(cpus);
N
Nick Piggin 已提交
3639

3640 3641 3642 3643
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3644
	 * portraying it as CPU_NOT_IDLE.
3645 3646 3647
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3648
		sd_idle = 1;
L
Linus Torvalds 已提交
3649

3650
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3651
redo:
3652
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3653
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3654
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3655
	if (!group) {
I
Ingo Molnar 已提交
3656
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3657
		goto out_balanced;
L
Linus Torvalds 已提交
3658 3659
	}

3660
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3661
	if (!busiest) {
I
Ingo Molnar 已提交
3662
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3663
		goto out_balanced;
L
Linus Torvalds 已提交
3664 3665
	}

N
Nick Piggin 已提交
3666 3667
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3668
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3669

P
Peter Williams 已提交
3670
	ld_moved = 0;
3671 3672 3673
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3674 3675
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3676
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3677 3678
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3679
		double_unlock_balance(this_rq, busiest);
3680

3681
		if (unlikely(all_pinned)) {
3682 3683
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3684 3685
				goto redo;
		}
3686 3687
	}

P
Peter Williams 已提交
3688
	if (!ld_moved) {
3689
		int active_balance = 0;
3690

I
Ingo Molnar 已提交
3691
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3692 3693
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3694
			return -1;
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
3731
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
3744 3745 3746 3747
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
3748 3749
		if (active_balance)
			wake_up_process(busiest->migration_thread);
3750
		spin_lock(&this_rq->lock);
3751

N
Nick Piggin 已提交
3752
	} else
3753
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3754

3755
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3756
	return ld_moved;
3757 3758

out_balanced:
I
Ingo Molnar 已提交
3759
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3760
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3761
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3762
		return -1;
3763
	sd->nr_balance_failed = 0;
3764

3765
	return 0;
L
Linus Torvalds 已提交
3766 3767 3768 3769 3770 3771
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3772
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3773 3774
{
	struct sched_domain *sd;
3775
	int pulled_task = 0;
I
Ingo Molnar 已提交
3776
	unsigned long next_balance = jiffies + HZ;
3777 3778 3779 3780
	cpumask_var_t tmpmask;

	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3781 3782

	for_each_domain(this_cpu, sd) {
3783 3784 3785 3786 3787 3788
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3789
			/* If we've pulled tasks over stop searching: */
3790
			pulled_task = load_balance_newidle(this_cpu, this_rq,
3791
							   sd, tmpmask);
3792 3793 3794 3795 3796 3797

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3798
	}
I
Ingo Molnar 已提交
3799
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3800 3801 3802 3803 3804
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3805
	}
3806
	free_cpumask_var(tmpmask);
L
Linus Torvalds 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3817
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3818
{
3819
	int target_cpu = busiest_rq->push_cpu;
3820 3821
	struct sched_domain *sd;
	struct rq *target_rq;
3822

3823
	/* Is there any task to move? */
3824 3825 3826 3827
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3828 3829

	/*
3830
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3831
	 * we need to fix it. Originally reported by
3832
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3833
	 */
3834
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3835

3836 3837
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3838 3839
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3840 3841

	/* Search for an sd spanning us and the target CPU. */
3842
	for_each_domain(target_cpu, sd) {
3843
		if ((sd->flags & SD_LOAD_BALANCE) &&
3844
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3845
				break;
3846
	}
3847

3848
	if (likely(sd)) {
3849
		schedstat_inc(sd, alb_count);
3850

P
Peter Williams 已提交
3851 3852
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3853 3854 3855 3856
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3857
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3858 3859
}

3860 3861 3862
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
3863
	cpumask_var_t cpu_mask;
3864 3865 3866 3867
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

3868
/*
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3879
 *
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
3893
		cpumask_set_cpu(cpu, nohz.cpu_mask);
3894 3895 3896 3897 3898
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3899
		if (!cpu_active(cpu) &&
3900 3901 3902 3903 3904 3905 3906
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
3907
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
3920
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3921 3922
			return 0;

3923
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3936 3937 3938 3939 3940
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3941
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3942
{
3943 3944
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3945 3946
	unsigned long interval;
	struct sched_domain *sd;
3947
	/* Earliest time when we have to do rebalance again */
3948
	unsigned long next_balance = jiffies + 60*HZ;
3949
	int update_next_balance = 0;
3950
	int need_serialize;
3951 3952 3953 3954 3955
	cpumask_var_t tmp;

	/* Fails alloc?  Rebalancing probably not a priority right now. */
	if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3956

3957
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3958 3959 3960 3961
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3962
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3963 3964 3965 3966 3967 3968
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3969 3970 3971
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3972
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3973

3974
		if (need_serialize) {
3975 3976 3977 3978
			if (!spin_trylock(&balancing))
				goto out;
		}

3979
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3980
			if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3981 3982
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3983 3984 3985
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3986
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3987
			}
3988
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3989
		}
3990
		if (need_serialize)
3991 3992
			spin_unlock(&balancing);
out:
3993
		if (time_after(next_balance, sd->last_balance + interval)) {
3994
			next_balance = sd->last_balance + interval;
3995 3996
			update_next_balance = 1;
		}
3997 3998 3999 4000 4001 4002 4003 4004

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4005
	}
4006 4007 4008 4009 4010 4011 4012 4013

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4014 4015

	free_cpumask_var(tmp);
4016 4017 4018 4019 4020 4021 4022 4023 4024
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4025 4026 4027 4028
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4029

I
Ingo Molnar 已提交
4030
	rebalance_domains(this_cpu, idle);
4031 4032 4033 4034 4035 4036 4037

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4038 4039
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4040 4041 4042
		struct rq *rq;
		int balance_cpu;

4043 4044 4045 4046
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4047 4048 4049 4050 4051 4052 4053 4054
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4055
			rebalance_domains(balance_cpu, CPU_IDLE);
4056 4057

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4058 4059
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4072
static inline void trigger_load_balance(struct rq *rq, int cpu)
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4084
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
4097
			int ilb = cpumask_first(nohz.cpu_mask);
4098

4099
			if (ilb < nr_cpu_ids)
4100 4101 4102 4103 4104 4105 4106 4107 4108
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4109
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4110 4111 4112 4113 4114 4115 4116 4117 4118
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4119
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4120 4121 4122 4123
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4124
}
I
Ingo Molnar 已提交
4125 4126 4127

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4128 4129 4130
/*
 * on UP we do not need to balance between CPUs:
 */
4131
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4132 4133
{
}
I
Ingo Molnar 已提交
4134

L
Linus Torvalds 已提交
4135 4136 4137 4138 4139 4140 4141
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4142 4143
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4144
 */
4145
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4146 4147
{
	unsigned long flags;
4148
	struct rq *rq;
4149
	u64 ns = 0;
4150

4151
	rq = task_rq_lock(p, &flags);
4152

4153
	if (task_current(rq, p)) {
4154 4155
		u64 delta_exec;

I
Ingo Molnar 已提交
4156 4157
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4158
		if ((s64)delta_exec > 0)
4159
			ns = delta_exec;
4160
	}
4161

4162
	task_rq_unlock(rq, &flags);
4163

L
Linus Torvalds 已提交
4164 4165 4166 4167 4168 4169 4170
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4171
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4172
 */
4173 4174
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4175 4176 4177 4178
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4179
	/* Add user time to process. */
L
Linus Torvalds 已提交
4180
	p->utime = cputime_add(p->utime, cputime);
4181
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4182
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4183 4184 4185 4186 4187 4188 4189

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4190 4191
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4192 4193
}

4194 4195 4196 4197
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4198
 * @cputime_scaled: cputime scaled by cpu frequency
4199
 */
4200 4201
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4202 4203 4204 4205 4206 4207
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4208
	/* Add guest time to process. */
4209
	p->utime = cputime_add(p->utime, cputime);
4210
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4211
	account_group_user_time(p, cputime);
4212 4213
	p->gtime = cputime_add(p->gtime, cputime);

4214
	/* Add guest time to cpustat. */
4215 4216 4217 4218
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4219 4220 4221 4222 4223
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4224
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4225 4226
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4227
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4228 4229 4230 4231
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4232
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4233
		account_guest_time(p, cputime, cputime_scaled);
4234 4235
		return;
	}
4236

4237
	/* Add system time to process. */
L
Linus Torvalds 已提交
4238
	p->stime = cputime_add(p->stime, cputime);
4239
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4240
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4241 4242 4243 4244 4245 4246 4247 4248

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4249 4250
		cpustat->system = cputime64_add(cpustat->system, tmp);

L
Linus Torvalds 已提交
4251 4252 4253 4254
	/* Account for system time used */
	acct_update_integrals(p);
}

4255
/*
L
Linus Torvalds 已提交
4256 4257
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4258
 */
4259
void account_steal_time(cputime_t cputime)
4260
{
4261 4262 4263 4264
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4265 4266
}

L
Linus Torvalds 已提交
4267
/*
4268 4269
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4270
 */
4271
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
4272 4273
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4274
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4275
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4276

4277 4278 4279 4280
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
4281 4282
}

4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
	else if (p != rq->idle)
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
L
Linus Torvalds 已提交
4303 4304
}

4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4322 4323
}

4324 4325
#endif

4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4396
	struct task_struct *curr = rq->curr;
4397 4398

	sched_clock_tick();
I
Ingo Molnar 已提交
4399 4400

	spin_lock(&rq->lock);
4401
	update_rq_clock(rq);
4402
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4403
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4404
	spin_unlock(&rq->lock);
4405

4406
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4407 4408
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4409
#endif
L
Linus Torvalds 已提交
4410 4411
}

4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4424

4425
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4426
{
4427
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4428 4429 4430
	/*
	 * Underflow?
	 */
4431 4432
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4433
#endif
L
Linus Torvalds 已提交
4434
	preempt_count() += val;
4435
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4436 4437 4438
	/*
	 * Spinlock count overflowing soon?
	 */
4439 4440
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4441 4442 4443
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4444 4445 4446
}
EXPORT_SYMBOL(add_preempt_count);

4447
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4448
{
4449
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4450 4451 4452
	/*
	 * Underflow?
	 */
4453
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4454
		return;
L
Linus Torvalds 已提交
4455 4456 4457
	/*
	 * Is the spinlock portion underflowing?
	 */
4458 4459 4460
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4461
#endif
4462

4463 4464
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4465 4466 4467 4468 4469 4470 4471
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4472
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4473
 */
I
Ingo Molnar 已提交
4474
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4475
{
4476 4477 4478 4479 4480
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4481
	debug_show_held_locks(prev);
4482
	print_modules();
I
Ingo Molnar 已提交
4483 4484
	if (irqs_disabled())
		print_irqtrace_events(prev);
4485 4486 4487 4488 4489

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4490
}
L
Linus Torvalds 已提交
4491

I
Ingo Molnar 已提交
4492 4493 4494 4495 4496
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4497
	/*
I
Ingo Molnar 已提交
4498
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4499 4500 4501
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4502
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4503 4504
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4505 4506
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4507
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4508 4509
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4510 4511
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4512 4513
	}
#endif
I
Ingo Molnar 已提交
4514 4515 4516 4517 4518 4519
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4520
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4521
{
4522
	const struct sched_class *class;
I
Ingo Molnar 已提交
4523
	struct task_struct *p;
L
Linus Torvalds 已提交
4524 4525

	/*
I
Ingo Molnar 已提交
4526 4527
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4528
	 */
I
Ingo Molnar 已提交
4529
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4530
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4531 4532
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4533 4534
	}

I
Ingo Molnar 已提交
4535 4536
	class = sched_class_highest;
	for ( ; ; ) {
4537
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4538 4539 4540 4541 4542 4543 4544 4545 4546
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4547

I
Ingo Molnar 已提交
4548 4549 4550 4551 4552 4553
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4554
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4570

4571
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4572
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4573

4574
	spin_lock_irq(&rq->lock);
4575
	update_rq_clock(rq);
4576
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4577 4578

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4579
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4580
			prev->state = TASK_RUNNING;
4581
		else
4582
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4583
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4584 4585
	}

4586 4587 4588 4589
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4590

I
Ingo Molnar 已提交
4591
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4592 4593
		idle_balance(cpu, rq);

4594
	prev->sched_class->put_prev_task(rq, prev);
4595
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4596 4597

	if (likely(prev != next)) {
4598 4599
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4600 4601 4602 4603
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4604
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4605 4606 4607 4608 4609 4610
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4611 4612 4613
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4614
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4615
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4616

L
Linus Torvalds 已提交
4617 4618 4619 4620 4621 4622 4623 4624
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4625
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4626
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4627 4628 4629 4630 4631
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4632

L
Linus Torvalds 已提交
4633 4634
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4635
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4636
	 */
N
Nick Piggin 已提交
4637
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4638 4639
		return;

4640 4641 4642 4643
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4644

4645 4646 4647 4648 4649 4650
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4651 4652 4653 4654
}
EXPORT_SYMBOL(preempt_schedule);

/*
4655
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4656 4657 4658 4659 4660 4661 4662
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4663

4664
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4665 4666
	BUG_ON(ti->preempt_count || !irqs_disabled());

4667 4668 4669 4670 4671 4672
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4673

4674 4675 4676 4677 4678 4679
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4680 4681 4682 4683
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4684 4685
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4686
{
4687
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4688 4689 4690 4691
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4692 4693
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4694 4695 4696
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4697
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4698 4699
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4700 4701
void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
4702
{
4703
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4704

4705
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4706 4707
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4708
		if (curr->func(curr, mode, sync, key) &&
4709
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4710 4711 4712 4713 4714 4715 4716 4717 4718
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4719
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4720
 */
4721
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4722
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4735
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4736 4737 4738 4739 4740
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4741
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4753
void
I
Ingo Molnar 已提交
4754
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4771 4772 4773 4774 4775 4776 4777 4778 4779
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4780
void complete(struct completion *x)
L
Linus Torvalds 已提交
4781 4782 4783 4784 4785
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4786
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4787 4788 4789 4790
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4791 4792 4793 4794 4795 4796
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4797
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4798 4799 4800 4801 4802
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4803
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4804 4805 4806 4807
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4808 4809
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4810 4811 4812 4813 4814 4815 4816
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4817
			if (signal_pending_state(state, current)) {
4818 4819
				timeout = -ERESTARTSYS;
				break;
4820 4821
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4822 4823 4824
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4825
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4826
		__remove_wait_queue(&x->wait, &wait);
4827 4828
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4829 4830
	}
	x->done--;
4831
	return timeout ?: 1;
L
Linus Torvalds 已提交
4832 4833
}

4834 4835
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4836 4837 4838 4839
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4840
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4841
	spin_unlock_irq(&x->wait.lock);
4842 4843
	return timeout;
}
L
Linus Torvalds 已提交
4844

4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4855
void __sched wait_for_completion(struct completion *x)
4856 4857
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4858
}
4859
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4860

4861 4862 4863 4864 4865 4866 4867 4868 4869
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4870
unsigned long __sched
4871
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4872
{
4873
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4874
}
4875
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4876

4877 4878 4879 4880 4881 4882 4883
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4884
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4885
{
4886 4887 4888 4889
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4890
}
4891
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4892

4893 4894 4895 4896 4897 4898 4899 4900
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4901
unsigned long __sched
4902 4903
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4904
{
4905
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4906
}
4907
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4908

4909 4910 4911 4912 4913 4914 4915
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4916 4917 4918 4919 4920 4921 4922 4923 4924
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4971 4972
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4973
{
I
Ingo Molnar 已提交
4974 4975 4976 4977
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4978

4979
	__set_current_state(state);
L
Linus Torvalds 已提交
4980

4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4995 4996 4997
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4998
long __sched
I
Ingo Molnar 已提交
4999
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5000
{
5001
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5002 5003 5004
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5005
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5006
{
5007
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5008 5009 5010
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5011
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5012
{
5013
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5014 5015 5016
}
EXPORT_SYMBOL(sleep_on_timeout);

5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5029
void rt_mutex_setprio(struct task_struct *p, int prio)
5030 5031
{
	unsigned long flags;
5032
	int oldprio, on_rq, running;
5033
	struct rq *rq;
5034
	const struct sched_class *prev_class = p->sched_class;
5035 5036 5037 5038

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5039
	update_rq_clock(rq);
5040

5041
	oldprio = p->prio;
I
Ingo Molnar 已提交
5042
	on_rq = p->se.on_rq;
5043
	running = task_current(rq, p);
5044
	if (on_rq)
5045
		dequeue_task(rq, p, 0);
5046 5047
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5048 5049 5050 5051 5052 5053

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5054 5055
	p->prio = prio;

5056 5057
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5058
	if (on_rq) {
5059
		enqueue_task(rq, p, 0);
5060 5061

		check_class_changed(rq, p, prev_class, oldprio, running);
5062 5063 5064 5065 5066 5067
	}
	task_rq_unlock(rq, &flags);
}

#endif

5068
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5069
{
I
Ingo Molnar 已提交
5070
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5071
	unsigned long flags;
5072
	struct rq *rq;
L
Linus Torvalds 已提交
5073 5074 5075 5076 5077 5078 5079 5080

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5081
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5082 5083 5084 5085
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5086
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5087
	 */
5088
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5089 5090 5091
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5092
	on_rq = p->se.on_rq;
5093
	if (on_rq)
5094
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5095 5096

	p->static_prio = NICE_TO_PRIO(nice);
5097
	set_load_weight(p);
5098 5099 5100
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5101

I
Ingo Molnar 已提交
5102
	if (on_rq) {
5103
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5104
		/*
5105 5106
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5107
		 */
5108
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5109 5110 5111 5112 5113 5114 5115
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5116 5117 5118 5119 5120
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5121
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5122
{
5123 5124
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5125

M
Matt Mackall 已提交
5126 5127 5128 5129
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5130 5131 5132 5133 5134 5135 5136 5137 5138
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5139
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5140
{
5141
	long nice, retval;
L
Linus Torvalds 已提交
5142 5143 5144 5145 5146 5147

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5148 5149
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5150 5151 5152 5153 5154 5155 5156 5157 5158
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5159 5160 5161
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5180
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5181 5182 5183 5184 5185 5186 5187 5188
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5189
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5190 5191 5192
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5193
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5208
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5209 5210 5211 5212 5213 5214 5215 5216
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5217
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5218
{
5219
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5220 5221 5222
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5223 5224
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5225
{
I
Ingo Molnar 已提交
5226
	BUG_ON(p->se.on_rq);
5227

L
Linus Torvalds 已提交
5228
	p->policy = policy;
I
Ingo Molnar 已提交
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5241
	p->rt_priority = prio;
5242 5243 5244
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5245
	set_load_weight(p);
L
Linus Torvalds 已提交
5246 5247
}

5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

5264 5265
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5266
{
5267
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5268
	unsigned long flags;
5269
	const struct sched_class *prev_class = p->sched_class;
5270
	struct rq *rq;
L
Linus Torvalds 已提交
5271

5272 5273
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5274 5275 5276 5277 5278
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5279 5280
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5281
		return -EINVAL;
L
Linus Torvalds 已提交
5282 5283
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5284 5285
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5286 5287
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5288
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5289
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5290
		return -EINVAL;
5291
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5292 5293
		return -EINVAL;

5294 5295 5296
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5297
	if (user && !capable(CAP_SYS_NICE)) {
5298
		if (rt_policy(policy)) {
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5315 5316 5317 5318 5319 5320
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5321

5322
		/* can't change other user's priorities */
5323
		if (!check_same_owner(p))
5324 5325
			return -EPERM;
	}
L
Linus Torvalds 已提交
5326

5327
	if (user) {
5328
#ifdef CONFIG_RT_GROUP_SCHED
5329 5330 5331 5332
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5333 5334
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5335
			return -EPERM;
5336 5337
#endif

5338 5339 5340 5341 5342
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5343 5344 5345 5346 5347
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5348 5349 5350 5351
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5352
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5353 5354 5355
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5356 5357
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5358 5359
		goto recheck;
	}
I
Ingo Molnar 已提交
5360
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5361
	on_rq = p->se.on_rq;
5362
	running = task_current(rq, p);
5363
	if (on_rq)
5364
		deactivate_task(rq, p, 0);
5365 5366
	if (running)
		p->sched_class->put_prev_task(rq, p);
5367

L
Linus Torvalds 已提交
5368
	oldprio = p->prio;
I
Ingo Molnar 已提交
5369
	__setscheduler(rq, p, policy, param->sched_priority);
5370

5371 5372
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5373 5374
	if (on_rq) {
		activate_task(rq, p, 0);
5375 5376

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5377
	}
5378 5379 5380
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5381 5382
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5383 5384
	return 0;
}
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5399 5400
EXPORT_SYMBOL_GPL(sched_setscheduler);

5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5418 5419
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5420 5421 5422
{
	struct sched_param lparam;
	struct task_struct *p;
5423
	int retval;
L
Linus Torvalds 已提交
5424 5425 5426 5427 5428

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5429 5430 5431

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5432
	p = find_process_by_pid(pid);
5433 5434 5435
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5436

L
Linus Torvalds 已提交
5437 5438 5439 5440 5441 5442 5443 5444 5445
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5446 5447
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5448
{
5449 5450 5451 5452
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5453 5454 5455 5456 5457 5458 5459 5460
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5461
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5462 5463 5464 5465 5466 5467 5468 5469
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5470
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5471
{
5472
	struct task_struct *p;
5473
	int retval;
L
Linus Torvalds 已提交
5474 5475

	if (pid < 0)
5476
		return -EINVAL;
L
Linus Torvalds 已提交
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5495
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5496 5497
{
	struct sched_param lp;
5498
	struct task_struct *p;
5499
	int retval;
L
Linus Torvalds 已提交
5500 5501

	if (!param || pid < 0)
5502
		return -EINVAL;
L
Linus Torvalds 已提交
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5529
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5530
{
5531
	cpumask_var_t cpus_allowed, new_mask;
5532 5533
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5534

5535
	get_online_cpus();
L
Linus Torvalds 已提交
5536 5537 5538 5539 5540
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5541
		put_online_cpus();
L
Linus Torvalds 已提交
5542 5543 5544 5545 5546
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5547
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5548 5549 5550 5551 5552
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

5553 5554 5555 5556 5557 5558 5559 5560
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5561
	retval = -EPERM;
5562
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
5563 5564
		goto out_unlock;

5565 5566 5567 5568
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5569 5570
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
5571
 again:
5572
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5573

P
Paul Menage 已提交
5574
	if (!retval) {
5575 5576
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5577 5578 5579 5580 5581
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5582
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5583 5584 5585
			goto again;
		}
	}
L
Linus Torvalds 已提交
5586
out_unlock:
5587 5588 5589 5590
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5591
	put_task_struct(p);
5592
	put_online_cpus();
L
Linus Torvalds 已提交
5593 5594 5595 5596
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5597
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5598
{
5599 5600 5601 5602 5603
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5604 5605 5606 5607 5608 5609 5610 5611 5612
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5613 5614
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5615
{
5616
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5617 5618
	int retval;

5619 5620
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5621

5622 5623 5624 5625 5626
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5627 5628
}

5629
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5630
{
5631
	struct task_struct *p;
L
Linus Torvalds 已提交
5632 5633
	int retval;

5634
	get_online_cpus();
L
Linus Torvalds 已提交
5635 5636 5637 5638 5639 5640 5641
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5642 5643 5644 5645
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5646
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
5647 5648 5649

out_unlock:
	read_unlock(&tasklist_lock);
5650
	put_online_cpus();
L
Linus Torvalds 已提交
5651

5652
	return retval;
L
Linus Torvalds 已提交
5653 5654 5655 5656 5657 5658 5659 5660
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5661 5662
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5663 5664
{
	int ret;
5665
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5666

5667
	if (len < cpumask_size())
L
Linus Torvalds 已提交
5668 5669
		return -EINVAL;

5670 5671
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5672

5673 5674 5675 5676 5677 5678 5679 5680
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5681

5682
	return ret;
L
Linus Torvalds 已提交
5683 5684 5685 5686 5687
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5688 5689
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5690
 */
5691
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5692
{
5693
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5694

5695
	schedstat_inc(rq, yld_count);
5696
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5697 5698 5699 5700 5701 5702

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5703
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5704 5705 5706 5707 5708 5709 5710 5711
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5712
static void __cond_resched(void)
L
Linus Torvalds 已提交
5713
{
5714 5715 5716
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5717 5718 5719 5720 5721
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5722 5723 5724 5725 5726 5727 5728
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5729
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5730
{
5731 5732
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5733 5734 5735 5736 5737
		__cond_resched();
		return 1;
	}
	return 0;
}
5738
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5739 5740 5741 5742 5743

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5744
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5745 5746 5747
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5748
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5749
{
N
Nick Piggin 已提交
5750
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5751 5752
	int ret = 0;

N
Nick Piggin 已提交
5753
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5754
		spin_unlock(lock);
N
Nick Piggin 已提交
5755 5756 5757 5758
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5759
		ret = 1;
L
Linus Torvalds 已提交
5760 5761
		spin_lock(lock);
	}
J
Jan Kara 已提交
5762
	return ret;
L
Linus Torvalds 已提交
5763 5764 5765 5766 5767 5768 5769
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5770
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5771
		local_bh_enable();
L
Linus Torvalds 已提交
5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5783
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5794
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5795 5796 5797 5798 5799 5800 5801
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5802
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5803

5804
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5805 5806 5807
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5808
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5809 5810 5811 5812 5813
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5814
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5815 5816
	long ret;

5817
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5818 5819 5820
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5821
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5832
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5833 5834 5835 5836 5837 5838 5839 5840 5841
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5842
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5843
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5857
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5858 5859 5860 5861 5862 5863 5864 5865 5866
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5867
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5868
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5882
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5883
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5884
{
5885
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5886
	unsigned int time_slice;
5887
	int retval;
L
Linus Torvalds 已提交
5888 5889 5890
	struct timespec t;

	if (pid < 0)
5891
		return -EINVAL;
L
Linus Torvalds 已提交
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5903 5904 5905 5906 5907 5908
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5909
		time_slice = DEF_TIMESLICE;
5910
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5911 5912 5913 5914 5915
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5916 5917
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5918 5919
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5920
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5921
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5922 5923
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5924

L
Linus Torvalds 已提交
5925 5926 5927 5928 5929
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5930
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5931

5932
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5933 5934
{
	unsigned long free = 0;
5935
	unsigned state;
L
Linus Torvalds 已提交
5936 5937

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5938
	printk(KERN_INFO "%-13.13s %c", p->comm,
5939
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5940
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5941
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5942
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5943
	else
I
Ingo Molnar 已提交
5944
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5945 5946
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5947
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5948
	else
I
Ingo Molnar 已提交
5949
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5950 5951
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5952
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5953
#endif
5954
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5955
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5956

5957
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5958 5959
}

I
Ingo Molnar 已提交
5960
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5961
{
5962
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5963

5964 5965 5966
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5967
#else
5968 5969
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5970 5971 5972 5973 5974 5975 5976 5977
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5978
		if (!state_filter || (p->state & state_filter))
5979
			sched_show_task(p);
L
Linus Torvalds 已提交
5980 5981
	} while_each_thread(g, p);

5982 5983
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5984 5985 5986
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5987
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5988 5989 5990 5991 5992
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5993 5994
}

I
Ingo Molnar 已提交
5995 5996
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5997
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5998 5999
}

6000 6001 6002 6003 6004 6005 6006 6007
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6008
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6009
{
6010
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6011 6012
	unsigned long flags;

6013 6014
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6015 6016 6017
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6018
	idle->prio = idle->normal_prio = MAX_PRIO;
6019
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6020
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6021 6022

	rq->curr = rq->idle = idle;
6023 6024 6025
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6026 6027 6028
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6029 6030 6031
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6032
	task_thread_info(idle)->preempt_count = 0;
6033
#endif
I
Ingo Molnar 已提交
6034 6035 6036 6037
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6038
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6039 6040 6041 6042 6043 6044 6045
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6046
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6047
 */
6048
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6049

I
Ingo Molnar 已提交
6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6073 6074

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6075 6076
}

L
Linus Torvalds 已提交
6077 6078 6079 6080
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6081
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6100
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6101 6102
 * call is not atomic; no spinlocks may be held.
 */
6103
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6104
{
6105
	struct migration_req req;
L
Linus Torvalds 已提交
6106
	unsigned long flags;
6107
	struct rq *rq;
6108
	int ret = 0;
L
Linus Torvalds 已提交
6109 6110

	rq = task_rq_lock(p, &flags);
6111
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6112 6113 6114 6115
		ret = -EINVAL;
		goto out;
	}

6116
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6117
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6118 6119 6120 6121
		ret = -EINVAL;
		goto out;
	}

6122
	if (p->sched_class->set_cpus_allowed)
6123
		p->sched_class->set_cpus_allowed(p, new_mask);
6124
	else {
6125 6126
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6127 6128
	}

L
Linus Torvalds 已提交
6129
	/* Can the task run on the task's current CPU? If so, we're done */
6130
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6131 6132
		goto out;

R
Rusty Russell 已提交
6133
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6134 6135 6136 6137 6138 6139 6140 6141 6142
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6143

L
Linus Torvalds 已提交
6144 6145
	return ret;
}
6146
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6147 6148

/*
I
Ingo Molnar 已提交
6149
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6150 6151 6152 6153 6154 6155
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6156 6157
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6158
 */
6159
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6160
{
6161
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6162
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6163

6164
	if (unlikely(!cpu_active(dest_cpu)))
6165
		return ret;
L
Linus Torvalds 已提交
6166 6167 6168 6169 6170 6171 6172

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6173
		goto done;
L
Linus Torvalds 已提交
6174
	/* Affinity changed (again). */
6175
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6176
		goto fail;
L
Linus Torvalds 已提交
6177

I
Ingo Molnar 已提交
6178
	on_rq = p->se.on_rq;
6179
	if (on_rq)
6180
		deactivate_task(rq_src, p, 0);
6181

L
Linus Torvalds 已提交
6182
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6183 6184
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6185
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6186
	}
L
Linus Torvalds 已提交
6187
done:
6188
	ret = 1;
L
Linus Torvalds 已提交
6189
fail:
L
Linus Torvalds 已提交
6190
	double_rq_unlock(rq_src, rq_dest);
6191
	return ret;
L
Linus Torvalds 已提交
6192 6193 6194 6195 6196 6197 6198
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6199
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6200 6201
{
	int cpu = (long)data;
6202
	struct rq *rq;
L
Linus Torvalds 已提交
6203 6204 6205 6206 6207 6208

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6209
		struct migration_req *req;
L
Linus Torvalds 已提交
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6232
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6233 6234
		list_del_init(head->next);

N
Nick Piggin 已提交
6235 6236 6237
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6267
/*
6268
 * Figure out where task on dead CPU should go, use force if necessary.
6269
 */
6270
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6271
{
6272
	int dest_cpu;
6273
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
L
Linus Torvalds 已提交
6274

6275 6276 6277 6278 6279
again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;
6280

6281 6282 6283 6284
	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;
6285

6286 6287 6288 6289
	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6290

6291 6292 6293 6294 6295 6296 6297 6298 6299
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6300
		}
6301 6302 6303 6304 6305 6306
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6307 6308 6309 6310 6311 6312 6313 6314 6315
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6316
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6317
{
R
Rusty Russell 已提交
6318
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6332
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6333

6334
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6335

6336 6337
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6338 6339
			continue;

6340 6341 6342
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6343

6344
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6345 6346
}

I
Ingo Molnar 已提交
6347 6348
/*
 * Schedules idle task to be the next runnable task on current CPU.
6349 6350
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6351 6352 6353
 */
void sched_idle_next(void)
{
6354
	int this_cpu = smp_processor_id();
6355
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6356 6357 6358 6359
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6360
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6361

6362 6363 6364
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6365 6366 6367
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6368
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6369

6370 6371
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6372 6373 6374 6375

	spin_unlock_irqrestore(&rq->lock, flags);
}

6376 6377
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6391
/* called under rq->lock with disabled interrupts */
6392
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6393
{
6394
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6395 6396

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6397
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6398 6399

	/* Cannot have done final schedule yet: would have vanished. */
6400
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6401

6402
	get_task_struct(p);
L
Linus Torvalds 已提交
6403 6404 6405

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6406
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6407 6408
	 * fine.
	 */
6409
	spin_unlock_irq(&rq->lock);
6410
	move_task_off_dead_cpu(dead_cpu, p);
6411
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6412

6413
	put_task_struct(p);
L
Linus Torvalds 已提交
6414 6415 6416 6417 6418
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6419
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6420
	struct task_struct *next;
6421

I
Ingo Molnar 已提交
6422 6423 6424
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6425
		update_rq_clock(rq);
6426
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6427 6428
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6429
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6430
		migrate_dead(dead_cpu, next);
6431

L
Linus Torvalds 已提交
6432 6433 6434 6435
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6436 6437 6438
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6439 6440
	{
		.procname	= "sched_domain",
6441
		.mode		= 0555,
6442
	},
I
Ingo Molnar 已提交
6443
	{0, },
6444 6445 6446
};

static struct ctl_table sd_ctl_root[] = {
6447
	{
6448
		.ctl_name	= CTL_KERN,
6449
		.procname	= "kernel",
6450
		.mode		= 0555,
6451 6452
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6453
	{0, },
6454 6455 6456 6457 6458
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6459
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6460 6461 6462 6463

	return entry;
}

6464 6465
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6466
	struct ctl_table *entry;
6467

6468 6469 6470
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6471
	 * will always be set. In the lowest directory the names are
6472 6473 6474
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6475 6476
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6477 6478 6479
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6480 6481 6482 6483 6484

	kfree(*tablep);
	*tablep = NULL;
}

6485
static void
6486
set_table_entry(struct ctl_table *entry,
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6500
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6501

6502 6503 6504
	if (table == NULL)
		return NULL;

6505
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6506
		sizeof(long), 0644, proc_doulongvec_minmax);
6507
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6508
		sizeof(long), 0644, proc_doulongvec_minmax);
6509
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6510
		sizeof(int), 0644, proc_dointvec_minmax);
6511
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6512
		sizeof(int), 0644, proc_dointvec_minmax);
6513
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6514
		sizeof(int), 0644, proc_dointvec_minmax);
6515
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6516
		sizeof(int), 0644, proc_dointvec_minmax);
6517
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6518
		sizeof(int), 0644, proc_dointvec_minmax);
6519
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6520
		sizeof(int), 0644, proc_dointvec_minmax);
6521
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6522
		sizeof(int), 0644, proc_dointvec_minmax);
6523
	set_table_entry(&table[9], "cache_nice_tries",
6524 6525
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6526
	set_table_entry(&table[10], "flags", &sd->flags,
6527
		sizeof(int), 0644, proc_dointvec_minmax);
6528 6529 6530
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6531 6532 6533 6534

	return table;
}

6535
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6536 6537 6538 6539 6540 6541 6542 6543 6544
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6545 6546
	if (table == NULL)
		return NULL;
6547 6548 6549 6550 6551

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6552
		entry->mode = 0555;
6553 6554 6555 6556 6557 6558 6559 6560
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6561
static void register_sched_domain_sysctl(void)
6562 6563 6564 6565 6566
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6567 6568 6569
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6570 6571 6572
	if (entry == NULL)
		return;

6573
	for_each_online_cpu(i) {
6574 6575
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6576
		entry->mode = 0555;
6577
		entry->child = sd_alloc_ctl_cpu_table(i);
6578
		entry++;
6579
	}
6580 6581

	WARN_ON(sd_sysctl_header);
6582 6583
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6584

6585
/* may be called multiple times per register */
6586 6587
static void unregister_sched_domain_sysctl(void)
{
6588 6589
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6590
	sd_sysctl_header = NULL;
6591 6592
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6593
}
6594
#else
6595 6596 6597 6598
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6599 6600 6601 6602
{
}
#endif

6603 6604 6605 6606 6607
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6608
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6628
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6629 6630 6631 6632
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6633 6634 6635 6636
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6637 6638
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6639 6640
{
	struct task_struct *p;
6641
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6642
	unsigned long flags;
6643
	struct rq *rq;
L
Linus Torvalds 已提交
6644 6645

	switch (action) {
6646

L
Linus Torvalds 已提交
6647
	case CPU_UP_PREPARE:
6648
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6649
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6650 6651 6652 6653 6654
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6655
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6656 6657 6658
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6659

L
Linus Torvalds 已提交
6660
	case CPU_ONLINE:
6661
	case CPU_ONLINE_FROZEN:
6662
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6663
		wake_up_process(cpu_rq(cpu)->migration_thread);
6664 6665 6666 6667 6668

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6669
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6670 6671

			set_rq_online(rq);
6672 6673
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6674
		break;
6675

L
Linus Torvalds 已提交
6676 6677
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6678
	case CPU_UP_CANCELED_FROZEN:
6679 6680
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6681
		/* Unbind it from offline cpu so it can run. Fall thru. */
6682
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
6683
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6684 6685 6686
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6687

L
Linus Torvalds 已提交
6688
	case CPU_DEAD:
6689
	case CPU_DEAD_FROZEN:
6690
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6691 6692 6693 6694 6695
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6696
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6697
		update_rq_clock(rq);
6698
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6699
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6700 6701
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6702
		migrate_dead_tasks(cpu);
6703
		spin_unlock_irq(&rq->lock);
6704
		cpuset_unlock();
L
Linus Torvalds 已提交
6705 6706 6707
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6708 6709 6710 6711 6712
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6713 6714
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6715 6716
			struct migration_req *req;

L
Linus Torvalds 已提交
6717
			req = list_entry(rq->migration_queue.next,
6718
					 struct migration_req, list);
L
Linus Torvalds 已提交
6719
			list_del_init(&req->list);
B
Brian King 已提交
6720
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
6721
			complete(&req->done);
B
Brian King 已提交
6722
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6723 6724 6725
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6726

6727 6728
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6729 6730 6731 6732
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6733
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6734
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6735 6736 6737
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6738 6739 6740 6741 6742 6743 6744 6745
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6746
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6747 6748 6749 6750
	.notifier_call = migration_call,
	.priority = 10
};

6751
static int __init migration_init(void)
L
Linus Torvalds 已提交
6752 6753
{
	void *cpu = (void *)(long)smp_processor_id();
6754
	int err;
6755 6756

	/* Start one for the boot CPU: */
6757 6758
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6759 6760
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6761 6762

	return err;
L
Linus Torvalds 已提交
6763
}
6764
early_initcall(migration_init);
L
Linus Torvalds 已提交
6765 6766 6767
#endif

#ifdef CONFIG_SMP
6768

6769
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6770

6771
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6772
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6773
{
I
Ingo Molnar 已提交
6774
	struct sched_group *group = sd->groups;
6775
	char str[256];
L
Linus Torvalds 已提交
6776

R
Rusty Russell 已提交
6777
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6778
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6779 6780 6781 6782 6783 6784 6785 6786 6787

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6788 6789
	}

6790
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6791

6792
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
6793 6794 6795
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
6796
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6797 6798 6799
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6800

I
Ingo Molnar 已提交
6801
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6802
	do {
I
Ingo Molnar 已提交
6803 6804 6805
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6806 6807 6808
			break;
		}

I
Ingo Molnar 已提交
6809 6810 6811 6812 6813 6814
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6815

6816
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6817 6818 6819 6820
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6821

6822
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6823 6824 6825 6826
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6827

6828
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6829

R
Rusty Russell 已提交
6830
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
I
Ingo Molnar 已提交
6831
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6832

I
Ingo Molnar 已提交
6833 6834 6835
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6836

6837
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
6838
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6839

6840 6841
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
6842 6843 6844 6845
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6846

I
Ingo Molnar 已提交
6847 6848
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6849
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6850
	int level = 0;
L
Linus Torvalds 已提交
6851

I
Ingo Molnar 已提交
6852 6853 6854 6855
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6856

I
Ingo Molnar 已提交
6857 6858
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6859
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6860 6861 6862 6863
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6864
	for (;;) {
6865
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6866
			break;
L
Linus Torvalds 已提交
6867 6868
		level++;
		sd = sd->parent;
6869
		if (!sd)
I
Ingo Molnar 已提交
6870 6871
			break;
	}
6872
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6873
}
6874
#else /* !CONFIG_SCHED_DEBUG */
6875
# define sched_domain_debug(sd, cpu) do { } while (0)
6876
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6877

6878
static int sd_degenerate(struct sched_domain *sd)
6879
{
6880
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6881 6882 6883 6884 6885 6886
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6887 6888 6889
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6903 6904
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6905 6906 6907 6908 6909 6910
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6911
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6923 6924 6925
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6926 6927
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6928 6929 6930 6931 6932 6933 6934
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6935 6936
static void free_rootdomain(struct root_domain *rd)
{
6937 6938
	cpupri_cleanup(&rd->cpupri);

6939 6940 6941 6942 6943 6944
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6945 6946 6947 6948 6949 6950 6951 6952 6953
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6954
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6955
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6956

6957
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6958

G
Gregory Haskins 已提交
6959
		if (atomic_dec_and_test(&old_rd->refcount))
6960
			free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6961 6962 6963 6964 6965
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6966 6967
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6968
		set_rq_online(rq);
G
Gregory Haskins 已提交
6969 6970 6971 6972

	spin_unlock_irqrestore(&rq->lock, flags);
}

L
Li Zefan 已提交
6973
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6974 6975 6976
{
	memset(rd, 0, sizeof(*rd));

6977 6978 6979 6980
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6981
		cpupri_init(&rd->cpupri, true);
6982 6983 6984 6985
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6986
		goto out;
6987 6988 6989 6990
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
6991

6992 6993
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
6994
	return 0;
6995

6996 6997
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6998 6999 7000 7001
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7002
out:
7003
	return -ENOMEM;
G
Gregory Haskins 已提交
7004 7005 7006 7007
}

static void init_defrootdomain(void)
{
7008 7009
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7010 7011 7012
	atomic_set(&def_root_domain.refcount, 1);
}

7013
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7014 7015 7016 7017 7018 7019 7020
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7021 7022 7023 7024
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7025 7026 7027 7028

	return rd;
}

L
Linus Torvalds 已提交
7029
/*
I
Ingo Molnar 已提交
7030
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7031 7032
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7033 7034
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7035
{
7036
	struct rq *rq = cpu_rq(cpu);
7037 7038 7039
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7040
	for (tmp = sd; tmp; ) {
7041 7042 7043
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7044

7045
		if (sd_parent_degenerate(tmp, parent)) {
7046
			tmp->parent = parent->parent;
7047 7048
			if (parent->parent)
				parent->parent->child = tmp;
7049 7050
		} else
			tmp = tmp->parent;
7051 7052
	}

7053
	if (sd && sd_degenerate(sd)) {
7054
		sd = sd->parent;
7055 7056 7057
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7058 7059 7060

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7061
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7062
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7063 7064 7065
}

/* cpus with isolated domains */
7066
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7067 7068 7069 7070

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7071
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7072 7073 7074
	return 1;
}

I
Ingo Molnar 已提交
7075
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7076 7077

/*
7078 7079
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7080 7081
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7082 7083 7084 7085 7086
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7087
static void
7088 7089 7090
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7091
					struct sched_group **sg,
7092 7093
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7094 7095 7096 7097
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7098
	cpumask_clear(covered);
7099

7100
	for_each_cpu(i, span) {
7101
		struct sched_group *sg;
7102
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7103 7104
		int j;

7105
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7106 7107
			continue;

7108
		cpumask_clear(sched_group_cpus(sg));
7109
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7110

7111
		for_each_cpu(j, span) {
7112
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7113 7114
				continue;

7115
			cpumask_set_cpu(j, covered);
7116
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7127
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7128

7129
#ifdef CONFIG_NUMA
7130

7131 7132 7133 7134 7135
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7136
 * Find the next node to include in a given scheduling domain. Simply
7137 7138 7139 7140
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7141
static int find_next_best_node(int node, nodemask_t *used_nodes)
7142 7143 7144 7145 7146
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7147
	for (i = 0; i < nr_node_ids; i++) {
7148
		/* Start at @node */
7149
		n = (node + i) % nr_node_ids;
7150 7151 7152 7153 7154

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7155
		if (node_isset(n, *used_nodes))
7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7167
	node_set(best_node, *used_nodes);
7168 7169 7170 7171 7172 7173
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7174
 * @span: resulting cpumask
7175
 *
I
Ingo Molnar 已提交
7176
 * Given a node, construct a good cpumask for its sched_domain to span. It
7177 7178 7179
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7180
static void sched_domain_node_span(int node, struct cpumask *span)
7181
{
7182
	nodemask_t used_nodes;
7183
	int i;
7184

7185
	cpumask_clear(span);
7186
	nodes_clear(used_nodes);
7187

7188
	cpumask_or(span, span, cpumask_of_node(node));
7189
	node_set(node, used_nodes);
7190 7191

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7192
		int next_node = find_next_best_node(node, &used_nodes);
7193

7194
		cpumask_or(span, span, cpumask_of_node(next_node));
7195 7196
	}
}
7197
#endif /* CONFIG_NUMA */
7198

7199
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7200

7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7216
/*
7217
 * SMT sched-domains:
7218
 */
L
Linus Torvalds 已提交
7219
#ifdef CONFIG_SCHED_SMT
7220 7221
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7222

I
Ingo Molnar 已提交
7223
static int
7224 7225
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7226
{
7227
	if (sg)
7228
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7229 7230
	return cpu;
}
7231
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7232

7233 7234 7235
/*
 * multi-core sched-domains:
 */
7236
#ifdef CONFIG_SCHED_MC
7237 7238
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7239
#endif /* CONFIG_SCHED_MC */
7240 7241

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7242
static int
7243 7244
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7245
{
7246
	int group;
7247

7248 7249
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
7250
	if (sg)
7251
		*sg = &per_cpu(sched_group_core, group).sg;
7252
	return group;
7253 7254
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7255
static int
7256 7257
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7258
{
7259
	if (sg)
7260
		*sg = &per_cpu(sched_group_core, cpu).sg;
7261 7262 7263 7264
	return cpu;
}
#endif

7265 7266
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7267

I
Ingo Molnar 已提交
7268
static int
7269 7270
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7271
{
7272
	int group;
7273
#ifdef CONFIG_SCHED_MC
7274
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7275
	group = cpumask_first(mask);
7276
#elif defined(CONFIG_SCHED_SMT)
7277 7278
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7279
#else
7280
	group = cpu;
L
Linus Torvalds 已提交
7281
#endif
7282
	if (sg)
7283
		*sg = &per_cpu(sched_group_phys, group).sg;
7284
	return group;
L
Linus Torvalds 已提交
7285 7286 7287 7288
}

#ifdef CONFIG_NUMA
/*
7289 7290 7291
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7292
 */
7293
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7294
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7295

7296
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7297
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7298

7299 7300 7301
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7302
{
7303 7304
	int group;

7305
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7306
	group = cpumask_first(nodemask);
7307 7308

	if (sg)
7309
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7310
	return group;
L
Linus Torvalds 已提交
7311
}
7312

7313 7314 7315 7316 7317 7318 7319
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7320
	do {
7321
		for_each_cpu(j, sched_group_cpus(sg)) {
7322
			struct sched_domain *sd;
7323

7324
			sd = &per_cpu(phys_domains, j).sd;
7325
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7326 7327 7328 7329 7330 7331
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7332

7333 7334 7335 7336
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7337
}
7338
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7339

7340
#ifdef CONFIG_NUMA
7341
/* Free memory allocated for various sched_group structures */
7342 7343
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7344
{
7345
	int cpu, i;
7346

7347
	for_each_cpu(cpu, cpu_map) {
7348 7349 7350 7351 7352 7353
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7354
		for (i = 0; i < nr_node_ids; i++) {
7355 7356
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7357
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7358
			if (cpumask_empty(nodemask))
7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7375
#else /* !CONFIG_NUMA */
7376 7377
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7378 7379
{
}
7380
#endif /* CONFIG_NUMA */
7381

7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7403
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7404 7405 7406 7407
		return;

	child = sd->child;

7408 7409
	sd->groups->__cpu_power = 0;

7410 7411 7412 7413 7414 7415 7416 7417 7418 7419
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7420
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7421 7422 7423 7424 7425 7426 7427 7428
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7429
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7430 7431 7432 7433
		group = group->next;
	} while (group != child->groups);
}

7434 7435 7436 7437 7438
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7439 7440 7441 7442 7443 7444
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7445
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7446

7447 7448 7449 7450 7451
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7452
	sd->level = SD_LV_##type;				\
7453
	SD_INIT_NAME(sd, type);					\
7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

7468 7469 7470 7471
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7472 7473 7474 7475 7476 7477
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7503
/*
7504 7505
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7506
 */
7507
static int __build_sched_domains(const struct cpumask *cpu_map,
7508
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7509
{
7510
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
7511
	struct root_domain *rd;
7512 7513
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
7514
#ifdef CONFIG_NUMA
7515
	cpumask_var_t domainspan, covered, notcovered;
7516
	struct sched_group **sched_group_nodes = NULL;
7517
	int sd_allnodes = 0;
7518

7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
7539 7540 7541
	/*
	 * Allocate the per-node list of sched groups
	 */
7542
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7543
				    GFP_KERNEL);
7544 7545
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7546
		goto free_tmpmask;
7547 7548
	}
#endif
L
Linus Torvalds 已提交
7549

7550
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7551 7552
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7553
		goto free_sched_groups;
7554
	}
L
Li Zefan 已提交
7555

7556
#ifdef CONFIG_NUMA
7557
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7558 7559
#endif

L
Linus Torvalds 已提交
7560
	/*
7561
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7562
	 */
7563
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7564 7565
		struct sched_domain *sd = NULL, *p;

7566
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
7567 7568

#ifdef CONFIG_NUMA
7569 7570
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7571
			sd = &per_cpu(allnodes_domains, i).sd;
7572
			SD_INIT(sd, ALLNODES);
7573
			set_domain_attribute(sd, attr);
7574
			cpumask_copy(sched_domain_span(sd), cpu_map);
7575
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7576
			p = sd;
7577
			sd_allnodes = 1;
7578 7579 7580
		} else
			p = NULL;

7581
		sd = &per_cpu(node_domains, i).sd;
7582
		SD_INIT(sd, NODE);
7583
		set_domain_attribute(sd, attr);
7584
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7585
		sd->parent = p;
7586 7587
		if (p)
			p->child = sd;
7588 7589
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7590 7591 7592
#endif

		p = sd;
7593
		sd = &per_cpu(phys_domains, i).sd;
7594
		SD_INIT(sd, CPU);
7595
		set_domain_attribute(sd, attr);
7596
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
7597
		sd->parent = p;
7598 7599
		if (p)
			p->child = sd;
7600
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7601

7602 7603
#ifdef CONFIG_SCHED_MC
		p = sd;
7604
		sd = &per_cpu(core_domains, i).sd;
7605
		SD_INIT(sd, MC);
7606
		set_domain_attribute(sd, attr);
7607 7608
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
7609
		sd->parent = p;
7610
		p->child = sd;
7611
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7612 7613
#endif

L
Linus Torvalds 已提交
7614 7615
#ifdef CONFIG_SCHED_SMT
		p = sd;
7616
		sd = &per_cpu(cpu_domains, i).sd;
7617
		SD_INIT(sd, SIBLING);
7618
		set_domain_attribute(sd, attr);
7619 7620
		cpumask_and(sched_domain_span(sd),
			    &per_cpu(cpu_sibling_map, i), cpu_map);
L
Linus Torvalds 已提交
7621
		sd->parent = p;
7622
		p->child = sd;
7623
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7624 7625 7626 7627 7628
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7629
	for_each_cpu(i, cpu_map) {
7630 7631 7632
		cpumask_and(this_sibling_map,
			    &per_cpu(cpu_sibling_map, i), cpu_map);
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
7633 7634
			continue;

I
Ingo Molnar 已提交
7635
		init_sched_build_groups(this_sibling_map, cpu_map,
7636 7637
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7638 7639 7640
	}
#endif

7641 7642
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7643
	for_each_cpu(i, cpu_map) {
7644
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7645
		if (i != cpumask_first(this_core_map))
7646
			continue;
7647

I
Ingo Molnar 已提交
7648
		init_sched_build_groups(this_core_map, cpu_map,
7649 7650
					&cpu_to_core_group,
					send_covered, tmpmask);
7651 7652 7653
	}
#endif

L
Linus Torvalds 已提交
7654
	/* Set up physical groups */
7655
	for (i = 0; i < nr_node_ids; i++) {
7656
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7657
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
7658 7659
			continue;

7660 7661 7662
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7663 7664 7665 7666
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7667 7668 7669 7670 7671
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7672

7673
	for (i = 0; i < nr_node_ids; i++) {
7674 7675 7676 7677
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

7678
		cpumask_clear(covered);
7679
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7680
		if (cpumask_empty(nodemask)) {
7681
			sched_group_nodes[i] = NULL;
7682
			continue;
7683
		}
7684

7685
		sched_domain_node_span(i, domainspan);
7686
		cpumask_and(domainspan, domainspan, cpu_map);
7687

7688 7689
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
7690 7691 7692 7693 7694
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7695
		sched_group_nodes[i] = sg;
7696
		for_each_cpu(j, nodemask) {
7697
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7698

7699
			sd = &per_cpu(node_domains, j).sd;
7700 7701
			sd->groups = sg;
		}
7702
		sg->__cpu_power = 0;
7703
		cpumask_copy(sched_group_cpus(sg), nodemask);
7704
		sg->next = sg;
7705
		cpumask_or(covered, covered, nodemask);
7706 7707
		prev = sg;

7708 7709
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
7710

7711 7712 7713 7714
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
7715 7716
				break;

7717
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7718
			if (cpumask_empty(tmpmask))
7719 7720
				continue;

7721 7722
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
7723
					  GFP_KERNEL, i);
7724 7725 7726
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7727
				goto error;
7728
			}
7729
			sg->__cpu_power = 0;
7730
			cpumask_copy(sched_group_cpus(sg), tmpmask);
7731
			sg->next = prev->next;
7732
			cpumask_or(covered, covered, tmpmask);
7733 7734 7735 7736
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7737 7738 7739
#endif

	/* Calculate CPU power for physical packages and nodes */
7740
#ifdef CONFIG_SCHED_SMT
7741
	for_each_cpu(i, cpu_map) {
7742
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
7743

7744
		init_sched_groups_power(i, sd);
7745
	}
L
Linus Torvalds 已提交
7746
#endif
7747
#ifdef CONFIG_SCHED_MC
7748
	for_each_cpu(i, cpu_map) {
7749
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
7750

7751
		init_sched_groups_power(i, sd);
7752 7753
	}
#endif
7754

7755
	for_each_cpu(i, cpu_map) {
7756
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
7757

7758
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7759 7760
	}

7761
#ifdef CONFIG_NUMA
7762
	for (i = 0; i < nr_node_ids; i++)
7763
		init_numa_sched_groups_power(sched_group_nodes[i]);
7764

7765 7766
	if (sd_allnodes) {
		struct sched_group *sg;
7767

7768
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7769
								tmpmask);
7770 7771
		init_numa_sched_groups_power(sg);
	}
7772 7773
#endif

L
Linus Torvalds 已提交
7774
	/* Attach the domains */
7775
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7776 7777
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
7778
		sd = &per_cpu(cpu_domains, i).sd;
7779
#elif defined(CONFIG_SCHED_MC)
7780
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7781
#else
7782
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7783
#endif
G
Gregory Haskins 已提交
7784
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7785
	}
7786

7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
7815

7816
#ifdef CONFIG_NUMA
7817
error:
7818
	free_sched_groups(cpu_map, tmpmask);
7819
	free_rootdomain(rd);
7820
	goto free_tmpmask;
7821
#endif
L
Linus Torvalds 已提交
7822
}
P
Paul Jackson 已提交
7823

7824
static int build_sched_domains(const struct cpumask *cpu_map)
7825 7826 7827 7828
{
	return __build_sched_domains(cpu_map, NULL);
}

7829
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7830
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7831 7832
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7833 7834 7835

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7836 7837
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7838
 */
7839
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7840

7841 7842 7843 7844 7845 7846
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7847
{
7848
	return 0;
7849 7850
}

7851
/*
I
Ingo Molnar 已提交
7852
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7853 7854
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7855
 */
7856
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7857
{
7858 7859
	int err;

7860
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7861
	ndoms_cur = 1;
7862
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
7863
	if (!doms_cur)
7864
		doms_cur = fallback_doms;
7865
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7866
	dattr_cur = NULL;
7867
	err = build_sched_domains(doms_cur);
7868
	register_sched_domain_sysctl();
7869 7870

	return err;
7871 7872
}

7873 7874
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7875
{
7876
	free_sched_groups(cpu_map, tmpmask);
7877
}
L
Linus Torvalds 已提交
7878

7879 7880 7881 7882
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7883
static void detach_destroy_domains(const struct cpumask *cpu_map)
7884
{
7885 7886
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7887 7888
	int i;

7889
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7890
		cpu_attach_domain(NULL, &def_root_domain, i);
7891
	synchronize_sched();
7892
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7893 7894
}

7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7911 7912
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7913
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7914 7915 7916
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7917
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7918 7919 7920
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7921 7922 7923
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7924 7925
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
7926 7927 7928 7929
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
7930
 *
7931
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7932 7933
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
P
Paul Jackson 已提交
7934 7935 7936
 *
 * Call with hotplug lock held
 */
7937 7938
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7939
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7940
{
7941
	int i, j, n;
7942
	int new_topology;
P
Paul Jackson 已提交
7943

7944
	mutex_lock(&sched_domains_mutex);
7945

7946 7947 7948
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7949 7950 7951
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7952
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7953 7954 7955

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7956
		for (j = 0; j < n && !new_topology; j++) {
7957
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
7958
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7959 7960 7961 7962 7963 7964 7965 7966
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7967 7968
	if (doms_new == NULL) {
		ndoms_cur = 0;
7969
		doms_new = fallback_doms;
7970
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7971
		WARN_ON_ONCE(dattr_new);
7972 7973
	}

P
Paul Jackson 已提交
7974 7975
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7976
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7977
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
7978
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7979 7980 7981
				goto match2;
		}
		/* no match - add a new doms_new */
7982 7983
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7984 7985 7986 7987 7988
match2:
		;
	}

	/* Remember the new sched domains */
7989
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
7990
		kfree(doms_cur);
7991
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7992
	doms_cur = doms_new;
7993
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7994
	ndoms_cur = ndoms_new;
7995 7996

	register_sched_domain_sysctl();
7997

7998
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7999 8000
}

8001
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8002
static void arch_reinit_sched_domains(void)
8003
{
8004
	get_online_cpus();
8005 8006 8007 8008

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8009
	rebuild_sched_domains();
8010
	put_online_cpus();
8011 8012 8013 8014
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8015
	unsigned int level = 0;
8016

8017 8018 8019 8020 8021 8022 8023 8024 8025
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */
8026

8027
	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8028 8029 8030
		return -EINVAL;

	if (smt)
8031
		sched_smt_power_savings = level;
8032
	else
8033
		sched_mc_power_savings = level;
8034

8035
	arch_reinit_sched_domains();
8036

8037
	return count;
8038 8039 8040
}

#ifdef CONFIG_SCHED_MC
8041 8042
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8043 8044 8045
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8046
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8047
					    const char *buf, size_t count)
8048 8049 8050
{
	return sched_power_savings_store(buf, count, 0);
}
8051 8052 8053
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8054 8055 8056
#endif

#ifdef CONFIG_SCHED_SMT
8057 8058
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8059 8060 8061
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8062
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8063
					     const char *buf, size_t count)
8064 8065 8066
{
	return sched_power_savings_store(buf, count, 1);
}
8067 8068
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8069 8070 8071
		   sched_smt_power_savings_store);
#endif

8072
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8088
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8089

8090
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8091
/*
8092 8093
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8094 8095 8096 8097 8098
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
8099 8100 8101 8102
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8103
		partition_sched_domains(1, NULL, NULL);
8104 8105 8106 8107 8108 8109 8110 8111 8112 8113
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8114
{
P
Peter Zijlstra 已提交
8115 8116
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8117 8118
	switch (action) {
	case CPU_DOWN_PREPARE:
8119
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8120
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8121 8122 8123
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8124
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8125
	case CPU_ONLINE:
8126
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8127
		enable_runtime(cpu_rq(cpu));
8128 8129
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8130 8131 8132 8133 8134 8135 8136
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8137 8138 8139
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8140

8141 8142 8143 8144 8145
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8146
	get_online_cpus();
8147
	mutex_lock(&sched_domains_mutex);
8148 8149 8150 8151
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8152
	mutex_unlock(&sched_domains_mutex);
8153
	put_online_cpus();
8154 8155

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8156 8157
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8158 8159 8160 8161 8162
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8163
	init_hrtick();
8164 8165

	/* Move init over to a non-isolated CPU */
8166
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8167
		BUG();
I
Ingo Molnar 已提交
8168
	sched_init_granularity();
8169
	free_cpumask_var(non_isolated_cpus);
8170 8171

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8172
	init_sched_rt_class();
L
Linus Torvalds 已提交
8173 8174 8175 8176
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8177
	sched_init_granularity();
L
Linus Torvalds 已提交
8178 8179 8180 8181 8182 8183 8184 8185 8186 8187
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8188
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8189 8190
{
	cfs_rq->tasks_timeline = RB_ROOT;
8191
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8192 8193 8194
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8195
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8196 8197
}

P
Peter Zijlstra 已提交
8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8211
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8212 8213
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8214 8215 8216 8217 8218 8219 8220
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8221 8222
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8223

8224
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8225
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8226 8227
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8228 8229
}

P
Peter Zijlstra 已提交
8230
#ifdef CONFIG_FAIR_GROUP_SCHED
8231 8232 8233
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8234
{
8235
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8236 8237 8238 8239 8240 8241 8242
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8243 8244 8245 8246
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8247 8248 8249 8250 8251
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8252 8253
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8254
	se->load.inv_weight = 0;
8255
	se->parent = parent;
P
Peter Zijlstra 已提交
8256
}
8257
#endif
P
Peter Zijlstra 已提交
8258

8259
#ifdef CONFIG_RT_GROUP_SCHED
8260 8261 8262
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8263
{
8264 8265
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8266 8267 8268 8269
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8270
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8271 8272 8273 8274
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8275 8276 8277
	if (!rt_se)
		return;

8278 8279 8280 8281 8282
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8283
	rt_se->my_q = rt_rq;
8284
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8285 8286 8287 8288
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8289 8290
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8291
	int i, j;
8292 8293 8294 8295 8296 8297 8298
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8299 8300 8301
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8302 8303 8304 8305 8306 8307
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8308
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8309 8310 8311 8312 8313 8314 8315

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8316 8317 8318 8319 8320 8321 8322

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8323 8324
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8325 8326 8327 8328 8329
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8330 8331 8332 8333 8334 8335 8336 8337
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8338 8339
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8340
	}
I
Ingo Molnar 已提交
8341

G
Gregory Haskins 已提交
8342 8343 8344 8345
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8346 8347 8348 8349 8350 8351
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8352 8353 8354
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8355 8356
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8357

8358
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8359
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8360 8361 8362 8363 8364 8365
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8366 8367
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8368

8369
	for_each_possible_cpu(i) {
8370
		struct rq *rq;
L
Linus Torvalds 已提交
8371 8372 8373

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8374
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8375
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8376
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8377
#ifdef CONFIG_FAIR_GROUP_SCHED
8378
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8379
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8400
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8401
#elif defined CONFIG_USER_SCHED
8402 8403
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8415
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8416
				&per_cpu(init_cfs_rq, i),
8417 8418
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8419

8420
#endif
D
Dhaval Giani 已提交
8421 8422 8423
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8424
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8425
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8426
#ifdef CONFIG_CGROUP_SCHED
8427
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8428
#elif defined CONFIG_USER_SCHED
8429
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8430
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8431
				&per_cpu(init_rt_rq, i),
8432 8433
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8434
#endif
I
Ingo Molnar 已提交
8435
#endif
L
Linus Torvalds 已提交
8436

I
Ingo Molnar 已提交
8437 8438
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8439
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8440
		rq->sd = NULL;
G
Gregory Haskins 已提交
8441
		rq->rd = NULL;
L
Linus Torvalds 已提交
8442
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8443
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8444
		rq->push_cpu = 0;
8445
		rq->cpu = i;
8446
		rq->online = 0;
L
Linus Torvalds 已提交
8447 8448
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8449
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8450
#endif
P
Peter Zijlstra 已提交
8451
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8452 8453 8454
		atomic_set(&rq->nr_iowait, 0);
	}

8455
	set_load_weight(&init_task);
8456

8457 8458 8459 8460
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8461
#ifdef CONFIG_SMP
8462
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8463 8464
#endif

8465 8466 8467 8468
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8482 8483 8484 8485
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8486

8487 8488
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8489
#ifdef CONFIG_SMP
8490 8491 8492
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
8493
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
8494
#endif /* SMP */
8495

8496
	scheduler_running = 1;
L
Linus Torvalds 已提交
8497 8498 8499 8500 8501
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8502
#ifdef in_atomic
L
Linus Torvalds 已提交
8503 8504
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8524 8525 8526 8527 8528 8529
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8530 8531 8532
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8533

8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8545 8546
void normalize_rt_tasks(void)
{
8547
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8548
	unsigned long flags;
8549
	struct rq *rq;
L
Linus Torvalds 已提交
8550

8551
	read_lock_irqsave(&tasklist_lock, flags);
8552
	do_each_thread(g, p) {
8553 8554 8555 8556 8557 8558
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8559 8560
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8561 8562 8563
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8564
#endif
I
Ingo Molnar 已提交
8565 8566 8567 8568 8569 8570 8571 8572

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8573
			continue;
I
Ingo Molnar 已提交
8574
		}
L
Linus Torvalds 已提交
8575

8576
		spin_lock(&p->pi_lock);
8577
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8578

8579
		normalize_task(rq, p);
8580

8581
		__task_rq_unlock(rq);
8582
		spin_unlock(&p->pi_lock);
8583 8584
	} while_each_thread(g, p);

8585
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8586 8587 8588
}

#endif /* CONFIG_MAGIC_SYSRQ */
8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8607
struct task_struct *curr_task(int cpu)
8608 8609 8610 8611 8612 8613 8614 8615 8616 8617
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8618 8619
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8620 8621 8622 8623 8624 8625 8626
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8627
void set_curr_task(int cpu, struct task_struct *p)
8628 8629 8630 8631 8632
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8633

8634 8635
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8650 8651
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8652 8653
{
	struct cfs_rq *cfs_rq;
8654
	struct sched_entity *se;
8655
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8656 8657
	int i;

8658
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8659 8660
	if (!tg->cfs_rq)
		goto err;
8661
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8662 8663
	if (!tg->se)
		goto err;
8664 8665

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8666 8667

	for_each_possible_cpu(i) {
8668
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8669

8670 8671
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8672 8673 8674
		if (!cfs_rq)
			goto err;

8675 8676
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8677 8678 8679
		if (!se)
			goto err;

8680
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8699
#else /* !CONFG_FAIR_GROUP_SCHED */
8700 8701 8702 8703
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8704 8705
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8717
#endif /* CONFIG_FAIR_GROUP_SCHED */
8718 8719

#ifdef CONFIG_RT_GROUP_SCHED
8720 8721 8722 8723
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8724 8725
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8737 8738
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8739 8740
{
	struct rt_rq *rt_rq;
8741
	struct sched_rt_entity *rt_se;
8742 8743 8744
	struct rq *rq;
	int i;

8745
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8746 8747
	if (!tg->rt_rq)
		goto err;
8748
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8749 8750 8751
	if (!tg->rt_se)
		goto err;

8752 8753
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8754 8755 8756 8757

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8758 8759
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8760 8761
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8762

8763 8764
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8765 8766
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8767

8768
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8769 8770
	}

8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8787
#else /* !CONFIG_RT_GROUP_SCHED */
8788 8789 8790 8791
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8792 8793
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8805
#endif /* CONFIG_RT_GROUP_SCHED */
8806

8807
#ifdef CONFIG_GROUP_SCHED
8808 8809 8810 8811 8812 8813 8814 8815
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8816
struct task_group *sched_create_group(struct task_group *parent)
8817 8818 8819 8820 8821 8822 8823 8824 8825
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8826
	if (!alloc_fair_sched_group(tg, parent))
8827 8828
		goto err;

8829
	if (!alloc_rt_sched_group(tg, parent))
8830 8831
		goto err;

8832
	spin_lock_irqsave(&task_group_lock, flags);
8833
	for_each_possible_cpu(i) {
8834 8835
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8836
	}
P
Peter Zijlstra 已提交
8837
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8838 8839 8840 8841 8842

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8843
	list_add_rcu(&tg->siblings, &parent->children);
8844
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8845

8846
	return tg;
S
Srivatsa Vaddagiri 已提交
8847 8848

err:
P
Peter Zijlstra 已提交
8849
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8850 8851 8852
	return ERR_PTR(-ENOMEM);
}

8853
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8854
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8855 8856
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8857
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8858 8859
}

8860
/* Destroy runqueue etc associated with a task group */
8861
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8862
{
8863
	unsigned long flags;
8864
	int i;
S
Srivatsa Vaddagiri 已提交
8865

8866
	spin_lock_irqsave(&task_group_lock, flags);
8867
	for_each_possible_cpu(i) {
8868 8869
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8870
	}
P
Peter Zijlstra 已提交
8871
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8872
	list_del_rcu(&tg->siblings);
8873
	spin_unlock_irqrestore(&task_group_lock, flags);
8874 8875

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8876
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8877 8878
}

8879
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8880 8881 8882
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8883 8884
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8885 8886 8887 8888 8889 8890 8891 8892 8893
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8894
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8895 8896
	on_rq = tsk->se.on_rq;

8897
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8898
		dequeue_task(rq, tsk, 0);
8899 8900
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8901

P
Peter Zijlstra 已提交
8902
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8903

P
Peter Zijlstra 已提交
8904 8905 8906 8907 8908
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8909 8910 8911
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8912
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8913 8914 8915

	task_rq_unlock(rq, &flags);
}
8916
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8917

8918
#ifdef CONFIG_FAIR_GROUP_SCHED
8919
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8920 8921 8922 8923 8924
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8925
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8926 8927 8928
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8929
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8930

8931
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8932
		enqueue_entity(cfs_rq, se, 0);
8933
}
8934

8935 8936 8937 8938 8939 8940 8941 8942 8943
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8944 8945
}

8946 8947
static DEFINE_MUTEX(shares_mutex);

8948
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8949 8950
{
	int i;
8951
	unsigned long flags;
8952

8953 8954 8955 8956 8957 8958
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8959 8960
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8961 8962
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8963

8964
	mutex_lock(&shares_mutex);
8965
	if (tg->shares == shares)
8966
		goto done;
S
Srivatsa Vaddagiri 已提交
8967

8968
	spin_lock_irqsave(&task_group_lock, flags);
8969 8970
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8971
	list_del_rcu(&tg->siblings);
8972
	spin_unlock_irqrestore(&task_group_lock, flags);
8973 8974 8975 8976 8977 8978 8979 8980

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8981
	tg->shares = shares;
8982 8983 8984 8985 8986
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8987
		set_se_shares(tg->se[i], shares);
8988
	}
S
Srivatsa Vaddagiri 已提交
8989

8990 8991 8992 8993
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8994
	spin_lock_irqsave(&task_group_lock, flags);
8995 8996
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8997
	list_add_rcu(&tg->siblings, &tg->parent->children);
8998
	spin_unlock_irqrestore(&task_group_lock, flags);
8999
done:
9000
	mutex_unlock(&shares_mutex);
9001
	return 0;
S
Srivatsa Vaddagiri 已提交
9002 9003
}

9004 9005 9006 9007
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9008
#endif
9009

9010
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9011
/*
P
Peter Zijlstra 已提交
9012
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9013
 */
P
Peter Zijlstra 已提交
9014 9015 9016 9017 9018
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9019
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9020

P
Peter Zijlstra 已提交
9021
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9022 9023
}

P
Peter Zijlstra 已提交
9024 9025
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9026
{
P
Peter Zijlstra 已提交
9027
	struct task_struct *g, *p;
9028

P
Peter Zijlstra 已提交
9029 9030 9031 9032
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9033

P
Peter Zijlstra 已提交
9034 9035
	return 0;
}
9036

P
Peter Zijlstra 已提交
9037 9038 9039 9040 9041
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9042

P
Peter Zijlstra 已提交
9043 9044 9045 9046 9047 9048
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9049

P
Peter Zijlstra 已提交
9050 9051
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9052

P
Peter Zijlstra 已提交
9053 9054 9055
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9056 9057
	}

9058 9059 9060 9061 9062 9063 9064
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9065 9066 9067 9068 9069
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9070

9071 9072 9073
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9074 9075
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9076

P
Peter Zijlstra 已提交
9077
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9078

9079 9080 9081 9082 9083 9084 9085 9086 9087
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;

	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9088 9089 9090
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9091

P
Peter Zijlstra 已提交
9092 9093 9094 9095
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9096

P
Peter Zijlstra 已提交
9097
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9098
	}
P
Peter Zijlstra 已提交
9099

P
Peter Zijlstra 已提交
9100 9101 9102 9103
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9104 9105
}

P
Peter Zijlstra 已提交
9106
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9107
{
P
Peter Zijlstra 已提交
9108 9109 9110 9111 9112 9113 9114
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9115 9116
}

9117 9118
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9119
{
P
Peter Zijlstra 已提交
9120
	int i, err = 0;
P
Peter Zijlstra 已提交
9121 9122

	mutex_lock(&rt_constraints_mutex);
9123
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9124 9125
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9126
		goto unlock;
P
Peter Zijlstra 已提交
9127 9128

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9129 9130
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9131 9132 9133 9134 9135 9136 9137 9138 9139

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9140
 unlock:
9141
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9142 9143 9144
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9145 9146
}

9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9159 9160 9161 9162
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9163
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9164 9165
		return -1;

9166
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9167 9168 9169
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9170 9171 9172 9173 9174 9175 9176 9177

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9178 9179 9180
	if (rt_period == 0)
		return -EINVAL;

9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9195
	u64 runtime, period;
9196 9197
	int ret = 0;

9198 9199 9200
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9201 9202 9203 9204 9205 9206 9207 9208
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9209

9210
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9211
	read_lock(&tasklist_lock);
9212
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9213
	read_unlock(&tasklist_lock);
9214 9215 9216 9217
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9218
#else /* !CONFIG_RT_GROUP_SCHED */
9219 9220
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9221 9222 9223
	unsigned long flags;
	int i;

9224 9225 9226
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9227 9228 9229 9230 9231 9232 9233 9234 9235 9236
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9237 9238
	return 0;
}
9239
#endif /* CONFIG_RT_GROUP_SCHED */
9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9270

9271
#ifdef CONFIG_CGROUP_SCHED
9272 9273

/* return corresponding task_group object of a cgroup */
9274
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9275
{
9276 9277
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9278 9279 9280
}

static struct cgroup_subsys_state *
9281
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9282
{
9283
	struct task_group *tg, *parent;
9284

9285
	if (!cgrp->parent) {
9286 9287 9288 9289
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9290 9291
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9292 9293 9294 9295 9296 9297
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9298 9299
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9300
{
9301
	struct task_group *tg = cgroup_tg(cgrp);
9302 9303 9304 9305

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9306 9307 9308
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9309
{
9310 9311
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9312
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9313 9314
		return -EINVAL;
#else
9315 9316 9317
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9318
#endif
9319 9320 9321 9322 9323

	return 0;
}

static void
9324
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9325 9326 9327 9328 9329
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9330
#ifdef CONFIG_FAIR_GROUP_SCHED
9331
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9332
				u64 shareval)
9333
{
9334
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9335 9336
}

9337
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9338
{
9339
	struct task_group *tg = cgroup_tg(cgrp);
9340 9341 9342

	return (u64) tg->shares;
}
9343
#endif /* CONFIG_FAIR_GROUP_SCHED */
9344

9345
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9346
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9347
				s64 val)
P
Peter Zijlstra 已提交
9348
{
9349
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9350 9351
}

9352
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9353
{
9354
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9355
}
9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9367
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9368

9369
static struct cftype cpu_files[] = {
9370
#ifdef CONFIG_FAIR_GROUP_SCHED
9371 9372
	{
		.name = "shares",
9373 9374
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9375
	},
9376 9377
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9378
	{
P
Peter Zijlstra 已提交
9379
		.name = "rt_runtime_us",
9380 9381
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9382
	},
9383 9384
	{
		.name = "rt_period_us",
9385 9386
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9387
	},
9388
#endif
9389 9390 9391 9392
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9393
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9394 9395 9396
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9397 9398 9399 9400 9401 9402 9403
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9404 9405 9406
	.early_init	= 1,
};

9407
#endif	/* CONFIG_CGROUP_SCHED */
9408 9409 9410 9411 9412 9413 9414 9415 9416 9417

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9418
/* track cpu usage of a group of tasks and its child groups */
9419 9420 9421 9422
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
9423
	struct cpuacct *parent;
9424 9425 9426 9427 9428
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9429
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9430
{
9431
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9444
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

9457 9458 9459
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9460 9461 9462 9463
	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9464
static void
9465
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9466
{
9467
	struct cpuacct *ca = cgroup_ca(cgrp);
9468 9469 9470 9471 9472

	free_percpu(ca->cpuusage);
	kfree(ca);
}

9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

9508
/* return total cpu usage (in nanoseconds) of a group */
9509
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9510
{
9511
	struct cpuacct *ca = cgroup_ca(cgrp);
9512 9513 9514
	u64 totalcpuusage = 0;
	int i;

9515 9516
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9517 9518 9519 9520

	return totalcpuusage;
}

9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9533 9534
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9535 9536 9537 9538 9539

out:
	return err;
}

9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9555 9556 9557
static struct cftype files[] = {
	{
		.name = "usage",
9558 9559
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9560
	},
9561 9562 9563 9564 9565
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},

9566 9567
};

9568
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9569
{
9570
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9571 9572 9573 9574 9575 9576 9577 9578 9579 9580
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9581
	int cpu;
9582 9583 9584 9585

	if (!cpuacct_subsys.active)
		return;

9586
	cpu = task_cpu(tsk);
9587 9588
	ca = task_ca(tsk);

9589 9590
	for (; ca; ca = ca->parent) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602
		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */