sched.c 224.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

142 143
static inline int rt_policy(int policy)
{
144
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 146 147 148 149 150 151 152 153
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
154
/*
I
Ingo Molnar 已提交
155
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
156
 */
I
Ingo Molnar 已提交
157 158 159 160 161
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

162
struct rt_bandwidth {
I
Ingo Molnar 已提交
163 164 165 166 167
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
201 202
	spin_lock_init(&rt_b->rt_runtime_lock);

203 204 205
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
206
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
207 208
}

209 210 211
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
212 213 214 215 216 217
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

218
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 220 221 222 223 224 225 226 227 228 229 230
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 232
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
233 234 235 236 237 238 239 240 241 242 243
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

244 245 246 247 248 249
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

250
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
251

252 253
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
254 255
struct cfs_rq;

P
Peter Zijlstra 已提交
256 257
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
258
/* task group related information */
259
struct task_group {
260
#ifdef CONFIG_CGROUP_SCHED
261 262
	struct cgroup_subsys_state css;
#endif
263 264

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
265 266 267 268 269
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
270 271 272 273 274 275
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

276
	struct rt_bandwidth rt_bandwidth;
277
#endif
278

279
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
280
	struct list_head list;
P
Peter Zijlstra 已提交
281 282 283 284

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
285 286
};

D
Dhaval Giani 已提交
287
#ifdef CONFIG_USER_SCHED
288 289 290 291 292 293 294 295

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

296
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
297 298 299 300
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301
#endif /* CONFIG_FAIR_GROUP_SCHED */
302 303 304 305

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
307
#else /* !CONFIG_USER_SCHED */
308
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
309
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
310

311
/* task_group_lock serializes add/remove of task groups and also changes to
312 313
 * a task group's cpu shares.
 */
314
static DEFINE_SPINLOCK(task_group_lock);
315

316 317 318
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
319
#else /* !CONFIG_USER_SCHED */
320
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
321
#endif /* CONFIG_USER_SCHED */
322

323
/*
324 325 326 327
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
328 329 330
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
331
#define MIN_SHARES	2
332
#define MAX_SHARES	(1UL << 18)
333

334 335 336
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
337
/* Default task group.
I
Ingo Molnar 已提交
338
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
339
 */
340
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
341 342

/* return group to which a task belongs */
343
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
344
{
345
	struct task_group *tg;
346

347
#ifdef CONFIG_USER_SCHED
348
	tg = p->user->tg;
349
#elif defined(CONFIG_CGROUP_SCHED)
350 351
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
352
#else
I
Ingo Molnar 已提交
353
	tg = &init_task_group;
354
#endif
355
	return tg;
S
Srivatsa Vaddagiri 已提交
356 357 358
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
359
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
360
{
361
#ifdef CONFIG_FAIR_GROUP_SCHED
362 363
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
364
#endif
P
Peter Zijlstra 已提交
365

366
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
367 368
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
369
#endif
S
Srivatsa Vaddagiri 已提交
370 371 372 373
}

#else

P
Peter Zijlstra 已提交
374
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 376 377 378
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
379

380
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
381

I
Ingo Molnar 已提交
382 383 384 385 386 387
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
388
	u64 min_vruntime;
I
Ingo Molnar 已提交
389 390 391

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
392 393 394 395 396 397

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
398 399
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
400
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
401 402 403

	unsigned long nr_spread_over;

404
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
405 406
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
407 408
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
409 410 411 412 413 414
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
415 416
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
417 418 419

#ifdef CONFIG_SMP
	/*
420
	 * the part of load.weight contributed by tasks
421
	 */
422
	unsigned long task_weight;
423

424 425 426 427 428 429 430
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
431

432 433 434 435
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
436 437 438 439 440

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
441
#endif
I
Ingo Molnar 已提交
442 443
#endif
};
L
Linus Torvalds 已提交
444

I
Ingo Molnar 已提交
445 446 447
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
448
	unsigned long rt_nr_running;
449
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
450 451
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
452
#ifdef CONFIG_SMP
453
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
454
	int overloaded;
P
Peter Zijlstra 已提交
455
#endif
P
Peter Zijlstra 已提交
456
	int rt_throttled;
P
Peter Zijlstra 已提交
457
	u64 rt_time;
P
Peter Zijlstra 已提交
458
	u64 rt_runtime;
I
Ingo Molnar 已提交
459
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
460
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
461

462
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
463 464
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
465 466 467 468 469
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
470 471
};

G
Gregory Haskins 已提交
472 473 474 475
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
476 477
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
478 479 480 481 482 483 484 485
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
486

I
Ingo Molnar 已提交
487
	/*
488 489 490 491
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
492
	atomic_t rto_count;
493 494 495
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
496 497
};

498 499 500 501
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
502 503 504 505
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
506 507 508 509 510 511 512
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
513
struct rq {
514 515
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
516 517 518 519 520 521

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
522 523
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524
	unsigned char idle_at_tick;
525
#ifdef CONFIG_NO_HZ
526
	unsigned long last_tick_seen;
527 528
	unsigned char in_nohz_recently;
#endif
529 530
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
531 532 533 534
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
535 536
	struct rt_rq rt;

I
Ingo Molnar 已提交
537
#ifdef CONFIG_FAIR_GROUP_SCHED
538 539
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
540 541
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
542
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
543 544 545 546 547 548 549 550 551 552
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

553
	struct task_struct *curr, *idle;
554
	unsigned long next_balance;
L
Linus Torvalds 已提交
555
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
556

557
	u64 clock;
I
Ingo Molnar 已提交
558

L
Linus Torvalds 已提交
559 560 561
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
562
	struct root_domain *rd;
L
Linus Torvalds 已提交
563 564 565 566 567
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
568 569
	/* cpu of this runqueue: */
	int cpu;
570
	int online;
L
Linus Torvalds 已提交
571

572
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
573

574
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
575 576 577
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
578
#ifdef CONFIG_SCHED_HRTICK
579 580 581 582
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
583 584 585
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
586 587 588 589 590
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
591 592 593 594
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
595 596

	/* schedule() stats */
597 598 599
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
600 601

	/* try_to_wake_up() stats */
602 603
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
604 605

	/* BKL stats */
606
	unsigned int bkl_count;
L
Linus Torvalds 已提交
607 608 609
#endif
};

610
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
611

612
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
613
{
614
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
615 616
}

617 618 619 620 621 622 623 624 625
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
626 627
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
629 630 631 632
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
633 634
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
635 636 637 638 639 640

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

641 642 643 644 645
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
646 647 648 649 650 651 652 653 654
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
673 674 675
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
676 677 678 679

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
680
enum {
P
Peter Zijlstra 已提交
681
#include "sched_features.h"
I
Ingo Molnar 已提交
682 683
};

P
Peter Zijlstra 已提交
684 685 686 687 688
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
689
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
690 691 692 693 694 695 696 697 698
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

699
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
700 701 702 703 704 705
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
706
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
707 708 709 710
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
711 712 713
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
714
	}
L
Li Zefan 已提交
715
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
716

L
Li Zefan 已提交
717
	return 0;
P
Peter Zijlstra 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
737
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
762 763 764 765 766
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
767
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
768 769 770 771 772
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
787

788 789 790 791 792 793
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
794 795
/*
 * ratelimit for updating the group shares.
796
 * default: 0.25ms
P
Peter Zijlstra 已提交
797
 */
798
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
799

800 801 802 803 804 805 806
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
807
/*
P
Peter Zijlstra 已提交
808
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
809 810
 * default: 1s
 */
P
Peter Zijlstra 已提交
811
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
812

813 814
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
815 816 817 818 819
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
820

821 822 823 824 825 826 827
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
828
	if (sysctl_sched_rt_runtime < 0)
829 830 831 832
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
833

L
Linus Torvalds 已提交
834
#ifndef prepare_arch_switch
835 836 837 838 839 840
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

841 842 843 844 845
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

846
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
847
static inline int task_running(struct rq *rq, struct task_struct *p)
848
{
849
	return task_current(rq, p);
850 851
}

852
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 854 855
{
}

856
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857
{
858 859 860 861
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
862 863 864 865 866 867 868
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

869 870 871 872
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
873
static inline int task_running(struct rq *rq, struct task_struct *p)
874 875 876 877
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
878
	return task_current(rq, p);
879 880 881
#endif
}

882
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

899
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 901 902 903 904 905 906 907 908 909 910 911
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
912
#endif
913 914
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
915

916 917 918 919
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
920
static inline struct rq *__task_rq_lock(struct task_struct *p)
921 922
	__acquires(rq->lock)
{
923 924 925 926 927
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
928 929 930 931
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
932 933
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
934
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
935 936
 * explicitly disabling preemption.
 */
937
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
938 939
	__acquires(rq->lock)
{
940
	struct rq *rq;
L
Linus Torvalds 已提交
941

942 943 944 945 946 947
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
948 949 950 951
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
952
static void __task_rq_unlock(struct rq *rq)
953 954 955 956 957
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

958
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
959 960 961 962 963 964
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
965
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
966
 */
A
Alexey Dobriyan 已提交
967
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
968 969
	__acquires(rq->lock)
{
970
	struct rq *rq;
L
Linus Torvalds 已提交
971 972 973 974 975 976 977 978

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1000
	if (!cpu_active(cpu_of(rq)))
1001
		return 0;
P
Peter Zijlstra 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1022
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1023 1024 1025 1026 1027 1028
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1029
#ifdef CONFIG_SMP
1030 1031 1032 1033
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1034
{
1035
	struct rq *rq = arg;
1036

1037 1038 1039 1040
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1041 1042
}

1043 1044 1045 1046 1047 1048
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1049
{
1050 1051
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1052

1053
	hrtimer_set_expires(timer, time);
1054 1055 1056 1057 1058 1059 1060

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1075
		hrtick_clear(cpu_rq(cpu));
1076 1077 1078 1079 1080 1081
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1082
static __init void init_hrtick(void)
1083 1084 1085
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1096

A
Andrew Morton 已提交
1097
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1098 1099
{
}
1100
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1101

1102
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1103
{
1104 1105
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1106

1107 1108 1109 1110
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1111

1112 1113
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
1114
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
P
Peter Zijlstra 已提交
1115
}
A
Andrew Morton 已提交
1116
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1117 1118 1119 1120 1121 1122 1123 1124
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1125 1126 1127
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1128
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1129

I
Ingo Molnar 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1143
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1144 1145 1146 1147 1148
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1149
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1150 1151
		return;

1152
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1215
#endif /* CONFIG_NO_HZ */
1216

1217
#else /* !CONFIG_SMP */
1218
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1219 1220
{
	assert_spin_locked(&task_rq(p)->lock);
1221
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1222
}
1223
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1224

1225 1226 1227 1228 1229 1230 1231 1232
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1233 1234 1235
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1236
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1237

1238 1239 1240
/*
 * delta *= weight / lw
 */
1241
static unsigned long
1242 1243 1244 1245 1246
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1247 1248 1249 1250 1251 1252 1253
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1254 1255 1256 1257 1258

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1259
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1260
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1261 1262
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1263
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1264

1265
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1266 1267
}

1268
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1269 1270
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1271
	lw->inv_weight = 0;
1272 1273
}

1274
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1275 1276
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1277
	lw->inv_weight = 0;
1278 1279
}

1280 1281 1282 1283
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1284
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1285 1286 1287 1288
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1300 1301 1302
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1303 1304
 */
static const int prio_to_weight[40] = {
1305 1306 1307 1308 1309 1310 1311 1312
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1313 1314
};

1315 1316 1317 1318 1319 1320 1321
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1322
static const u32 prio_to_wmult[40] = {
1323 1324 1325 1326 1327 1328 1329 1330
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1331
};
1332

I
Ingo Molnar 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1358

1359 1360 1361 1362 1363 1364
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1375
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1376
typedef int (*tg_visitor)(struct task_group *, void *);
1377 1378 1379 1380 1381

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1382
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1383 1384
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1385
	int ret;
1386 1387 1388 1389

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1390 1391 1392
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1393 1394 1395 1396 1397 1398 1399
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1400 1401 1402
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1403 1404 1405 1406 1407

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1408
out_unlock:
1409
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1410 1411

	return ret;
1412 1413
}

P
Peter Zijlstra 已提交
1414 1415 1416
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1417
}
P
Peter Zijlstra 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1436 1437 1438 1439 1440 1441 1442

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1443 1444
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1445
{
1446 1447 1448 1449
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1450
	if (!tg->se[cpu])
1451 1452
		return;

1453
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1465 1466 1467
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1468 1469 1470 1471 1472 1473
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1474
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1475
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1476

1477 1478 1479 1480
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1481

1482 1483 1484 1485 1486 1487
		spin_lock_irqsave(&rq->lock, flags);
		/*
		 * record the actual number of shares, not the boosted amount.
		 */
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
		tg->cfs_rq[cpu]->rq_weight = rq_weight;
1488

1489 1490 1491
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1492
}
1493 1494

/*
1495 1496 1497
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1498
 */
P
Peter Zijlstra 已提交
1499
static int tg_shares_up(struct task_group *tg, void *data)
1500
{
1501 1502
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1503
	struct sched_domain *sd = data;
1504
	int i;
1505

1506 1507 1508
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1509 1510
	}

1511 1512 1513 1514 1515
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1516

P
Peter Zijlstra 已提交
1517 1518 1519
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1520 1521
	for_each_cpu_mask(i, sd->span)
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1522 1523

	return 0;
1524 1525 1526
}

/*
1527 1528 1529
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1530
 */
P
Peter Zijlstra 已提交
1531
static int tg_load_down(struct task_group *tg, void *data)
1532
{
1533
	unsigned long load;
P
Peter Zijlstra 已提交
1534
	long cpu = (long)data;
1535

1536 1537 1538 1539 1540 1541 1542
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1543

1544
	tg->cfs_rq[cpu]->h_load = load;
1545

P
Peter Zijlstra 已提交
1546
	return 0;
1547 1548
}

1549
static void update_shares(struct sched_domain *sd)
1550
{
P
Peter Zijlstra 已提交
1551 1552 1553 1554 1555
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1556
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1557
	}
1558 1559
}

1560 1561 1562 1563 1564 1565 1566
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1567
static void update_h_load(long cpu)
1568
{
P
Peter Zijlstra 已提交
1569
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1570 1571 1572 1573
}

#else

1574
static inline void update_shares(struct sched_domain *sd)
1575 1576 1577
{
}

1578 1579 1580 1581
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1582 1583 1584 1585
#endif

#endif

V
Vegard Nossum 已提交
1586
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1587 1588
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1589
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1590 1591 1592
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1593
#endif
1594

I
Ingo Molnar 已提交
1595 1596
#include "sched_stats.h"
#include "sched_idletask.c"
1597 1598
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1599 1600 1601 1602 1603
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1604 1605
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1606

1607
static void inc_nr_running(struct rq *rq)
1608 1609 1610 1611
{
	rq->nr_running++;
}

1612
static void dec_nr_running(struct rq *rq)
1613 1614 1615 1616
{
	rq->nr_running--;
}

1617 1618 1619
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1620 1621 1622 1623
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1624

I
Ingo Molnar 已提交
1625 1626 1627 1628 1629 1630 1631 1632
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1633

I
Ingo Molnar 已提交
1634 1635
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1636 1637
}

1638 1639 1640 1641 1642 1643
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1644
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1645
{
I
Ingo Molnar 已提交
1646
	sched_info_queued(p);
1647
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1648
	p->se.on_rq = 1;
1649 1650
}

1651
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1652
{
1653 1654 1655 1656 1657 1658
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1659
	sched_info_dequeued(p);
1660
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1661
	p->se.on_rq = 0;
1662 1663
}

1664
/*
I
Ingo Molnar 已提交
1665
 * __normal_prio - return the priority that is based on the static prio
1666 1667 1668
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1669
	return p->static_prio;
1670 1671
}

1672 1673 1674 1675 1676 1677 1678
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1679
static inline int normal_prio(struct task_struct *p)
1680 1681 1682
{
	int prio;

1683
	if (task_has_rt_policy(p))
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1697
static int effective_prio(struct task_struct *p)
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1710
/*
I
Ingo Molnar 已提交
1711
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1712
 */
I
Ingo Molnar 已提交
1713
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1714
{
1715
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1716
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1717

1718
	enqueue_task(rq, p, wakeup);
1719
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1720 1721 1722 1723 1724
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1725
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1726
{
1727
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1728 1729
		rq->nr_uninterruptible++;

1730
	dequeue_task(rq, p, sleep);
1731
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1732 1733 1734 1735 1736 1737
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1738
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1739 1740 1741 1742
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1743 1744
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1745
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1746
#ifdef CONFIG_SMP
1747 1748 1749 1750 1751 1752
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1753 1754
	task_thread_info(p)->cpu = cpu;
#endif
1755 1756
}

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1769
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1770

1771 1772 1773 1774 1775 1776
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1777 1778 1779
/*
 * Is this task likely cache-hot:
 */
1780
static int
1781 1782 1783 1784
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1785 1786 1787
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1788 1789 1790
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1791 1792
		return 1;

1793 1794 1795
	if (p->sched_class != &fair_sched_class)
		return 0;

1796 1797 1798 1799 1800
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1801 1802 1803 1804 1805 1806
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1807
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1808
{
I
Ingo Molnar 已提交
1809 1810
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1811 1812
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1813
	u64 clock_offset;
I
Ingo Molnar 已提交
1814 1815

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1816 1817 1818 1819

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1820 1821 1822 1823
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1824 1825 1826 1827 1828
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1829
#endif
1830 1831
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1832 1833

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1834 1835
}

1836
struct migration_req {
L
Linus Torvalds 已提交
1837 1838
	struct list_head list;

1839
	struct task_struct *task;
L
Linus Torvalds 已提交
1840 1841 1842
	int dest_cpu;

	struct completion done;
1843
};
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1849
static int
1850
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1851
{
1852
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1858
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1859 1860 1861 1862 1863 1864 1865 1866
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1867

L
Linus Torvalds 已提交
1868 1869 1870 1871 1872 1873
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1874 1875 1876 1877 1878 1879 1880
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1881 1882 1883 1884 1885 1886
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1887
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1888 1889
{
	unsigned long flags;
I
Ingo Molnar 已提交
1890
	int running, on_rq;
R
Roland McGrath 已提交
1891
	unsigned long ncsw;
1892
	struct rq *rq;
L
Linus Torvalds 已提交
1893

1894 1895 1896 1897 1898 1899 1900 1901
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1902

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1914 1915 1916
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1917
			cpu_relax();
R
Roland McGrath 已提交
1918
		}
1919

1920 1921 1922 1923 1924 1925
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1926
		trace_sched_wait_task(rq, p);
1927 1928
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1929
		ncsw = 0;
1930
		if (!match_state || p->state == match_state)
1931
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1932
		task_rq_unlock(rq, &flags);
1933

R
Roland McGrath 已提交
1934 1935 1936 1937 1938 1939
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1950

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1964

1965 1966 1967 1968 1969 1970 1971
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1972 1973

	return ncsw;
L
Linus Torvalds 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1989
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2001 2002
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2003 2004 2005 2006
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2007
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2008
{
2009
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2010
	unsigned long total = weighted_cpuload(cpu);
2011

2012
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2013
		return total;
2014

I
Ingo Molnar 已提交
2015
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2016 2017 2018
}

/*
2019 2020
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2021
 */
A
Alexey Dobriyan 已提交
2022
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2023
{
2024
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2025
	unsigned long total = weighted_cpuload(cpu);
2026

2027
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2028
		return total;
2029

I
Ingo Molnar 已提交
2030
	return max(rq->cpu_load[type-1], total);
2031 2032
}

N
Nick Piggin 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2050 2051
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2052
			continue;
2053

N
Nick Piggin 已提交
2054 2055 2056 2057 2058
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2059
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2070 2071
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2072 2073 2074 2075 2076 2077 2078 2079

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2080
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2081 2082 2083 2084 2085 2086 2087

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2088
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2089
 */
I
Ingo Molnar 已提交
2090
static int
2091 2092
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2093 2094 2095 2096 2097
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2098
	/* Traverse only the allowed CPUs */
2099
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2100

2101
	for_each_cpu_mask_nr(i, *tmp) {
2102
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2128

2129
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2130 2131 2132
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2133 2134
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2135 2136
		if (tmp->flags & flag)
			sd = tmp;
2137
	}
N
Nick Piggin 已提交
2138

2139 2140 2141
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2142
	while (sd) {
2143
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2144
		struct sched_group *group;
2145 2146 2147 2148 2149 2150
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2151 2152 2153

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2154 2155 2156 2157
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2158

2159
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2160 2161 2162 2163 2164
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2165

2166
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2198
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2199
{
2200
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2201 2202
	unsigned long flags;
	long old_state;
2203
	struct rq *rq;
L
Linus Torvalds 已提交
2204

2205 2206 2207
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2224
	smp_wmb();
L
Linus Torvalds 已提交
2225 2226 2227 2228 2229
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2230
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2231 2232 2233
		goto out_running;

	cpu = task_cpu(p);
2234
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2235 2236 2237 2238 2239 2240
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2241 2242 2243
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2244 2245 2246 2247 2248 2249
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2250
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2251 2252 2253 2254 2255 2256
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2270
#endif /* CONFIG_SCHEDSTATS */
2271

L
Linus Torvalds 已提交
2272 2273
out_activate:
#endif /* CONFIG_SMP */
2274 2275 2276 2277 2278 2279 2280 2281 2282
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2283
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2284
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2285 2286 2287
	success = 1;

out_running:
2288
	trace_sched_wakeup(rq, p);
2289
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2290

L
Linus Torvalds 已提交
2291
	p->state = TASK_RUNNING;
2292 2293 2294 2295
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2296
out:
2297 2298
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2299 2300 2301 2302 2303
	task_rq_unlock(rq, &flags);

	return success;
}

2304
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2305
{
2306
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2307 2308 2309
}
EXPORT_SYMBOL(wake_up_process);

2310
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2311 2312 2313 2314 2315 2316 2317
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2318 2319 2320 2321 2322 2323 2324
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2325
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2326 2327
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2328 2329 2330

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2331 2332 2333 2334 2335 2336
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2337
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2338
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2339
#endif
N
Nick Piggin 已提交
2340

P
Peter Zijlstra 已提交
2341
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2342
	p->se.on_rq = 0;
2343
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2344

2345 2346 2347 2348
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2349 2350 2351 2352 2353 2354 2355
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2370
	set_task_cpu(p, cpu);
2371 2372 2373 2374 2375

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2376 2377
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2378

2379
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2380
	if (likely(sched_info_on()))
2381
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2382
#endif
2383
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2384 2385
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2386
#ifdef CONFIG_PREEMPT
2387
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2388
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2389
#endif
N
Nick Piggin 已提交
2390
	put_cpu();
L
Linus Torvalds 已提交
2391 2392 2393 2394 2395 2396 2397 2398 2399
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2400
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2401 2402
{
	unsigned long flags;
I
Ingo Molnar 已提交
2403
	struct rq *rq;
L
Linus Torvalds 已提交
2404 2405

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2406
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2407
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2408 2409 2410

	p->prio = effective_prio(p);

2411
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2412
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2413 2414
	} else {
		/*
I
Ingo Molnar 已提交
2415 2416
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2417
		 */
2418
		p->sched_class->task_new(rq, p);
2419
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2420
	}
2421
	trace_sched_wakeup_new(rq, p);
2422
	check_preempt_curr(rq, p, 0);
2423 2424 2425 2426
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2427
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2428 2429
}

2430 2431 2432
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2433 2434
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2435 2436 2437 2438 2439 2440 2441 2442 2443
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2444
 * @notifier: notifier struct to unregister
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2474
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2486
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2487

2488 2489 2490
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2491
 * @prev: the current task that is being switched out
2492 2493 2494 2495 2496 2497 2498 2499 2500
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2501 2502 2503
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2504
{
2505
	fire_sched_out_preempt_notifiers(prev, next);
2506 2507 2508 2509
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2510 2511
/**
 * finish_task_switch - clean up after a task-switch
2512
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2513 2514
 * @prev: the thread we just switched away from.
 *
2515 2516 2517 2518
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2519 2520
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2521
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2522 2523 2524
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2525
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2526 2527 2528
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2529
	long prev_state;
L
Linus Torvalds 已提交
2530 2531 2532 2533 2534

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2535
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2536 2537
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2538
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2539 2540 2541 2542 2543
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2544
	prev_state = prev->state;
2545 2546
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2547 2548 2549 2550
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2551

2552
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2553 2554
	if (mm)
		mmdrop(mm);
2555
	if (unlikely(prev_state == TASK_DEAD)) {
2556 2557 2558
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2559
		 */
2560
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2561
		put_task_struct(prev);
2562
	}
L
Linus Torvalds 已提交
2563 2564 2565 2566 2567 2568
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2569
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2570 2571
	__releases(rq->lock)
{
2572 2573
	struct rq *rq = this_rq();

2574 2575 2576 2577 2578
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2579
	if (current->set_child_tid)
2580
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2581 2582 2583 2584 2585 2586
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2587
static inline void
2588
context_switch(struct rq *rq, struct task_struct *prev,
2589
	       struct task_struct *next)
L
Linus Torvalds 已提交
2590
{
I
Ingo Molnar 已提交
2591
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2592

2593
	prepare_task_switch(rq, prev, next);
2594
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2595 2596
	mm = next->mm;
	oldmm = prev->active_mm;
2597 2598 2599 2600 2601 2602 2603
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2604
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2605 2606 2607 2608 2609 2610
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2611
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2612 2613 2614
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2615 2616 2617 2618 2619 2620 2621
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2622
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2623
#endif
L
Linus Torvalds 已提交
2624 2625 2626 2627

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2628 2629 2630 2631 2632 2633 2634
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2658
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2673 2674
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2675

2676
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2677 2678 2679 2680 2681 2682 2683 2684 2685
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2686
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2687 2688 2689 2690 2691
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2707
/*
I
Ingo Molnar 已提交
2708 2709
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2710
 */
I
Ingo Molnar 已提交
2711
static void update_cpu_load(struct rq *this_rq)
2712
{
2713
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2726 2727 2728 2729 2730 2731 2732
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2733 2734
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2735 2736
}

I
Ingo Molnar 已提交
2737 2738
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2739 2740 2741 2742 2743 2744
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2745
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2746 2747 2748
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2749
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2750 2751 2752 2753
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2754
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2755
			spin_lock(&rq1->lock);
2756
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2757 2758
		} else {
			spin_lock(&rq2->lock);
2759
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2760 2761
		}
	}
2762 2763
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2764 2765 2766 2767 2768 2769 2770 2771
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2772
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2786
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2787 2788 2789 2790
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2791 2792
	int ret = 0;

2793 2794 2795 2796 2797
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2798
	if (unlikely(!spin_trylock(&busiest->lock))) {
2799
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2800 2801
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2802
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2803
			ret = 1;
L
Linus Torvalds 已提交
2804
		} else
2805
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2806
	}
S
Steven Rostedt 已提交
2807
	return ret;
L
Linus Torvalds 已提交
2808 2809
}

2810 2811 2812 2813 2814 2815 2816
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

L
Linus Torvalds 已提交
2817 2818 2819
/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2820
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2821 2822
 * the cpu_allowed mask is restored.
 */
2823
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2824
{
2825
	struct migration_req req;
L
Linus Torvalds 已提交
2826
	unsigned long flags;
2827
	struct rq *rq;
L
Linus Torvalds 已提交
2828 2829 2830

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2831
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2832 2833
		goto out;

2834
	trace_sched_migrate_task(rq, p, dest_cpu);
L
Linus Torvalds 已提交
2835 2836 2837 2838
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2839

L
Linus Torvalds 已提交
2840 2841 2842 2843 2844
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2845

L
Linus Torvalds 已提交
2846 2847 2848 2849 2850 2851 2852
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2853 2854
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2855 2856 2857 2858
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2859
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2860
	put_cpu();
N
Nick Piggin 已提交
2861 2862
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2863 2864 2865 2866 2867 2868
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2869 2870
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2871
{
2872
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2873
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2874
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2875 2876 2877 2878
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2879
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2880 2881 2882 2883 2884
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2885
static
2886
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2887
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2888
		     int *all_pinned)
L
Linus Torvalds 已提交
2889 2890 2891 2892 2893 2894 2895
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2896 2897
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2898
		return 0;
2899
	}
2900 2901
	*all_pinned = 0;

2902 2903
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2904
		return 0;
2905
	}
L
Linus Torvalds 已提交
2906

2907 2908 2909 2910 2911 2912
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2913 2914
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2915
#ifdef CONFIG_SCHEDSTATS
2916
		if (task_hot(p, rq->clock, sd)) {
2917
			schedstat_inc(sd, lb_hot_gained[idle]);
2918 2919
			schedstat_inc(p, se.nr_forced_migrations);
		}
2920 2921 2922 2923
#endif
		return 1;
	}

2924 2925
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2926
		return 0;
2927
	}
L
Linus Torvalds 已提交
2928 2929 2930
	return 1;
}

2931 2932 2933 2934 2935
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2936
{
2937
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2938 2939
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2940

2941
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2942 2943
		goto out;

2944 2945
	pinned = 1;

L
Linus Torvalds 已提交
2946
	/*
I
Ingo Molnar 已提交
2947
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2948
	 */
I
Ingo Molnar 已提交
2949 2950
	p = iterator->start(iterator->arg);
next:
2951
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2952
		goto out;
2953 2954

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2955 2956 2957
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2958 2959
	}

I
Ingo Molnar 已提交
2960
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2961
	pulled++;
I
Ingo Molnar 已提交
2962
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2963

2964
	/*
2965
	 * We only want to steal up to the prescribed amount of weighted load.
2966
	 */
2967
	if (rem_load_move > 0) {
2968 2969
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2970 2971
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2972 2973 2974
	}
out:
	/*
2975
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2976 2977 2978 2979
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2980 2981 2982

	if (all_pinned)
		*all_pinned = pinned;
2983 2984

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2985 2986
}

I
Ingo Molnar 已提交
2987
/*
P
Peter Williams 已提交
2988 2989 2990
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2991 2992 2993 2994
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2995
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2996 2997 2998
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2999
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3000
	unsigned long total_load_moved = 0;
3001
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3002 3003

	do {
P
Peter Williams 已提交
3004 3005
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3006
				max_load_move - total_load_moved,
3007
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3008
		class = class->next;
3009 3010 3011 3012

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3013
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3014

P
Peter Williams 已提交
3015 3016 3017
	return total_load_moved > 0;
}

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3054
	const struct sched_class *class;
P
Peter Williams 已提交
3055 3056

	for (class = sched_class_highest; class; class = class->next)
3057
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3058 3059 3060
			return 1;

	return 0;
I
Ingo Molnar 已提交
3061 3062
}

L
Linus Torvalds 已提交
3063 3064
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3065 3066
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3067 3068 3069
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3070
		   unsigned long *imbalance, enum cpu_idle_type idle,
3071
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3072 3073 3074
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3075
	unsigned long max_pull;
3076 3077
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3078
	int load_idx, group_imb = 0;
3079 3080 3081 3082 3083 3084
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3085 3086

	max_load = this_load = total_load = total_pwr = 0;
3087 3088
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3089

I
Ingo Molnar 已提交
3090
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3091
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3092
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3093 3094 3095
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3096 3097

	do {
3098
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3099 3100
		int local_group;
		int i;
3101
		int __group_imb = 0;
3102
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3103
		unsigned long sum_nr_running, sum_weighted_load;
3104 3105
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3106 3107 3108

		local_group = cpu_isset(this_cpu, group->cpumask);

3109 3110 3111
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3112
		/* Tally up the load of all CPUs in the group */
3113
		sum_weighted_load = sum_nr_running = avg_load = 0;
3114 3115
		sum_avg_load_per_task = avg_load_per_task = 0;

3116 3117
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3118

3119
		for_each_cpu_mask_nr(i, group->cpumask) {
3120 3121 3122 3123 3124 3125
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3126

3127
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3128 3129
				*sd_idle = 0;

L
Linus Torvalds 已提交
3130
			/* Bias balancing toward cpus of our domain */
3131 3132 3133 3134 3135 3136
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3137
				load = target_load(i, load_idx);
3138
			} else {
N
Nick Piggin 已提交
3139
				load = source_load(i, load_idx);
3140 3141 3142 3143 3144
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3145 3146

			avg_load += load;
3147
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3148
			sum_weighted_load += weighted_cpuload(i);
3149 3150

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3151 3152
		}

3153 3154 3155
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3156 3157
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3158
		 */
3159 3160
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3161 3162 3163 3164
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3165
		total_load += avg_load;
3166
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3167 3168

		/* Adjust by relative CPU power of the group */
3169 3170
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3171

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3186 3187
			__group_imb = 1;

3188
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3189

L
Linus Torvalds 已提交
3190 3191 3192
		if (local_group) {
			this_load = avg_load;
			this = group;
3193 3194 3195
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3196
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3197 3198
			max_load = avg_load;
			busiest = group;
3199 3200
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3201
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3202
		}
3203 3204 3205 3206 3207 3208

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3209 3210 3211
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3212 3213 3214 3215 3216 3217 3218 3219 3220

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3221
		/*
3222 3223
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3224 3225
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3226
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3227
			goto group_next;
3228

I
Ingo Molnar 已提交
3229
		/*
3230
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3231 3232 3233 3234 3235
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3236 3237
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3238 3239
			group_min = group;
			min_nr_running = sum_nr_running;
3240 3241
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3242
		}
3243

I
Ingo Molnar 已提交
3244
		/*
3245
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3257
		}
3258 3259
group_next:
#endif
L
Linus Torvalds 已提交
3260 3261 3262
		group = group->next;
	} while (group != sd->groups);

3263
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3264 3265 3266 3267 3268 3269 3270 3271
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3272
	busiest_load_per_task /= busiest_nr_running;
3273 3274 3275
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3276 3277 3278 3279 3280 3281 3282 3283
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3284
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3285 3286
	 * appear as very large values with unsigned longs.
	 */
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3299 3300

	/* Don't want to pull so many tasks that a group would go idle */
3301
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3302

L
Linus Torvalds 已提交
3303
	/* How much load to actually move to equalise the imbalance */
3304 3305
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3306 3307
			/ SCHED_LOAD_SCALE;

3308 3309 3310 3311 3312 3313
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3314
	if (*imbalance < busiest_load_per_task) {
3315
		unsigned long tmp, pwr_now, pwr_move;
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3326
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3327

3328
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3329
					busiest_load_per_task * imbn) {
3330
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3331 3332 3333 3334 3335 3336 3337 3338 3339
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3340 3341 3342 3343
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3344 3345 3346
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3347 3348
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3349
		if (max_load > tmp)
3350
			pwr_move += busiest->__cpu_power *
3351
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3352 3353

		/* Amount of load we'd add */
3354
		if (max_load * busiest->__cpu_power <
3355
				busiest_load_per_task * SCHED_LOAD_SCALE)
3356 3357
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3358
		else
3359 3360 3361 3362
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3363 3364 3365
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3366 3367
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3368 3369 3370 3371 3372
	}

	return busiest;

out_balanced:
3373
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3374
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3375
		goto ret;
L
Linus Torvalds 已提交
3376

3377 3378 3379 3380 3381
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3382
ret:
L
Linus Torvalds 已提交
3383 3384 3385 3386 3387 3388 3389
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3390
static struct rq *
I
Ingo Molnar 已提交
3391
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3392
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3393
{
3394
	struct rq *busiest = NULL, *rq;
3395
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3396 3397
	int i;

3398
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3399
		unsigned long wl;
3400 3401 3402 3403

		if (!cpu_isset(i, *cpus))
			continue;

3404
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3405
		wl = weighted_cpuload(i);
3406

I
Ingo Molnar 已提交
3407
		if (rq->nr_running == 1 && wl > imbalance)
3408
			continue;
L
Linus Torvalds 已提交
3409

I
Ingo Molnar 已提交
3410 3411
		if (wl > max_load) {
			max_load = wl;
3412
			busiest = rq;
L
Linus Torvalds 已提交
3413 3414 3415 3416 3417 3418
		}
	}

	return busiest;
}

3419 3420 3421 3422 3423 3424
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3425 3426 3427 3428
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3429
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3430
			struct sched_domain *sd, enum cpu_idle_type idle,
3431
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3432
{
P
Peter Williams 已提交
3433
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3434 3435
	struct sched_group *group;
	unsigned long imbalance;
3436
	struct rq *busiest;
3437
	unsigned long flags;
N
Nick Piggin 已提交
3438

3439 3440
	cpus_setall(*cpus);

3441 3442 3443
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3444
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3445
	 * portraying it as CPU_NOT_IDLE.
3446
	 */
I
Ingo Molnar 已提交
3447
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3448
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3449
		sd_idle = 1;
L
Linus Torvalds 已提交
3450

3451
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3452

3453
redo:
3454
	update_shares(sd);
3455
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3456
				   cpus, balance);
3457

3458
	if (*balance == 0)
3459 3460
		goto out_balanced;

L
Linus Torvalds 已提交
3461 3462 3463 3464 3465
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3466
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3467 3468 3469 3470 3471
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3472
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3473 3474 3475

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3476
	ld_moved = 0;
L
Linus Torvalds 已提交
3477 3478 3479 3480
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3481
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3482 3483
		 * correctly treated as an imbalance.
		 */
3484
		local_irq_save(flags);
N
Nick Piggin 已提交
3485
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3486
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3487
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3488
		double_rq_unlock(this_rq, busiest);
3489
		local_irq_restore(flags);
3490

3491 3492 3493
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3494
		if (ld_moved && this_cpu != smp_processor_id())
3495 3496
			resched_cpu(this_cpu);

3497
		/* All tasks on this runqueue were pinned by CPU affinity */
3498
		if (unlikely(all_pinned)) {
3499 3500
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3501
				goto redo;
3502
			goto out_balanced;
3503
		}
L
Linus Torvalds 已提交
3504
	}
3505

P
Peter Williams 已提交
3506
	if (!ld_moved) {
L
Linus Torvalds 已提交
3507 3508 3509 3510 3511
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3512
			spin_lock_irqsave(&busiest->lock, flags);
3513 3514 3515 3516 3517

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3518
				spin_unlock_irqrestore(&busiest->lock, flags);
3519 3520 3521 3522
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3523 3524 3525
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3526
				active_balance = 1;
L
Linus Torvalds 已提交
3527
			}
3528
			spin_unlock_irqrestore(&busiest->lock, flags);
3529
			if (active_balance)
L
Linus Torvalds 已提交
3530 3531 3532 3533 3534 3535
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3536
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3537
		}
3538
	} else
L
Linus Torvalds 已提交
3539 3540
		sd->nr_balance_failed = 0;

3541
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3542 3543
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3544 3545 3546 3547 3548 3549 3550 3551 3552
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3553 3554
	}

P
Peter Williams 已提交
3555
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3556
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3557 3558 3559
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3560 3561 3562 3563

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3564
	sd->nr_balance_failed = 0;
3565 3566

out_one_pinned:
L
Linus Torvalds 已提交
3567
	/* tune up the balancing interval */
3568 3569
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3570 3571
		sd->balance_interval *= 2;

3572
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3573
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3574 3575 3576 3577
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3578 3579
	if (ld_moved)
		update_shares(sd);
3580
	return ld_moved;
L
Linus Torvalds 已提交
3581 3582 3583 3584 3585 3586
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3587
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3588 3589
 * this_rq is locked.
 */
3590
static int
3591 3592
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3593 3594
{
	struct sched_group *group;
3595
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3596
	unsigned long imbalance;
P
Peter Williams 已提交
3597
	int ld_moved = 0;
N
Nick Piggin 已提交
3598
	int sd_idle = 0;
3599
	int all_pinned = 0;
3600 3601

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3602

3603 3604 3605 3606
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3607
	 * portraying it as CPU_NOT_IDLE.
3608 3609 3610
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3611
		sd_idle = 1;
L
Linus Torvalds 已提交
3612

3613
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3614
redo:
3615
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3616
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3617
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3618
	if (!group) {
I
Ingo Molnar 已提交
3619
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3620
		goto out_balanced;
L
Linus Torvalds 已提交
3621 3622
	}

3623
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3624
	if (!busiest) {
I
Ingo Molnar 已提交
3625
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3626
		goto out_balanced;
L
Linus Torvalds 已提交
3627 3628
	}

N
Nick Piggin 已提交
3629 3630
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3631
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3632

P
Peter Williams 已提交
3633
	ld_moved = 0;
3634 3635 3636
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3637 3638
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3639
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3640 3641
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3642
		double_unlock_balance(this_rq, busiest);
3643

3644
		if (unlikely(all_pinned)) {
3645 3646
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3647 3648
				goto redo;
		}
3649 3650
	}

P
Peter Williams 已提交
3651
	if (!ld_moved) {
I
Ingo Molnar 已提交
3652
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3653 3654
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3655 3656
			return -1;
	} else
3657
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3658

3659
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3660
	return ld_moved;
3661 3662

out_balanced:
I
Ingo Molnar 已提交
3663
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3664
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3665
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3666
		return -1;
3667
	sd->nr_balance_failed = 0;
3668

3669
	return 0;
L
Linus Torvalds 已提交
3670 3671 3672 3673 3674 3675
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3676
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3677 3678
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3679 3680
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3681
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3682 3683

	for_each_domain(this_cpu, sd) {
3684 3685 3686 3687 3688 3689
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3690
			/* If we've pulled tasks over stop searching: */
3691 3692
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3693 3694 3695 3696 3697 3698

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3699
	}
I
Ingo Molnar 已提交
3700
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3701 3702 3703 3704 3705
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3706
	}
L
Linus Torvalds 已提交
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3717
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3718
{
3719
	int target_cpu = busiest_rq->push_cpu;
3720 3721
	struct sched_domain *sd;
	struct rq *target_rq;
3722

3723
	/* Is there any task to move? */
3724 3725 3726 3727
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3728 3729

	/*
3730
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3731
	 * we need to fix it. Originally reported by
3732
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3733
	 */
3734
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3735

3736 3737
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3738 3739
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3740 3741

	/* Search for an sd spanning us and the target CPU. */
3742
	for_each_domain(target_cpu, sd) {
3743
		if ((sd->flags & SD_LOAD_BALANCE) &&
3744
		    cpu_isset(busiest_cpu, sd->span))
3745
				break;
3746
	}
3747

3748
	if (likely(sd)) {
3749
		schedstat_inc(sd, alb_count);
3750

P
Peter Williams 已提交
3751 3752
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3753 3754 3755 3756
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3757
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3758 3759
}

3760 3761 3762
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3763
	cpumask_t cpu_mask;
3764 3765 3766 3767 3768
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3769
/*
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3780
 *
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3800
		if (!cpu_active(cpu) &&
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3837 3838 3839 3840 3841
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3842
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3843
{
3844 3845
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3846 3847
	unsigned long interval;
	struct sched_domain *sd;
3848
	/* Earliest time when we have to do rebalance again */
3849
	unsigned long next_balance = jiffies + 60*HZ;
3850
	int update_next_balance = 0;
3851
	int need_serialize;
3852
	cpumask_t tmp;
L
Linus Torvalds 已提交
3853

3854
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3855 3856 3857 3858
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3859
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3860 3861 3862 3863 3864 3865
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3866 3867 3868
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3869
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3870

3871
		if (need_serialize) {
3872 3873 3874 3875
			if (!spin_trylock(&balancing))
				goto out;
		}

3876
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3877
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3878 3879
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3880 3881 3882
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3883
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3884
			}
3885
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3886
		}
3887
		if (need_serialize)
3888 3889
			spin_unlock(&balancing);
out:
3890
		if (time_after(next_balance, sd->last_balance + interval)) {
3891
			next_balance = sd->last_balance + interval;
3892 3893
			update_next_balance = 1;
		}
3894 3895 3896 3897 3898 3899 3900 3901

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3902
	}
3903 3904 3905 3906 3907 3908 3909 3910

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3911 3912 3913 3914 3915 3916 3917 3918 3919
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3920 3921 3922 3923
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3924

I
Ingo Molnar 已提交
3925
	rebalance_domains(this_cpu, idle);
3926 3927 3928 3929 3930 3931 3932

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3933 3934
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3935 3936 3937 3938
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3939
		cpu_clear(this_cpu, cpus);
3940
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3941 3942 3943 3944 3945 3946 3947 3948
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3949
			rebalance_domains(balance_cpu, CPU_IDLE);
3950 3951

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3952 3953
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3966
static inline void trigger_load_balance(struct rq *rq, int cpu)
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3993
			if (ilb < nr_cpu_ids)
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4018
}
I
Ingo Molnar 已提交
4019 4020 4021

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4022 4023 4024
/*
 * on UP we do not need to balance between CPUs:
 */
4025
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4026 4027
{
}
I
Ingo Molnar 已提交
4028

L
Linus Torvalds 已提交
4029 4030 4031 4032 4033 4034 4035
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4036 4037
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4038
 */
4039
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4040 4041
{
	unsigned long flags;
4042
	struct rq *rq;
4043
	u64 ns = 0;
4044

4045
	rq = task_rq_lock(p, &flags);
4046

4047
	if (task_current(rq, p)) {
4048 4049
		u64 delta_exec;

I
Ingo Molnar 已提交
4050 4051
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4052
		if ((s64)delta_exec > 0)
4053
			ns = delta_exec;
4054
	}
4055

4056
	task_rq_unlock(rq, &flags);
4057

L
Linus Torvalds 已提交
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);
4072
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4073 4074 4075 4076 4077 4078 4079

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4080 4081
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4082 4083
}

4084 4085 4086 4087 4088
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4089
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4090 4091 4092 4093 4094 4095 4096
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
4097
	account_group_user_time(p, cputime);
4098 4099 4100 4101 4102 4103
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4124
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4125 4126
	cputime64_t tmp;

4127 4128 4129 4130
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4131

L
Linus Torvalds 已提交
4132
	p->stime = cputime_add(p->stime, cputime);
4133
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4134 4135 4136 4137 4138 4139 4140

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4141
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4142
		cpustat->system = cputime64_add(cpustat->system, tmp);
4143
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4144 4145 4146 4147 4148 4149 4150
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4162 4163 4164 4165 4166 4167 4168 4169 4170
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4171
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4172 4173 4174

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
4175
		account_group_system_time(p, steal);
L
Linus Torvalds 已提交
4176 4177 4178 4179
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4180
	} else
L
Linus Torvalds 已提交
4181 4182 4183
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4254
	struct task_struct *curr = rq->curr;
4255 4256

	sched_clock_tick();
I
Ingo Molnar 已提交
4257 4258

	spin_lock(&rq->lock);
4259
	update_rq_clock(rq);
4260
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4261
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4262
	spin_unlock(&rq->lock);
4263

4264
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4265 4266
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4267
#endif
L
Linus Torvalds 已提交
4268 4269
}

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4282

4283
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4284
{
4285
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4286 4287 4288
	/*
	 * Underflow?
	 */
4289 4290
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4291
#endif
L
Linus Torvalds 已提交
4292
	preempt_count() += val;
4293
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4294 4295 4296
	/*
	 * Spinlock count overflowing soon?
	 */
4297 4298
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4299 4300 4301
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4302 4303 4304
}
EXPORT_SYMBOL(add_preempt_count);

4305
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4306
{
4307
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4308 4309 4310
	/*
	 * Underflow?
	 */
4311 4312
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4313 4314 4315
	/*
	 * Is the spinlock portion underflowing?
	 */
4316 4317 4318
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4319
#endif
4320

4321 4322
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4323 4324 4325 4326 4327 4328 4329
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4330
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4331
 */
I
Ingo Molnar 已提交
4332
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4333
{
4334 4335 4336 4337 4338
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4339
	debug_show_held_locks(prev);
4340
	print_modules();
I
Ingo Molnar 已提交
4341 4342
	if (irqs_disabled())
		print_irqtrace_events(prev);
4343 4344 4345 4346 4347

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4348
}
L
Linus Torvalds 已提交
4349

I
Ingo Molnar 已提交
4350 4351 4352 4353 4354
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4355
	/*
I
Ingo Molnar 已提交
4356
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4357 4358 4359
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4360
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4361 4362
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4363 4364
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4365
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4366 4367
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4368 4369
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4370 4371
	}
#endif
I
Ingo Molnar 已提交
4372 4373 4374 4375 4376 4377
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4378
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4379
{
4380
	const struct sched_class *class;
I
Ingo Molnar 已提交
4381
	struct task_struct *p;
L
Linus Torvalds 已提交
4382 4383

	/*
I
Ingo Molnar 已提交
4384 4385
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4386
	 */
I
Ingo Molnar 已提交
4387
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4388
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4389 4390
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4391 4392
	}

I
Ingo Molnar 已提交
4393 4394
	class = sched_class_highest;
	for ( ; ; ) {
4395
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4396 4397 4398 4399 4400 4401 4402 4403 4404
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4405

I
Ingo Molnar 已提交
4406 4407 4408 4409 4410 4411
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4412
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4413
	struct rq *rq;
4414
	int cpu;
I
Ingo Molnar 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4428

4429
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4430
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4431

4432
	spin_lock_irq(&rq->lock);
4433
	update_rq_clock(rq);
4434
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4435 4436

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4437
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4438
			prev->state = TASK_RUNNING;
4439
		else
4440
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4441
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4442 4443
	}

4444 4445 4446 4447
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4448

I
Ingo Molnar 已提交
4449
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4450 4451
		idle_balance(cpu, rq);

4452
	prev->sched_class->put_prev_task(rq, prev);
4453
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4454 4455

	if (likely(prev != next)) {
4456 4457
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4458 4459 4460 4461
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4462
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4463 4464 4465 4466 4467 4468
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4469 4470 4471
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4472
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4473
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4474

L
Linus Torvalds 已提交
4475 4476 4477 4478 4479 4480 4481 4482
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4483
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4484
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4485 4486 4487 4488 4489
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4490

L
Linus Torvalds 已提交
4491 4492
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4493
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4494
	 */
N
Nick Piggin 已提交
4495
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4496 4497
		return;

4498 4499 4500 4501
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4502

4503 4504 4505 4506 4507 4508
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4509 4510 4511 4512
}
EXPORT_SYMBOL(preempt_schedule);

/*
4513
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4514 4515 4516 4517 4518 4519 4520
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4521

4522
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4523 4524
	BUG_ON(ti->preempt_count || !irqs_disabled());

4525 4526 4527 4528 4529 4530
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4531

4532 4533 4534 4535 4536 4537
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4538 4539 4540 4541
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4542 4543
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4544
{
4545
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4546 4547 4548 4549
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4550 4551
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4552 4553 4554
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4555
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4556 4557 4558 4559 4560
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4561
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4562

4563
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4564 4565
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4566
		if (curr->func(curr, mode, sync, key) &&
4567
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4568 4569 4570 4571 4572 4573 4574 4575 4576
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4577
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4578
 */
4579
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4580
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4593
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4594 4595 4596 4597 4598
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4599
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4611
void
I
Ingo Molnar 已提交
4612
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4629 4630 4631 4632 4633 4634 4635 4636 4637
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4638
void complete(struct completion *x)
L
Linus Torvalds 已提交
4639 4640 4641 4642 4643
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4644
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4645 4646 4647 4648
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4649 4650 4651 4652 4653 4654
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4655
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4656 4657 4658 4659 4660
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4661
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4662 4663 4664 4665
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4666 4667
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4668 4669 4670 4671 4672 4673 4674
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4675
			if (signal_pending_state(state, current)) {
4676 4677
				timeout = -ERESTARTSYS;
				break;
4678 4679
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4680 4681 4682
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4683
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4684
		__remove_wait_queue(&x->wait, &wait);
4685 4686
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4687 4688
	}
	x->done--;
4689
	return timeout ?: 1;
L
Linus Torvalds 已提交
4690 4691
}

4692 4693
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4694 4695 4696 4697
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4698
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4699
	spin_unlock_irq(&x->wait.lock);
4700 4701
	return timeout;
}
L
Linus Torvalds 已提交
4702

4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4713
void __sched wait_for_completion(struct completion *x)
4714 4715
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4716
}
4717
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4718

4719 4720 4721 4722 4723 4724 4725 4726 4727
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4728
unsigned long __sched
4729
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4730
{
4731
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4732
}
4733
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4734

4735 4736 4737 4738 4739 4740 4741
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4742
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4743
{
4744 4745 4746 4747
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4748
}
4749
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4750

4751 4752 4753 4754 4755 4756 4757 4758
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4759
unsigned long __sched
4760 4761
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4762
{
4763
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4764
}
4765
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4766

4767 4768 4769 4770 4771 4772 4773
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4774 4775 4776 4777 4778 4779 4780 4781 4782
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4829 4830
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4831
{
I
Ingo Molnar 已提交
4832 4833 4834 4835
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4836

4837
	__set_current_state(state);
L
Linus Torvalds 已提交
4838

4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4853 4854 4855
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4856
long __sched
I
Ingo Molnar 已提交
4857
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4858
{
4859
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4860 4861 4862
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4863
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4864
{
4865
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4866 4867 4868
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4869
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4870
{
4871
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4872 4873 4874
}
EXPORT_SYMBOL(sleep_on_timeout);

4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4887
void rt_mutex_setprio(struct task_struct *p, int prio)
4888 4889
{
	unsigned long flags;
4890
	int oldprio, on_rq, running;
4891
	struct rq *rq;
4892
	const struct sched_class *prev_class = p->sched_class;
4893 4894 4895 4896

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4897
	update_rq_clock(rq);
4898

4899
	oldprio = p->prio;
I
Ingo Molnar 已提交
4900
	on_rq = p->se.on_rq;
4901
	running = task_current(rq, p);
4902
	if (on_rq)
4903
		dequeue_task(rq, p, 0);
4904 4905
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4906 4907 4908 4909 4910 4911

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4912 4913
	p->prio = prio;

4914 4915
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4916
	if (on_rq) {
4917
		enqueue_task(rq, p, 0);
4918 4919

		check_class_changed(rq, p, prev_class, oldprio, running);
4920 4921 4922 4923 4924 4925
	}
	task_rq_unlock(rq, &flags);
}

#endif

4926
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4927
{
I
Ingo Molnar 已提交
4928
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4929
	unsigned long flags;
4930
	struct rq *rq;
L
Linus Torvalds 已提交
4931 4932 4933 4934 4935 4936 4937 4938

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4939
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4940 4941 4942 4943
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4944
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4945
	 */
4946
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4947 4948 4949
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4950
	on_rq = p->se.on_rq;
4951
	if (on_rq)
4952
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4953 4954

	p->static_prio = NICE_TO_PRIO(nice);
4955
	set_load_weight(p);
4956 4957 4958
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4959

I
Ingo Molnar 已提交
4960
	if (on_rq) {
4961
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4962
		/*
4963 4964
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4965
		 */
4966
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4967 4968 4969 4970 4971 4972 4973
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4974 4975 4976 4977 4978
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4979
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4980
{
4981 4982
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4983

M
Matt Mackall 已提交
4984 4985 4986 4987
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4999
	long nice, retval;
L
Linus Torvalds 已提交
5000 5001 5002 5003 5004 5005

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5006 5007
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5008 5009 5010 5011 5012 5013 5014 5015 5016
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5017 5018 5019
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5038
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5039 5040 5041 5042 5043 5044 5045 5046
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5047
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5048 5049 5050
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5051
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5066
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5067 5068 5069 5070 5071 5072 5073 5074
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5075
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5076
{
5077
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5078 5079 5080
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5081 5082
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5083
{
I
Ingo Molnar 已提交
5084
	BUG_ON(p->se.on_rq);
5085

L
Linus Torvalds 已提交
5086
	p->policy = policy;
I
Ingo Molnar 已提交
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5099
	p->rt_priority = prio;
5100 5101 5102
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5103
	set_load_weight(p);
L
Linus Torvalds 已提交
5104 5105
}

5106 5107
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5108
{
5109
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5110
	unsigned long flags;
5111
	const struct sched_class *prev_class = p->sched_class;
5112
	struct rq *rq;
L
Linus Torvalds 已提交
5113

5114 5115
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5116 5117 5118 5119 5120
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5121 5122
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5123
		return -EINVAL;
L
Linus Torvalds 已提交
5124 5125
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5126 5127
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5128 5129
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5130
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5131
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5132
		return -EINVAL;
5133
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5134 5135
		return -EINVAL;

5136 5137 5138
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5139
	if (user && !capable(CAP_SYS_NICE)) {
5140
		if (rt_policy(policy)) {
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5157 5158 5159 5160 5161 5162
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5163

5164 5165 5166 5167 5168
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5169

5170
	if (user) {
5171
#ifdef CONFIG_RT_GROUP_SCHED
5172 5173 5174 5175
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5176 5177
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5178
			return -EPERM;
5179 5180
#endif

5181 5182 5183 5184 5185
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5186 5187 5188 5189 5190
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5191 5192 5193 5194
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5195
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5196 5197 5198
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5199 5200
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5201 5202
		goto recheck;
	}
I
Ingo Molnar 已提交
5203
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5204
	on_rq = p->se.on_rq;
5205
	running = task_current(rq, p);
5206
	if (on_rq)
5207
		deactivate_task(rq, p, 0);
5208 5209
	if (running)
		p->sched_class->put_prev_task(rq, p);
5210

L
Linus Torvalds 已提交
5211
	oldprio = p->prio;
I
Ingo Molnar 已提交
5212
	__setscheduler(rq, p, policy, param->sched_priority);
5213

5214 5215
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5216 5217
	if (on_rq) {
		activate_task(rq, p, 0);
5218 5219

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5220
	}
5221 5222 5223
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5224 5225
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5226 5227
	return 0;
}
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5242 5243
EXPORT_SYMBOL_GPL(sched_setscheduler);

5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5261 5262
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5263 5264 5265
{
	struct sched_param lparam;
	struct task_struct *p;
5266
	int retval;
L
Linus Torvalds 已提交
5267 5268 5269 5270 5271

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5272 5273 5274

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5275
	p = find_process_by_pid(pid);
5276 5277 5278
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5279

L
Linus Torvalds 已提交
5280 5281 5282 5283 5284 5285 5286 5287 5288
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5289 5290
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5291
{
5292 5293 5294 5295
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5315
	struct task_struct *p;
5316
	int retval;
L
Linus Torvalds 已提交
5317 5318

	if (pid < 0)
5319
		return -EINVAL;
L
Linus Torvalds 已提交
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5341
	struct task_struct *p;
5342
	int retval;
L
Linus Torvalds 已提交
5343 5344

	if (!param || pid < 0)
5345
		return -EINVAL;
L
Linus Torvalds 已提交
5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5372
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5373 5374
{
	cpumask_t cpus_allowed;
5375
	cpumask_t new_mask = *in_mask;
5376 5377
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5378

5379
	get_online_cpus();
L
Linus Torvalds 已提交
5380 5381 5382 5383 5384
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5385
		put_online_cpus();
L
Linus Torvalds 已提交
5386 5387 5388 5389 5390
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5391
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5402 5403 5404 5405
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5406
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5407
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5408
 again:
5409
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5410

P
Paul Menage 已提交
5411
	if (!retval) {
5412
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5423 5424
out_unlock:
	put_task_struct(p);
5425
	put_online_cpus();
L
Linus Torvalds 已提交
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5456
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5457 5458 5459 5460
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5461
	struct task_struct *p;
L
Linus Torvalds 已提交
5462 5463
	int retval;

5464
	get_online_cpus();
L
Linus Torvalds 已提交
5465 5466 5467 5468 5469 5470 5471
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5472 5473 5474 5475
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5476
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5477 5478 5479

out_unlock:
	read_unlock(&tasklist_lock);
5480
	put_online_cpus();
L
Linus Torvalds 已提交
5481

5482
	return retval;
L
Linus Torvalds 已提交
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5513 5514
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5515 5516 5517
 */
asmlinkage long sys_sched_yield(void)
{
5518
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5519

5520
	schedstat_inc(rq, yld_count);
5521
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5522 5523 5524 5525 5526 5527

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5528
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5529 5530 5531 5532 5533 5534 5535 5536
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5537
static void __cond_resched(void)
L
Linus Torvalds 已提交
5538
{
5539 5540 5541
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5542 5543 5544 5545 5546
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5547 5548 5549 5550 5551 5552 5553
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5554
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5555
{
5556 5557
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5558 5559 5560 5561 5562
		__cond_resched();
		return 1;
	}
	return 0;
}
5563
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5564 5565 5566 5567 5568

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5569
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5570 5571 5572
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5573
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5574
{
N
Nick Piggin 已提交
5575
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5576 5577
	int ret = 0;

N
Nick Piggin 已提交
5578
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5579
		spin_unlock(lock);
N
Nick Piggin 已提交
5580 5581 5582 5583
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5584
		ret = 1;
L
Linus Torvalds 已提交
5585 5586
		spin_lock(lock);
	}
J
Jan Kara 已提交
5587
	return ret;
L
Linus Torvalds 已提交
5588 5589 5590 5591 5592 5593 5594
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5595
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5596
		local_bh_enable();
L
Linus Torvalds 已提交
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5608
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5619
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5620 5621 5622 5623 5624 5625 5626
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5627
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5628

5629
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5630 5631 5632
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5633
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5634 5635 5636 5637 5638
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5639
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5640 5641
	long ret;

5642
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5643 5644 5645
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5646
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5667
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5668
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5692
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5693
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5710
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5711
	unsigned int time_slice;
5712
	int retval;
L
Linus Torvalds 已提交
5713 5714 5715
	struct timespec t;

	if (pid < 0)
5716
		return -EINVAL;
L
Linus Torvalds 已提交
5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5728 5729 5730 5731 5732 5733
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5734
		time_slice = DEF_TIMESLICE;
5735
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5736 5737 5738 5739 5740
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5741 5742
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5743 5744
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5745
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5746
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5747 5748
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5749

L
Linus Torvalds 已提交
5750 5751 5752 5753 5754
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5755
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5756

5757
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5758 5759
{
	unsigned long free = 0;
5760
	unsigned state;
L
Linus Torvalds 已提交
5761 5762

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5763
	printk(KERN_INFO "%-13.13s %c", p->comm,
5764
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5765
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5766
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5767
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5768
	else
I
Ingo Molnar 已提交
5769
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5770 5771
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5772
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5773
	else
I
Ingo Molnar 已提交
5774
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5775 5776 5777
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5778
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5779 5780
		while (!*n)
			n++;
5781
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5782 5783
	}
#endif
5784
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5785
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5786

5787
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5788 5789
}

I
Ingo Molnar 已提交
5790
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5791
{
5792
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5793

5794 5795 5796
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5797
#else
5798 5799
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5800 5801 5802 5803 5804 5805 5806 5807
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5808
		if (!state_filter || (p->state & state_filter))
5809
			sched_show_task(p);
L
Linus Torvalds 已提交
5810 5811
	} while_each_thread(g, p);

5812 5813
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5814 5815 5816
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5817
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5818 5819 5820 5821 5822
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5823 5824
}

I
Ingo Molnar 已提交
5825 5826
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5827
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5828 5829
}

5830 5831 5832 5833 5834 5835 5836 5837
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5838
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5839
{
5840
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5841 5842
	unsigned long flags;

I
Ingo Molnar 已提交
5843 5844 5845
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5846
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5847
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5848
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5849 5850 5851

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5852 5853 5854
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5855 5856 5857
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5858 5859 5860
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5861
	task_thread_info(idle)->preempt_count = 0;
5862
#endif
I
Ingo Molnar 已提交
5863 5864 5865 5866
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5901 5902

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5903 5904
}

L
Linus Torvalds 已提交
5905 5906 5907 5908
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5909
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5928
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5929 5930
 * call is not atomic; no spinlocks may be held.
 */
5931
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5932
{
5933
	struct migration_req req;
L
Linus Torvalds 已提交
5934
	unsigned long flags;
5935
	struct rq *rq;
5936
	int ret = 0;
L
Linus Torvalds 已提交
5937 5938

	rq = task_rq_lock(p, &flags);
5939
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5940 5941 5942 5943
		ret = -EINVAL;
		goto out;
	}

5944 5945 5946 5947 5948 5949
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5950
	if (p->sched_class->set_cpus_allowed)
5951
		p->sched_class->set_cpus_allowed(p, new_mask);
5952
	else {
5953 5954
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5955 5956
	}

L
Linus Torvalds 已提交
5957
	/* Can the task run on the task's current CPU? If so, we're done */
5958
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5959 5960
		goto out;

5961
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5962 5963 5964 5965 5966 5967 5968 5969 5970
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5971

L
Linus Torvalds 已提交
5972 5973
	return ret;
}
5974
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5975 5976

/*
I
Ingo Molnar 已提交
5977
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5978 5979 5980 5981 5982 5983
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5984 5985
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5986
 */
5987
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5988
{
5989
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5990
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5991

5992
	if (unlikely(!cpu_active(dest_cpu)))
5993
		return ret;
L
Linus Torvalds 已提交
5994 5995 5996 5997 5998 5999 6000

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6001
		goto done;
L
Linus Torvalds 已提交
6002 6003
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
6004
		goto fail;
L
Linus Torvalds 已提交
6005

I
Ingo Molnar 已提交
6006
	on_rq = p->se.on_rq;
6007
	if (on_rq)
6008
		deactivate_task(rq_src, p, 0);
6009

L
Linus Torvalds 已提交
6010
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6011 6012
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6013
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6014
	}
L
Linus Torvalds 已提交
6015
done:
6016
	ret = 1;
L
Linus Torvalds 已提交
6017
fail:
L
Linus Torvalds 已提交
6018
	double_rq_unlock(rq_src, rq_dest);
6019
	return ret;
L
Linus Torvalds 已提交
6020 6021 6022 6023 6024 6025 6026
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6027
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6028 6029
{
	int cpu = (long)data;
6030
	struct rq *rq;
L
Linus Torvalds 已提交
6031 6032 6033 6034 6035 6036

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6037
		struct migration_req *req;
L
Linus Torvalds 已提交
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6060
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6061 6062
		list_del_init(head->next);

N
Nick Piggin 已提交
6063 6064 6065
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6095
/*
6096
 * Figure out where task on dead CPU should go, use force if necessary.
6097 6098
 * NOTE: interrupts should be disabled by the caller
 */
6099
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6100
{
6101
	unsigned long flags;
L
Linus Torvalds 已提交
6102
	cpumask_t mask;
6103 6104
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6105

6106 6107 6108 6109 6110 6111 6112
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6113
		if (dest_cpu >= nr_cpu_ids)
6114 6115 6116
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6117
		if (dest_cpu >= nr_cpu_ids) {
6118 6119 6120
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6121 6122 6123 6124
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6125
			 * cpuset_cpus_allowed() will not block. It must be
6126 6127
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6128
			rq = task_rq_lock(p, &flags);
6129
			p->cpus_allowed = cpus_allowed;
6130 6131
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6132

6133 6134 6135 6136 6137
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6138
			if (p->mm && printk_ratelimit()) {
6139 6140
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6141 6142
					task_pid_nr(p), p->comm, dead_cpu);
			}
6143
		}
6144
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6145 6146 6147 6148 6149 6150 6151 6152 6153
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6154
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6155
{
6156
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6170
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6171

6172
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6173

6174 6175
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6176 6177
			continue;

6178 6179 6180
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6181

6182
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6183 6184
}

I
Ingo Molnar 已提交
6185 6186
/*
 * Schedules idle task to be the next runnable task on current CPU.
6187 6188
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6189 6190 6191
 */
void sched_idle_next(void)
{
6192
	int this_cpu = smp_processor_id();
6193
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6194 6195 6196 6197
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6198
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6199

6200 6201 6202
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6203 6204 6205
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6206
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6207

6208 6209
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6210 6211 6212 6213

	spin_unlock_irqrestore(&rq->lock, flags);
}

6214 6215
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6229
/* called under rq->lock with disabled interrupts */
6230
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6231
{
6232
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6233 6234

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6235
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6236 6237

	/* Cannot have done final schedule yet: would have vanished. */
6238
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6239

6240
	get_task_struct(p);
L
Linus Torvalds 已提交
6241 6242 6243

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6244
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6245 6246
	 * fine.
	 */
6247
	spin_unlock_irq(&rq->lock);
6248
	move_task_off_dead_cpu(dead_cpu, p);
6249
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6250

6251
	put_task_struct(p);
L
Linus Torvalds 已提交
6252 6253 6254 6255 6256
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6257
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6258
	struct task_struct *next;
6259

I
Ingo Molnar 已提交
6260 6261 6262
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6263
		update_rq_clock(rq);
6264
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6265 6266
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6267
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6268
		migrate_dead(dead_cpu, next);
6269

L
Linus Torvalds 已提交
6270 6271 6272 6273
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6274 6275 6276
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6277 6278
	{
		.procname	= "sched_domain",
6279
		.mode		= 0555,
6280
	},
I
Ingo Molnar 已提交
6281
	{0, },
6282 6283 6284
};

static struct ctl_table sd_ctl_root[] = {
6285
	{
6286
		.ctl_name	= CTL_KERN,
6287
		.procname	= "kernel",
6288
		.mode		= 0555,
6289 6290
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6291
	{0, },
6292 6293 6294 6295 6296
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6297
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6298 6299 6300 6301

	return entry;
}

6302 6303
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6304
	struct ctl_table *entry;
6305

6306 6307 6308
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6309
	 * will always be set. In the lowest directory the names are
6310 6311 6312
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6313 6314
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6315 6316 6317
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6318 6319 6320 6321 6322

	kfree(*tablep);
	*tablep = NULL;
}

6323
static void
6324
set_table_entry(struct ctl_table *entry,
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6338
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6339

6340 6341 6342
	if (table == NULL)
		return NULL;

6343
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6344
		sizeof(long), 0644, proc_doulongvec_minmax);
6345
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6346
		sizeof(long), 0644, proc_doulongvec_minmax);
6347
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6348
		sizeof(int), 0644, proc_dointvec_minmax);
6349
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6350
		sizeof(int), 0644, proc_dointvec_minmax);
6351
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6352
		sizeof(int), 0644, proc_dointvec_minmax);
6353
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6354
		sizeof(int), 0644, proc_dointvec_minmax);
6355
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6356
		sizeof(int), 0644, proc_dointvec_minmax);
6357
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6358
		sizeof(int), 0644, proc_dointvec_minmax);
6359
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6360
		sizeof(int), 0644, proc_dointvec_minmax);
6361
	set_table_entry(&table[9], "cache_nice_tries",
6362 6363
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6364
	set_table_entry(&table[10], "flags", &sd->flags,
6365
		sizeof(int), 0644, proc_dointvec_minmax);
6366 6367 6368
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6369 6370 6371 6372

	return table;
}

6373
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6374 6375 6376 6377 6378 6379 6380 6381 6382
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6383 6384
	if (table == NULL)
		return NULL;
6385 6386 6387 6388 6389

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6390
		entry->mode = 0555;
6391 6392 6393 6394 6395 6396 6397 6398
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6399
static void register_sched_domain_sysctl(void)
6400 6401 6402 6403 6404
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6405 6406 6407
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6408 6409 6410
	if (entry == NULL)
		return;

6411
	for_each_online_cpu(i) {
6412 6413
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6414
		entry->mode = 0555;
6415
		entry->child = sd_alloc_ctl_cpu_table(i);
6416
		entry++;
6417
	}
6418 6419

	WARN_ON(sd_sysctl_header);
6420 6421
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6422

6423
/* may be called multiple times per register */
6424 6425
static void unregister_sched_domain_sysctl(void)
{
6426 6427
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6428
	sd_sysctl_header = NULL;
6429 6430
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6431
}
6432
#else
6433 6434 6435 6436
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6437 6438 6439 6440
{
}
#endif

6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6471 6472 6473 6474
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6475 6476
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6477 6478
{
	struct task_struct *p;
6479
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6480
	unsigned long flags;
6481
	struct rq *rq;
L
Linus Torvalds 已提交
6482 6483

	switch (action) {
6484

L
Linus Torvalds 已提交
6485
	case CPU_UP_PREPARE:
6486
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6487
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6488 6489 6490 6491 6492
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6493
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6494 6495 6496
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6497

L
Linus Torvalds 已提交
6498
	case CPU_ONLINE:
6499
	case CPU_ONLINE_FROZEN:
6500
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6501
		wake_up_process(cpu_rq(cpu)->migration_thread);
6502 6503 6504 6505 6506 6507

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6508 6509

			set_rq_online(rq);
6510 6511
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6512
		break;
6513

L
Linus Torvalds 已提交
6514 6515
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6516
	case CPU_UP_CANCELED_FROZEN:
6517 6518
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6519
		/* Unbind it from offline cpu so it can run. Fall thru. */
6520 6521
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6522 6523 6524
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6525

L
Linus Torvalds 已提交
6526
	case CPU_DEAD:
6527
	case CPU_DEAD_FROZEN:
6528
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6529 6530 6531 6532 6533
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6534
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6535
		update_rq_clock(rq);
6536
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6537
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6538 6539
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6540
		migrate_dead_tasks(cpu);
6541
		spin_unlock_irq(&rq->lock);
6542
		cpuset_unlock();
L
Linus Torvalds 已提交
6543 6544 6545
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6546 6547 6548 6549 6550
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6551 6552
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6553 6554
			struct migration_req *req;

L
Linus Torvalds 已提交
6555
			req = list_entry(rq->migration_queue.next,
6556
					 struct migration_req, list);
L
Linus Torvalds 已提交
6557 6558 6559 6560 6561
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6562

6563 6564
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6565 6566 6567 6568 6569
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6570
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6571 6572 6573
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6574 6575 6576 6577 6578 6579 6580 6581
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6582
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6583 6584 6585 6586
	.notifier_call = migration_call,
	.priority = 10
};

6587
static int __init migration_init(void)
L
Linus Torvalds 已提交
6588 6589
{
	void *cpu = (void *)(long)smp_processor_id();
6590
	int err;
6591 6592

	/* Start one for the boot CPU: */
6593 6594
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6595 6596
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6597 6598

	return err;
L
Linus Torvalds 已提交
6599
}
6600
early_initcall(migration_init);
L
Linus Torvalds 已提交
6601 6602 6603
#endif

#ifdef CONFIG_SMP
6604

6605
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6606

6607 6608
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6609
{
I
Ingo Molnar 已提交
6610
	struct sched_group *group = sd->groups;
6611
	char str[256];
L
Linus Torvalds 已提交
6612

6613
	cpulist_scnprintf(str, sizeof(str), sd->span);
6614
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6615 6616 6617 6618 6619 6620 6621 6622 6623

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6624 6625
	}

6626
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6627 6628 6629 6630 6631 6632 6633 6634 6635

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6636

I
Ingo Molnar 已提交
6637
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6638
	do {
I
Ingo Molnar 已提交
6639 6640 6641
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6642 6643 6644
			break;
		}

I
Ingo Molnar 已提交
6645 6646 6647 6648 6649 6650
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6651

I
Ingo Molnar 已提交
6652 6653 6654 6655 6656
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6657

6658
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6659 6660 6661 6662
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6663

6664
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6665

6666
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6667
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6668

I
Ingo Molnar 已提交
6669 6670 6671
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6672

6673
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6674
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6675

6676
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6677 6678 6679 6680
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6681

I
Ingo Molnar 已提交
6682 6683
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6684
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6685
	int level = 0;
L
Linus Torvalds 已提交
6686

I
Ingo Molnar 已提交
6687 6688 6689 6690
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6691

I
Ingo Molnar 已提交
6692 6693
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6694 6695 6696 6697 6698 6699
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6700
	for (;;) {
6701
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6702
			break;
L
Linus Torvalds 已提交
6703 6704
		level++;
		sd = sd->parent;
6705
		if (!sd)
I
Ingo Molnar 已提交
6706 6707
			break;
	}
6708
	kfree(groupmask);
L
Linus Torvalds 已提交
6709
}
6710
#else /* !CONFIG_SCHED_DEBUG */
6711
# define sched_domain_debug(sd, cpu) do { } while (0)
6712
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6713

6714
static int sd_degenerate(struct sched_domain *sd)
6715 6716 6717 6718 6719 6720 6721 6722
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6723 6724 6725
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6739 6740
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6759 6760 6761
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6762 6763 6764 6765 6766 6767 6768
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6769 6770 6771 6772 6773 6774 6775 6776 6777
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6778 6779
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6780

6781 6782
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6783 6784 6785 6786 6787 6788 6789
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6790
	cpu_set(rq->cpu, rd->span);
6791
	if (cpu_isset(rq->cpu, cpu_online_map))
6792
		set_rq_online(rq);
G
Gregory Haskins 已提交
6793 6794 6795 6796

	spin_unlock_irqrestore(&rq->lock, flags);
}

6797
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6798 6799 6800
{
	memset(rd, 0, sizeof(*rd));

6801 6802
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6803 6804

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6805 6806 6807 6808
}

static void init_defrootdomain(void)
{
6809
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6810 6811 6812
	atomic_set(&def_root_domain.refcount, 1);
}

6813
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6814 6815 6816 6817 6818 6819 6820
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6821
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6822 6823 6824 6825

	return rd;
}

L
Linus Torvalds 已提交
6826
/*
I
Ingo Molnar 已提交
6827
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6828 6829
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6830 6831
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6832
{
6833
	struct rq *rq = cpu_rq(cpu);
6834 6835 6836
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6837
	for (tmp = sd; tmp; ) {
6838 6839 6840
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6841

6842
		if (sd_parent_degenerate(tmp, parent)) {
6843
			tmp->parent = parent->parent;
6844 6845
			if (parent->parent)
				parent->parent->child = tmp;
6846 6847
		} else
			tmp = tmp->parent;
6848 6849
	}

6850
	if (sd && sd_degenerate(sd)) {
6851
		sd = sd->parent;
6852 6853 6854
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6855 6856 6857

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6858
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6859
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6860 6861 6862
}

/* cpus with isolated domains */
6863
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6864 6865 6866 6867

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6868 6869
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6870 6871 6872 6873 6874 6875 6876 6877 6878

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6879
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6880 6881

/*
6882 6883 6884 6885
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6886 6887 6888 6889 6890
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6891
static void
6892
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6893
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6894 6895 6896
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6897 6898 6899 6900
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6901 6902
	cpus_clear(*covered);

6903
	for_each_cpu_mask_nr(i, *span) {
6904
		struct sched_group *sg;
6905
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6906 6907
		int j;

6908
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6909 6910
			continue;

6911
		cpus_clear(sg->cpumask);
6912
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6913

6914
		for_each_cpu_mask_nr(j, *span) {
6915
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6916 6917
				continue;

6918
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6930
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6931

6932
#ifdef CONFIG_NUMA
6933

6934 6935 6936 6937 6938
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6939
 * Find the next node to include in a given scheduling domain. Simply
6940 6941 6942 6943
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6944
static int find_next_best_node(int node, nodemask_t *used_nodes)
6945 6946 6947 6948 6949
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6950
	for (i = 0; i < nr_node_ids; i++) {
6951
		/* Start at @node */
6952
		n = (node + i) % nr_node_ids;
6953 6954 6955 6956 6957

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6958
		if (node_isset(n, *used_nodes))
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6970
	node_set(best_node, *used_nodes);
6971 6972 6973 6974 6975 6976
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6977
 * @span: resulting cpumask
6978
 *
I
Ingo Molnar 已提交
6979
 * Given a node, construct a good cpumask for its sched_domain to span. It
6980 6981 6982
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6983
static void sched_domain_node_span(int node, cpumask_t *span)
6984
{
6985 6986
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6987
	int i;
6988

6989
	cpus_clear(*span);
6990
	nodes_clear(used_nodes);
6991

6992
	cpus_or(*span, *span, *nodemask);
6993
	node_set(node, used_nodes);
6994 6995

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6996
		int next_node = find_next_best_node(node, &used_nodes);
6997

6998
		node_to_cpumask_ptr_next(nodemask, next_node);
6999
		cpus_or(*span, *span, *nodemask);
7000 7001
	}
}
7002
#endif /* CONFIG_NUMA */
7003

7004
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7005

7006
/*
7007
 * SMT sched-domains:
7008
 */
L
Linus Torvalds 已提交
7009 7010
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7011
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7012

I
Ingo Molnar 已提交
7013
static int
7014 7015
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7016
{
7017 7018
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
7019 7020
	return cpu;
}
7021
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7022

7023 7024 7025
/*
 * multi-core sched-domains:
 */
7026 7027
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
7028
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7029
#endif /* CONFIG_SCHED_MC */
7030 7031

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7032
static int
7033 7034
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7035
{
7036
	int group;
7037 7038 7039 7040

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7041 7042 7043
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7044 7045
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7046
static int
7047 7048
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7049
{
7050 7051
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7052 7053 7054 7055
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7056
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7057
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7058

I
Ingo Molnar 已提交
7059
static int
7060 7061
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7062
{
7063
	int group;
7064
#ifdef CONFIG_SCHED_MC
7065 7066 7067
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7068
#elif defined(CONFIG_SCHED_SMT)
7069 7070 7071
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7072
#else
7073
	group = cpu;
L
Linus Torvalds 已提交
7074
#endif
7075 7076 7077
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7078 7079 7080 7081
}

#ifdef CONFIG_NUMA
/*
7082 7083 7084
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7085
 */
7086
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7087
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7088

7089
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7090
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7091

7092
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7093
				 struct sched_group **sg, cpumask_t *nodemask)
7094
{
7095 7096
	int group;

7097 7098 7099
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7100 7101 7102 7103

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7104
}
7105

7106 7107 7108 7109 7110 7111 7112
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7113
	do {
7114
		for_each_cpu_mask_nr(j, sg->cpumask) {
7115
			struct sched_domain *sd;
7116

7117 7118 7119 7120 7121 7122 7123 7124
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7125

7126 7127 7128 7129
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7130
}
7131
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7132

7133
#ifdef CONFIG_NUMA
7134
/* Free memory allocated for various sched_group structures */
7135
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7136
{
7137
	int cpu, i;
7138

7139
	for_each_cpu_mask_nr(cpu, *cpu_map) {
7140 7141 7142 7143 7144 7145
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7146
		for (i = 0; i < nr_node_ids; i++) {
7147 7148
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7149 7150 7151
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7168
#else /* !CONFIG_NUMA */
7169
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7170 7171
{
}
7172
#endif /* CONFIG_NUMA */
7173

7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7200 7201
	sd->groups->__cpu_power = 0;

7202 7203 7204 7205 7206 7207 7208 7209 7210 7211
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7212
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7213 7214 7215 7216 7217 7218 7219 7220
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7221
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7222 7223 7224 7225
		group = group->next;
	} while (group != child->groups);
}

7226 7227 7228 7229 7230
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7231 7232 7233 7234 7235 7236
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7237
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7238

7239 7240 7241 7242 7243
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7244
	sd->level = SD_LV_##type;				\
7245
	SD_INIT_NAME(sd, type);					\
7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
L
Li Zefan 已提交
7282 7283 7284 7285 7286 7287 7288 7289 7290
#define SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
static inline void sched_cpumask_alloc(struct allmasks **masks)
{
	*masks = kmalloc(sizeof(**masks), GFP_KERNEL);
}
static inline void sched_cpumask_free(struct allmasks *masks)
{
	kfree(masks);
}
7291
#else
L
Li Zefan 已提交
7292 7293 7294 7295 7296
#define SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
static inline void sched_cpumask_alloc(struct allmasks **masks)
{ }
static inline void sched_cpumask_free(struct allmasks *masks)
{ }
7297 7298 7299 7300 7301
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7302 7303 7304 7305
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7306 7307 7308 7309 7310 7311
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7337
/*
7338 7339
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7340
 */
7341 7342
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7343 7344
{
	int i;
G
Gregory Haskins 已提交
7345
	struct root_domain *rd;
7346 7347
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7348 7349
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7350
	int sd_allnodes = 0;
7351 7352 7353 7354

	/*
	 * Allocate the per-node list of sched groups
	 */
7355
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7356
				    GFP_KERNEL);
7357 7358
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7359
		return -ENOMEM;
7360 7361
	}
#endif
L
Linus Torvalds 已提交
7362

7363
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7364 7365
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7366 7367 7368
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7369 7370 7371
		return -ENOMEM;
	}

7372
	/* get space for all scratch cpumask variables */
L
Li Zefan 已提交
7373
	sched_cpumask_alloc(&allmasks);
7374 7375 7376 7377 7378 7379 7380 7381
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
L
Li Zefan 已提交
7382

7383 7384 7385 7386 7387 7388 7389
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7390
	/*
7391
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7392
	 */
7393
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7394
		struct sched_domain *sd = NULL, *p;
7395
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7396

7397 7398
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7399 7400

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7401
		if (cpus_weight(*cpu_map) >
7402
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7403
			sd = &per_cpu(allnodes_domains, i);
7404
			SD_INIT(sd, ALLNODES);
7405
			set_domain_attribute(sd, attr);
7406
			sd->span = *cpu_map;
7407
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7408
			p = sd;
7409
			sd_allnodes = 1;
7410 7411 7412
		} else
			p = NULL;

L
Linus Torvalds 已提交
7413
		sd = &per_cpu(node_domains, i);
7414
		SD_INIT(sd, NODE);
7415
		set_domain_attribute(sd, attr);
7416
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7417
		sd->parent = p;
7418 7419
		if (p)
			p->child = sd;
7420
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7421 7422 7423 7424
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7425
		SD_INIT(sd, CPU);
7426
		set_domain_attribute(sd, attr);
7427
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7428
		sd->parent = p;
7429 7430
		if (p)
			p->child = sd;
7431
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7432

7433 7434 7435
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7436
		SD_INIT(sd, MC);
7437
		set_domain_attribute(sd, attr);
7438 7439 7440
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7441
		p->child = sd;
7442
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7443 7444
#endif

L
Linus Torvalds 已提交
7445 7446 7447
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7448
		SD_INIT(sd, SIBLING);
7449
		set_domain_attribute(sd, attr);
7450
		sd->span = per_cpu(cpu_sibling_map, i);
7451
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7452
		sd->parent = p;
7453
		p->child = sd;
7454
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7455 7456 7457 7458 7459
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7460
	for_each_cpu_mask_nr(i, *cpu_map) {
7461 7462 7463 7464 7465 7466
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7467 7468
			continue;

I
Ingo Molnar 已提交
7469
		init_sched_build_groups(this_sibling_map, cpu_map,
7470 7471
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7472 7473 7474
	}
#endif

7475 7476
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7477
	for_each_cpu_mask_nr(i, *cpu_map) {
7478 7479 7480 7481 7482 7483
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7484
			continue;
7485

I
Ingo Molnar 已提交
7486
		init_sched_build_groups(this_core_map, cpu_map,
7487 7488
					&cpu_to_core_group,
					send_covered, tmpmask);
7489 7490 7491
	}
#endif

L
Linus Torvalds 已提交
7492
	/* Set up physical groups */
7493
	for (i = 0; i < nr_node_ids; i++) {
7494 7495
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7496

7497 7498 7499
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7500 7501
			continue;

7502 7503 7504
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7505 7506 7507 7508
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7509 7510 7511 7512 7513 7514 7515
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7516

7517
	for (i = 0; i < nr_node_ids; i++) {
7518 7519
		/* Set up node groups */
		struct sched_group *sg, *prev;
7520 7521 7522
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7523 7524
		int j;

7525 7526 7527 7528 7529
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7530
			sched_group_nodes[i] = NULL;
7531
			continue;
7532
		}
7533

7534
		sched_domain_node_span(i, domainspan);
7535
		cpus_and(*domainspan, *domainspan, *cpu_map);
7536

7537
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7538 7539 7540 7541 7542
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7543
		sched_group_nodes[i] = sg;
7544
		for_each_cpu_mask_nr(j, *nodemask) {
7545
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7546

7547 7548 7549
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7550
		sg->__cpu_power = 0;
7551
		sg->cpumask = *nodemask;
7552
		sg->next = sg;
7553
		cpus_or(*covered, *covered, *nodemask);
7554 7555
		prev = sg;

7556
		for (j = 0; j < nr_node_ids; j++) {
7557
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7558
			int n = (i + j) % nr_node_ids;
7559
			node_to_cpumask_ptr(pnodemask, n);
7560

7561 7562 7563 7564
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7565 7566
				break;

7567 7568
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7569 7570
				continue;

7571 7572
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7573 7574 7575
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7576
				goto error;
7577
			}
7578
			sg->__cpu_power = 0;
7579
			sg->cpumask = *tmpmask;
7580
			sg->next = prev->next;
7581
			cpus_or(*covered, *covered, *tmpmask);
7582 7583 7584 7585
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7586 7587 7588
#endif

	/* Calculate CPU power for physical packages and nodes */
7589
#ifdef CONFIG_SCHED_SMT
7590
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7591 7592
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7593
		init_sched_groups_power(i, sd);
7594
	}
L
Linus Torvalds 已提交
7595
#endif
7596
#ifdef CONFIG_SCHED_MC
7597
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7598 7599
		struct sched_domain *sd = &per_cpu(core_domains, i);

7600
		init_sched_groups_power(i, sd);
7601 7602
	}
#endif
7603

7604
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7605 7606
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7607
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7608 7609
	}

7610
#ifdef CONFIG_NUMA
7611
	for (i = 0; i < nr_node_ids; i++)
7612
		init_numa_sched_groups_power(sched_group_nodes[i]);
7613

7614 7615
	if (sd_allnodes) {
		struct sched_group *sg;
7616

7617 7618
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7619 7620
		init_numa_sched_groups_power(sg);
	}
7621 7622
#endif

L
Linus Torvalds 已提交
7623
	/* Attach the domains */
7624
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7625 7626 7627
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7628 7629
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7630 7631 7632
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7633
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7634
	}
7635

L
Li Zefan 已提交
7636
	sched_cpumask_free(allmasks);
7637 7638
	return 0;

7639
#ifdef CONFIG_NUMA
7640
error:
7641
	free_sched_groups(cpu_map, tmpmask);
L
Li Zefan 已提交
7642
	sched_cpumask_free(allmasks);
7643
	kfree(rd);
7644
	return -ENOMEM;
7645
#endif
L
Linus Torvalds 已提交
7646
}
P
Paul Jackson 已提交
7647

7648 7649 7650 7651 7652
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7653 7654
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7655 7656
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7657 7658 7659 7660 7661 7662 7663 7664

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7665 7666 7667 7668
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7669
/*
I
Ingo Molnar 已提交
7670
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7671 7672
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7673
 */
7674
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7675
{
7676 7677
	int err;

7678
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7679 7680 7681 7682 7683
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7684
	dattr_cur = NULL;
7685
	err = build_sched_domains(doms_cur);
7686
	register_sched_domain_sysctl();
7687 7688

	return err;
7689 7690
}

7691 7692
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7693
{
7694
	free_sched_groups(cpu_map, tmpmask);
7695
}
L
Linus Torvalds 已提交
7696

7697 7698 7699 7700
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7701
static void detach_destroy_domains(const cpumask_t *cpu_map)
7702
{
7703
	cpumask_t tmpmask;
7704 7705
	int i;

7706
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7707
		cpu_attach_domain(NULL, &def_root_domain, i);
7708
	synchronize_sched();
7709
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7710 7711
}

7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7728 7729
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7730
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7731 7732 7733 7734
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7735 7736 7737
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7738 7739 7740
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7741 7742
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7743 7744
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
7745
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7746
 *
7747 7748 7749 7750
 * If doms_new==NULL it will be replaced with cpu_online_map.
 * ndoms_new==0 is a special case for destroying existing domains.
 * It will not create the default domain.
 *
P
Paul Jackson 已提交
7751 7752
 * Call with hotplug lock held
 */
7753 7754
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7755
{
7756
	int i, j, n;
P
Paul Jackson 已提交
7757

7758
	mutex_lock(&sched_domains_mutex);
7759

7760 7761 7762
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7763
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7764 7765 7766

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7767
		for (j = 0; j < n; j++) {
7768 7769
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7770 7771 7772 7773 7774 7775 7776 7777
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7778 7779 7780 7781
	if (doms_new == NULL) {
		ndoms_cur = 0;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7782
		WARN_ON_ONCE(dattr_new);
7783 7784
	}

P
Paul Jackson 已提交
7785 7786 7787
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7788 7789
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7790 7791 7792
				goto match2;
		}
		/* no match - add a new doms_new */
7793 7794
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7795 7796 7797 7798 7799 7800 7801
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7802
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7803
	doms_cur = doms_new;
7804
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7805
	ndoms_cur = ndoms_new;
7806 7807

	register_sched_domain_sysctl();
7808

7809
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7810 7811
}

7812
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7813
int arch_reinit_sched_domains(void)
7814
{
7815
	get_online_cpus();
7816 7817 7818 7819

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7820
	rebuild_sched_domains();
7821
	put_online_cpus();
7822

7823
	return 0;
7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7844 7845
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7846 7847 7848
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7849
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7850
					    const char *buf, size_t count)
7851 7852 7853
{
	return sched_power_savings_store(buf, count, 0);
}
7854 7855 7856
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7857 7858 7859
#endif

#ifdef CONFIG_SCHED_SMT
7860 7861
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7862 7863 7864
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7865
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7866
					     const char *buf, size_t count)
7867 7868 7869
{
	return sched_power_savings_store(buf, count, 1);
}
7870 7871
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7891
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7892

7893
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7894
/*
7895 7896
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7897 7898 7899
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7900 7901 7902 7903 7904 7905
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
7906
		partition_sched_domains(1, NULL, NULL);
7907 7908 7909 7910 7911 7912 7913 7914 7915 7916
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7917
{
P
Peter Zijlstra 已提交
7918 7919
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7920 7921
	switch (action) {
	case CPU_DOWN_PREPARE:
7922
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7923
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7924 7925 7926
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7927
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7928
	case CPU_ONLINE:
7929
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7930
		enable_runtime(cpu_rq(cpu));
7931 7932
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7933 7934 7935 7936 7937 7938 7939
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7940 7941
	cpumask_t non_isolated_cpus;

7942 7943 7944 7945 7946
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7947
	get_online_cpus();
7948
	mutex_lock(&sched_domains_mutex);
7949
	arch_init_sched_domains(&cpu_online_map);
7950
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7951 7952
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7953
	mutex_unlock(&sched_domains_mutex);
7954
	put_online_cpus();
7955 7956

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7957 7958
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7959 7960 7961 7962 7963
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7964
	init_hrtick();
7965 7966

	/* Move init over to a non-isolated CPU */
7967
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7968
		BUG();
I
Ingo Molnar 已提交
7969
	sched_init_granularity();
L
Linus Torvalds 已提交
7970 7971 7972 7973
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7974
	sched_init_granularity();
L
Linus Torvalds 已提交
7975 7976 7977 7978 7979 7980 7981 7982 7983 7984
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7985
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7986 7987
{
	cfs_rq->tasks_timeline = RB_ROOT;
7988
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7989 7990 7991
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7992
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7993 7994
}

P
Peter Zijlstra 已提交
7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8008
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8009 8010
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8011 8012 8013 8014 8015 8016 8017
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8018 8019
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8020

8021
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8022
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8023 8024
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8025 8026
}

P
Peter Zijlstra 已提交
8027
#ifdef CONFIG_FAIR_GROUP_SCHED
8028 8029 8030
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8031
{
8032
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8033 8034 8035 8036 8037 8038 8039
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8040 8041 8042 8043
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8044 8045 8046 8047 8048
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8049 8050
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8051
	se->load.inv_weight = 0;
8052
	se->parent = parent;
P
Peter Zijlstra 已提交
8053
}
8054
#endif
P
Peter Zijlstra 已提交
8055

8056
#ifdef CONFIG_RT_GROUP_SCHED
8057 8058 8059
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8060
{
8061 8062
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8063 8064 8065 8066
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8067
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8068 8069 8070 8071
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8072 8073 8074
	if (!rt_se)
		return;

8075 8076 8077 8078 8079
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8080
	rt_se->my_q = rt_rq;
8081
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8082 8083 8084 8085
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8086 8087
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8088
	int i, j;
8089 8090 8091 8092 8093 8094 8095
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8096 8097 8098
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8099 8100 8101 8102 8103 8104
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8105
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8106 8107 8108 8109 8110 8111 8112

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8113 8114 8115 8116 8117 8118 8119

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8120 8121
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8122 8123 8124 8125 8126
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8127 8128 8129 8130 8131 8132 8133 8134
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8135 8136
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8137
	}
I
Ingo Molnar 已提交
8138

G
Gregory Haskins 已提交
8139 8140 8141 8142
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8143 8144 8145 8146 8147 8148
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8149 8150 8151
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8152 8153
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8154

8155
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8156
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8157 8158 8159 8160 8161 8162
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8163 8164
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8165

8166
	for_each_possible_cpu(i) {
8167
		struct rq *rq;
L
Linus Torvalds 已提交
8168 8169 8170

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8171
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8172
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8173
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8174
#ifdef CONFIG_FAIR_GROUP_SCHED
8175
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8176
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8197
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8198
#elif defined CONFIG_USER_SCHED
8199 8200
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8212
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8213
				&per_cpu(init_cfs_rq, i),
8214 8215
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8216

8217
#endif
D
Dhaval Giani 已提交
8218 8219 8220
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8221
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8222
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8223
#ifdef CONFIG_CGROUP_SCHED
8224
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8225
#elif defined CONFIG_USER_SCHED
8226
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8227
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8228
				&per_cpu(init_rt_rq, i),
8229 8230
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8231
#endif
I
Ingo Molnar 已提交
8232
#endif
L
Linus Torvalds 已提交
8233

I
Ingo Molnar 已提交
8234 8235
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8236
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8237
		rq->sd = NULL;
G
Gregory Haskins 已提交
8238
		rq->rd = NULL;
L
Linus Torvalds 已提交
8239
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8240
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8241
		rq->push_cpu = 0;
8242
		rq->cpu = i;
8243
		rq->online = 0;
L
Linus Torvalds 已提交
8244 8245
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8246
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8247
#endif
P
Peter Zijlstra 已提交
8248
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8249 8250 8251
		atomic_set(&rq->nr_iowait, 0);
	}

8252
	set_load_weight(&init_task);
8253

8254 8255 8256 8257
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8258
#ifdef CONFIG_SMP
8259
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8260 8261
#endif

8262 8263 8264 8265
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8279 8280 8281 8282
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8283 8284

	scheduler_running = 1;
L
Linus Torvalds 已提交
8285 8286 8287 8288 8289
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8290
#ifdef in_atomic
L
Linus Torvalds 已提交
8291 8292
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8312 8313 8314 8315 8316 8317
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8318 8319 8320
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8321

8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8333 8334
void normalize_rt_tasks(void)
{
8335
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8336
	unsigned long flags;
8337
	struct rq *rq;
L
Linus Torvalds 已提交
8338

8339
	read_lock_irqsave(&tasklist_lock, flags);
8340
	do_each_thread(g, p) {
8341 8342 8343 8344 8345 8346
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8347 8348
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8349 8350 8351
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8352
#endif
I
Ingo Molnar 已提交
8353 8354 8355 8356 8357 8358 8359 8360

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8361
			continue;
I
Ingo Molnar 已提交
8362
		}
L
Linus Torvalds 已提交
8363

8364
		spin_lock(&p->pi_lock);
8365
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8366

8367
		normalize_task(rq, p);
8368

8369
		__task_rq_unlock(rq);
8370
		spin_unlock(&p->pi_lock);
8371 8372
	} while_each_thread(g, p);

8373
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8374 8375 8376
}

#endif /* CONFIG_MAGIC_SYSRQ */
8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8395
struct task_struct *curr_task(int cpu)
8396 8397 8398 8399 8400 8401 8402 8403 8404 8405
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8406 8407
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8408 8409 8410 8411 8412 8413 8414
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8415
void set_curr_task(int cpu, struct task_struct *p)
8416 8417 8418 8419 8420
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8421

8422 8423
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8438 8439
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8440 8441
{
	struct cfs_rq *cfs_rq;
8442
	struct sched_entity *se;
8443
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8444 8445
	int i;

8446
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8447 8448
	if (!tg->cfs_rq)
		goto err;
8449
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8450 8451
	if (!tg->se)
		goto err;
8452 8453

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8454 8455

	for_each_possible_cpu(i) {
8456
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8457

8458 8459
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8460 8461 8462
		if (!cfs_rq)
			goto err;

8463 8464
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8465 8466 8467
		if (!se)
			goto err;

8468
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8487
#else /* !CONFG_FAIR_GROUP_SCHED */
8488 8489 8490 8491
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8492 8493
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8505
#endif /* CONFIG_FAIR_GROUP_SCHED */
8506 8507

#ifdef CONFIG_RT_GROUP_SCHED
8508 8509 8510 8511
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8512 8513
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8525 8526
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8527 8528
{
	struct rt_rq *rt_rq;
8529
	struct sched_rt_entity *rt_se;
8530 8531 8532
	struct rq *rq;
	int i;

8533
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8534 8535
	if (!tg->rt_rq)
		goto err;
8536
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8537 8538 8539
	if (!tg->rt_se)
		goto err;

8540 8541
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8542 8543 8544 8545

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8546 8547
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8548 8549
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8550

8551 8552
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8553 8554
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8555

8556
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8557 8558
	}

8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8575
#else /* !CONFIG_RT_GROUP_SCHED */
8576 8577 8578 8579
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8580 8581
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8593
#endif /* CONFIG_RT_GROUP_SCHED */
8594

8595
#ifdef CONFIG_GROUP_SCHED
8596 8597 8598 8599 8600 8601 8602 8603
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8604
struct task_group *sched_create_group(struct task_group *parent)
8605 8606 8607 8608 8609 8610 8611 8612 8613
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8614
	if (!alloc_fair_sched_group(tg, parent))
8615 8616
		goto err;

8617
	if (!alloc_rt_sched_group(tg, parent))
8618 8619
		goto err;

8620
	spin_lock_irqsave(&task_group_lock, flags);
8621
	for_each_possible_cpu(i) {
8622 8623
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8624
	}
P
Peter Zijlstra 已提交
8625
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8626 8627 8628 8629 8630

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8631
	list_add_rcu(&tg->siblings, &parent->children);
8632
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8633

8634
	return tg;
S
Srivatsa Vaddagiri 已提交
8635 8636

err:
P
Peter Zijlstra 已提交
8637
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8638 8639 8640
	return ERR_PTR(-ENOMEM);
}

8641
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8642
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8643 8644
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8645
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8646 8647
}

8648
/* Destroy runqueue etc associated with a task group */
8649
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8650
{
8651
	unsigned long flags;
8652
	int i;
S
Srivatsa Vaddagiri 已提交
8653

8654
	spin_lock_irqsave(&task_group_lock, flags);
8655
	for_each_possible_cpu(i) {
8656 8657
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8658
	}
P
Peter Zijlstra 已提交
8659
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8660
	list_del_rcu(&tg->siblings);
8661
	spin_unlock_irqrestore(&task_group_lock, flags);
8662 8663

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8664
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8665 8666
}

8667
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8668 8669 8670
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8671 8672
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8673 8674 8675 8676 8677 8678 8679 8680 8681
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8682
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8683 8684
	on_rq = tsk->se.on_rq;

8685
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8686
		dequeue_task(rq, tsk, 0);
8687 8688
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8689

P
Peter Zijlstra 已提交
8690
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8691

P
Peter Zijlstra 已提交
8692 8693 8694 8695 8696
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8697 8698 8699
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8700
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8701 8702 8703

	task_rq_unlock(rq, &flags);
}
8704
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8705

8706
#ifdef CONFIG_FAIR_GROUP_SCHED
8707
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8708 8709 8710 8711 8712
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8713
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8714 8715 8716
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8717
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8718

8719
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8720
		enqueue_entity(cfs_rq, se, 0);
8721
}
8722

8723 8724 8725 8726 8727 8728 8729 8730 8731
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8732 8733
}

8734 8735
static DEFINE_MUTEX(shares_mutex);

8736
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8737 8738
{
	int i;
8739
	unsigned long flags;
8740

8741 8742 8743 8744 8745 8746
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8747 8748
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8749 8750
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8751

8752
	mutex_lock(&shares_mutex);
8753
	if (tg->shares == shares)
8754
		goto done;
S
Srivatsa Vaddagiri 已提交
8755

8756
	spin_lock_irqsave(&task_group_lock, flags);
8757 8758
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8759
	list_del_rcu(&tg->siblings);
8760
	spin_unlock_irqrestore(&task_group_lock, flags);
8761 8762 8763 8764 8765 8766 8767 8768

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8769
	tg->shares = shares;
8770 8771 8772 8773 8774
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8775
		set_se_shares(tg->se[i], shares);
8776
	}
S
Srivatsa Vaddagiri 已提交
8777

8778 8779 8780 8781
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8782
	spin_lock_irqsave(&task_group_lock, flags);
8783 8784
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8785
	list_add_rcu(&tg->siblings, &tg->parent->children);
8786
	spin_unlock_irqrestore(&task_group_lock, flags);
8787
done:
8788
	mutex_unlock(&shares_mutex);
8789
	return 0;
S
Srivatsa Vaddagiri 已提交
8790 8791
}

8792 8793 8794 8795
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8796
#endif
8797

8798
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8799
/*
P
Peter Zijlstra 已提交
8800
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8801
 */
P
Peter Zijlstra 已提交
8802 8803 8804 8805 8806
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8807
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8808

P
Peter Zijlstra 已提交
8809
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8810 8811
}

P
Peter Zijlstra 已提交
8812 8813
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8814
{
P
Peter Zijlstra 已提交
8815
	struct task_struct *g, *p;
8816

P
Peter Zijlstra 已提交
8817 8818 8819 8820
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8821

P
Peter Zijlstra 已提交
8822 8823
	return 0;
}
8824

P
Peter Zijlstra 已提交
8825 8826 8827 8828 8829
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8830

P
Peter Zijlstra 已提交
8831 8832 8833 8834 8835 8836
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8837

P
Peter Zijlstra 已提交
8838 8839
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8840

P
Peter Zijlstra 已提交
8841 8842 8843
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8844 8845
	}

8846 8847 8848 8849 8850
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8851

8852 8853 8854
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8855 8856
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8857

P
Peter Zijlstra 已提交
8858
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8859

8860 8861 8862 8863 8864
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8865

8866 8867 8868
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8869 8870 8871
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8872

P
Peter Zijlstra 已提交
8873 8874 8875 8876
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8877

P
Peter Zijlstra 已提交
8878
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8879
	}
P
Peter Zijlstra 已提交
8880

P
Peter Zijlstra 已提交
8881 8882 8883 8884
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8885 8886
}

P
Peter Zijlstra 已提交
8887
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8888
{
P
Peter Zijlstra 已提交
8889 8890 8891 8892 8893 8894 8895
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8896 8897
}

8898 8899
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8900
{
P
Peter Zijlstra 已提交
8901
	int i, err = 0;
P
Peter Zijlstra 已提交
8902 8903

	mutex_lock(&rt_constraints_mutex);
8904
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8905 8906
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8907
		goto unlock;
P
Peter Zijlstra 已提交
8908 8909

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8910 8911
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8912 8913 8914 8915 8916 8917 8918 8919 8920

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8921
 unlock:
8922
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8923 8924 8925
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8926 8927
}

8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8940 8941 8942 8943
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8944
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8945 8946
		return -1;

8947
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8948 8949 8950
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8951 8952 8953 8954 8955 8956 8957 8958

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8959 8960 8961
	if (rt_period == 0)
		return -EINVAL;

8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8976
	u64 runtime, period;
8977 8978
	int ret = 0;

8979 8980 8981
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8982 8983 8984 8985 8986 8987 8988 8989
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8990

8991
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8992
	read_lock(&tasklist_lock);
8993
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8994
	read_unlock(&tasklist_lock);
8995 8996 8997 8998
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8999
#else /* !CONFIG_RT_GROUP_SCHED */
9000 9001
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9002 9003 9004
	unsigned long flags;
	int i;

9005 9006 9007
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9008 9009 9010 9011 9012 9013 9014 9015 9016 9017
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9018 9019
	return 0;
}
9020
#endif /* CONFIG_RT_GROUP_SCHED */
9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9051

9052
#ifdef CONFIG_CGROUP_SCHED
9053 9054

/* return corresponding task_group object of a cgroup */
9055
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9056
{
9057 9058
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9059 9060 9061
}

static struct cgroup_subsys_state *
9062
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9063
{
9064
	struct task_group *tg, *parent;
9065

9066
	if (!cgrp->parent) {
9067 9068 9069 9070
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9071 9072
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9073 9074 9075 9076 9077 9078
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9079 9080
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9081
{
9082
	struct task_group *tg = cgroup_tg(cgrp);
9083 9084 9085 9086

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9087 9088 9089
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9090
{
9091 9092
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9093
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9094 9095
		return -EINVAL;
#else
9096 9097 9098
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9099
#endif
9100 9101 9102 9103 9104

	return 0;
}

static void
9105
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9106 9107 9108 9109 9110
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9111
#ifdef CONFIG_FAIR_GROUP_SCHED
9112
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9113
				u64 shareval)
9114
{
9115
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9116 9117
}

9118
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9119
{
9120
	struct task_group *tg = cgroup_tg(cgrp);
9121 9122 9123

	return (u64) tg->shares;
}
9124
#endif /* CONFIG_FAIR_GROUP_SCHED */
9125

9126
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9127
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9128
				s64 val)
P
Peter Zijlstra 已提交
9129
{
9130
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9131 9132
}

9133
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9134
{
9135
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9136
}
9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9148
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9149

9150
static struct cftype cpu_files[] = {
9151
#ifdef CONFIG_FAIR_GROUP_SCHED
9152 9153
	{
		.name = "shares",
9154 9155
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9156
	},
9157 9158
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9159
	{
P
Peter Zijlstra 已提交
9160
		.name = "rt_runtime_us",
9161 9162
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9163
	},
9164 9165
	{
		.name = "rt_period_us",
9166 9167
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9168
	},
9169
#endif
9170 9171 9172 9173
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9174
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9175 9176 9177
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9178 9179 9180 9181 9182 9183 9184
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9185 9186 9187
	.early_init	= 1,
};

9188
#endif	/* CONFIG_CGROUP_SCHED */
9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9209
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9210
{
9211
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9224
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9241
static void
9242
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9243
{
9244
	struct cpuacct *ca = cgroup_ca(cgrp);
9245 9246 9247 9248 9249 9250

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9251
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9252
{
9253
	struct cpuacct *ca = cgroup_ca(cgrp);
9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9295 9296 9297
static struct cftype files[] = {
	{
		.name = "usage",
9298 9299
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9300 9301 9302
	},
};

9303
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9304
{
9305
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */