sched.c 235.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127
#ifdef CONFIG_SMP
128 129 130

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

151 152
static inline int rt_policy(int policy)
{
153
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 155 156 157 158 159 160 161 162
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
163
/*
I
Ingo Molnar 已提交
164
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
165
 */
I
Ingo Molnar 已提交
166 167 168 169 170
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

171
struct rt_bandwidth {
I
Ingo Molnar 已提交
172 173 174 175 176
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
210 211
	spin_lock_init(&rt_b->rt_runtime_lock);

212 213 214 215 216
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

217 218 219
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
220 221 222 223 224 225
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

226
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 228 229 230 231 232 233 234 235 236 237 238
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 240
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
241 242 243 244 245 246 247 248 249 250 251
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

252 253 254 255 256 257
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

258
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
259

260 261
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
262 263
struct cfs_rq;

P
Peter Zijlstra 已提交
264 265
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
266
/* task group related information */
267
struct task_group {
268
#ifdef CONFIG_CGROUP_SCHED
269 270
	struct cgroup_subsys_state css;
#endif
271

272 273 274 275
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

276
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
277 278 279 280 281
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
282 283 284 285 286 287
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

288
	struct rt_bandwidth rt_bandwidth;
289
#endif
290

291
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
292
	struct list_head list;
P
Peter Zijlstra 已提交
293 294 295 296

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
297 298
};

D
Dhaval Giani 已提交
299
#ifdef CONFIG_USER_SCHED
300

301 302 303 304 305 306
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

307 308 309 310 311 312 313
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

314
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
315 316 317 318
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319
#endif /* CONFIG_FAIR_GROUP_SCHED */
320 321 322 323

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
325
#else /* !CONFIG_USER_SCHED */
326
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
327
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
328

329
/* task_group_lock serializes add/remove of task groups and also changes to
330 331
 * a task group's cpu shares.
 */
332
static DEFINE_SPINLOCK(task_group_lock);
333

334 335 336 337 338 339 340
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

341 342 343
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
344
#else /* !CONFIG_USER_SCHED */
345
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
346
#endif /* CONFIG_USER_SCHED */
347

348
/*
349 350 351 352
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
353 354 355
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
356
#define MIN_SHARES	2
357
#define MAX_SHARES	(1UL << 18)
358

359 360 361
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
362
/* Default task group.
I
Ingo Molnar 已提交
363
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
364
 */
365
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
366 367

/* return group to which a task belongs */
368
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
369
{
370
	struct task_group *tg;
371

372
#ifdef CONFIG_USER_SCHED
373 374 375
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
376
#elif defined(CONFIG_CGROUP_SCHED)
377 378
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
379
#else
I
Ingo Molnar 已提交
380
	tg = &init_task_group;
381
#endif
382
	return tg;
S
Srivatsa Vaddagiri 已提交
383 384 385
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
386
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
387
{
388
#ifdef CONFIG_FAIR_GROUP_SCHED
389 390
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
391
#endif
P
Peter Zijlstra 已提交
392

393
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
394 395
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
396
#endif
S
Srivatsa Vaddagiri 已提交
397 398 399 400
}

#else

401 402 403 404 405 406 407
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
408
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
409 410 411 412
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
413

414
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
415

I
Ingo Molnar 已提交
416 417 418 419 420 421
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
422
	u64 min_vruntime;
I
Ingo Molnar 已提交
423 424 425

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
426 427 428 429 430 431

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
432 433
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
434
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
435

P
Peter Zijlstra 已提交
436
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
437

438
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
439 440
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
441 442
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
443 444 445 446 447 448
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
449 450
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
451 452 453

#ifdef CONFIG_SMP
	/*
454
	 * the part of load.weight contributed by tasks
455
	 */
456
	unsigned long task_weight;
457

458 459 460 461 462 463 464
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
465

466 467 468 469
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
470 471 472 473 474

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
475
#endif
I
Ingo Molnar 已提交
476 477
#endif
};
L
Linus Torvalds 已提交
478

I
Ingo Molnar 已提交
479 480 481
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
482
	unsigned long rt_nr_running;
483
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
484 485
	struct {
		int curr; /* highest queued rt task prio */
486
#ifdef CONFIG_SMP
487
		int next; /* next highest */
488
#endif
489
	} highest_prio;
P
Peter Zijlstra 已提交
490
#endif
P
Peter Zijlstra 已提交
491
#ifdef CONFIG_SMP
492
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
493
	int overloaded;
494
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
495
#endif
P
Peter Zijlstra 已提交
496
	int rt_throttled;
P
Peter Zijlstra 已提交
497
	u64 rt_time;
P
Peter Zijlstra 已提交
498
	u64 rt_runtime;
I
Ingo Molnar 已提交
499
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
500
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
501

502
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
503 504
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
505 506 507 508 509
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
510 511
};

G
Gregory Haskins 已提交
512 513 514 515
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
516 517
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
518 519 520 521 522 523
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
524 525
	cpumask_var_t span;
	cpumask_var_t online;
526

I
Ingo Molnar 已提交
527
	/*
528 529 530
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
531
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
532
	atomic_t rto_count;
533 534 535
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
536 537 538 539 540 541 542 543
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
544 545
};

546 547 548 549
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
550 551 552 553
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
554 555 556 557 558 559 560
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
561
struct rq {
562 563
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
564 565 566 567 568 569

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
570 571
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
572
#ifdef CONFIG_NO_HZ
573
	unsigned long last_tick_seen;
574 575
	unsigned char in_nohz_recently;
#endif
576 577
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
578 579 580 581
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
582 583
	struct rt_rq rt;

I
Ingo Molnar 已提交
584
#ifdef CONFIG_FAIR_GROUP_SCHED
585 586
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
587 588
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
589
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
590 591 592 593 594 595 596 597 598 599
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

600
	struct task_struct *curr, *idle;
601
	unsigned long next_balance;
L
Linus Torvalds 已提交
602
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
603

604
	u64 clock;
I
Ingo Molnar 已提交
605

L
Linus Torvalds 已提交
606 607 608
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
609
	struct root_domain *rd;
L
Linus Torvalds 已提交
610 611
	struct sched_domain *sd;

612
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
613 614 615
	/* For active balancing */
	int active_balance;
	int push_cpu;
616 617
	/* cpu of this runqueue: */
	int cpu;
618
	int online;
L
Linus Torvalds 已提交
619

620
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
621

622
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
623 624 625
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
626
#ifdef CONFIG_SCHED_HRTICK
627 628 629 630
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
631 632 633
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
634 635 636
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
637 638
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
639 640

	/* sys_sched_yield() stats */
641 642 643 644
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
645 646

	/* schedule() stats */
647 648 649
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
650 651

	/* try_to_wake_up() stats */
652 653
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
654 655

	/* BKL stats */
656
	unsigned int bkl_count;
L
Linus Torvalds 已提交
657 658 659
#endif
};

660
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
661

662
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
663
{
664
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
665 666
}

667 668 669 670 671 672 673 674 675
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
676 677
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
678
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
679 680 681 682
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
683 684
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
685 686 687 688 689 690

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

691 692 693 694 695
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
696 697 698 699 700 701 702 703 704
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
723 724 725
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
726 727 728 729

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
730
enum {
P
Peter Zijlstra 已提交
731
#include "sched_features.h"
I
Ingo Molnar 已提交
732 733
};

P
Peter Zijlstra 已提交
734 735 736 737 738
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
739
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
740 741 742 743 744 745 746 747 748
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

749
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
750 751 752 753 754 755
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
756
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
757 758 759 760
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
761 762 763
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
764
	}
L
Li Zefan 已提交
765
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
766

L
Li Zefan 已提交
767
	return 0;
P
Peter Zijlstra 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
787
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
812 813 814 815 816
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
817
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
818 819 820 821 822
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
837

838 839 840 841 842 843
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
844 845
/*
 * ratelimit for updating the group shares.
846
 * default: 0.25ms
P
Peter Zijlstra 已提交
847
 */
848
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
849

850 851 852 853 854 855 856
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
857
/*
P
Peter Zijlstra 已提交
858
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
859 860
 * default: 1s
 */
P
Peter Zijlstra 已提交
861
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
862

863 864
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
865 866 867 868 869
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
870

871 872 873 874 875 876 877
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
878
	if (sysctl_sched_rt_runtime < 0)
879 880 881 882
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
883

L
Linus Torvalds 已提交
884
#ifndef prepare_arch_switch
885 886 887 888 889 890
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

891 892 893 894 895
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

896
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
897
static inline int task_running(struct rq *rq, struct task_struct *p)
898
{
899
	return task_current(rq, p);
900 901
}

902
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 904 905
{
}

906
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
907
{
908 909 910 911
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
912 913 914 915 916 917 918
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

919 920 921 922
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
923
static inline int task_running(struct rq *rq, struct task_struct *p)
924 925 926 927
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
928
	return task_current(rq, p);
929 930 931
#endif
}

932
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

949
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
950 951 952 953 954 955 956 957 958 959 960 961
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
962
#endif
963 964
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
965

966 967 968 969
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
970
static inline struct rq *__task_rq_lock(struct task_struct *p)
971 972
	__acquires(rq->lock)
{
973 974 975 976 977
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
978 979 980 981
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
982 983
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
984
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
985 986
 * explicitly disabling preemption.
 */
987
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
988 989
	__acquires(rq->lock)
{
990
	struct rq *rq;
L
Linus Torvalds 已提交
991

992 993 994 995 996 997
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
998 999 1000 1001
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

1002 1003 1004 1005 1006 1007 1008 1009
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1010
static void __task_rq_unlock(struct rq *rq)
1011 1012 1013 1014 1015
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1016
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1017 1018 1019 1020 1021 1022
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1023
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1024
 */
A
Alexey Dobriyan 已提交
1025
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1026 1027
	__acquires(rq->lock)
{
1028
	struct rq *rq;
L
Linus Torvalds 已提交
1029 1030 1031 1032 1033 1034 1035 1036

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1058
	if (!cpu_active(cpu_of(rq)))
1059
		return 0;
P
Peter Zijlstra 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1080
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1081 1082 1083 1084 1085 1086
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1087
#ifdef CONFIG_SMP
1088 1089 1090 1091
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1092
{
1093
	struct rq *rq = arg;
1094

1095 1096 1097 1098
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1099 1100
}

1101 1102 1103 1104 1105 1106
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1107
{
1108 1109
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1110

1111
	hrtimer_set_expires(timer, time);
1112 1113 1114 1115 1116 1117 1118

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1133
		hrtick_clear(cpu_rq(cpu));
1134 1135 1136 1137 1138 1139
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1140
static __init void init_hrtick(void)
1141 1142 1143
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1154

A
Andrew Morton 已提交
1155
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1156 1157
{
}
1158
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1159

1160
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1161
{
1162 1163
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1164

1165 1166 1167 1168
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1169

1170 1171
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1172
}
A
Andrew Morton 已提交
1173
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1174 1175 1176 1177 1178 1179 1180 1181
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1182 1183 1184
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1185
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1186

I
Ingo Molnar 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1200
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1201 1202 1203 1204 1205
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1206
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1207 1208
		return;

1209
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1265
	set_tsk_need_resched(rq->idle);
1266 1267 1268 1269 1270 1271

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1272
#endif /* CONFIG_NO_HZ */
1273

1274
#else /* !CONFIG_SMP */
1275
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1276 1277
{
	assert_spin_locked(&task_rq(p)->lock);
1278
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1279
}
1280
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1281

1282 1283 1284 1285 1286 1287 1288 1289
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1290 1291 1292
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1293
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1294

1295 1296 1297
/*
 * delta *= weight / lw
 */
1298
static unsigned long
1299 1300 1301 1302 1303
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1304 1305 1306 1307 1308 1309 1310
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1311 1312 1313 1314 1315

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1316
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1317
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1318 1319
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1320
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1321

1322
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1323 1324
}

1325
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1326 1327
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1328
	lw->inv_weight = 0;
1329 1330
}

1331
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1332 1333
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1334
	lw->inv_weight = 0;
1335 1336
}

1337 1338 1339 1340
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1341
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1342 1343 1344 1345
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1346 1347
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1357 1358 1359
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1360 1361
 */
static const int prio_to_weight[40] = {
1362 1363 1364 1365 1366 1367 1368 1369
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1370 1371
};

1372 1373 1374 1375 1376 1377 1378
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1379
static const u32 prio_to_wmult[40] = {
1380 1381 1382 1383 1384 1385 1386 1387
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1388
};
1389

I
Ingo Molnar 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1415

1416 1417 1418 1419 1420 1421
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1432
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1433
typedef int (*tg_visitor)(struct task_group *, void *);
1434 1435 1436 1437 1438

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1439
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1440 1441
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1442
	int ret;
1443 1444 1445 1446

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1447 1448 1449
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1450 1451 1452 1453 1454 1455 1456
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1457 1458 1459
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1460 1461 1462 1463 1464

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1465
out_unlock:
1466
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1467 1468

	return ret;
1469 1470
}

P
Peter Zijlstra 已提交
1471 1472 1473
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1474
}
P
Peter Zijlstra 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1485
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1486

1487 1488
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1489 1490
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1491 1492 1493 1494 1495

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1496 1497 1498 1499 1500 1501 1502

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1503 1504
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1505
{
1506 1507 1508
	unsigned long shares;
	unsigned long rq_weight;

1509
	if (!tg->se[cpu])
1510 1511
		return;

1512
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1513

1514 1515 1516 1517 1518 1519
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1520
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1521
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1522

1523 1524 1525 1526
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1527

1528
		spin_lock_irqsave(&rq->lock, flags);
1529
		tg->cfs_rq[cpu]->shares = shares;
1530

1531 1532 1533
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1534
}
1535 1536

/*
1537 1538 1539
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1540
 */
P
Peter Zijlstra 已提交
1541
static int tg_shares_up(struct task_group *tg, void *data)
1542
{
1543
	unsigned long weight, rq_weight = 0;
1544
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1545
	struct sched_domain *sd = data;
1546
	int i;
1547

1548
	for_each_cpu(i, sched_domain_span(sd)) {
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1560
		shares += tg->cfs_rq[i]->shares;
1561 1562
	}

1563 1564 1565 1566 1567
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1568

1569
	for_each_cpu(i, sched_domain_span(sd))
1570
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1571 1572

	return 0;
1573 1574 1575
}

/*
1576 1577 1578
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1579
 */
P
Peter Zijlstra 已提交
1580
static int tg_load_down(struct task_group *tg, void *data)
1581
{
1582
	unsigned long load;
P
Peter Zijlstra 已提交
1583
	long cpu = (long)data;
1584

1585 1586 1587 1588 1589 1590 1591
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1592

1593
	tg->cfs_rq[cpu]->h_load = load;
1594

P
Peter Zijlstra 已提交
1595
	return 0;
1596 1597
}

1598
static void update_shares(struct sched_domain *sd)
1599
{
P
Peter Zijlstra 已提交
1600 1601 1602 1603 1604
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1605
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1606
	}
1607 1608
}

1609 1610 1611 1612 1613 1614 1615
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1616
static void update_h_load(long cpu)
1617
{
P
Peter Zijlstra 已提交
1618
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1619 1620 1621 1622
}

#else

1623
static inline void update_shares(struct sched_domain *sd)
1624 1625 1626
{
}

1627 1628 1629 1630
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1631 1632
#endif

1633 1634
#ifdef CONFIG_PREEMPT

1635
/*
1636 1637 1638 1639 1640 1641
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1642
 */
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1697 1698 1699 1700 1701 1702
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1703 1704
#endif

V
Vegard Nossum 已提交
1705
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1706 1707
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1708
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1709 1710 1711
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1712
#endif
1713

I
Ingo Molnar 已提交
1714 1715
#include "sched_stats.h"
#include "sched_idletask.c"
1716 1717
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1718 1719 1720 1721 1722
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1723 1724
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1725

1726
static void inc_nr_running(struct rq *rq)
1727 1728 1729 1730
{
	rq->nr_running++;
}

1731
static void dec_nr_running(struct rq *rq)
1732 1733 1734 1735
{
	rq->nr_running--;
}

1736 1737 1738
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1739 1740 1741 1742
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1743

I
Ingo Molnar 已提交
1744 1745 1746 1747 1748 1749 1750 1751
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1752

I
Ingo Molnar 已提交
1753 1754
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1755 1756
}

1757 1758 1759 1760 1761 1762
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1763
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1764
{
P
Peter Zijlstra 已提交
1765 1766 1767
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1768
	sched_info_queued(p);
1769
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1770
	p->se.on_rq = 1;
1771 1772
}

1773
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1774
{
P
Peter Zijlstra 已提交
1775 1776 1777 1778 1779 1780 1781 1782 1783
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1784 1785
	}

1786
	sched_info_dequeued(p);
1787
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1788
	p->se.on_rq = 0;
1789 1790
}

1791
/*
I
Ingo Molnar 已提交
1792
 * __normal_prio - return the priority that is based on the static prio
1793 1794 1795
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1796
	return p->static_prio;
1797 1798
}

1799 1800 1801 1802 1803 1804 1805
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1806
static inline int normal_prio(struct task_struct *p)
1807 1808 1809
{
	int prio;

1810
	if (task_has_rt_policy(p))
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1824
static int effective_prio(struct task_struct *p)
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1837
/*
I
Ingo Molnar 已提交
1838
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1839
 */
I
Ingo Molnar 已提交
1840
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1841
{
1842
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1843
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1844

1845
	enqueue_task(rq, p, wakeup);
1846
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1847 1848 1849 1850 1851
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1852
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1853
{
1854
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1855 1856
		rq->nr_uninterruptible++;

1857
	dequeue_task(rq, p, sleep);
1858
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1859 1860 1861 1862 1863 1864
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1865
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1866 1867 1868 1869
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1870 1871
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1872
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1873
#ifdef CONFIG_SMP
1874 1875 1876 1877 1878 1879
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1880 1881
	task_thread_info(p)->cpu = cpu;
#endif
1882 1883
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1896
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1897

1898 1899 1900 1901 1902 1903
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1904 1905 1906
/*
 * Is this task likely cache-hot:
 */
1907
static int
1908 1909 1910 1911
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1912 1913 1914
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1915 1916 1917
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1918 1919
		return 1;

1920 1921 1922
	if (p->sched_class != &fair_sched_class)
		return 0;

1923 1924 1925 1926 1927
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1928 1929 1930 1931 1932 1933
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1934
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1935
{
I
Ingo Molnar 已提交
1936 1937
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1938 1939
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1940
	u64 clock_offset;
I
Ingo Molnar 已提交
1941 1942

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1943

1944 1945
	trace_sched_migrate_task(p, task_cpu(p), new_cpu);

I
Ingo Molnar 已提交
1946 1947 1948
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1949 1950 1951 1952
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1953 1954 1955 1956 1957
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1958
#endif
1959 1960
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1961 1962

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1963 1964
}

1965
struct migration_req {
L
Linus Torvalds 已提交
1966 1967
	struct list_head list;

1968
	struct task_struct *task;
L
Linus Torvalds 已提交
1969 1970 1971
	int dest_cpu;

	struct completion done;
1972
};
L
Linus Torvalds 已提交
1973 1974 1975 1976 1977

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1978
static int
1979
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1980
{
1981
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1982 1983 1984 1985 1986

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1987
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1988 1989 1990 1991 1992 1993 1994 1995
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1996

L
Linus Torvalds 已提交
1997 1998 1999 2000 2001 2002
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2003 2004 2005 2006 2007 2008 2009
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2010 2011 2012 2013 2014 2015
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2016
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2017 2018
{
	unsigned long flags;
I
Ingo Molnar 已提交
2019
	int running, on_rq;
R
Roland McGrath 已提交
2020
	unsigned long ncsw;
2021
	struct rq *rq;
L
Linus Torvalds 已提交
2022

2023 2024 2025 2026 2027 2028 2029 2030
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2031

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2043 2044 2045
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2046
			cpu_relax();
R
Roland McGrath 已提交
2047
		}
2048

2049 2050 2051 2052 2053 2054
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2055
		trace_sched_wait_task(rq, p);
2056 2057
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2058
		ncsw = 0;
2059
		if (!match_state || p->state == match_state)
2060
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2061
		task_rq_unlock(rq, &flags);
2062

R
Roland McGrath 已提交
2063 2064 2065 2066 2067 2068
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2079

2080 2081 2082 2083 2084
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2085
		 * So if it was still runnable (but just not actively
2086 2087 2088 2089 2090 2091 2092
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2093

2094 2095 2096 2097 2098 2099 2100
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2101 2102

	return ncsw;
L
Linus Torvalds 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2118
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2130 2131
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2132 2133 2134 2135
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2136
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2137
{
2138
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2139
	unsigned long total = weighted_cpuload(cpu);
2140

2141
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2142
		return total;
2143

I
Ingo Molnar 已提交
2144
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2145 2146 2147
}

/*
2148 2149
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2150
 */
A
Alexey Dobriyan 已提交
2151
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2152
{
2153
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2154
	unsigned long total = weighted_cpuload(cpu);
2155

2156
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2157
		return total;
2158

I
Ingo Molnar 已提交
2159
	return max(rq->cpu_load[type-1], total);
2160 2161
}

N
Nick Piggin 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2179
		/* Skip over this group if it has no CPUs allowed */
2180 2181
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2182
			continue;
2183

2184 2185
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2186 2187 2188 2189

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2190
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2201 2202
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2203 2204 2205 2206 2207 2208 2209 2210

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2211
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2212 2213 2214 2215 2216 2217 2218

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2219
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2220
 */
I
Ingo Molnar 已提交
2221
static int
2222
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2223 2224 2225 2226 2227
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2228
	/* Traverse only the allowed CPUs */
2229
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2230
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2256

2257
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2258 2259 2260
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2261 2262
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2263 2264
		if (tmp->flags & flag)
			sd = tmp;
2265
	}
N
Nick Piggin 已提交
2266

2267 2268 2269
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2270 2271
	while (sd) {
		struct sched_group *group;
2272 2273 2274 2275 2276 2277
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2278 2279

		group = find_idlest_group(sd, t, cpu);
2280 2281 2282 2283
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2284

2285
		new_cpu = find_idlest_cpu(group, t, cpu);
2286 2287 2288 2289 2290
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2291

2292
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2293
		cpu = new_cpu;
2294
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2295 2296
		sd = NULL;
		for_each_domain(cpu, tmp) {
2297
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2324
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2325
{
2326
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2327 2328
	unsigned long flags;
	long old_state;
2329
	struct rq *rq;
L
Linus Torvalds 已提交
2330

2331 2332 2333
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2334
#ifdef CONFIG_SMP
2335
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2336 2337 2338 2339 2340 2341
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2342
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2343 2344 2345 2346 2347 2348 2349
				update_shares(sd);
				break;
			}
		}
	}
#endif

2350
	smp_wmb();
L
Linus Torvalds 已提交
2351
	rq = task_rq_lock(p, &flags);
2352
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2353 2354 2355 2356
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2357
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2358 2359 2360
		goto out_running;

	cpu = task_cpu(p);
2361
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2362 2363 2364 2365 2366 2367
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2368 2369 2370
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2371 2372 2373 2374 2375 2376
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2377
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2378 2379 2380 2381 2382 2383
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2384 2385 2386 2387 2388 2389 2390
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2391
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2392 2393 2394 2395 2396
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2397
#endif /* CONFIG_SCHEDSTATS */
2398

L
Linus Torvalds 已提交
2399 2400
out_activate:
#endif /* CONFIG_SMP */
2401 2402 2403 2404 2405 2406 2407 2408 2409
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2410
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2411 2412
	success = 1;

P
Peter Zijlstra 已提交
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2429
out_running:
2430
	trace_sched_wakeup(rq, p, success);
2431
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2432

L
Linus Torvalds 已提交
2433
	p->state = TASK_RUNNING;
2434 2435 2436 2437
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2438 2439 2440 2441 2442 2443
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2444
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2445
{
2446
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2447 2448 2449
}
EXPORT_SYMBOL(wake_up_process);

2450
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2451 2452 2453 2454 2455 2456 2457
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2458 2459 2460 2461 2462 2463 2464
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2465
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2466 2467
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2468 2469
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2470 2471 2472

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2473 2474 2475 2476 2477 2478
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2479
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2480
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2481
#endif
N
Nick Piggin 已提交
2482

P
Peter Zijlstra 已提交
2483
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2484
	p->se.on_rq = 0;
2485
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2486

2487 2488 2489 2490
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2491 2492 2493 2494 2495 2496 2497
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2512
	set_task_cpu(p, cpu);
2513 2514 2515 2516 2517

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2518 2519
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2520

2521
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2522
	if (likely(sched_info_on()))
2523
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2524
#endif
2525
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2526 2527
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2528
#ifdef CONFIG_PREEMPT
2529
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2530
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2531
#endif
2532 2533
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2534
	put_cpu();
L
Linus Torvalds 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2544
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2545 2546
{
	unsigned long flags;
I
Ingo Molnar 已提交
2547
	struct rq *rq;
L
Linus Torvalds 已提交
2548 2549

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2550
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2551
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2552 2553 2554

	p->prio = effective_prio(p);

2555
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2556
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2557 2558
	} else {
		/*
I
Ingo Molnar 已提交
2559 2560
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2561
		 */
2562
		p->sched_class->task_new(rq, p);
2563
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2564
	}
2565
	trace_sched_wakeup_new(rq, p, 1);
2566
	check_preempt_curr(rq, p, 0);
2567 2568 2569 2570
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2571
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2572 2573
}

2574 2575 2576
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2577
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2578
 * @notifier: notifier struct to register
2579 2580 2581 2582 2583 2584 2585 2586 2587
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2588
 * @notifier: notifier struct to unregister
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2618
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2630
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2631

2632 2633 2634
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2635
 * @prev: the current task that is being switched out
2636 2637 2638 2639 2640 2641 2642 2643 2644
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2645 2646 2647
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2648
{
2649
	fire_sched_out_preempt_notifiers(prev, next);
2650 2651 2652 2653
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2654 2655
/**
 * finish_task_switch - clean up after a task-switch
2656
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2657 2658
 * @prev: the thread we just switched away from.
 *
2659 2660 2661 2662
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2663 2664
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2665
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2666 2667 2668
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2669
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2670 2671 2672
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2673
	long prev_state;
2674 2675 2676 2677 2678 2679
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2680 2681 2682 2683 2684

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2685
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2686 2687
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2688
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2694
	prev_state = prev->state;
2695 2696
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2697
#ifdef CONFIG_SMP
2698
	if (post_schedule)
2699 2700
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2701

2702
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2703 2704
	if (mm)
		mmdrop(mm);
2705
	if (unlikely(prev_state == TASK_DEAD)) {
2706 2707 2708
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2709
		 */
2710
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2711
		put_task_struct(prev);
2712
	}
L
Linus Torvalds 已提交
2713 2714 2715 2716 2717 2718
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2719
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2720 2721
	__releases(rq->lock)
{
2722 2723
	struct rq *rq = this_rq();

2724 2725 2726 2727 2728
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2729
	if (current->set_child_tid)
2730
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2731 2732 2733 2734 2735 2736
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2737
static inline void
2738
context_switch(struct rq *rq, struct task_struct *prev,
2739
	       struct task_struct *next)
L
Linus Torvalds 已提交
2740
{
I
Ingo Molnar 已提交
2741
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2742

2743
	prepare_task_switch(rq, prev, next);
2744
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2745 2746
	mm = next->mm;
	oldmm = prev->active_mm;
2747 2748 2749 2750 2751 2752 2753
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2754
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2755 2756 2757 2758 2759 2760
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2761
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2762 2763 2764
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2765 2766 2767 2768 2769 2770 2771
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2772
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2773
#endif
L
Linus Torvalds 已提交
2774 2775 2776 2777

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2778 2779 2780 2781 2782 2783 2784
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2808
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2823 2824
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2825

2826
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2827 2828 2829 2830 2831 2832 2833 2834 2835
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2836
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2837 2838 2839 2840 2841
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2857
/*
I
Ingo Molnar 已提交
2858 2859
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2860
 */
I
Ingo Molnar 已提交
2861
static void update_cpu_load(struct rq *this_rq)
2862
{
2863
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2876 2877 2878 2879 2880 2881 2882
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2883 2884
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2885 2886
}

I
Ingo Molnar 已提交
2887 2888
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2889 2890 2891 2892 2893 2894
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2895
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2896 2897 2898
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2899
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2900 2901 2902 2903
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2904
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2905
			spin_lock(&rq1->lock);
2906
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2907 2908
		} else {
			spin_lock(&rq2->lock);
2909
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2910 2911
		}
	}
2912 2913
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2914 2915 2916 2917 2918 2919 2920 2921
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2922
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2936
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2937 2938
 * the cpu_allowed mask is restored.
 */
2939
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2940
{
2941
	struct migration_req req;
L
Linus Torvalds 已提交
2942
	unsigned long flags;
2943
	struct rq *rq;
L
Linus Torvalds 已提交
2944 2945

	rq = task_rq_lock(p, &flags);
2946
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2947
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2948 2949 2950 2951 2952 2953
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2954

L
Linus Torvalds 已提交
2955 2956 2957 2958 2959
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2960

L
Linus Torvalds 已提交
2961 2962 2963 2964 2965 2966 2967
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2968 2969
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2970 2971 2972 2973
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2974
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2975
	put_cpu();
N
Nick Piggin 已提交
2976 2977
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2978 2979 2980 2981 2982 2983
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2984 2985
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2986
{
2987
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2988
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2989
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2990 2991 2992 2993
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2994
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2995 2996 2997 2998 2999
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3000
static
3001
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3002
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3003
		     int *all_pinned)
L
Linus Torvalds 已提交
3004 3005 3006 3007 3008 3009 3010
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3011
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3012
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3013
		return 0;
3014
	}
3015 3016
	*all_pinned = 0;

3017 3018
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3019
		return 0;
3020
	}
L
Linus Torvalds 已提交
3021

3022 3023 3024 3025 3026 3027
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3028 3029
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
3030
#ifdef CONFIG_SCHEDSTATS
3031
		if (task_hot(p, rq->clock, sd)) {
3032
			schedstat_inc(sd, lb_hot_gained[idle]);
3033 3034
			schedstat_inc(p, se.nr_forced_migrations);
		}
3035 3036 3037 3038
#endif
		return 1;
	}

3039 3040
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
3041
		return 0;
3042
	}
L
Linus Torvalds 已提交
3043 3044 3045
	return 1;
}

3046 3047 3048 3049 3050
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3051
{
3052
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3053 3054
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3055

3056
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3057 3058
		goto out;

3059 3060
	pinned = 1;

L
Linus Torvalds 已提交
3061
	/*
I
Ingo Molnar 已提交
3062
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3063
	 */
I
Ingo Molnar 已提交
3064 3065
	p = iterator->start(iterator->arg);
next:
3066
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3067
		goto out;
3068 3069

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3070 3071 3072
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3073 3074
	}

I
Ingo Molnar 已提交
3075
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3076
	pulled++;
I
Ingo Molnar 已提交
3077
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3078

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3089
	/*
3090
	 * We only want to steal up to the prescribed amount of weighted load.
3091
	 */
3092
	if (rem_load_move > 0) {
3093 3094
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3095 3096
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3097 3098 3099
	}
out:
	/*
3100
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3101 3102 3103 3104
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3105 3106 3107

	if (all_pinned)
		*all_pinned = pinned;
3108 3109

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3110 3111
}

I
Ingo Molnar 已提交
3112
/*
P
Peter Williams 已提交
3113 3114 3115
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3116 3117 3118 3119
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3120
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3121 3122 3123
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3124
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3125
	unsigned long total_load_moved = 0;
3126
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3127 3128

	do {
P
Peter Williams 已提交
3129 3130
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3131
				max_load_move - total_load_moved,
3132
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3133
		class = class->next;
3134

3135 3136 3137 3138 3139 3140
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3141 3142
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3143
#endif
P
Peter Williams 已提交
3144
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3145

P
Peter Williams 已提交
3146 3147 3148
	return total_load_moved > 0;
}

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3185
	const struct sched_class *class;
P
Peter Williams 已提交
3186 3187

	for (class = sched_class_highest; class; class = class->next)
3188
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3189 3190 3191
			return 1;

	return 0;
I
Ingo Molnar 已提交
3192 3193
}

L
Linus Torvalds 已提交
3194 3195
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3196 3197
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3198 3199 3200
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3201
		   unsigned long *imbalance, enum cpu_idle_type idle,
3202
		   int *sd_idle, const struct cpumask *cpus, int *balance)
L
Linus Torvalds 已提交
3203 3204 3205
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3206
	unsigned long max_pull;
3207 3208
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3209
	int load_idx, group_imb = 0;
3210 3211 3212 3213 3214 3215
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3216 3217

	max_load = this_load = total_load = total_pwr = 0;
3218 3219
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3220

I
Ingo Molnar 已提交
3221
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3222
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3223
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3224 3225 3226
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3227 3228

	do {
3229
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3230 3231
		int local_group;
		int i;
3232
		int __group_imb = 0;
3233
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3234
		unsigned long sum_nr_running, sum_weighted_load;
3235 3236
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3237

3238 3239
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
L
Linus Torvalds 已提交
3240

3241
		if (local_group)
3242
			balance_cpu = cpumask_first(sched_group_cpus(group));
3243

L
Linus Torvalds 已提交
3244
		/* Tally up the load of all CPUs in the group */
3245
		sum_weighted_load = sum_nr_running = avg_load = 0;
3246 3247
		sum_avg_load_per_task = avg_load_per_task = 0;

3248 3249
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3250

3251 3252
		for_each_cpu_and(i, sched_group_cpus(group), cpus) {
			struct rq *rq = cpu_rq(i);
3253

3254
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3255 3256
				*sd_idle = 0;

L
Linus Torvalds 已提交
3257
			/* Bias balancing toward cpus of our domain */
3258 3259 3260 3261 3262 3263
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3264
				load = target_load(i, load_idx);
3265
			} else {
N
Nick Piggin 已提交
3266
				load = source_load(i, load_idx);
3267 3268 3269 3270 3271
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3272 3273

			avg_load += load;
3274
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3275
			sum_weighted_load += weighted_cpuload(i);
3276 3277

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3278 3279
		}

3280 3281 3282
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3283 3284
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3285
		 */
3286 3287
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3288 3289 3290 3291
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3292
		total_load += avg_load;
3293
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3294 3295

		/* Adjust by relative CPU power of the group */
3296 3297
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3298

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3313 3314
			__group_imb = 1;

3315
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3316

L
Linus Torvalds 已提交
3317 3318 3319
		if (local_group) {
			this_load = avg_load;
			this = group;
3320 3321 3322
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3323
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3324 3325
			max_load = avg_load;
			busiest = group;
3326 3327
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3328
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3329
		}
3330 3331 3332 3333 3334 3335

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3336 3337 3338
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3339 3340 3341 3342 3343 3344 3345 3346 3347

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3348
		/*
3349 3350
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3351 3352
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3353
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3354
			goto group_next;
3355

I
Ingo Molnar 已提交
3356
		/*
3357
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3358 3359 3360 3361 3362
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3363
		     cpumask_first(sched_group_cpus(group)) >
3364
		     cpumask_first(sched_group_cpus(group_min)))) {
I
Ingo Molnar 已提交
3365 3366
			group_min = group;
			min_nr_running = sum_nr_running;
3367 3368
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3369
		}
3370

I
Ingo Molnar 已提交
3371
		/*
3372
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3373 3374 3375 3376 3377 3378
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
3379
			     cpumask_first(sched_group_cpus(group)) <
3380
			     cpumask_first(sched_group_cpus(group_leader)))) {
I
Ingo Molnar 已提交
3381 3382 3383
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3384
		}
3385 3386
group_next:
#endif
L
Linus Torvalds 已提交
3387 3388 3389
		group = group->next;
	} while (group != sd->groups);

3390
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3391 3392 3393 3394 3395 3396 3397 3398
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3399
	busiest_load_per_task /= busiest_nr_running;
3400 3401 3402
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3403 3404 3405 3406 3407 3408 3409 3410
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3411
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3412 3413
	 * appear as very large values with unsigned longs.
	 */
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3426 3427

	/* Don't want to pull so many tasks that a group would go idle */
3428
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3429

L
Linus Torvalds 已提交
3430
	/* How much load to actually move to equalise the imbalance */
3431 3432
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3433 3434
			/ SCHED_LOAD_SCALE;

3435 3436 3437 3438 3439 3440
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3441
	if (*imbalance < busiest_load_per_task) {
3442
		unsigned long tmp, pwr_now, pwr_move;
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3453
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3454

3455
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3456
					busiest_load_per_task * imbn) {
3457
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3458 3459 3460 3461 3462 3463 3464 3465 3466
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3467 3468 3469 3470
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3471 3472 3473
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3474 3475
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3476
		if (max_load > tmp)
3477
			pwr_move += busiest->__cpu_power *
3478
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3479 3480

		/* Amount of load we'd add */
3481
		if (max_load * busiest->__cpu_power <
3482
				busiest_load_per_task * SCHED_LOAD_SCALE)
3483 3484
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3485
		else
3486 3487 3488 3489
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3490 3491 3492
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3493 3494
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3495 3496 3497 3498 3499
	}

	return busiest;

out_balanced:
3500
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3501
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3502
		goto ret;
L
Linus Torvalds 已提交
3503

3504 3505
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
3506 3507
		if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
			cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
I
Ingo Molnar 已提交
3508
				cpumask_first(sched_group_cpus(group_leader));
3509
		}
3510 3511 3512
		return group_min;
	}
#endif
3513
ret:
L
Linus Torvalds 已提交
3514 3515 3516 3517 3518 3519 3520
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3521
static struct rq *
I
Ingo Molnar 已提交
3522
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3523
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3524
{
3525
	struct rq *busiest = NULL, *rq;
3526
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3527 3528
	int i;

3529
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3530
		unsigned long wl;
3531

3532
		if (!cpumask_test_cpu(i, cpus))
3533 3534
			continue;

3535
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3536
		wl = weighted_cpuload(i);
3537

I
Ingo Molnar 已提交
3538
		if (rq->nr_running == 1 && wl > imbalance)
3539
			continue;
L
Linus Torvalds 已提交
3540

I
Ingo Molnar 已提交
3541 3542
		if (wl > max_load) {
			max_load = wl;
3543
			busiest = rq;
L
Linus Torvalds 已提交
3544 3545 3546 3547 3548 3549
		}
	}

	return busiest;
}

3550 3551 3552 3553 3554 3555
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3556 3557 3558 3559
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3560
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3561
			struct sched_domain *sd, enum cpu_idle_type idle,
3562
			int *balance, struct cpumask *cpus)
L
Linus Torvalds 已提交
3563
{
P
Peter Williams 已提交
3564
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3565 3566
	struct sched_group *group;
	unsigned long imbalance;
3567
	struct rq *busiest;
3568
	unsigned long flags;
N
Nick Piggin 已提交
3569

3570
	cpumask_setall(cpus);
3571

3572 3573 3574
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3575
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3576
	 * portraying it as CPU_NOT_IDLE.
3577
	 */
I
Ingo Molnar 已提交
3578
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3579
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3580
		sd_idle = 1;
L
Linus Torvalds 已提交
3581

3582
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3583

3584
redo:
3585
	update_shares(sd);
3586
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3587
				   cpus, balance);
3588

3589
	if (*balance == 0)
3590 3591
		goto out_balanced;

L
Linus Torvalds 已提交
3592 3593 3594 3595 3596
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3597
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3598 3599 3600 3601 3602
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3603
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3604 3605 3606

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3607
	ld_moved = 0;
L
Linus Torvalds 已提交
3608 3609 3610 3611
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3612
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3613 3614
		 * correctly treated as an imbalance.
		 */
3615
		local_irq_save(flags);
N
Nick Piggin 已提交
3616
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3617
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3618
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3619
		double_rq_unlock(this_rq, busiest);
3620
		local_irq_restore(flags);
3621

3622 3623 3624
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3625
		if (ld_moved && this_cpu != smp_processor_id())
3626 3627
			resched_cpu(this_cpu);

3628
		/* All tasks on this runqueue were pinned by CPU affinity */
3629
		if (unlikely(all_pinned)) {
3630 3631
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3632
				goto redo;
3633
			goto out_balanced;
3634
		}
L
Linus Torvalds 已提交
3635
	}
3636

P
Peter Williams 已提交
3637
	if (!ld_moved) {
L
Linus Torvalds 已提交
3638 3639 3640 3641 3642
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3643
			spin_lock_irqsave(&busiest->lock, flags);
3644 3645 3646 3647

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3648 3649
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3650
				spin_unlock_irqrestore(&busiest->lock, flags);
3651 3652 3653 3654
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3655 3656 3657
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3658
				active_balance = 1;
L
Linus Torvalds 已提交
3659
			}
3660
			spin_unlock_irqrestore(&busiest->lock, flags);
3661
			if (active_balance)
L
Linus Torvalds 已提交
3662 3663 3664 3665 3666 3667
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3668
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3669
		}
3670
	} else
L
Linus Torvalds 已提交
3671 3672
		sd->nr_balance_failed = 0;

3673
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3674 3675
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3676 3677 3678 3679 3680 3681 3682 3683 3684
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3685 3686
	}

P
Peter Williams 已提交
3687
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3688
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3689 3690 3691
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3692 3693 3694 3695

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3696
	sd->nr_balance_failed = 0;
3697 3698

out_one_pinned:
L
Linus Torvalds 已提交
3699
	/* tune up the balancing interval */
3700 3701
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3702 3703
		sd->balance_interval *= 2;

3704
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3705
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3706 3707 3708 3709
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3710 3711
	if (ld_moved)
		update_shares(sd);
3712
	return ld_moved;
L
Linus Torvalds 已提交
3713 3714 3715 3716 3717 3718
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3719
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3720 3721
 * this_rq is locked.
 */
3722
static int
3723
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3724
			struct cpumask *cpus)
L
Linus Torvalds 已提交
3725 3726
{
	struct sched_group *group;
3727
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3728
	unsigned long imbalance;
P
Peter Williams 已提交
3729
	int ld_moved = 0;
N
Nick Piggin 已提交
3730
	int sd_idle = 0;
3731
	int all_pinned = 0;
3732

3733
	cpumask_setall(cpus);
N
Nick Piggin 已提交
3734

3735 3736 3737 3738
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3739
	 * portraying it as CPU_NOT_IDLE.
3740 3741 3742
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3743
		sd_idle = 1;
L
Linus Torvalds 已提交
3744

3745
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3746
redo:
3747
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3748
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3749
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3750
	if (!group) {
I
Ingo Molnar 已提交
3751
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3752
		goto out_balanced;
L
Linus Torvalds 已提交
3753 3754
	}

3755
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3756
	if (!busiest) {
I
Ingo Molnar 已提交
3757
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3758
		goto out_balanced;
L
Linus Torvalds 已提交
3759 3760
	}

N
Nick Piggin 已提交
3761 3762
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3763
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3764

P
Peter Williams 已提交
3765
	ld_moved = 0;
3766 3767 3768
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3769 3770
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3771
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3772 3773
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3774
		double_unlock_balance(this_rq, busiest);
3775

3776
		if (unlikely(all_pinned)) {
3777 3778
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3779 3780
				goto redo;
		}
3781 3782
	}

P
Peter Williams 已提交
3783
	if (!ld_moved) {
3784
		int active_balance = 0;
3785

I
Ingo Molnar 已提交
3786
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3787 3788
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3789
			return -1;
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
3826
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
3839 3840 3841 3842
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
3843 3844
		if (active_balance)
			wake_up_process(busiest->migration_thread);
3845
		spin_lock(&this_rq->lock);
3846

N
Nick Piggin 已提交
3847
	} else
3848
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3849

3850
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3851
	return ld_moved;
3852 3853

out_balanced:
I
Ingo Molnar 已提交
3854
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3855
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3856
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3857
		return -1;
3858
	sd->nr_balance_failed = 0;
3859

3860
	return 0;
L
Linus Torvalds 已提交
3861 3862 3863 3864 3865 3866
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3867
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3868 3869
{
	struct sched_domain *sd;
3870
	int pulled_task = 0;
I
Ingo Molnar 已提交
3871
	unsigned long next_balance = jiffies + HZ;
3872 3873 3874 3875
	cpumask_var_t tmpmask;

	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3876 3877

	for_each_domain(this_cpu, sd) {
3878 3879 3880 3881 3882 3883
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3884
			/* If we've pulled tasks over stop searching: */
3885
			pulled_task = load_balance_newidle(this_cpu, this_rq,
3886
							   sd, tmpmask);
3887 3888 3889 3890 3891 3892

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3893
	}
I
Ingo Molnar 已提交
3894
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3895 3896 3897 3898 3899
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3900
	}
3901
	free_cpumask_var(tmpmask);
L
Linus Torvalds 已提交
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3912
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3913
{
3914
	int target_cpu = busiest_rq->push_cpu;
3915 3916
	struct sched_domain *sd;
	struct rq *target_rq;
3917

3918
	/* Is there any task to move? */
3919 3920 3921 3922
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3923 3924

	/*
3925
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3926
	 * we need to fix it. Originally reported by
3927
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3928
	 */
3929
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3930

3931 3932
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3933 3934
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3935 3936

	/* Search for an sd spanning us and the target CPU. */
3937
	for_each_domain(target_cpu, sd) {
3938
		if ((sd->flags & SD_LOAD_BALANCE) &&
3939
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3940
				break;
3941
	}
3942

3943
	if (likely(sd)) {
3944
		schedstat_inc(sd, alb_count);
3945

P
Peter Williams 已提交
3946 3947
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3948 3949 3950 3951
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3952
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3953 3954
}

3955 3956 3957
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
3958
	cpumask_var_t cpu_mask;
3959 3960 3961 3962
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

3963
/*
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3974
 *
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

3990 3991 3992 3993 3994 3995 3996 3997
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
3998 3999
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4000

4001 4002 4003
			return 0;
		}

4004 4005
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4006
		/* time for ilb owner also to sleep */
4007
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
4020
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4021 4022
			return 0;

4023
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4036 4037 4038 4039 4040
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4041
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4042
{
4043 4044
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4045 4046
	unsigned long interval;
	struct sched_domain *sd;
4047
	/* Earliest time when we have to do rebalance again */
4048
	unsigned long next_balance = jiffies + 60*HZ;
4049
	int update_next_balance = 0;
4050
	int need_serialize;
4051 4052 4053 4054 4055
	cpumask_var_t tmp;

	/* Fails alloc?  Rebalancing probably not a priority right now. */
	if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
4056

4057
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4058 4059 4060 4061
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4062
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4063 4064 4065 4066 4067 4068
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4069 4070 4071
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4072
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4073

4074
		if (need_serialize) {
4075 4076 4077 4078
			if (!spin_trylock(&balancing))
				goto out;
		}

4079
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4080
			if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
4081 4082
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4083 4084 4085
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4086
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4087
			}
4088
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4089
		}
4090
		if (need_serialize)
4091 4092
			spin_unlock(&balancing);
out:
4093
		if (time_after(next_balance, sd->last_balance + interval)) {
4094
			next_balance = sd->last_balance + interval;
4095 4096
			update_next_balance = 1;
		}
4097 4098 4099 4100 4101 4102 4103 4104

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4105
	}
4106 4107 4108 4109 4110 4111 4112 4113

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4114 4115

	free_cpumask_var(tmp);
4116 4117 4118 4119 4120 4121 4122 4123 4124
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4125 4126 4127 4128
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4129

I
Ingo Molnar 已提交
4130
	rebalance_domains(this_cpu, idle);
4131 4132 4133 4134 4135 4136 4137

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4138 4139
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4140 4141 4142
		struct rq *rq;
		int balance_cpu;

4143 4144 4145 4146
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4147 4148 4149 4150 4151 4152 4153 4154
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4155
			rebalance_domains(balance_cpu, CPU_IDLE);
4156 4157

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4158 4159
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4160 4161 4162 4163 4164
		}
	}
#endif
}

4165 4166 4167 4168 4169
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4170 4171 4172 4173 4174 4175 4176
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4177
static inline void trigger_load_balance(struct rq *rq, int cpu)
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4189
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
4202
			int ilb = cpumask_first(nohz.cpu_mask);
4203

4204
			if (ilb < nr_cpu_ids)
4205 4206 4207 4208 4209 4210 4211 4212 4213
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4214
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4215 4216 4217 4218 4219 4220 4221 4222 4223
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4224
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4225 4226
		return;
#endif
4227 4228 4229
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4230
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4231
}
I
Ingo Molnar 已提交
4232 4233 4234

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4235 4236 4237
/*
 * on UP we do not need to balance between CPUs:
 */
4238
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4239 4240
{
}
I
Ingo Molnar 已提交
4241

L
Linus Torvalds 已提交
4242 4243 4244 4245 4246 4247 4248
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4249 4250
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4251
 */
4252
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4253 4254
{
	unsigned long flags;
4255
	struct rq *rq;
4256
	u64 ns = 0;
4257

4258
	rq = task_rq_lock(p, &flags);
4259

4260
	if (task_current(rq, p)) {
4261 4262
		u64 delta_exec;

I
Ingo Molnar 已提交
4263 4264
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4265
		if ((s64)delta_exec > 0)
4266
			ns = delta_exec;
4267
	}
4268

4269
	task_rq_unlock(rq, &flags);
4270

L
Linus Torvalds 已提交
4271 4272 4273 4274 4275 4276 4277
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4278
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4279
 */
4280 4281
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4282 4283 4284 4285
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4286
	/* Add user time to process. */
L
Linus Torvalds 已提交
4287
	p->utime = cputime_add(p->utime, cputime);
4288
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4289
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4290 4291 4292 4293 4294 4295 4296

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4297 4298
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4299 4300
}

4301 4302 4303 4304
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4305
 * @cputime_scaled: cputime scaled by cpu frequency
4306
 */
4307 4308
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4309 4310 4311 4312 4313 4314
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4315
	/* Add guest time to process. */
4316
	p->utime = cputime_add(p->utime, cputime);
4317
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4318
	account_group_user_time(p, cputime);
4319 4320
	p->gtime = cputime_add(p->gtime, cputime);

4321
	/* Add guest time to cpustat. */
4322 4323 4324 4325
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4326 4327 4328 4329 4330
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4331
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4332 4333
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4334
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4335 4336 4337 4338
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4339
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4340
		account_guest_time(p, cputime, cputime_scaled);
4341 4342
		return;
	}
4343

4344
	/* Add system time to process. */
L
Linus Torvalds 已提交
4345
	p->stime = cputime_add(p->stime, cputime);
4346
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4347
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4348 4349 4350 4351 4352 4353 4354 4355

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4356 4357
		cpustat->system = cputime64_add(cpustat->system, tmp);

L
Linus Torvalds 已提交
4358 4359 4360 4361
	/* Account for system time used */
	acct_update_integrals(p);
}

4362
/*
L
Linus Torvalds 已提交
4363 4364
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4365
 */
4366
void account_steal_time(cputime_t cputime)
4367
{
4368 4369 4370 4371
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4372 4373
}

L
Linus Torvalds 已提交
4374
/*
4375 4376
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4377
 */
4378
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
4379 4380
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4381
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4382
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4383

4384 4385 4386 4387
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
4388 4389
}

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
	else if (p != rq->idle)
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4429 4430
}

4431 4432
#endif

4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4503
	struct task_struct *curr = rq->curr;
4504 4505

	sched_clock_tick();
I
Ingo Molnar 已提交
4506 4507

	spin_lock(&rq->lock);
4508
	update_rq_clock(rq);
4509
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4510
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4511
	spin_unlock(&rq->lock);
4512

4513
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4514 4515
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4516
#endif
L
Linus Torvalds 已提交
4517 4518
}

4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4531

4532
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4533
{
4534
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4535 4536 4537
	/*
	 * Underflow?
	 */
4538 4539
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4540
#endif
L
Linus Torvalds 已提交
4541
	preempt_count() += val;
4542
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4543 4544 4545
	/*
	 * Spinlock count overflowing soon?
	 */
4546 4547
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4548 4549 4550
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4551 4552 4553
}
EXPORT_SYMBOL(add_preempt_count);

4554
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4555
{
4556
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4557 4558 4559
	/*
	 * Underflow?
	 */
4560
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4561
		return;
L
Linus Torvalds 已提交
4562 4563 4564
	/*
	 * Is the spinlock portion underflowing?
	 */
4565 4566 4567
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4568
#endif
4569

4570 4571
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4572 4573 4574 4575 4576 4577 4578
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4579
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4580
 */
I
Ingo Molnar 已提交
4581
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4582
{
4583 4584 4585 4586 4587
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4588
	debug_show_held_locks(prev);
4589
	print_modules();
I
Ingo Molnar 已提交
4590 4591
	if (irqs_disabled())
		print_irqtrace_events(prev);
4592 4593 4594 4595 4596

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4597
}
L
Linus Torvalds 已提交
4598

I
Ingo Molnar 已提交
4599 4600 4601 4602 4603
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4604
	/*
I
Ingo Molnar 已提交
4605
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4606 4607 4608
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4609
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4610 4611
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4612 4613
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4614
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4615 4616
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4617 4618
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4619 4620
	}
#endif
I
Ingo Molnar 已提交
4621 4622
}

M
Mike Galbraith 已提交
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
4645 4646 4647 4648
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4649
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4650
{
4651
	const struct sched_class *class;
I
Ingo Molnar 已提交
4652
	struct task_struct *p;
L
Linus Torvalds 已提交
4653 4654

	/*
I
Ingo Molnar 已提交
4655 4656
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4657
	 */
I
Ingo Molnar 已提交
4658
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4659
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4660 4661
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4662 4663
	}

I
Ingo Molnar 已提交
4664 4665
	class = sched_class_highest;
	for ( ; ; ) {
4666
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4667 4668 4669 4670 4671 4672 4673 4674 4675
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4676

I
Ingo Molnar 已提交
4677 4678 4679 4680 4681 4682
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4683
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4684
	struct rq *rq;
4685
	int cpu;
I
Ingo Molnar 已提交
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4699

4700
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4701
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4702

4703
	spin_lock_irq(&rq->lock);
4704
	update_rq_clock(rq);
4705
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4706 4707

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4708
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4709
			prev->state = TASK_RUNNING;
4710
		else
4711
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4712
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4713 4714
	}

4715 4716 4717 4718
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4719

I
Ingo Molnar 已提交
4720
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4721 4722
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
4723
	put_prev_task(rq, prev);
4724
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
4725 4726

	if (likely(prev != next)) {
4727 4728
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4729 4730 4731 4732
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4733
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4734 4735 4736 4737 4738 4739
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4740 4741 4742
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4743
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4744
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4745

L
Linus Torvalds 已提交
4746 4747 4748 4749 4750 4751 4752 4753
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4754
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4755
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4756 4757 4758 4759 4760
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4761

L
Linus Torvalds 已提交
4762 4763
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4764
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4765
	 */
N
Nick Piggin 已提交
4766
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4767 4768
		return;

4769 4770 4771 4772
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4773

4774 4775 4776 4777 4778
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4779
	} while (need_resched());
L
Linus Torvalds 已提交
4780 4781 4782 4783
}
EXPORT_SYMBOL(preempt_schedule);

/*
4784
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4785 4786 4787 4788 4789 4790 4791
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4792

4793
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4794 4795
	BUG_ON(ti->preempt_count || !irqs_disabled());

4796 4797 4798 4799 4800 4801
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4802

4803 4804 4805 4806 4807
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4808
	} while (need_resched());
L
Linus Torvalds 已提交
4809 4810 4811 4812
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4813 4814
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4815
{
4816
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4817 4818 4819 4820
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4821 4822
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4823 4824 4825
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4826
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4827 4828
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4829 4830
void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
4831
{
4832
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4833

4834
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4835 4836
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4837
		if (curr->func(curr, mode, sync, key) &&
4838
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4839 4840 4841 4842 4843 4844 4845 4846 4847
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4848
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4849
 */
4850
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4851
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4864
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4865 4866 4867 4868 4869
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4870
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4882
void
I
Ingo Molnar 已提交
4883
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4900 4901 4902 4903 4904 4905 4906 4907 4908
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4909
void complete(struct completion *x)
L
Linus Torvalds 已提交
4910 4911 4912 4913 4914
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4915
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4916 4917 4918 4919
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4920 4921 4922 4923 4924 4925
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4926
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4927 4928 4929 4930 4931
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4932
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4933 4934 4935 4936
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4937 4938
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4939 4940 4941 4942 4943 4944 4945
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4946
			if (signal_pending_state(state, current)) {
4947 4948
				timeout = -ERESTARTSYS;
				break;
4949 4950
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4951 4952 4953
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4954
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4955
		__remove_wait_queue(&x->wait, &wait);
4956 4957
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4958 4959
	}
	x->done--;
4960
	return timeout ?: 1;
L
Linus Torvalds 已提交
4961 4962
}

4963 4964
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4965 4966 4967 4968
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4969
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4970
	spin_unlock_irq(&x->wait.lock);
4971 4972
	return timeout;
}
L
Linus Torvalds 已提交
4973

4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4984
void __sched wait_for_completion(struct completion *x)
4985 4986
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4987
}
4988
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4989

4990 4991 4992 4993 4994 4995 4996 4997 4998
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4999
unsigned long __sched
5000
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5001
{
5002
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5003
}
5004
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5005

5006 5007 5008 5009 5010 5011 5012
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5013
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5014
{
5015 5016 5017 5018
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5019
}
5020
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5021

5022 5023 5024 5025 5026 5027 5028 5029
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5030
unsigned long __sched
5031 5032
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5033
{
5034
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5035
}
5036
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5037

5038 5039 5040 5041 5042 5043 5044
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5045 5046 5047 5048 5049 5050 5051 5052 5053
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5100 5101
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5102
{
I
Ingo Molnar 已提交
5103 5104 5105 5106
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5107

5108
	__set_current_state(state);
L
Linus Torvalds 已提交
5109

5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5124 5125 5126
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5127
long __sched
I
Ingo Molnar 已提交
5128
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5129
{
5130
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5131 5132 5133
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5134
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5135
{
5136
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5137 5138 5139
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5140
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5141
{
5142
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5143 5144 5145
}
EXPORT_SYMBOL(sleep_on_timeout);

5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5158
void rt_mutex_setprio(struct task_struct *p, int prio)
5159 5160
{
	unsigned long flags;
5161
	int oldprio, on_rq, running;
5162
	struct rq *rq;
5163
	const struct sched_class *prev_class = p->sched_class;
5164 5165 5166 5167

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5168
	update_rq_clock(rq);
5169

5170
	oldprio = p->prio;
I
Ingo Molnar 已提交
5171
	on_rq = p->se.on_rq;
5172
	running = task_current(rq, p);
5173
	if (on_rq)
5174
		dequeue_task(rq, p, 0);
5175 5176
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5177 5178 5179 5180 5181 5182

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5183 5184
	p->prio = prio;

5185 5186
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5187
	if (on_rq) {
5188
		enqueue_task(rq, p, 0);
5189 5190

		check_class_changed(rq, p, prev_class, oldprio, running);
5191 5192 5193 5194 5195 5196
	}
	task_rq_unlock(rq, &flags);
}

#endif

5197
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5198
{
I
Ingo Molnar 已提交
5199
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5200
	unsigned long flags;
5201
	struct rq *rq;
L
Linus Torvalds 已提交
5202 5203 5204 5205 5206 5207 5208 5209

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5210
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5211 5212 5213 5214
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5215
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5216
	 */
5217
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5218 5219 5220
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5221
	on_rq = p->se.on_rq;
5222
	if (on_rq)
5223
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5224 5225

	p->static_prio = NICE_TO_PRIO(nice);
5226
	set_load_weight(p);
5227 5228 5229
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5230

I
Ingo Molnar 已提交
5231
	if (on_rq) {
5232
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5233
		/*
5234 5235
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5236
		 */
5237
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5238 5239 5240 5241 5242 5243 5244
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5245 5246 5247 5248 5249
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5250
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5251
{
5252 5253
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5254

M
Matt Mackall 已提交
5255 5256 5257 5258
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5259 5260 5261 5262 5263 5264 5265 5266 5267
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5268
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5269
{
5270
	long nice, retval;
L
Linus Torvalds 已提交
5271 5272 5273 5274 5275 5276

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5277 5278
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5279 5280 5281
	if (increment > 40)
		increment = 40;

5282
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
5283 5284 5285 5286 5287
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5288 5289 5290
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5309
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5310 5311 5312 5313 5314 5315 5316 5317
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5318
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5319 5320 5321
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5322
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5337
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5338 5339 5340 5341 5342 5343 5344 5345
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5346
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5347
{
5348
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5349 5350 5351
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5352 5353
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5354
{
I
Ingo Molnar 已提交
5355
	BUG_ON(p->se.on_rq);
5356

L
Linus Torvalds 已提交
5357
	p->policy = policy;
I
Ingo Molnar 已提交
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5370
	p->rt_priority = prio;
5371 5372 5373
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5374
	set_load_weight(p);
L
Linus Torvalds 已提交
5375 5376
}

5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

5393 5394
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5395
{
5396
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5397
	unsigned long flags;
5398
	const struct sched_class *prev_class = p->sched_class;
5399
	struct rq *rq;
L
Linus Torvalds 已提交
5400

5401 5402
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5403 5404 5405 5406 5407
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5408 5409
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5410
		return -EINVAL;
L
Linus Torvalds 已提交
5411 5412
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5413 5414
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5415 5416
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5417
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5418
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5419
		return -EINVAL;
5420
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5421 5422
		return -EINVAL;

5423 5424 5425
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5426
	if (user && !capable(CAP_SYS_NICE)) {
5427
		if (rt_policy(policy)) {
5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5444 5445 5446 5447 5448 5449
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5450

5451
		/* can't change other user's priorities */
5452
		if (!check_same_owner(p))
5453 5454
			return -EPERM;
	}
L
Linus Torvalds 已提交
5455

5456
	if (user) {
5457
#ifdef CONFIG_RT_GROUP_SCHED
5458 5459 5460 5461
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5462 5463
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5464
			return -EPERM;
5465 5466
#endif

5467 5468 5469 5470 5471
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5472 5473 5474 5475 5476
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5477 5478 5479 5480
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5481
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5482 5483 5484
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5485 5486
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5487 5488
		goto recheck;
	}
I
Ingo Molnar 已提交
5489
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5490
	on_rq = p->se.on_rq;
5491
	running = task_current(rq, p);
5492
	if (on_rq)
5493
		deactivate_task(rq, p, 0);
5494 5495
	if (running)
		p->sched_class->put_prev_task(rq, p);
5496

L
Linus Torvalds 已提交
5497
	oldprio = p->prio;
I
Ingo Molnar 已提交
5498
	__setscheduler(rq, p, policy, param->sched_priority);
5499

5500 5501
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5502 5503
	if (on_rq) {
		activate_task(rq, p, 0);
5504 5505

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5506
	}
5507 5508 5509
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5510 5511
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5512 5513
	return 0;
}
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5528 5529
EXPORT_SYMBOL_GPL(sched_setscheduler);

5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5547 5548
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5549 5550 5551
{
	struct sched_param lparam;
	struct task_struct *p;
5552
	int retval;
L
Linus Torvalds 已提交
5553 5554 5555 5556 5557

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5558 5559 5560

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5561
	p = find_process_by_pid(pid);
5562 5563 5564
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5565

L
Linus Torvalds 已提交
5566 5567 5568 5569 5570 5571 5572 5573 5574
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5575 5576
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5577
{
5578 5579 5580 5581
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5582 5583 5584 5585 5586 5587 5588 5589
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5590
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5591 5592 5593 5594 5595 5596 5597 5598
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5599
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5600
{
5601
	struct task_struct *p;
5602
	int retval;
L
Linus Torvalds 已提交
5603 5604

	if (pid < 0)
5605
		return -EINVAL;
L
Linus Torvalds 已提交
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5624
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5625 5626
{
	struct sched_param lp;
5627
	struct task_struct *p;
5628
	int retval;
L
Linus Torvalds 已提交
5629 5630

	if (!param || pid < 0)
5631
		return -EINVAL;
L
Linus Torvalds 已提交
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5658
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5659
{
5660
	cpumask_var_t cpus_allowed, new_mask;
5661 5662
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5663

5664
	get_online_cpus();
L
Linus Torvalds 已提交
5665 5666 5667 5668 5669
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5670
		put_online_cpus();
L
Linus Torvalds 已提交
5671 5672 5673 5674 5675
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5676
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5677 5678 5679 5680 5681
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

5682 5683 5684 5685 5686 5687 5688 5689
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5690
	retval = -EPERM;
5691
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
5692 5693
		goto out_unlock;

5694 5695 5696 5697
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5698 5699
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
5700
 again:
5701
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5702

P
Paul Menage 已提交
5703
	if (!retval) {
5704 5705
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5706 5707 5708 5709 5710
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5711
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5712 5713 5714
			goto again;
		}
	}
L
Linus Torvalds 已提交
5715
out_unlock:
5716 5717 5718 5719
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5720
	put_task_struct(p);
5721
	put_online_cpus();
L
Linus Torvalds 已提交
5722 5723 5724 5725
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5726
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5727
{
5728 5729 5730 5731 5732
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5733 5734 5735 5736 5737 5738 5739 5740 5741
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5742 5743
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5744
{
5745
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5746 5747
	int retval;

5748 5749
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5750

5751 5752 5753 5754 5755
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5756 5757
}

5758
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5759
{
5760
	struct task_struct *p;
L
Linus Torvalds 已提交
5761 5762
	int retval;

5763
	get_online_cpus();
L
Linus Torvalds 已提交
5764 5765 5766 5767 5768 5769 5770
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5771 5772 5773 5774
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5775
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
5776 5777 5778

out_unlock:
	read_unlock(&tasklist_lock);
5779
	put_online_cpus();
L
Linus Torvalds 已提交
5780

5781
	return retval;
L
Linus Torvalds 已提交
5782 5783 5784 5785 5786 5787 5788 5789
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5790 5791
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5792 5793
{
	int ret;
5794
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5795

5796
	if (len < cpumask_size())
L
Linus Torvalds 已提交
5797 5798
		return -EINVAL;

5799 5800
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5801

5802 5803 5804 5805 5806 5807 5808 5809
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5810

5811
	return ret;
L
Linus Torvalds 已提交
5812 5813 5814 5815 5816
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5817 5818
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5819
 */
5820
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5821
{
5822
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5823

5824
	schedstat_inc(rq, yld_count);
5825
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5826 5827 5828 5829 5830 5831

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5832
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5833 5834 5835 5836 5837 5838 5839 5840
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5841
static void __cond_resched(void)
L
Linus Torvalds 已提交
5842
{
5843 5844 5845
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5846 5847 5848 5849 5850
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5851 5852 5853 5854 5855 5856 5857
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5858
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5859
{
5860 5861
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5862 5863 5864 5865 5866
		__cond_resched();
		return 1;
	}
	return 0;
}
5867
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5868 5869 5870 5871 5872

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5873
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5874 5875 5876
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5877
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5878
{
N
Nick Piggin 已提交
5879
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5880 5881
	int ret = 0;

N
Nick Piggin 已提交
5882
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5883
		spin_unlock(lock);
N
Nick Piggin 已提交
5884 5885 5886 5887
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5888
		ret = 1;
L
Linus Torvalds 已提交
5889 5890
		spin_lock(lock);
	}
J
Jan Kara 已提交
5891
	return ret;
L
Linus Torvalds 已提交
5892 5893 5894 5895 5896 5897 5898
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5899
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5900
		local_bh_enable();
L
Linus Torvalds 已提交
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5912
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5923
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5924 5925 5926 5927 5928 5929 5930
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5931
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5932

5933
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5934 5935 5936
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5937
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5938 5939 5940 5941 5942
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5943
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5944 5945
	long ret;

5946
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5947 5948 5949
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5950
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5961
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5962 5963 5964 5965 5966 5967 5968 5969 5970
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5971
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5972
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5986
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5987 5988 5989 5990 5991 5992 5993 5994 5995
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5996
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5997
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6011
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6012
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6013
{
6014
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6015
	unsigned int time_slice;
6016
	int retval;
L
Linus Torvalds 已提交
6017 6018 6019
	struct timespec t;

	if (pid < 0)
6020
		return -EINVAL;
L
Linus Torvalds 已提交
6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6032 6033 6034 6035 6036 6037
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6038
		time_slice = DEF_TIMESLICE;
6039
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6040 6041 6042 6043 6044
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6045 6046
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6047 6048
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6049
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6050
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6051 6052
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6053

L
Linus Torvalds 已提交
6054 6055 6056 6057 6058
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6059
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6060

6061
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6062 6063
{
	unsigned long free = 0;
6064
	unsigned state;
L
Linus Torvalds 已提交
6065 6066

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6067
	printk(KERN_INFO "%-13.13s %c", p->comm,
6068
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6069
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6070
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6071
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6072
	else
I
Ingo Molnar 已提交
6073
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6074 6075
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6076
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6077
	else
I
Ingo Molnar 已提交
6078
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6079 6080 6081
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
6082
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
6083 6084
		while (!*n)
			n++;
6085
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
6086 6087
	}
#endif
6088
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
6089
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
6090

6091
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6092 6093
}

I
Ingo Molnar 已提交
6094
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6095
{
6096
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6097

6098 6099 6100
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6101
#else
6102 6103
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6104 6105 6106 6107 6108 6109 6110 6111
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6112
		if (!state_filter || (p->state & state_filter))
6113
			sched_show_task(p);
L
Linus Torvalds 已提交
6114 6115
	} while_each_thread(g, p);

6116 6117
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6118 6119 6120
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6121
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6122 6123 6124 6125 6126
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6127 6128
}

I
Ingo Molnar 已提交
6129 6130
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6131
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6132 6133
}

6134 6135 6136 6137 6138 6139 6140 6141
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6142
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6143
{
6144
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6145 6146
	unsigned long flags;

6147 6148
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6149 6150 6151
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6152
	idle->prio = idle->normal_prio = MAX_PRIO;
6153
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6154
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6155 6156

	rq->curr = rq->idle = idle;
6157 6158 6159
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6160 6161 6162
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6163 6164 6165
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6166
	task_thread_info(idle)->preempt_count = 0;
6167
#endif
I
Ingo Molnar 已提交
6168 6169 6170 6171
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6172
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6173 6174 6175 6176 6177 6178 6179
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6180
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6181
 */
6182
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6183

I
Ingo Molnar 已提交
6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6207 6208

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6209 6210
}

L
Linus Torvalds 已提交
6211 6212 6213 6214
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6215
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6234
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6235 6236
 * call is not atomic; no spinlocks may be held.
 */
6237
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6238
{
6239
	struct migration_req req;
L
Linus Torvalds 已提交
6240
	unsigned long flags;
6241
	struct rq *rq;
6242
	int ret = 0;
L
Linus Torvalds 已提交
6243 6244

	rq = task_rq_lock(p, &flags);
6245
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6246 6247 6248 6249
		ret = -EINVAL;
		goto out;
	}

6250
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6251
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6252 6253 6254 6255
		ret = -EINVAL;
		goto out;
	}

6256
	if (p->sched_class->set_cpus_allowed)
6257
		p->sched_class->set_cpus_allowed(p, new_mask);
6258
	else {
6259 6260
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6261 6262
	}

L
Linus Torvalds 已提交
6263
	/* Can the task run on the task's current CPU? If so, we're done */
6264
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6265 6266
		goto out;

R
Rusty Russell 已提交
6267
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6268 6269 6270 6271 6272 6273 6274 6275 6276
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6277

L
Linus Torvalds 已提交
6278 6279
	return ret;
}
6280
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6281 6282

/*
I
Ingo Molnar 已提交
6283
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6284 6285 6286 6287 6288 6289
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6290 6291
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6292
 */
6293
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6294
{
6295
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6296
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6297

6298
	if (unlikely(!cpu_active(dest_cpu)))
6299
		return ret;
L
Linus Torvalds 已提交
6300 6301 6302 6303 6304 6305 6306

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6307
		goto done;
L
Linus Torvalds 已提交
6308
	/* Affinity changed (again). */
6309
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6310
		goto fail;
L
Linus Torvalds 已提交
6311

I
Ingo Molnar 已提交
6312
	on_rq = p->se.on_rq;
6313
	if (on_rq)
6314
		deactivate_task(rq_src, p, 0);
6315

L
Linus Torvalds 已提交
6316
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6317 6318
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6319
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6320
	}
L
Linus Torvalds 已提交
6321
done:
6322
	ret = 1;
L
Linus Torvalds 已提交
6323
fail:
L
Linus Torvalds 已提交
6324
	double_rq_unlock(rq_src, rq_dest);
6325
	return ret;
L
Linus Torvalds 已提交
6326 6327 6328 6329 6330 6331 6332
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6333
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6334 6335
{
	int cpu = (long)data;
6336
	struct rq *rq;
L
Linus Torvalds 已提交
6337 6338 6339 6340 6341 6342

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6343
		struct migration_req *req;
L
Linus Torvalds 已提交
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6366
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6367 6368
		list_del_init(head->next);

N
Nick Piggin 已提交
6369 6370 6371
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6401
/*
6402
 * Figure out where task on dead CPU should go, use force if necessary.
6403
 */
6404
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6405
{
6406
	int dest_cpu;
6407
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
6424

6425 6426 6427 6428 6429 6430 6431 6432 6433
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6434
		}
6435 6436 6437 6438 6439 6440
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6441 6442 6443 6444 6445 6446 6447 6448 6449
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6450
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6451
{
R
Rusty Russell 已提交
6452
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6466
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6467

6468
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6469

6470 6471
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6472 6473
			continue;

6474 6475 6476
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6477

6478
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6479 6480
}

I
Ingo Molnar 已提交
6481 6482
/*
 * Schedules idle task to be the next runnable task on current CPU.
6483 6484
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6485 6486 6487
 */
void sched_idle_next(void)
{
6488
	int this_cpu = smp_processor_id();
6489
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6490 6491 6492 6493
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6494
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6495

6496 6497 6498
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6499 6500 6501
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6502
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6503

6504 6505
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6506 6507 6508 6509

	spin_unlock_irqrestore(&rq->lock, flags);
}

6510 6511
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6525
/* called under rq->lock with disabled interrupts */
6526
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6527
{
6528
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6529 6530

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6531
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6532 6533

	/* Cannot have done final schedule yet: would have vanished. */
6534
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6535

6536
	get_task_struct(p);
L
Linus Torvalds 已提交
6537 6538 6539

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6540
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6541 6542
	 * fine.
	 */
6543
	spin_unlock_irq(&rq->lock);
6544
	move_task_off_dead_cpu(dead_cpu, p);
6545
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6546

6547
	put_task_struct(p);
L
Linus Torvalds 已提交
6548 6549 6550 6551 6552
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6553
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6554
	struct task_struct *next;
6555

I
Ingo Molnar 已提交
6556 6557 6558
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6559
		update_rq_clock(rq);
6560
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
6561 6562
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6563
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6564
		migrate_dead(dead_cpu, next);
6565

L
Linus Torvalds 已提交
6566 6567 6568 6569
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6570 6571 6572
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6573 6574
	{
		.procname	= "sched_domain",
6575
		.mode		= 0555,
6576
	},
I
Ingo Molnar 已提交
6577
	{0, },
6578 6579 6580
};

static struct ctl_table sd_ctl_root[] = {
6581
	{
6582
		.ctl_name	= CTL_KERN,
6583
		.procname	= "kernel",
6584
		.mode		= 0555,
6585 6586
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6587
	{0, },
6588 6589 6590 6591 6592
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6593
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6594 6595 6596 6597

	return entry;
}

6598 6599
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6600
	struct ctl_table *entry;
6601

6602 6603 6604
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6605
	 * will always be set. In the lowest directory the names are
6606 6607 6608
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6609 6610
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6611 6612 6613
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6614 6615 6616 6617 6618

	kfree(*tablep);
	*tablep = NULL;
}

6619
static void
6620
set_table_entry(struct ctl_table *entry,
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6634
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6635

6636 6637 6638
	if (table == NULL)
		return NULL;

6639
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6640
		sizeof(long), 0644, proc_doulongvec_minmax);
6641
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6642
		sizeof(long), 0644, proc_doulongvec_minmax);
6643
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6644
		sizeof(int), 0644, proc_dointvec_minmax);
6645
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6646
		sizeof(int), 0644, proc_dointvec_minmax);
6647
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6648
		sizeof(int), 0644, proc_dointvec_minmax);
6649
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6650
		sizeof(int), 0644, proc_dointvec_minmax);
6651
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6652
		sizeof(int), 0644, proc_dointvec_minmax);
6653
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6654
		sizeof(int), 0644, proc_dointvec_minmax);
6655
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6656
		sizeof(int), 0644, proc_dointvec_minmax);
6657
	set_table_entry(&table[9], "cache_nice_tries",
6658 6659
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6660
	set_table_entry(&table[10], "flags", &sd->flags,
6661
		sizeof(int), 0644, proc_dointvec_minmax);
6662 6663 6664
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6665 6666 6667 6668

	return table;
}

6669
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6670 6671 6672 6673 6674 6675 6676 6677 6678
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6679 6680
	if (table == NULL)
		return NULL;
6681 6682 6683 6684 6685

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6686
		entry->mode = 0555;
6687 6688 6689 6690 6691 6692 6693 6694
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6695
static void register_sched_domain_sysctl(void)
6696 6697 6698 6699 6700
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6701 6702 6703
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6704 6705 6706
	if (entry == NULL)
		return;

6707
	for_each_online_cpu(i) {
6708 6709
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6710
		entry->mode = 0555;
6711
		entry->child = sd_alloc_ctl_cpu_table(i);
6712
		entry++;
6713
	}
6714 6715

	WARN_ON(sd_sysctl_header);
6716 6717
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6718

6719
/* may be called multiple times per register */
6720 6721
static void unregister_sched_domain_sysctl(void)
{
6722 6723
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6724
	sd_sysctl_header = NULL;
6725 6726
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6727
}
6728
#else
6729 6730 6731 6732
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6733 6734 6735 6736
{
}
#endif

6737 6738 6739 6740 6741
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6742
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6762
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6763 6764 6765 6766
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6767 6768 6769 6770
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6771 6772
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6773 6774
{
	struct task_struct *p;
6775
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6776
	unsigned long flags;
6777
	struct rq *rq;
L
Linus Torvalds 已提交
6778 6779

	switch (action) {
6780

L
Linus Torvalds 已提交
6781
	case CPU_UP_PREPARE:
6782
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6783
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6784 6785 6786 6787 6788
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6789
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6790 6791 6792
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6793

L
Linus Torvalds 已提交
6794
	case CPU_ONLINE:
6795
	case CPU_ONLINE_FROZEN:
6796
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6797
		wake_up_process(cpu_rq(cpu)->migration_thread);
6798 6799 6800 6801 6802

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6803
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6804 6805

			set_rq_online(rq);
6806 6807
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6808
		break;
6809

L
Linus Torvalds 已提交
6810 6811
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6812
	case CPU_UP_CANCELED_FROZEN:
6813 6814
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6815
		/* Unbind it from offline cpu so it can run. Fall thru. */
6816
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
6817
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6818 6819 6820
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6821

L
Linus Torvalds 已提交
6822
	case CPU_DEAD:
6823
	case CPU_DEAD_FROZEN:
6824
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6825 6826 6827 6828 6829
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6830
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6831
		update_rq_clock(rq);
6832
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6833
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6834 6835
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6836
		migrate_dead_tasks(cpu);
6837
		spin_unlock_irq(&rq->lock);
6838
		cpuset_unlock();
L
Linus Torvalds 已提交
6839 6840 6841
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6842 6843 6844 6845 6846
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6847 6848
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6849 6850
			struct migration_req *req;

L
Linus Torvalds 已提交
6851
			req = list_entry(rq->migration_queue.next,
6852
					 struct migration_req, list);
L
Linus Torvalds 已提交
6853
			list_del_init(&req->list);
B
Brian King 已提交
6854
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
6855
			complete(&req->done);
B
Brian King 已提交
6856
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6857 6858 6859
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6860

6861 6862
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6863 6864 6865 6866
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6867
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6868
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6869 6870 6871
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6872 6873 6874 6875 6876 6877 6878 6879
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6880
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6881 6882 6883 6884
	.notifier_call = migration_call,
	.priority = 10
};

6885
static int __init migration_init(void)
L
Linus Torvalds 已提交
6886 6887
{
	void *cpu = (void *)(long)smp_processor_id();
6888
	int err;
6889 6890

	/* Start one for the boot CPU: */
6891 6892
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6893 6894
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6895 6896

	return err;
L
Linus Torvalds 已提交
6897
}
6898
early_initcall(migration_init);
L
Linus Torvalds 已提交
6899 6900 6901
#endif

#ifdef CONFIG_SMP
6902

6903
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6904

6905
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6906
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6907
{
I
Ingo Molnar 已提交
6908
	struct sched_group *group = sd->groups;
6909
	char str[256];
L
Linus Torvalds 已提交
6910

R
Rusty Russell 已提交
6911
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6912
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6913 6914 6915 6916 6917 6918 6919 6920 6921

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6922 6923
	}

6924
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6925

6926
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
6927 6928 6929
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
6930
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6931 6932 6933
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6934

I
Ingo Molnar 已提交
6935
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6936
	do {
I
Ingo Molnar 已提交
6937 6938 6939
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6940 6941 6942
			break;
		}

I
Ingo Molnar 已提交
6943 6944 6945 6946 6947 6948
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6949

6950
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6951 6952 6953 6954
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6955

6956
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6957 6958 6959 6960
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6961

6962
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6963

R
Rusty Russell 已提交
6964
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
I
Ingo Molnar 已提交
6965
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6966

I
Ingo Molnar 已提交
6967 6968 6969
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6970

6971
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
6972
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6973

6974 6975
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
6976 6977 6978 6979
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6980

I
Ingo Molnar 已提交
6981 6982
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6983
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6984
	int level = 0;
L
Linus Torvalds 已提交
6985

I
Ingo Molnar 已提交
6986 6987 6988 6989
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6990

I
Ingo Molnar 已提交
6991 6992
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6993
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6994 6995 6996 6997
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6998
	for (;;) {
6999
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7000
			break;
L
Linus Torvalds 已提交
7001 7002
		level++;
		sd = sd->parent;
7003
		if (!sd)
I
Ingo Molnar 已提交
7004 7005
			break;
	}
7006
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7007
}
7008
#else /* !CONFIG_SCHED_DEBUG */
7009
# define sched_domain_debug(sd, cpu) do { } while (0)
7010
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7011

7012
static int sd_degenerate(struct sched_domain *sd)
7013
{
7014
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7015 7016 7017 7018 7019 7020
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7021 7022 7023
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7037 7038
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7039 7040 7041 7042 7043 7044
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7045
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7057 7058 7059
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7060 7061
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7062 7063 7064 7065 7066 7067 7068
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7069 7070
static void free_rootdomain(struct root_domain *rd)
{
7071 7072
	cpupri_cleanup(&rd->cpupri);

7073 7074 7075 7076 7077 7078
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7079 7080
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7081
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7082 7083 7084 7085 7086
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7087
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7088

7089
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7090
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7091

7092
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7093

I
Ingo Molnar 已提交
7094 7095 7096 7097 7098 7099 7100
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7101 7102 7103 7104 7105
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7106 7107
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7108
		set_rq_online(rq);
G
Gregory Haskins 已提交
7109 7110

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7111 7112 7113

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7114 7115
}

L
Li Zefan 已提交
7116
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7117 7118 7119
{
	memset(rd, 0, sizeof(*rd));

7120 7121 7122 7123
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7124
		cpupri_init(&rd->cpupri, true);
7125 7126 7127 7128
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7129
		goto out;
7130 7131 7132 7133
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
7134

7135 7136
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
7137
	return 0;
7138

7139 7140
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7141 7142 7143 7144
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7145
out:
7146
	return -ENOMEM;
G
Gregory Haskins 已提交
7147 7148 7149 7150
}

static void init_defrootdomain(void)
{
7151 7152
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7153 7154 7155
	atomic_set(&def_root_domain.refcount, 1);
}

7156
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7157 7158 7159 7160 7161 7162 7163
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7164 7165 7166 7167
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7168 7169 7170 7171

	return rd;
}

L
Linus Torvalds 已提交
7172
/*
I
Ingo Molnar 已提交
7173
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7174 7175
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7176 7177
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7178
{
7179
	struct rq *rq = cpu_rq(cpu);
7180 7181 7182
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7183
	for (tmp = sd; tmp; ) {
7184 7185 7186
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7187

7188
		if (sd_parent_degenerate(tmp, parent)) {
7189
			tmp->parent = parent->parent;
7190 7191
			if (parent->parent)
				parent->parent->child = tmp;
7192 7193
		} else
			tmp = tmp->parent;
7194 7195
	}

7196
	if (sd && sd_degenerate(sd)) {
7197
		sd = sd->parent;
7198 7199 7200
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7201 7202 7203

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7204
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7205
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7206 7207 7208
}

/* cpus with isolated domains */
7209
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7210 7211 7212 7213

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7214
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7215 7216 7217
	return 1;
}

I
Ingo Molnar 已提交
7218
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7219 7220

/*
7221 7222
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7223 7224
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7225 7226 7227 7228 7229
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7230
static void
7231 7232 7233
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7234
					struct sched_group **sg,
7235 7236
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7237 7238 7239 7240
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7241
	cpumask_clear(covered);
7242

7243
	for_each_cpu(i, span) {
7244
		struct sched_group *sg;
7245
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7246 7247
		int j;

7248
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7249 7250
			continue;

7251
		cpumask_clear(sched_group_cpus(sg));
7252
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7253

7254
		for_each_cpu(j, span) {
7255
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7256 7257
				continue;

7258
			cpumask_set_cpu(j, covered);
7259
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7260 7261 7262 7263 7264 7265 7266 7267 7268 7269
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7270
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7271

7272
#ifdef CONFIG_NUMA
7273

7274 7275 7276 7277 7278
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7279
 * Find the next node to include in a given scheduling domain. Simply
7280 7281 7282 7283
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7284
static int find_next_best_node(int node, nodemask_t *used_nodes)
7285 7286 7287 7288 7289
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7290
	for (i = 0; i < nr_node_ids; i++) {
7291
		/* Start at @node */
7292
		n = (node + i) % nr_node_ids;
7293 7294 7295 7296 7297

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7298
		if (node_isset(n, *used_nodes))
7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7310
	node_set(best_node, *used_nodes);
7311 7312 7313 7314 7315 7316
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7317
 * @span: resulting cpumask
7318
 *
I
Ingo Molnar 已提交
7319
 * Given a node, construct a good cpumask for its sched_domain to span. It
7320 7321 7322
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7323
static void sched_domain_node_span(int node, struct cpumask *span)
7324
{
7325
	nodemask_t used_nodes;
7326
	int i;
7327

7328
	cpumask_clear(span);
7329
	nodes_clear(used_nodes);
7330

7331
	cpumask_or(span, span, cpumask_of_node(node));
7332
	node_set(node, used_nodes);
7333 7334

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7335
		int next_node = find_next_best_node(node, &used_nodes);
7336

7337
		cpumask_or(span, span, cpumask_of_node(next_node));
7338 7339
	}
}
7340
#endif /* CONFIG_NUMA */
7341

7342
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7343

7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7359
/*
7360
 * SMT sched-domains:
7361
 */
L
Linus Torvalds 已提交
7362
#ifdef CONFIG_SCHED_SMT
7363 7364
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7365

I
Ingo Molnar 已提交
7366
static int
7367 7368
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7369
{
7370
	if (sg)
7371
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7372 7373
	return cpu;
}
7374
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7375

7376 7377 7378
/*
 * multi-core sched-domains:
 */
7379
#ifdef CONFIG_SCHED_MC
7380 7381
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7382
#endif /* CONFIG_SCHED_MC */
7383 7384

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7385
static int
7386 7387
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7388
{
7389
	int group;
7390

7391 7392
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
7393
	if (sg)
7394
		*sg = &per_cpu(sched_group_core, group).sg;
7395
	return group;
7396 7397
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7398
static int
7399 7400
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7401
{
7402
	if (sg)
7403
		*sg = &per_cpu(sched_group_core, cpu).sg;
7404 7405 7406 7407
	return cpu;
}
#endif

7408 7409
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7410

I
Ingo Molnar 已提交
7411
static int
7412 7413
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7414
{
7415
	int group;
7416
#ifdef CONFIG_SCHED_MC
7417
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7418
	group = cpumask_first(mask);
7419
#elif defined(CONFIG_SCHED_SMT)
7420 7421
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7422
#else
7423
	group = cpu;
L
Linus Torvalds 已提交
7424
#endif
7425
	if (sg)
7426
		*sg = &per_cpu(sched_group_phys, group).sg;
7427
	return group;
L
Linus Torvalds 已提交
7428 7429 7430 7431
}

#ifdef CONFIG_NUMA
/*
7432 7433 7434
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7435
 */
7436
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7437
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7438

7439
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7440
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7441

7442 7443 7444
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7445
{
7446 7447
	int group;

7448
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7449
	group = cpumask_first(nodemask);
7450 7451

	if (sg)
7452
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7453
	return group;
L
Linus Torvalds 已提交
7454
}
7455

7456 7457 7458 7459 7460 7461 7462
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7463
	do {
7464
		for_each_cpu(j, sched_group_cpus(sg)) {
7465
			struct sched_domain *sd;
7466

7467
			sd = &per_cpu(phys_domains, j).sd;
7468
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7469 7470 7471 7472 7473 7474
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7475

7476 7477 7478 7479
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7480
}
7481
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7482

7483
#ifdef CONFIG_NUMA
7484
/* Free memory allocated for various sched_group structures */
7485 7486
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7487
{
7488
	int cpu, i;
7489

7490
	for_each_cpu(cpu, cpu_map) {
7491 7492 7493 7494 7495 7496
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7497
		for (i = 0; i < nr_node_ids; i++) {
7498 7499
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7500
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7501
			if (cpumask_empty(nodemask))
7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7518
#else /* !CONFIG_NUMA */
7519 7520
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7521 7522
{
}
7523
#endif /* CONFIG_NUMA */
7524

7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7546
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7547 7548 7549 7550
		return;

	child = sd->child;

7551 7552
	sd->groups->__cpu_power = 0;

7553 7554 7555 7556 7557 7558 7559 7560 7561 7562
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7563
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7564 7565 7566 7567 7568 7569 7570 7571
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7572
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7573 7574 7575 7576
		group = group->next;
	} while (group != child->groups);
}

7577 7578 7579 7580 7581
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7582 7583 7584 7585 7586 7587
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7588
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7589

7590 7591 7592 7593 7594
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7595
	sd->level = SD_LV_##type;				\
7596
	SD_INIT_NAME(sd, type);					\
7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

7611 7612 7613 7614
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7615 7616 7617 7618 7619 7620
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7646
/*
7647 7648
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7649
 */
7650
static int __build_sched_domains(const struct cpumask *cpu_map,
7651
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7652
{
7653
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
7654
	struct root_domain *rd;
7655 7656
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
7657
#ifdef CONFIG_NUMA
7658
	cpumask_var_t domainspan, covered, notcovered;
7659
	struct sched_group **sched_group_nodes = NULL;
7660
	int sd_allnodes = 0;
7661

7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
7682 7683 7684
	/*
	 * Allocate the per-node list of sched groups
	 */
7685
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7686
				    GFP_KERNEL);
7687 7688
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7689
		goto free_tmpmask;
7690 7691
	}
#endif
L
Linus Torvalds 已提交
7692

7693
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7694 7695
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7696
		goto free_sched_groups;
G
Gregory Haskins 已提交
7697 7698
	}

7699
#ifdef CONFIG_NUMA
7700
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7701 7702
#endif

L
Linus Torvalds 已提交
7703
	/*
7704
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7705
	 */
7706
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7707 7708
		struct sched_domain *sd = NULL, *p;

7709
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
7710 7711

#ifdef CONFIG_NUMA
7712 7713
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7714
			sd = &per_cpu(allnodes_domains, i).sd;
7715
			SD_INIT(sd, ALLNODES);
7716
			set_domain_attribute(sd, attr);
7717
			cpumask_copy(sched_domain_span(sd), cpu_map);
7718
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7719
			p = sd;
7720
			sd_allnodes = 1;
7721 7722 7723
		} else
			p = NULL;

7724
		sd = &per_cpu(node_domains, i).sd;
7725
		SD_INIT(sd, NODE);
7726
		set_domain_attribute(sd, attr);
7727
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7728
		sd->parent = p;
7729 7730
		if (p)
			p->child = sd;
7731 7732
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7733 7734 7735
#endif

		p = sd;
7736
		sd = &per_cpu(phys_domains, i).sd;
7737
		SD_INIT(sd, CPU);
7738
		set_domain_attribute(sd, attr);
7739
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
7740
		sd->parent = p;
7741 7742
		if (p)
			p->child = sd;
7743
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7744

7745 7746
#ifdef CONFIG_SCHED_MC
		p = sd;
7747
		sd = &per_cpu(core_domains, i).sd;
7748
		SD_INIT(sd, MC);
7749
		set_domain_attribute(sd, attr);
7750 7751
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
7752
		sd->parent = p;
7753
		p->child = sd;
7754
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7755 7756
#endif

L
Linus Torvalds 已提交
7757 7758
#ifdef CONFIG_SCHED_SMT
		p = sd;
7759
		sd = &per_cpu(cpu_domains, i).sd;
7760
		SD_INIT(sd, SIBLING);
7761
		set_domain_attribute(sd, attr);
7762 7763
		cpumask_and(sched_domain_span(sd),
			    &per_cpu(cpu_sibling_map, i), cpu_map);
L
Linus Torvalds 已提交
7764
		sd->parent = p;
7765
		p->child = sd;
7766
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7767 7768 7769 7770 7771
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7772
	for_each_cpu(i, cpu_map) {
7773 7774 7775
		cpumask_and(this_sibling_map,
			    &per_cpu(cpu_sibling_map, i), cpu_map);
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
7776 7777
			continue;

I
Ingo Molnar 已提交
7778
		init_sched_build_groups(this_sibling_map, cpu_map,
7779 7780
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7781 7782 7783
	}
#endif

7784 7785
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7786
	for_each_cpu(i, cpu_map) {
7787
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7788
		if (i != cpumask_first(this_core_map))
7789
			continue;
7790

I
Ingo Molnar 已提交
7791
		init_sched_build_groups(this_core_map, cpu_map,
7792 7793
					&cpu_to_core_group,
					send_covered, tmpmask);
7794 7795 7796
	}
#endif

L
Linus Torvalds 已提交
7797
	/* Set up physical groups */
7798
	for (i = 0; i < nr_node_ids; i++) {
7799
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7800
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
7801 7802
			continue;

7803 7804 7805
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7806 7807 7808 7809
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7810 7811 7812 7813 7814
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7815

7816
	for (i = 0; i < nr_node_ids; i++) {
7817 7818 7819 7820
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

7821
		cpumask_clear(covered);
7822
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7823
		if (cpumask_empty(nodemask)) {
7824
			sched_group_nodes[i] = NULL;
7825
			continue;
7826
		}
7827

7828
		sched_domain_node_span(i, domainspan);
7829
		cpumask_and(domainspan, domainspan, cpu_map);
7830

7831 7832
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
7833 7834 7835 7836 7837
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7838
		sched_group_nodes[i] = sg;
7839
		for_each_cpu(j, nodemask) {
7840
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7841

7842
			sd = &per_cpu(node_domains, j).sd;
7843 7844
			sd->groups = sg;
		}
7845
		sg->__cpu_power = 0;
7846
		cpumask_copy(sched_group_cpus(sg), nodemask);
7847
		sg->next = sg;
7848
		cpumask_or(covered, covered, nodemask);
7849 7850
		prev = sg;

7851 7852
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
7853

7854 7855 7856 7857
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
7858 7859
				break;

7860
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7861
			if (cpumask_empty(tmpmask))
7862 7863
				continue;

7864 7865
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
7866
					  GFP_KERNEL, i);
7867 7868 7869
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7870
				goto error;
7871
			}
7872
			sg->__cpu_power = 0;
7873
			cpumask_copy(sched_group_cpus(sg), tmpmask);
7874
			sg->next = prev->next;
7875
			cpumask_or(covered, covered, tmpmask);
7876 7877 7878 7879
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7880 7881 7882
#endif

	/* Calculate CPU power for physical packages and nodes */
7883
#ifdef CONFIG_SCHED_SMT
7884
	for_each_cpu(i, cpu_map) {
7885
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
7886

7887
		init_sched_groups_power(i, sd);
7888
	}
L
Linus Torvalds 已提交
7889
#endif
7890
#ifdef CONFIG_SCHED_MC
7891
	for_each_cpu(i, cpu_map) {
7892
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
7893

7894
		init_sched_groups_power(i, sd);
7895 7896
	}
#endif
7897

7898
	for_each_cpu(i, cpu_map) {
7899
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
7900

7901
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7902 7903
	}

7904
#ifdef CONFIG_NUMA
7905
	for (i = 0; i < nr_node_ids; i++)
7906
		init_numa_sched_groups_power(sched_group_nodes[i]);
7907

7908 7909
	if (sd_allnodes) {
		struct sched_group *sg;
7910

7911
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7912
								tmpmask);
7913 7914
		init_numa_sched_groups_power(sg);
	}
7915 7916
#endif

L
Linus Torvalds 已提交
7917
	/* Attach the domains */
7918
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7919 7920
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
7921
		sd = &per_cpu(cpu_domains, i).sd;
7922
#elif defined(CONFIG_SCHED_MC)
7923
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7924
#else
7925
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7926
#endif
G
Gregory Haskins 已提交
7927
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7928
	}
7929

7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
7958

7959
#ifdef CONFIG_NUMA
7960
error:
7961
	free_sched_groups(cpu_map, tmpmask);
7962
	free_rootdomain(rd);
7963
	goto free_tmpmask;
7964
#endif
L
Linus Torvalds 已提交
7965
}
P
Paul Jackson 已提交
7966

7967
static int build_sched_domains(const struct cpumask *cpu_map)
7968 7969 7970 7971
{
	return __build_sched_domains(cpu_map, NULL);
}

7972
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7973
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7974 7975
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7976 7977 7978

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7979 7980
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7981
 */
7982
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7983

7984 7985 7986 7987 7988 7989
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7990
{
7991
	return 0;
7992 7993
}

7994
/*
I
Ingo Molnar 已提交
7995
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7996 7997
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7998
 */
7999
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8000
{
8001 8002
	int err;

8003
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8004
	ndoms_cur = 1;
8005
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8006
	if (!doms_cur)
8007
		doms_cur = fallback_doms;
8008
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8009
	dattr_cur = NULL;
8010
	err = build_sched_domains(doms_cur);
8011
	register_sched_domain_sysctl();
8012 8013

	return err;
8014 8015
}

8016 8017
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8018
{
8019
	free_sched_groups(cpu_map, tmpmask);
8020
}
L
Linus Torvalds 已提交
8021

8022 8023 8024 8025
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8026
static void detach_destroy_domains(const struct cpumask *cpu_map)
8027
{
8028 8029
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8030 8031
	int i;

8032
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8033
		cpu_attach_domain(NULL, &def_root_domain, i);
8034
	synchronize_sched();
8035
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8036 8037
}

8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8054 8055
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8056
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8057 8058 8059
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8060
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8061 8062 8063
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8064 8065 8066
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8067 8068
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8069 8070 8071 8072
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8073
 *
8074
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8075 8076
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8077
 *
P
Paul Jackson 已提交
8078 8079
 * Call with hotplug lock held
 */
8080 8081
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8082
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8083
{
8084
	int i, j, n;
8085
	int new_topology;
P
Paul Jackson 已提交
8086

8087
	mutex_lock(&sched_domains_mutex);
8088

8089 8090 8091
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8092 8093 8094
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8095
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8096 8097 8098

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8099
		for (j = 0; j < n && !new_topology; j++) {
8100
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8101
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8102 8103 8104 8105 8106 8107 8108 8109
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8110 8111
	if (doms_new == NULL) {
		ndoms_cur = 0;
8112
		doms_new = fallback_doms;
8113
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8114
		WARN_ON_ONCE(dattr_new);
8115 8116
	}

P
Paul Jackson 已提交
8117 8118
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8119
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8120
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8121
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8122 8123 8124
				goto match2;
		}
		/* no match - add a new doms_new */
8125 8126
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8127 8128 8129 8130 8131
match2:
		;
	}

	/* Remember the new sched domains */
8132
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8133
		kfree(doms_cur);
8134
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8135
	doms_cur = doms_new;
8136
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8137
	ndoms_cur = ndoms_new;
8138 8139

	register_sched_domain_sysctl();
8140

8141
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8142 8143
}

8144
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8145
static void arch_reinit_sched_domains(void)
8146
{
8147
	get_online_cpus();
8148 8149 8150 8151

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8152
	rebuild_sched_domains();
8153
	put_online_cpus();
8154 8155 8156 8157
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8158
	unsigned int level = 0;
8159

8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8171 8172 8173
		return -EINVAL;

	if (smt)
8174
		sched_smt_power_savings = level;
8175
	else
8176
		sched_mc_power_savings = level;
8177

8178
	arch_reinit_sched_domains();
8179

8180
	return count;
8181 8182 8183
}

#ifdef CONFIG_SCHED_MC
8184 8185
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8186 8187 8188
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8189
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8190
					    const char *buf, size_t count)
8191 8192 8193
{
	return sched_power_savings_store(buf, count, 0);
}
8194 8195 8196
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8197 8198 8199
#endif

#ifdef CONFIG_SCHED_SMT
8200 8201
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8202 8203 8204
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8205
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8206
					     const char *buf, size_t count)
8207 8208 8209
{
	return sched_power_savings_store(buf, count, 1);
}
8210 8211
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8212 8213 8214
		   sched_smt_power_savings_store);
#endif

8215
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8231
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8232

8233
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8234
/*
8235 8236
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8237 8238 8239
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8240 8241 8242 8243 8244 8245
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8246
		partition_sched_domains(1, NULL, NULL);
8247 8248 8249 8250 8251 8252 8253 8254 8255 8256
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8257
{
P
Peter Zijlstra 已提交
8258 8259
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8260 8261
	switch (action) {
	case CPU_DOWN_PREPARE:
8262
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8263
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8264 8265 8266
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8267
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8268
	case CPU_ONLINE:
8269
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8270
		enable_runtime(cpu_rq(cpu));
8271 8272
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8273 8274 8275 8276 8277 8278 8279
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8280 8281 8282
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8283

8284 8285 8286 8287 8288
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8289
	get_online_cpus();
8290
	mutex_lock(&sched_domains_mutex);
8291 8292 8293 8294
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8295
	mutex_unlock(&sched_domains_mutex);
8296
	put_online_cpus();
8297 8298

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8299 8300
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8301 8302 8303 8304 8305
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8306
	init_hrtick();
8307 8308

	/* Move init over to a non-isolated CPU */
8309
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8310
		BUG();
I
Ingo Molnar 已提交
8311
	sched_init_granularity();
8312
	free_cpumask_var(non_isolated_cpus);
8313 8314

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8315
	init_sched_rt_class();
L
Linus Torvalds 已提交
8316 8317 8318 8319
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8320
	sched_init_granularity();
L
Linus Torvalds 已提交
8321 8322 8323 8324 8325 8326 8327 8328 8329 8330
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8331
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8332 8333
{
	cfs_rq->tasks_timeline = RB_ROOT;
8334
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8335 8336 8337
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8338
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8339 8340
}

P
Peter Zijlstra 已提交
8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8354
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8355
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
8356
#ifdef CONFIG_SMP
8357
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
8358 8359
#endif
#endif
P
Peter Zijlstra 已提交
8360 8361 8362
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
8363
	plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
8364 8365 8366 8367
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8368 8369
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8370

8371
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8372
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8373 8374
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8375 8376
}

P
Peter Zijlstra 已提交
8377
#ifdef CONFIG_FAIR_GROUP_SCHED
8378 8379 8380
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8381
{
8382
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8383 8384 8385 8386 8387 8388 8389
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8390 8391 8392 8393
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8394 8395 8396 8397 8398
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8399 8400
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8401
	se->load.inv_weight = 0;
8402
	se->parent = parent;
P
Peter Zijlstra 已提交
8403
}
8404
#endif
P
Peter Zijlstra 已提交
8405

8406
#ifdef CONFIG_RT_GROUP_SCHED
8407 8408 8409
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8410
{
8411 8412
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8413 8414 8415 8416
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8417
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8418 8419 8420 8421
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8422 8423 8424
	if (!rt_se)
		return;

8425 8426 8427 8428 8429
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8430
	rt_se->my_q = rt_rq;
8431
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8432 8433 8434 8435
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8436 8437
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8438
	int i, j;
8439 8440 8441 8442 8443 8444 8445
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8446 8447 8448
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8449 8450 8451 8452 8453 8454
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8455
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8456 8457 8458 8459 8460 8461 8462

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8463 8464 8465 8466 8467 8468 8469

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8470 8471
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8472 8473 8474 8475 8476
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8477 8478 8479 8480 8481 8482 8483 8484
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8485 8486
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8487
	}
I
Ingo Molnar 已提交
8488

G
Gregory Haskins 已提交
8489 8490 8491 8492
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8493 8494 8495 8496 8497 8498
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8499 8500 8501
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8502 8503
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8504

8505
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8506
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8507 8508 8509 8510 8511 8512
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8513 8514
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8515

8516
	for_each_possible_cpu(i) {
8517
		struct rq *rq;
L
Linus Torvalds 已提交
8518 8519 8520

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8521
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8522
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8523
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8524
#ifdef CONFIG_FAIR_GROUP_SCHED
8525
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8526
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8547
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8548
#elif defined CONFIG_USER_SCHED
8549 8550
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8562
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8563
				&per_cpu(init_cfs_rq, i),
8564 8565
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8566

8567
#endif
D
Dhaval Giani 已提交
8568 8569 8570
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8571
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8572
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8573
#ifdef CONFIG_CGROUP_SCHED
8574
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8575
#elif defined CONFIG_USER_SCHED
8576
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8577
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8578
				&per_cpu(init_rt_rq, i),
8579 8580
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8581
#endif
I
Ingo Molnar 已提交
8582
#endif
L
Linus Torvalds 已提交
8583

I
Ingo Molnar 已提交
8584 8585
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8586
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8587
		rq->sd = NULL;
G
Gregory Haskins 已提交
8588
		rq->rd = NULL;
L
Linus Torvalds 已提交
8589
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8590
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8591
		rq->push_cpu = 0;
8592
		rq->cpu = i;
8593
		rq->online = 0;
L
Linus Torvalds 已提交
8594 8595
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8596
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8597
#endif
P
Peter Zijlstra 已提交
8598
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8599 8600 8601
		atomic_set(&rq->nr_iowait, 0);
	}

8602
	set_load_weight(&init_task);
8603

8604 8605 8606 8607
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8608
#ifdef CONFIG_SMP
8609
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8610 8611
#endif

8612 8613 8614 8615
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8629 8630 8631 8632
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8633

8634 8635
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8636
#ifdef CONFIG_SMP
8637 8638 8639
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
8640
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
8641
#endif /* SMP */
8642

8643
	scheduler_running = 1;
L
Linus Torvalds 已提交
8644 8645 8646 8647 8648
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8649
#ifdef in_atomic
L
Linus Torvalds 已提交
8650 8651
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8671 8672 8673 8674 8675 8676
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8677 8678 8679
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8680

8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8692 8693
void normalize_rt_tasks(void)
{
8694
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8695
	unsigned long flags;
8696
	struct rq *rq;
L
Linus Torvalds 已提交
8697

8698
	read_lock_irqsave(&tasklist_lock, flags);
8699
	do_each_thread(g, p) {
8700 8701 8702 8703 8704 8705
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8706 8707
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8708 8709 8710
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8711
#endif
I
Ingo Molnar 已提交
8712 8713 8714 8715 8716 8717 8718 8719

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8720
			continue;
I
Ingo Molnar 已提交
8721
		}
L
Linus Torvalds 已提交
8722

8723
		spin_lock(&p->pi_lock);
8724
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8725

8726
		normalize_task(rq, p);
8727

8728
		__task_rq_unlock(rq);
8729
		spin_unlock(&p->pi_lock);
8730 8731
	} while_each_thread(g, p);

8732
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8733 8734 8735
}

#endif /* CONFIG_MAGIC_SYSRQ */
8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8754
struct task_struct *curr_task(int cpu)
8755 8756 8757 8758 8759 8760 8761 8762 8763 8764
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8765 8766
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8767 8768 8769 8770 8771 8772 8773
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8774
void set_curr_task(int cpu, struct task_struct *p)
8775 8776 8777 8778 8779
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8780

8781 8782
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8797 8798
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8799 8800
{
	struct cfs_rq *cfs_rq;
8801
	struct sched_entity *se;
8802
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8803 8804
	int i;

8805
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8806 8807
	if (!tg->cfs_rq)
		goto err;
8808
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8809 8810
	if (!tg->se)
		goto err;
8811 8812

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8813 8814

	for_each_possible_cpu(i) {
8815
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8816

8817 8818
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8819 8820 8821
		if (!cfs_rq)
			goto err;

8822 8823
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8824 8825 8826
		if (!se)
			goto err;

8827
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8846
#else /* !CONFG_FAIR_GROUP_SCHED */
8847 8848 8849 8850
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8851 8852
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8864
#endif /* CONFIG_FAIR_GROUP_SCHED */
8865 8866

#ifdef CONFIG_RT_GROUP_SCHED
8867 8868 8869 8870
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8871 8872
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8884 8885
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8886 8887
{
	struct rt_rq *rt_rq;
8888
	struct sched_rt_entity *rt_se;
8889 8890 8891
	struct rq *rq;
	int i;

8892
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8893 8894
	if (!tg->rt_rq)
		goto err;
8895
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8896 8897 8898
	if (!tg->rt_se)
		goto err;

8899 8900
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8901 8902 8903 8904

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8905 8906
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8907 8908
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8909

8910 8911
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8912 8913
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8914

8915
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8916 8917
	}

8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8934
#else /* !CONFIG_RT_GROUP_SCHED */
8935 8936 8937 8938
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8939 8940
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8952
#endif /* CONFIG_RT_GROUP_SCHED */
8953

8954
#ifdef CONFIG_GROUP_SCHED
8955 8956 8957 8958 8959 8960 8961 8962
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8963
struct task_group *sched_create_group(struct task_group *parent)
8964 8965 8966 8967 8968 8969 8970 8971 8972
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8973
	if (!alloc_fair_sched_group(tg, parent))
8974 8975
		goto err;

8976
	if (!alloc_rt_sched_group(tg, parent))
8977 8978
		goto err;

8979
	spin_lock_irqsave(&task_group_lock, flags);
8980
	for_each_possible_cpu(i) {
8981 8982
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8983
	}
P
Peter Zijlstra 已提交
8984
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8985 8986 8987 8988 8989

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8990
	list_add_rcu(&tg->siblings, &parent->children);
8991
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8992

8993
	return tg;
S
Srivatsa Vaddagiri 已提交
8994 8995

err:
P
Peter Zijlstra 已提交
8996
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8997 8998 8999
	return ERR_PTR(-ENOMEM);
}

9000
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9001
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9002 9003
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9004
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9005 9006
}

9007
/* Destroy runqueue etc associated with a task group */
9008
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9009
{
9010
	unsigned long flags;
9011
	int i;
S
Srivatsa Vaddagiri 已提交
9012

9013
	spin_lock_irqsave(&task_group_lock, flags);
9014
	for_each_possible_cpu(i) {
9015 9016
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9017
	}
P
Peter Zijlstra 已提交
9018
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9019
	list_del_rcu(&tg->siblings);
9020
	spin_unlock_irqrestore(&task_group_lock, flags);
9021 9022

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9023
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9024 9025
}

9026
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9027 9028 9029
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9030 9031
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9032 9033 9034 9035 9036 9037 9038 9039 9040
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9041
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9042 9043
	on_rq = tsk->se.on_rq;

9044
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9045
		dequeue_task(rq, tsk, 0);
9046 9047
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9048

P
Peter Zijlstra 已提交
9049
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9050

P
Peter Zijlstra 已提交
9051 9052 9053 9054 9055
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9056 9057 9058
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9059
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9060 9061 9062

	task_rq_unlock(rq, &flags);
}
9063
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9064

9065
#ifdef CONFIG_FAIR_GROUP_SCHED
9066
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9067 9068 9069 9070 9071
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9072
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9073 9074 9075
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9076
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9077

9078
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9079
		enqueue_entity(cfs_rq, se, 0);
9080
}
9081

9082 9083 9084 9085 9086 9087 9088 9089 9090
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9091 9092
}

9093 9094
static DEFINE_MUTEX(shares_mutex);

9095
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9096 9097
{
	int i;
9098
	unsigned long flags;
9099

9100 9101 9102 9103 9104 9105
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9106 9107
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9108 9109
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9110

9111
	mutex_lock(&shares_mutex);
9112
	if (tg->shares == shares)
9113
		goto done;
S
Srivatsa Vaddagiri 已提交
9114

9115
	spin_lock_irqsave(&task_group_lock, flags);
9116 9117
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9118
	list_del_rcu(&tg->siblings);
9119
	spin_unlock_irqrestore(&task_group_lock, flags);
9120 9121 9122 9123 9124 9125 9126 9127

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9128
	tg->shares = shares;
9129 9130 9131 9132 9133
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9134
		set_se_shares(tg->se[i], shares);
9135
	}
S
Srivatsa Vaddagiri 已提交
9136

9137 9138 9139 9140
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9141
	spin_lock_irqsave(&task_group_lock, flags);
9142 9143
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9144
	list_add_rcu(&tg->siblings, &tg->parent->children);
9145
	spin_unlock_irqrestore(&task_group_lock, flags);
9146
done:
9147
	mutex_unlock(&shares_mutex);
9148
	return 0;
S
Srivatsa Vaddagiri 已提交
9149 9150
}

9151 9152 9153 9154
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9155
#endif
9156

9157
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9158
/*
P
Peter Zijlstra 已提交
9159
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9160
 */
P
Peter Zijlstra 已提交
9161 9162 9163 9164 9165
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9166
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9167

P
Peter Zijlstra 已提交
9168
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9169 9170
}

P
Peter Zijlstra 已提交
9171 9172
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9173
{
P
Peter Zijlstra 已提交
9174
	struct task_struct *g, *p;
9175

P
Peter Zijlstra 已提交
9176 9177 9178 9179
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9180

P
Peter Zijlstra 已提交
9181 9182
	return 0;
}
9183

P
Peter Zijlstra 已提交
9184 9185 9186 9187 9188
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9189

P
Peter Zijlstra 已提交
9190 9191 9192 9193 9194 9195
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9196

P
Peter Zijlstra 已提交
9197 9198
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9199

P
Peter Zijlstra 已提交
9200 9201 9202
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9203 9204
	}

9205 9206 9207 9208 9209 9210 9211
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9212 9213 9214 9215 9216
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9217

9218 9219 9220
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9221 9222
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9223

P
Peter Zijlstra 已提交
9224
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9225

9226 9227 9228 9229 9230
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9231

9232 9233 9234
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9235 9236 9237
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9238

P
Peter Zijlstra 已提交
9239 9240 9241 9242
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9243

P
Peter Zijlstra 已提交
9244
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9245
	}
P
Peter Zijlstra 已提交
9246

P
Peter Zijlstra 已提交
9247 9248 9249 9250
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9251 9252
}

P
Peter Zijlstra 已提交
9253
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9254
{
P
Peter Zijlstra 已提交
9255 9256 9257 9258 9259 9260 9261
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9262 9263
}

9264 9265
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9266
{
P
Peter Zijlstra 已提交
9267
	int i, err = 0;
P
Peter Zijlstra 已提交
9268 9269

	mutex_lock(&rt_constraints_mutex);
9270
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9271 9272
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9273
		goto unlock;
P
Peter Zijlstra 已提交
9274 9275

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9276 9277
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9278 9279 9280 9281 9282 9283 9284 9285 9286

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9287
 unlock:
9288
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9289 9290 9291
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9292 9293
}

9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9306 9307 9308 9309
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9310
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9311 9312
		return -1;

9313
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9314 9315 9316
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9317 9318 9319 9320 9321 9322 9323 9324

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9325 9326 9327
	if (rt_period == 0)
		return -EINVAL;

9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9342
	u64 runtime, period;
9343 9344
	int ret = 0;

9345 9346 9347
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9348 9349 9350 9351 9352 9353 9354 9355
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9356

9357
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9358
	read_lock(&tasklist_lock);
9359
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9360
	read_unlock(&tasklist_lock);
9361 9362 9363 9364
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9365 9366 9367 9368 9369 9370 9371 9372 9373 9374

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

9375
#else /* !CONFIG_RT_GROUP_SCHED */
9376 9377
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9378 9379 9380
	unsigned long flags;
	int i;

9381 9382 9383
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9384 9385 9386 9387 9388 9389 9390 9391 9392 9393
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9394 9395
	return 0;
}
9396
#endif /* CONFIG_RT_GROUP_SCHED */
9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9427

9428
#ifdef CONFIG_CGROUP_SCHED
9429 9430

/* return corresponding task_group object of a cgroup */
9431
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9432
{
9433 9434
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9435 9436 9437
}

static struct cgroup_subsys_state *
9438
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9439
{
9440
	struct task_group *tg, *parent;
9441

9442
	if (!cgrp->parent) {
9443 9444 9445 9446
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9447 9448
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9449 9450 9451 9452 9453 9454
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9455 9456
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9457
{
9458
	struct task_group *tg = cgroup_tg(cgrp);
9459 9460 9461 9462

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9463 9464 9465
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9466
{
9467
#ifdef CONFIG_RT_GROUP_SCHED
9468
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9469 9470
		return -EINVAL;
#else
9471 9472 9473
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9474
#endif
9475 9476 9477 9478 9479

	return 0;
}

static void
9480
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9481 9482 9483 9484 9485
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9486
#ifdef CONFIG_FAIR_GROUP_SCHED
9487
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9488
				u64 shareval)
9489
{
9490
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9491 9492
}

9493
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9494
{
9495
	struct task_group *tg = cgroup_tg(cgrp);
9496 9497 9498

	return (u64) tg->shares;
}
9499
#endif /* CONFIG_FAIR_GROUP_SCHED */
9500

9501
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9502
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9503
				s64 val)
P
Peter Zijlstra 已提交
9504
{
9505
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9506 9507
}

9508
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9509
{
9510
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9511
}
9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9523
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9524

9525
static struct cftype cpu_files[] = {
9526
#ifdef CONFIG_FAIR_GROUP_SCHED
9527 9528
	{
		.name = "shares",
9529 9530
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9531
	},
9532 9533
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9534
	{
P
Peter Zijlstra 已提交
9535
		.name = "rt_runtime_us",
9536 9537
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9538
	},
9539 9540
	{
		.name = "rt_period_us",
9541 9542
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9543
	},
9544
#endif
9545 9546 9547 9548
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9549
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9550 9551 9552
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9553 9554 9555 9556 9557 9558 9559
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9560 9561 9562
	.early_init	= 1,
};

9563
#endif	/* CONFIG_CGROUP_SCHED */
9564 9565 9566 9567 9568 9569 9570 9571 9572 9573

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9574
/* track cpu usage of a group of tasks and its child groups */
9575 9576 9577 9578
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
9579
	struct cpuacct *parent;
9580 9581 9582 9583 9584
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9585
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9586
{
9587
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9600
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

9613 9614 9615
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9616 9617 9618 9619
	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9620
static void
9621
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9622
{
9623
	struct cpuacct *ca = cgroup_ca(cgrp);
9624 9625 9626 9627 9628

	free_percpu(ca->cpuusage);
	kfree(ca);
}

9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

9664
/* return total cpu usage (in nanoseconds) of a group */
9665
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9666
{
9667
	struct cpuacct *ca = cgroup_ca(cgrp);
9668 9669 9670
	u64 totalcpuusage = 0;
	int i;

9671 9672
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9673 9674 9675 9676

	return totalcpuusage;
}

9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9689 9690
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9691 9692 9693 9694 9695

out:
	return err;
}

9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9711 9712 9713
static struct cftype files[] = {
	{
		.name = "usage",
9714 9715
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9716
	},
9717 9718 9719 9720 9721
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},

9722 9723
};

9724
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9725
{
9726
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9727 9728 9729 9730 9731 9732 9733 9734 9735 9736
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9737
	int cpu;
9738

L
Li Zefan 已提交
9739
	if (unlikely(!cpuacct_subsys.active))
9740 9741
		return;

9742
	cpu = task_cpu(tsk);
9743 9744
	ca = task_ca(tsk);

9745 9746
	for (; ca; ca = ca->parent) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758
		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */