sched.c 223.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76

77 78 79 80 81 82 83
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
84
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
85 86
}

L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
106
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
107
 */
108
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
109

I
Ingo Molnar 已提交
110 111 112
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
113 114 115
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
116
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
117 118 119
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
120

121 122 123 124 125
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

147 148 149 150 151 152 153 154 155 156 157 158
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
159
/*
I
Ingo Molnar 已提交
160
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
161
 */
I
Ingo Molnar 已提交
162 163 164 165 166
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

167
struct rt_bandwidth {
I
Ingo Molnar 已提交
168 169 170 171 172
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
206 207
	spin_lock_init(&rt_b->rt_runtime_lock);

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

245
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
246

247 248
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
249 250
struct cfs_rq;

P
Peter Zijlstra 已提交
251 252
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
253
/* task group related information */
254
struct task_group {
255
#ifdef CONFIG_CGROUP_SCHED
256 257
	struct cgroup_subsys_state css;
#endif
258 259

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
260 261 262 263 264
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
265 266 267 268 269 270
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

271
	struct rt_bandwidth rt_bandwidth;
272
#endif
273

274
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
275
	struct list_head list;
P
Peter Zijlstra 已提交
276 277 278 279

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
280 281
};

D
Dhaval Giani 已提交
282
#ifdef CONFIG_USER_SCHED
283 284 285 286 287 288 289 290

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

291
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
292 293 294 295
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
296 297 298 299 300 301
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
#endif
302 303
#else
#define root_task_group init_task_group
D
Dhaval Giani 已提交
304
#endif
P
Peter Zijlstra 已提交
305

306
/* task_group_lock serializes add/remove of task groups and also changes to
307 308
 * a task group's cpu shares.
 */
309
static DEFINE_SPINLOCK(task_group_lock);
310

311 312 313
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

314 315 316 317 318 319 320
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

321 322
#define MIN_SHARES	2

323 324 325
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
326
/* Default task group.
I
Ingo Molnar 已提交
327
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
328
 */
329
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
330 331

/* return group to which a task belongs */
332
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
333
{
334
	struct task_group *tg;
335

336
#ifdef CONFIG_USER_SCHED
337
	tg = p->user->tg;
338
#elif defined(CONFIG_CGROUP_SCHED)
339 340
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
341
#else
I
Ingo Molnar 已提交
342
	tg = &init_task_group;
343
#endif
344
	return tg;
S
Srivatsa Vaddagiri 已提交
345 346 347
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
348
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
349
{
350
#ifdef CONFIG_FAIR_GROUP_SCHED
351 352
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
353
#endif
P
Peter Zijlstra 已提交
354

355
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
356 357
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
358
#endif
S
Srivatsa Vaddagiri 已提交
359 360
}

361 362 363 364 365 366 367 368 369 370
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
371 372
#else

P
Peter Zijlstra 已提交
373
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
374 375
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
376

377
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
378

I
Ingo Molnar 已提交
379 380 381 382 383 384
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
385
	u64 min_vruntime;
I
Ingo Molnar 已提交
386 387 388

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
389 390 391 392 393 394

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
395 396
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
397
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
398 399 400

	unsigned long nr_spread_over;

401
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
402 403
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
404 405
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
406 407 408 409 410 411
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
412 413
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

#ifdef CONFIG_SMP
	unsigned long task_weight;
	unsigned long shares;
	/*
	 * We need space to build a sched_domain wide view of the full task
	 * group tree, in order to avoid depending on dynamic memory allocation
	 * during the load balancing we place this in the per cpu task group
	 * hierarchy. This limits the load balancing to one instance per cpu,
	 * but more should not be needed anyway.
	 */
	struct aggregate_struct {
		/*
		 *   load = weight(cpus) * f(tg)
		 *
		 * Where f(tg) is the recursive weight fraction assigned to
		 * this group.
		 */
		unsigned long load;

		/*
		 * part of the group weight distributed to this span.
		 */
		unsigned long shares;

		/*
		 * The sum of all runqueue weights within this span.
		 */
		unsigned long rq_weight;

		/*
		 * Weight contributed by tasks; this is the part we can
		 * influence by moving tasks around.
		 */
		unsigned long task_weight;
	} aggregate;
#endif
I
Ingo Molnar 已提交
451 452
#endif
};
L
Linus Torvalds 已提交
453

I
Ingo Molnar 已提交
454 455 456
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
457
	unsigned long rt_nr_running;
458
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
459 460
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
461
#ifdef CONFIG_SMP
462
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
463
	int overloaded;
P
Peter Zijlstra 已提交
464
#endif
P
Peter Zijlstra 已提交
465
	int rt_throttled;
P
Peter Zijlstra 已提交
466
	u64 rt_time;
P
Peter Zijlstra 已提交
467
	u64 rt_runtime;
I
Ingo Molnar 已提交
468
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
469
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
470

471
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
472 473
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
474 475 476 477 478
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
479 480
};

G
Gregory Haskins 已提交
481 482 483 484
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
485 486
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
487 488 489 490 491 492 493 494
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
495

I
Ingo Molnar 已提交
496
	/*
497 498 499 500
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
501
	atomic_t rto_count;
G
Gregory Haskins 已提交
502 503
};

504 505 506 507
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
508 509 510 511
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
512 513 514 515 516 517 518
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
519
struct rq {
520 521
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
522 523 524 525 526 527

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
528 529
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
530
	unsigned char idle_at_tick;
531
#ifdef CONFIG_NO_HZ
532
	unsigned long last_tick_seen;
533 534
	unsigned char in_nohz_recently;
#endif
535 536
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
537 538 539 540
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
541 542
	struct rt_rq rt;

I
Ingo Molnar 已提交
543
#ifdef CONFIG_FAIR_GROUP_SCHED
544 545
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
546 547
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
548
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
549 550 551 552 553 554 555 556 557 558
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

559
	struct task_struct *curr, *idle;
560
	unsigned long next_balance;
L
Linus Torvalds 已提交
561
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
562 563 564 565

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

566
	unsigned int clock_warps, clock_overflows, clock_underflows;
567 568
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
569
	u64 tick_timestamp;
I
Ingo Molnar 已提交
570

L
Linus Torvalds 已提交
571 572 573
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
574
	struct root_domain *rd;
L
Linus Torvalds 已提交
575 576 577 578 579
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
580 581
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
582

583
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
584 585 586
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
587 588 589 590 591 592
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
593 594 595 596 597
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
598 599 600 601
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
602 603

	/* schedule() stats */
604 605 606
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
607 608

	/* try_to_wake_up() stats */
609 610
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
611 612

	/* BKL stats */
613
	unsigned int bkl_count;
L
Linus Torvalds 已提交
614
#endif
615
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
616 617
};

618
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
619

I
Ingo Molnar 已提交
620 621 622 623 624
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

625 626 627 628 629 630 631 632 633
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
#ifdef CONFIG_NO_HZ
static inline bool nohz_on(int cpu)
{
	return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
}

static inline u64 max_skipped_ticks(struct rq *rq)
{
	return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
	rq->last_tick_seen = jiffies;
}
#else
static inline u64 max_skipped_ticks(struct rq *rq)
{
	return 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
}
#endif

I
Ingo Molnar 已提交
660
/*
I
Ingo Molnar 已提交
661 662
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
663
 */
I
Ingo Molnar 已提交
664
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
665 666 667 668 669 670
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
671 672 673
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
674 675 676 677 678 679 680 681 682 683
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
684 685 686 687 688 689
		u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
		u64 max_time = rq->tick_timestamp + max_jump;

		if (unlikely(clock + delta > max_time)) {
			if (clock < max_time)
				clock = max_time;
690 691
			else
				clock++;
I
Ingo Molnar 已提交
692 693 694 695 696 697 698 699 700 701
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
702
}
I
Ingo Molnar 已提交
703

I
Ingo Molnar 已提交
704 705 706 707
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
708 709
}

N
Nick Piggin 已提交
710 711
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
712
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
713 714 715 716
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
717 718
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
719 720 721 722 723 724

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
725 726 727 728 729 730 731 732 733 734 735 736
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
737 738 739 740

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
741
enum {
P
Peter Zijlstra 已提交
742
#include "sched_features.h"
I
Ingo Molnar 已提交
743 744
};

P
Peter Zijlstra 已提交
745 746 747 748 749
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
750
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
751 752 753 754 755 756 757 758 759
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

760
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
761 762 763 764 765 766
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

767
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
795
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
825
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
868

869 870 871 872 873 874
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
875
/*
P
Peter Zijlstra 已提交
876
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
877 878
 * default: 1s
 */
P
Peter Zijlstra 已提交
879
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
880

881 882
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
883 884 885 886 887
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
888

889 890 891 892 893 894 895 896 897 898 899 900
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
901

902
unsigned long long time_sync_thresh = 100000;
903 904 905 906

static DEFINE_PER_CPU(unsigned long long, time_offset);
static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);

907
/*
908 909 910 911
 * Global lock which we take every now and then to synchronize
 * the CPUs time. This method is not warp-safe, but it's good
 * enough to synchronize slowly diverging time sources and thus
 * it's good enough for tracing:
912
 */
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
static DEFINE_SPINLOCK(time_sync_lock);
static unsigned long long prev_global_time;

static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
{
	unsigned long flags;

	spin_lock_irqsave(&time_sync_lock, flags);

	if (time < prev_global_time) {
		per_cpu(time_offset, cpu) += prev_global_time - time;
		time = prev_global_time;
	} else {
		prev_global_time = time;
	}

	spin_unlock_irqrestore(&time_sync_lock, flags);

	return time;
}

static unsigned long long __cpu_clock(int cpu)
935 936 937
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
938
	struct rq *rq;
939

940 941 942 943
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
944 945 946 947 948 949
	if (unlikely(!scheduler_running))
		return 0;

	local_irq_save(flags);
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
I
Ingo Molnar 已提交
950
	now = rq->clock;
951
	local_irq_restore(flags);
952 953 954

	return now;
}
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972

/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long prev_cpu_time, time, delta_time;

	prev_cpu_time = per_cpu(prev_cpu_time, cpu);
	time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
	delta_time = time-prev_cpu_time;

	if (unlikely(delta_time > time_sync_thresh))
		time = __sync_cpu_clock(time, cpu);

	return time;
}
P
Paul E. McKenney 已提交
973
EXPORT_SYMBOL_GPL(cpu_clock);
974

L
Linus Torvalds 已提交
975
#ifndef prepare_arch_switch
976 977 978 979 980 981
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

982 983 984 985 986
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

987
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
988
static inline int task_running(struct rq *rq, struct task_struct *p)
989
{
990
	return task_current(rq, p);
991 992
}

993
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
994 995 996
{
}

997
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
998
{
999 1000 1001 1002
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
1003 1004 1005 1006 1007 1008 1009
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

1010 1011 1012 1013
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
1014
static inline int task_running(struct rq *rq, struct task_struct *p)
1015 1016 1017 1018
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
1019
	return task_current(rq, p);
1020 1021 1022
#endif
}

1023
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

1040
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
1053
#endif
1054 1055
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
1056

1057 1058 1059 1060
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
1061
static inline struct rq *__task_rq_lock(struct task_struct *p)
1062 1063
	__acquires(rq->lock)
{
1064 1065 1066 1067 1068
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
1069 1070 1071 1072
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
1073 1074
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
1075
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
1076 1077
 * explicitly disabling preemption.
 */
1078
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
1079 1080
	__acquires(rq->lock)
{
1081
	struct rq *rq;
L
Linus Torvalds 已提交
1082

1083 1084 1085 1086 1087 1088
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1089 1090 1091 1092
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
1093
static void __task_rq_unlock(struct rq *rq)
1094 1095 1096 1097 1098
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1099
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1100 1101 1102 1103 1104 1105
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1106
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1107
 */
A
Alexey Dobriyan 已提交
1108
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1109 1110
	__acquires(rq->lock)
{
1111
	struct rq *rq;
L
Linus Torvalds 已提交
1112 1113 1114 1115 1116 1117 1118 1119

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

1120
/*
1121
 * We are going deep-idle (irqs are disabled):
1122
 */
1123
void sched_clock_idle_sleep_event(void)
1124
{
1125 1126
	struct rq *rq = cpu_rq(smp_processor_id());

1127
	WARN_ON(!irqs_disabled());
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
1142

1143
	WARN_ON(!irqs_disabled());
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
1155
	touch_softlockup_watchdog();
1156
}
1157
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1158

P
Peter Zijlstra 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
1194
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1206 1207
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1383 1384 1385 1386

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1387 1388
#endif

I
Ingo Molnar 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1402
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1403 1404 1405 1406 1407
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1408
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1409 1410
		return;

P
Peter Zijlstra 已提交
1411
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
#endif

I
Ingo Molnar 已提交
1476
#else
P
Peter Zijlstra 已提交
1477
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1478 1479
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1480
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1481 1482 1483
}
#endif

1484 1485 1486 1487 1488 1489 1490 1491
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1492 1493 1494
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1495
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1496

1497 1498 1499
/*
 * delta *= weight / lw
 */
1500
static unsigned long
1501 1502 1503 1504 1505
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1506 1507
	if (!lw->inv_weight)
		lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
1508 1509 1510 1511 1512

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1513
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1514
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1515 1516
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1517
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1518

1519
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1520 1521
}

1522
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1523 1524
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1525
	lw->inv_weight = 0;
1526 1527
}

1528
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1529 1530
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1531
	lw->inv_weight = 0;
1532 1533
}

1534 1535 1536 1537
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1538
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1539 1540 1541 1542
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1554 1555 1556
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1557 1558
 */
static const int prio_to_weight[40] = {
1559 1560 1561 1562 1563 1564 1565 1566
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1567 1568
};

1569 1570 1571 1572 1573 1574 1575
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1576
static const u32 prio_to_wmult[40] = {
1577 1578 1579 1580 1581 1582 1583 1584
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1585
};
1586

I
Ingo Molnar 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1612

1613 1614 1615 1616 1617 1618
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1629 1630 1631 1632 1633
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

#ifdef CONFIG_FAIR_GROUP_SCHED

/*
 * Group load balancing.
 *
 * We calculate a few balance domain wide aggregate numbers; load and weight.
 * Given the pictures below, and assuming each item has equal weight:
 *
 *         root          1 - thread
 *         / | \         A - group
 *        A  1  B
 *       /|\   / \
 *      C 2 D 3   4
 *      |   |
 *      5   6
 *
 * load:
 *    A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
 *    which equals 1/9-th of the total load.
 *
 * shares:
 *    The weight of this group on the selected cpus.
 *
 * rq_weight:
 *    Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
 *    B would get 2.
 *
 * task_weight:
 *    Part of the rq_weight contributed by tasks; all groups except B would
 *    get 1, B gets 2.
 */

static inline struct aggregate_struct *
aggregate(struct task_group *tg, struct sched_domain *sd)
{
	return &tg->cfs_rq[sd->first_cpu]->aggregate;
}

typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
static
void aggregate_walk_tree(aggregate_func down, aggregate_func up,
			 struct sched_domain *sd)
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
	(*down)(parent, sd);
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
	(*up)(parent, sd);

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

/*
 * Calculate the aggregate runqueue weight.
 */
static
void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long rq_weight = 0;
	unsigned long task_weight = 0;
	int i;

	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		task_weight += tg->cfs_rq[i]->task_weight;
	}

	aggregate(tg, sd)->rq_weight = rq_weight;
	aggregate(tg, sd)->task_weight = task_weight;
}

/*
 * Compute the weight of this group on the given cpus.
 */
static
void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long shares = 0;
	int i;

	for_each_cpu_mask(i, sd->span)
		shares += tg->cfs_rq[i]->shares;

1736 1737
	if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
		shares = tg->shares;
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959

	aggregate(tg, sd)->shares = shares;
}

/*
 * Compute the load fraction assigned to this group, relies on the aggregate
 * weight and this group's parent's load, i.e. top-down.
 */
static
void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long load;

	if (!tg->parent) {
		int i;

		load = 0;
		for_each_cpu_mask(i, sd->span)
			load += cpu_rq(i)->load.weight;

	} else {
		load = aggregate(tg->parent, sd)->load;

		/*
		 * shares is our weight in the parent's rq so
		 * shares/parent->rq_weight gives our fraction of the load
		 */
		load *= aggregate(tg, sd)->shares;
		load /= aggregate(tg->parent, sd)->rq_weight + 1;
	}

	aggregate(tg, sd)->load = load;
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
__update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
			  int tcpu)
{
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

	if (!tg->se[tcpu])
		return;

	rq_weight = tg->cfs_rq[tcpu]->load.weight;

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
	shares = aggregate(tg, sd)->shares * rq_weight;
	shares /= aggregate(tg, sd)->rq_weight + 1;

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
	tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;

	__set_se_shares(tg->se[tcpu], shares);
}

/*
 * Re-adjust the weights on the cpu the task came from and on the cpu the
 * task went to.
 */
static void
__move_group_shares(struct task_group *tg, struct sched_domain *sd,
		    int scpu, int dcpu)
{
	unsigned long shares;

	shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;

	__update_group_shares_cpu(tg, sd, scpu);
	__update_group_shares_cpu(tg, sd, dcpu);

	/*
	 * ensure we never loose shares due to rounding errors in the
	 * above redistribution.
	 */
	shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
	if (shares)
		tg->cfs_rq[dcpu]->shares += shares;
}

/*
 * Because changing a group's shares changes the weight of the super-group
 * we need to walk up the tree and change all shares until we hit the root.
 */
static void
move_group_shares(struct task_group *tg, struct sched_domain *sd,
		  int scpu, int dcpu)
{
	while (tg) {
		__move_group_shares(tg, sd, scpu, dcpu);
		tg = tg->parent;
	}
}

static
void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long shares = aggregate(tg, sd)->shares;
	int i;

	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		__update_group_shares_cpu(tg, sd, i);
		spin_unlock_irqrestore(&rq->lock, flags);
	}

	aggregate_group_shares(tg, sd);

	/*
	 * ensure we never loose shares due to rounding errors in the
	 * above redistribution.
	 */
	shares -= aggregate(tg, sd)->shares;
	if (shares) {
		tg->cfs_rq[sd->first_cpu]->shares += shares;
		aggregate(tg, sd)->shares += shares;
	}
}

/*
 * Calculate the accumulative weight and recursive load of each task group
 * while walking down the tree.
 */
static
void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
{
	aggregate_group_weight(tg, sd);
	aggregate_group_shares(tg, sd);
	aggregate_group_load(tg, sd);
}

/*
 * Rebalance the cpu shares while walking back up the tree.
 */
static
void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
{
	aggregate_group_set_shares(tg, sd);
}

static DEFINE_PER_CPU(spinlock_t, aggregate_lock);

static void __init init_aggregate(void)
{
	int i;

	for_each_possible_cpu(i)
		spin_lock_init(&per_cpu(aggregate_lock, i));
}

static int get_aggregate(struct sched_domain *sd)
{
	if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
		return 0;

	aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
	return 1;
}

static void put_aggregate(struct sched_domain *sd)
{
	spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
}

static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
	cfs_rq->shares = shares;
}

#else

static inline void init_aggregate(void)
{
}

static inline int get_aggregate(struct sched_domain *sd)
{
	return 0;
}

static inline void put_aggregate(struct sched_domain *sd)
{
}
#endif

#else /* CONFIG_SMP */

#ifdef CONFIG_FAIR_GROUP_SCHED
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
}
#endif

1960 1961
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1962 1963
#include "sched_stats.h"
#include "sched_idletask.c"
1964 1965
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1966 1967 1968 1969 1970 1971
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1972
static void inc_nr_running(struct rq *rq)
1973 1974 1975 1976
{
	rq->nr_running++;
}

1977
static void dec_nr_running(struct rq *rq)
1978 1979 1980 1981
{
	rq->nr_running--;
}

1982 1983 1984
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1985 1986 1987 1988
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1989

I
Ingo Molnar 已提交
1990 1991 1992 1993 1994 1995 1996 1997
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1998

I
Ingo Molnar 已提交
1999 2000
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
2001 2002
}

2003
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
2004
{
I
Ingo Molnar 已提交
2005
	sched_info_queued(p);
2006
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
2007
	p->se.on_rq = 1;
2008 2009
}

2010
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
2011
{
2012
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
2013
	p->se.on_rq = 0;
2014 2015
}

2016
/*
I
Ingo Molnar 已提交
2017
 * __normal_prio - return the priority that is based on the static prio
2018 2019 2020
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
2021
	return p->static_prio;
2022 2023
}

2024 2025 2026 2027 2028 2029 2030
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
2031
static inline int normal_prio(struct task_struct *p)
2032 2033 2034
{
	int prio;

2035
	if (task_has_rt_policy(p))
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2049
static int effective_prio(struct task_struct *p)
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2062
/*
I
Ingo Molnar 已提交
2063
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
2064
 */
I
Ingo Molnar 已提交
2065
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
2066
{
2067
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
2068
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
2069

2070
	enqueue_task(rq, p, wakeup);
2071
	inc_nr_running(rq);
L
Linus Torvalds 已提交
2072 2073 2074 2075 2076
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
2077
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
2078
{
2079
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
2080 2081
		rq->nr_uninterruptible++;

2082
	dequeue_task(rq, p, sleep);
2083
	dec_nr_running(rq);
L
Linus Torvalds 已提交
2084 2085 2086 2087 2088 2089
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2090
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2091 2092 2093 2094
{
	return cpu_curr(task_cpu(p)) == p;
}

2095 2096 2097
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
2098
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
2099 2100 2101 2102
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
2103
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
2104
#ifdef CONFIG_SMP
2105 2106 2107 2108 2109 2110
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
2111 2112
	task_thread_info(p)->cpu = cpu;
#endif
2113 2114
}

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2127
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
2128

2129 2130 2131
/*
 * Is this task likely cache-hot:
 */
2132
static int
2133 2134 2135 2136
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2137 2138 2139
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
2140
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
2141 2142
		return 1;

2143 2144 2145
	if (p->sched_class != &fair_sched_class)
		return 0;

2146 2147 2148 2149 2150
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2151 2152 2153 2154 2155 2156
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2157
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2158
{
I
Ingo Molnar 已提交
2159 2160
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2161 2162
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2163
	u64 clock_offset;
I
Ingo Molnar 已提交
2164 2165

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2166 2167 2168 2169

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2170 2171 2172 2173
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2174 2175 2176 2177 2178
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
2179
#endif
2180 2181
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2182 2183

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2184 2185
}

2186
struct migration_req {
L
Linus Torvalds 已提交
2187 2188
	struct list_head list;

2189
	struct task_struct *task;
L
Linus Torvalds 已提交
2190 2191 2192
	int dest_cpu;

	struct completion done;
2193
};
L
Linus Torvalds 已提交
2194 2195 2196 2197 2198

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2199
static int
2200
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2201
{
2202
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2203 2204 2205 2206 2207

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2208
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2209 2210 2211 2212 2213 2214 2215 2216
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2217

L
Linus Torvalds 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
2230
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
2231 2232
{
	unsigned long flags;
I
Ingo Molnar 已提交
2233
	int running, on_rq;
2234
	struct rq *rq;
L
Linus Torvalds 已提交
2235

2236 2237 2238 2239 2240 2241 2242 2243
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2244

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
2258

2259 2260 2261 2262 2263 2264 2265 2266 2267
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
2268

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2279

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2293

2294 2295 2296 2297 2298 2299 2300
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2316
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2328 2329
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2330 2331 2332 2333
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2334
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2335
{
2336
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2337
	unsigned long total = weighted_cpuload(cpu);
2338

2339
	if (type == 0)
I
Ingo Molnar 已提交
2340
		return total;
2341

I
Ingo Molnar 已提交
2342
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2343 2344 2345
}

/*
2346 2347
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2348
 */
A
Alexey Dobriyan 已提交
2349
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2350
{
2351
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2352
	unsigned long total = weighted_cpuload(cpu);
2353

N
Nick Piggin 已提交
2354
	if (type == 0)
I
Ingo Molnar 已提交
2355
		return total;
2356

I
Ingo Molnar 已提交
2357
	return max(rq->cpu_load[type-1], total);
2358 2359 2360 2361 2362
}

/*
 * Return the average load per task on the cpu's run queue
 */
2363
static unsigned long cpu_avg_load_per_task(int cpu)
2364
{
2365
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2366
	unsigned long total = weighted_cpuload(cpu);
2367 2368
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
2369
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2370 2371
}

N
Nick Piggin 已提交
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2389 2390
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2391
			continue;
2392

N
Nick Piggin 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2409 2410
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2411 2412 2413 2414 2415 2416 2417 2418

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2419
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2420 2421 2422 2423 2424 2425 2426

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2427
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2428
 */
I
Ingo Molnar 已提交
2429
static int
2430 2431
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2432 2433 2434 2435 2436
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2437
	/* Traverse only the allowed CPUs */
2438
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2439

2440
	for_each_cpu_mask(i, *tmp) {
2441
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2467

2468
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2469 2470 2471
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2472 2473
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2474 2475
		if (tmp->flags & flag)
			sd = tmp;
2476
	}
N
Nick Piggin 已提交
2477 2478

	while (sd) {
2479
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2480
		struct sched_group *group;
2481 2482 2483 2484 2485 2486
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2487 2488 2489

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2490 2491 2492 2493
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2494

2495
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2496 2497 2498 2499 2500
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2501

2502
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2534
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2535
{
2536
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2537 2538
	unsigned long flags;
	long old_state;
2539
	struct rq *rq;
L
Linus Torvalds 已提交
2540

2541 2542 2543
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2544
	smp_wmb();
L
Linus Torvalds 已提交
2545 2546 2547 2548 2549
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2550
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2551 2552 2553
		goto out_running;

	cpu = task_cpu(p);
2554
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2555 2556 2557 2558 2559 2560
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2561 2562 2563
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2564 2565 2566 2567 2568 2569
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2570
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2571 2572 2573 2574 2575 2576
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
2592 2593
out_activate:
#endif /* CONFIG_SMP */
2594 2595 2596 2597 2598 2599 2600 2601 2602
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2603
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2604
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2605 2606 2607
	success = 1;

out_running:
I
Ingo Molnar 已提交
2608 2609
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2610
	p->state = TASK_RUNNING;
2611 2612 2613 2614
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2615 2616 2617 2618 2619 2620
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2621
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2622
{
2623
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2624 2625 2626
}
EXPORT_SYMBOL(wake_up_process);

2627
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2628 2629 2630 2631 2632 2633 2634
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2635 2636 2637 2638 2639 2640 2641
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2642
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2643 2644
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2645 2646 2647

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2648 2649 2650 2651 2652 2653
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2654
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2655
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2656
#endif
N
Nick Piggin 已提交
2657

P
Peter Zijlstra 已提交
2658
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2659
	p->se.on_rq = 0;
2660
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2661

2662 2663 2664 2665
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2666 2667 2668 2669 2670 2671 2672
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2687
	set_task_cpu(p, cpu);
2688 2689 2690 2691 2692

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2693 2694
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2695

2696
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2697
	if (likely(sched_info_on()))
2698
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2699
#endif
2700
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2701 2702
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2703
#ifdef CONFIG_PREEMPT
2704
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2705
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2706
#endif
N
Nick Piggin 已提交
2707
	put_cpu();
L
Linus Torvalds 已提交
2708 2709 2710 2711 2712 2713 2714 2715 2716
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2717
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2718 2719
{
	unsigned long flags;
I
Ingo Molnar 已提交
2720
	struct rq *rq;
L
Linus Torvalds 已提交
2721 2722

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2723
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2724
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2725 2726 2727

	p->prio = effective_prio(p);

2728
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2729
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2730 2731
	} else {
		/*
I
Ingo Molnar 已提交
2732 2733
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2734
		 */
2735
		p->sched_class->task_new(rq, p);
2736
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2737
	}
I
Ingo Molnar 已提交
2738
	check_preempt_curr(rq, p);
2739 2740 2741 2742
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2743
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2744 2745
}

2746 2747 2748
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2749 2750
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2751 2752 2753 2754 2755 2756 2757 2758 2759
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2760
 * @notifier: notifier struct to unregister
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2804 2805 2806
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2807
 * @prev: the current task that is being switched out
2808 2809 2810 2811 2812 2813 2814 2815 2816
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2817 2818 2819
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2820
{
2821
	fire_sched_out_preempt_notifiers(prev, next);
2822 2823 2824 2825
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2826 2827
/**
 * finish_task_switch - clean up after a task-switch
2828
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2829 2830
 * @prev: the thread we just switched away from.
 *
2831 2832 2833 2834
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2835 2836
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2837
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2838 2839 2840
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2841
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2842 2843 2844
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2845
	long prev_state;
L
Linus Torvalds 已提交
2846 2847 2848 2849 2850

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2851
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2852 2853
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2854
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2855 2856 2857 2858 2859
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2860
	prev_state = prev->state;
2861 2862
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2863 2864 2865 2866
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2867

2868
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2869 2870
	if (mm)
		mmdrop(mm);
2871
	if (unlikely(prev_state == TASK_DEAD)) {
2872 2873 2874
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2875
		 */
2876
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2877
		put_task_struct(prev);
2878
	}
L
Linus Torvalds 已提交
2879 2880 2881 2882 2883 2884
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2885
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2886 2887
	__releases(rq->lock)
{
2888 2889
	struct rq *rq = this_rq();

2890 2891 2892 2893 2894
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2895
	if (current->set_child_tid)
2896
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2897 2898 2899 2900 2901 2902
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2903
static inline void
2904
context_switch(struct rq *rq, struct task_struct *prev,
2905
	       struct task_struct *next)
L
Linus Torvalds 已提交
2906
{
I
Ingo Molnar 已提交
2907
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2908

2909
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2910 2911
	mm = next->mm;
	oldmm = prev->active_mm;
2912 2913 2914 2915 2916 2917 2918
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2919
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2920 2921 2922 2923 2924 2925
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2926
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2927 2928 2929
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2930 2931 2932 2933 2934 2935 2936
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2937
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2938
#endif
L
Linus Torvalds 已提交
2939 2940 2941 2942

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2943 2944 2945 2946 2947 2948 2949
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2973
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2988 2989
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2990

2991
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2992 2993 2994 2995 2996 2997 2998 2999 3000
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

3001
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3002 3003 3004 3005 3006
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

3022
/*
I
Ingo Molnar 已提交
3023 3024
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3025
 */
I
Ingo Molnar 已提交
3026
static void update_cpu_load(struct rq *this_rq)
3027
{
3028
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3041 3042 3043 3044 3045 3046 3047
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3048 3049
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3050 3051
}

I
Ingo Molnar 已提交
3052 3053
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3054 3055 3056 3057 3058 3059
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3060
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3061 3062 3063
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3064
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3065 3066 3067 3068
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3069
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3070 3071 3072 3073 3074 3075 3076
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
3077 3078
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3079 3080 3081 3082 3083 3084 3085 3086
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3087
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
3101
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
3102 3103 3104 3105
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
3106 3107
	int ret = 0;

3108 3109 3110 3111 3112
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
3113
	if (unlikely(!spin_trylock(&busiest->lock))) {
3114
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
3115 3116 3117
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
3118
			ret = 1;
L
Linus Torvalds 已提交
3119 3120 3121
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
3122
	return ret;
L
Linus Torvalds 已提交
3123 3124 3125 3126 3127
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3128
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3129 3130
 * the cpu_allowed mask is restored.
 */
3131
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3132
{
3133
	struct migration_req req;
L
Linus Torvalds 已提交
3134
	unsigned long flags;
3135
	struct rq *rq;
L
Linus Torvalds 已提交
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3146

L
Linus Torvalds 已提交
3147 3148 3149 3150 3151
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3152

L
Linus Torvalds 已提交
3153 3154 3155 3156 3157 3158 3159
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3160 3161
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3162 3163 3164 3165
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3166
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3167
	put_cpu();
N
Nick Piggin 已提交
3168 3169
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3170 3171 3172 3173 3174 3175
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3176 3177
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3178
{
3179
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3180
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3181
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3182 3183 3184 3185
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
3186
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
3187 3188 3189 3190 3191
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3192
static
3193
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3194
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3195
		     int *all_pinned)
L
Linus Torvalds 已提交
3196 3197 3198 3199 3200 3201 3202
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3203 3204
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3205
		return 0;
3206
	}
3207 3208
	*all_pinned = 0;

3209 3210
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3211
		return 0;
3212
	}
L
Linus Torvalds 已提交
3213

3214 3215 3216 3217 3218 3219
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3220 3221
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
3222
#ifdef CONFIG_SCHEDSTATS
3223
		if (task_hot(p, rq->clock, sd)) {
3224
			schedstat_inc(sd, lb_hot_gained[idle]);
3225 3226
			schedstat_inc(p, se.nr_forced_migrations);
		}
3227 3228 3229 3230
#endif
		return 1;
	}

3231 3232
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
3233
		return 0;
3234
	}
L
Linus Torvalds 已提交
3235 3236 3237
	return 1;
}

3238 3239 3240 3241 3242
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3243
{
3244
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
3245 3246
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3247

3248
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3249 3250
		goto out;

3251 3252
	pinned = 1;

L
Linus Torvalds 已提交
3253
	/*
I
Ingo Molnar 已提交
3254
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3255
	 */
I
Ingo Molnar 已提交
3256 3257
	p = iterator->start(iterator->arg);
next:
3258
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3259
		goto out;
3260
	/*
3261
	 * To help distribute high priority tasks across CPUs we don't
3262 3263 3264
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
3265 3266
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
3267
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
3268 3269 3270
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3271 3272
	}

I
Ingo Molnar 已提交
3273
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3274
	pulled++;
I
Ingo Molnar 已提交
3275
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3276

3277
	/*
3278
	 * We only want to steal up to the prescribed amount of weighted load.
3279
	 */
3280
	if (rem_load_move > 0) {
3281 3282
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3283 3284
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3285 3286 3287
	}
out:
	/*
3288
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3289 3290 3291 3292
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3293 3294 3295

	if (all_pinned)
		*all_pinned = pinned;
3296 3297

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3298 3299
}

I
Ingo Molnar 已提交
3300
/*
P
Peter Williams 已提交
3301 3302 3303
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3304 3305 3306 3307
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3308
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3309 3310 3311
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3312
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3313
	unsigned long total_load_moved = 0;
3314
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3315 3316

	do {
P
Peter Williams 已提交
3317 3318
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3319
				max_load_move - total_load_moved,
3320
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3321
		class = class->next;
P
Peter Williams 已提交
3322
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3323

P
Peter Williams 已提交
3324 3325 3326
	return total_load_moved > 0;
}

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3363
	const struct sched_class *class;
P
Peter Williams 已提交
3364 3365

	for (class = sched_class_highest; class; class = class->next)
3366
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3367 3368 3369
			return 1;

	return 0;
I
Ingo Molnar 已提交
3370 3371
}

L
Linus Torvalds 已提交
3372 3373
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3374 3375
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3376 3377 3378
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3379
		   unsigned long *imbalance, enum cpu_idle_type idle,
3380
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3381 3382 3383
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3384
	unsigned long max_pull;
3385 3386
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3387
	int load_idx, group_imb = 0;
3388 3389 3390 3391 3392 3393
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3394 3395

	max_load = this_load = total_load = total_pwr = 0;
3396 3397
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
3398
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3399
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3400
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3401 3402 3403
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3404 3405

	do {
3406
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3407 3408
		int local_group;
		int i;
3409
		int __group_imb = 0;
3410
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3411
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
3412 3413 3414

		local_group = cpu_isset(this_cpu, group->cpumask);

3415 3416 3417
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3418
		/* Tally up the load of all CPUs in the group */
3419
		sum_weighted_load = sum_nr_running = avg_load = 0;
3420 3421
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3422 3423

		for_each_cpu_mask(i, group->cpumask) {
3424 3425 3426 3427 3428 3429
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3430

3431
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3432 3433
				*sd_idle = 0;

L
Linus Torvalds 已提交
3434
			/* Bias balancing toward cpus of our domain */
3435 3436 3437 3438 3439 3440
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3441
				load = target_load(i, load_idx);
3442
			} else {
N
Nick Piggin 已提交
3443
				load = source_load(i, load_idx);
3444 3445 3446 3447 3448
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3449 3450

			avg_load += load;
3451
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3452
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
3453 3454
		}

3455 3456 3457
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3458 3459
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3460
		 */
3461 3462
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3463 3464 3465 3466
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3467
		total_load += avg_load;
3468
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3469 3470

		/* Adjust by relative CPU power of the group */
3471 3472
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3473

3474 3475 3476
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

3477
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3478

L
Linus Torvalds 已提交
3479 3480 3481
		if (local_group) {
			this_load = avg_load;
			this = group;
3482 3483 3484
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3485
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3486 3487
			max_load = avg_load;
			busiest = group;
3488 3489
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3490
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3491
		}
3492 3493 3494 3495 3496 3497

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3498 3499 3500
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3501 3502 3503 3504 3505 3506 3507 3508 3509

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3510
		/*
3511 3512
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3513 3514
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3515
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3516
			goto group_next;
3517

I
Ingo Molnar 已提交
3518
		/*
3519
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3520 3521 3522 3523 3524
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3525 3526
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3527 3528
			group_min = group;
			min_nr_running = sum_nr_running;
3529 3530
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3531
		}
3532

I
Ingo Molnar 已提交
3533
		/*
3534
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3546
		}
3547 3548
group_next:
#endif
L
Linus Torvalds 已提交
3549 3550 3551
		group = group->next;
	} while (group != sd->groups);

3552
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3553 3554 3555 3556 3557 3558 3559 3560
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3561
	busiest_load_per_task /= busiest_nr_running;
3562 3563 3564
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3565 3566 3567 3568 3569 3570 3571 3572
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3573
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3574 3575
	 * appear as very large values with unsigned longs.
	 */
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3588 3589

	/* Don't want to pull so many tasks that a group would go idle */
3590
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3591

L
Linus Torvalds 已提交
3592
	/* How much load to actually move to equalise the imbalance */
3593 3594
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3595 3596
			/ SCHED_LOAD_SCALE;

3597 3598 3599 3600 3601 3602
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3603
	if (*imbalance < busiest_load_per_task) {
3604
		unsigned long tmp, pwr_now, pwr_move;
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3616

I
Ingo Molnar 已提交
3617 3618
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3619
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3629 3630 3631 3632
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3633 3634 3635
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3636 3637
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3638
		if (max_load > tmp)
3639
			pwr_move += busiest->__cpu_power *
3640
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3641 3642

		/* Amount of load we'd add */
3643
		if (max_load * busiest->__cpu_power <
3644
				busiest_load_per_task * SCHED_LOAD_SCALE)
3645 3646
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3647
		else
3648 3649 3650 3651
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3652 3653 3654
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3655 3656
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3657 3658 3659 3660 3661
	}

	return busiest;

out_balanced:
3662
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3663
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3664
		goto ret;
L
Linus Torvalds 已提交
3665

3666 3667 3668 3669 3670
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3671
ret:
L
Linus Torvalds 已提交
3672 3673 3674 3675 3676 3677 3678
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3679
static struct rq *
I
Ingo Molnar 已提交
3680
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3681
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3682
{
3683
	struct rq *busiest = NULL, *rq;
3684
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3685 3686 3687
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3688
		unsigned long wl;
3689 3690 3691 3692

		if (!cpu_isset(i, *cpus))
			continue;

3693
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3694
		wl = weighted_cpuload(i);
3695

I
Ingo Molnar 已提交
3696
		if (rq->nr_running == 1 && wl > imbalance)
3697
			continue;
L
Linus Torvalds 已提交
3698

I
Ingo Molnar 已提交
3699 3700
		if (wl > max_load) {
			max_load = wl;
3701
			busiest = rq;
L
Linus Torvalds 已提交
3702 3703 3704 3705 3706 3707
		}
	}

	return busiest;
}

3708 3709 3710 3711 3712 3713
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3714 3715 3716 3717
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3718
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3719
			struct sched_domain *sd, enum cpu_idle_type idle,
3720
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3721
{
P
Peter Williams 已提交
3722
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3723 3724
	struct sched_group *group;
	unsigned long imbalance;
3725
	struct rq *busiest;
3726
	unsigned long flags;
3727
	int unlock_aggregate;
N
Nick Piggin 已提交
3728

3729 3730
	cpus_setall(*cpus);

3731 3732
	unlock_aggregate = get_aggregate(sd);

3733 3734 3735
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3736
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3737
	 * portraying it as CPU_NOT_IDLE.
3738
	 */
I
Ingo Molnar 已提交
3739
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3740
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3741
		sd_idle = 1;
L
Linus Torvalds 已提交
3742

3743
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3744

3745 3746
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3747
				   cpus, balance);
3748

3749
	if (*balance == 0)
3750 3751
		goto out_balanced;

L
Linus Torvalds 已提交
3752 3753 3754 3755 3756
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3757
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3758 3759 3760 3761 3762
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3763
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3764 3765 3766

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3767
	ld_moved = 0;
L
Linus Torvalds 已提交
3768 3769 3770 3771
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3772
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3773 3774
		 * correctly treated as an imbalance.
		 */
3775
		local_irq_save(flags);
N
Nick Piggin 已提交
3776
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3777
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3778
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3779
		double_rq_unlock(this_rq, busiest);
3780
		local_irq_restore(flags);
3781

3782 3783 3784
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3785
		if (ld_moved && this_cpu != smp_processor_id())
3786 3787
			resched_cpu(this_cpu);

3788
		/* All tasks on this runqueue were pinned by CPU affinity */
3789
		if (unlikely(all_pinned)) {
3790 3791
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3792
				goto redo;
3793
			goto out_balanced;
3794
		}
L
Linus Torvalds 已提交
3795
	}
3796

P
Peter Williams 已提交
3797
	if (!ld_moved) {
L
Linus Torvalds 已提交
3798 3799 3800 3801 3802
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3803
			spin_lock_irqsave(&busiest->lock, flags);
3804 3805 3806 3807 3808

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3809
				spin_unlock_irqrestore(&busiest->lock, flags);
3810 3811 3812 3813
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3814 3815 3816
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3817
				active_balance = 1;
L
Linus Torvalds 已提交
3818
			}
3819
			spin_unlock_irqrestore(&busiest->lock, flags);
3820
			if (active_balance)
L
Linus Torvalds 已提交
3821 3822 3823 3824 3825 3826
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3827
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3828
		}
3829
	} else
L
Linus Torvalds 已提交
3830 3831
		sd->nr_balance_failed = 0;

3832
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3833 3834
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3835 3836 3837 3838 3839 3840 3841 3842 3843
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3844 3845
	}

P
Peter Williams 已提交
3846
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3847
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3848 3849 3850
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3851 3852 3853 3854

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3855
	sd->nr_balance_failed = 0;
3856 3857

out_one_pinned:
L
Linus Torvalds 已提交
3858
	/* tune up the balancing interval */
3859 3860
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3861 3862
		sd->balance_interval *= 2;

3863
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3864
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3865 3866 3867 3868 3869 3870 3871
		ld_moved = -1;
	else
		ld_moved = 0;
out:
	if (unlock_aggregate)
		put_aggregate(sd);
	return ld_moved;
L
Linus Torvalds 已提交
3872 3873 3874 3875 3876 3877
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3878
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3879 3880
 * this_rq is locked.
 */
3881
static int
3882 3883
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3884 3885
{
	struct sched_group *group;
3886
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3887
	unsigned long imbalance;
P
Peter Williams 已提交
3888
	int ld_moved = 0;
N
Nick Piggin 已提交
3889
	int sd_idle = 0;
3890
	int all_pinned = 0;
3891 3892

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3893

3894 3895 3896 3897
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3898
	 * portraying it as CPU_NOT_IDLE.
3899 3900 3901
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3902
		sd_idle = 1;
L
Linus Torvalds 已提交
3903

3904
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3905
redo:
I
Ingo Molnar 已提交
3906
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3907
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3908
	if (!group) {
I
Ingo Molnar 已提交
3909
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3910
		goto out_balanced;
L
Linus Torvalds 已提交
3911 3912
	}

3913
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3914
	if (!busiest) {
I
Ingo Molnar 已提交
3915
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3916
		goto out_balanced;
L
Linus Torvalds 已提交
3917 3918
	}

N
Nick Piggin 已提交
3919 3920
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3921
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3922

P
Peter Williams 已提交
3923
	ld_moved = 0;
3924 3925 3926
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3927 3928
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3929
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3930 3931
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3932
		spin_unlock(&busiest->lock);
3933

3934
		if (unlikely(all_pinned)) {
3935 3936
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3937 3938
				goto redo;
		}
3939 3940
	}

P
Peter Williams 已提交
3941
	if (!ld_moved) {
I
Ingo Molnar 已提交
3942
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3943 3944
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3945 3946
			return -1;
	} else
3947
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3948

P
Peter Williams 已提交
3949
	return ld_moved;
3950 3951

out_balanced:
I
Ingo Molnar 已提交
3952
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3953
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3954
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3955
		return -1;
3956
	sd->nr_balance_failed = 0;
3957

3958
	return 0;
L
Linus Torvalds 已提交
3959 3960 3961 3962 3963 3964
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3965
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3966 3967
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3968 3969
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3970
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3971 3972

	for_each_domain(this_cpu, sd) {
3973 3974 3975 3976 3977 3978
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3979
			/* If we've pulled tasks over stop searching: */
3980 3981
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3982 3983 3984 3985 3986 3987

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3988
	}
I
Ingo Molnar 已提交
3989
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3990 3991 3992 3993 3994
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3995
	}
L
Linus Torvalds 已提交
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4006
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4007
{
4008
	int target_cpu = busiest_rq->push_cpu;
4009 4010
	struct sched_domain *sd;
	struct rq *target_rq;
4011

4012
	/* Is there any task to move? */
4013 4014 4015 4016
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4017 4018

	/*
4019
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4020
	 * we need to fix it. Originally reported by
4021
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4022
	 */
4023
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4024

4025 4026
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4027 4028
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4029 4030

	/* Search for an sd spanning us and the target CPU. */
4031
	for_each_domain(target_cpu, sd) {
4032
		if ((sd->flags & SD_LOAD_BALANCE) &&
4033
		    cpu_isset(busiest_cpu, sd->span))
4034
				break;
4035
	}
4036

4037
	if (likely(sd)) {
4038
		schedstat_inc(sd, alb_count);
4039

P
Peter Williams 已提交
4040 4041
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4042 4043 4044 4045
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4046
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
4047 4048
}

4049 4050 4051
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
4052
	cpumask_t cpu_mask;
4053 4054 4055 4056 4057
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

4058
/*
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4069
 *
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4126 4127 4128 4129 4130
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4131
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4132
{
4133 4134
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4135 4136
	unsigned long interval;
	struct sched_domain *sd;
4137
	/* Earliest time when we have to do rebalance again */
4138
	unsigned long next_balance = jiffies + 60*HZ;
4139
	int update_next_balance = 0;
4140
	cpumask_t tmp;
L
Linus Torvalds 已提交
4141

4142
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4143 4144 4145 4146
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4147
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4148 4149 4150 4151 4152 4153
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4154 4155 4156
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
4157

4158 4159 4160 4161 4162
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

4163
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4164
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
4165 4166
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4167 4168 4169
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4170
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4171
			}
4172
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4173
		}
4174 4175 4176
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
4177
		if (time_after(next_balance, sd->last_balance + interval)) {
4178
			next_balance = sd->last_balance + interval;
4179 4180
			update_next_balance = 1;
		}
4181 4182 4183 4184 4185 4186 4187 4188

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4189
	}
4190 4191 4192 4193 4194 4195 4196 4197

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4198 4199 4200 4201 4202 4203 4204 4205 4206
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4207 4208 4209 4210
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4211

I
Ingo Molnar 已提交
4212
	rebalance_domains(this_cpu, idle);
4213 4214 4215 4216 4217 4218 4219

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4220 4221
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4222 4223 4224 4225
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
4226
		cpu_clear(this_cpu, cpus);
4227 4228 4229 4230 4231 4232 4233 4234 4235
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4236
			rebalance_domains(balance_cpu, CPU_IDLE);
4237 4238

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4239 4240
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4253
static inline void trigger_load_balance(struct rq *rq, int cpu)
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4280
			if (ilb < nr_cpu_ids)
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4305
}
I
Ingo Molnar 已提交
4306 4307 4308

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4309 4310 4311
/*
 * on UP we do not need to balance between CPUs:
 */
4312
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4313 4314
{
}
I
Ingo Molnar 已提交
4315

L
Linus Torvalds 已提交
4316 4317 4318 4319 4320 4321 4322
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4323 4324
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4325
 */
4326
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4327 4328
{
	unsigned long flags;
4329 4330
	u64 ns, delta_exec;
	struct rq *rq;
4331

4332 4333
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4334
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4335 4336
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4337 4338 4339 4340
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4341

L
Linus Torvalds 已提交
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4365 4366 4367 4368 4369
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4370
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4404
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4405 4406
	cputime64_t tmp;

4407 4408 4409 4410
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4411

L
Linus Torvalds 已提交
4412 4413 4414 4415 4416 4417 4418 4419
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4420
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4421
		cpustat->system = cputime64_add(cpustat->system, tmp);
4422
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4423 4424 4425 4426 4427 4428 4429
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4441 4442 4443 4444 4445 4446 4447 4448 4449
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4450
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4451 4452 4453 4454 4455 4456 4457

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4458
	} else
L
Linus Torvalds 已提交
4459 4460 4461
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4473
	struct task_struct *curr = rq->curr;
4474
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
4475 4476

	spin_lock(&rq->lock);
4477
	__update_rq_clock(rq);
4478 4479 4480
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
4481
	if (unlikely(rq->clock < next_tick)) {
4482
		rq->clock = next_tick;
4483 4484
		rq->clock_underflows++;
	}
4485
	rq->tick_timestamp = rq->clock;
4486
	update_last_tick_seen(rq);
4487
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4488
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4489
	spin_unlock(&rq->lock);
4490

4491
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4492 4493
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4494
#endif
L
Linus Torvalds 已提交
4495 4496 4497 4498
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4499
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4500 4501 4502 4503
{
	/*
	 * Underflow?
	 */
4504 4505
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4506 4507 4508 4509
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4510 4511
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4512 4513 4514
}
EXPORT_SYMBOL(add_preempt_count);

4515
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4516 4517 4518 4519
{
	/*
	 * Underflow?
	 */
4520 4521
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4522 4523 4524
	/*
	 * Is the spinlock portion underflowing?
	 */
4525 4526 4527 4528
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4529 4530 4531 4532 4533 4534 4535
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4536
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4537
 */
I
Ingo Molnar 已提交
4538
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4539
{
4540 4541 4542 4543 4544
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4545 4546 4547
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
4548 4549 4550 4551 4552

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4553
}
L
Linus Torvalds 已提交
4554

I
Ingo Molnar 已提交
4555 4556 4557 4558 4559
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4560
	/*
I
Ingo Molnar 已提交
4561
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4562 4563 4564
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
4565 4566 4567
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4568 4569
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4570
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4571 4572
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4573 4574
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4575 4576
	}
#endif
I
Ingo Molnar 已提交
4577 4578 4579 4580 4581 4582
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4583
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4584
{
4585
	const struct sched_class *class;
I
Ingo Molnar 已提交
4586
	struct task_struct *p;
L
Linus Torvalds 已提交
4587 4588

	/*
I
Ingo Molnar 已提交
4589 4590
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4591
	 */
I
Ingo Molnar 已提交
4592
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4593
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4594 4595
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4596 4597
	}

I
Ingo Molnar 已提交
4598 4599
	class = sched_class_highest;
	for ( ; ; ) {
4600
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4601 4602 4603 4604 4605 4606 4607 4608 4609
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4610

I
Ingo Molnar 已提交
4611 4612 4613 4614 4615 4616
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4617
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4633

P
Peter Zijlstra 已提交
4634 4635
	hrtick_clear(rq);

4636 4637 4638 4639
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
4640
	__update_rq_clock(rq);
4641 4642
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4643 4644 4645

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4646
				signal_pending(prev))) {
L
Linus Torvalds 已提交
4647
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4648
		} else {
4649
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
4650
		}
I
Ingo Molnar 已提交
4651
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4652 4653
	}

4654 4655 4656 4657
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4658

I
Ingo Molnar 已提交
4659
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4660 4661
		idle_balance(cpu, rq);

4662
	prev->sched_class->put_prev_task(rq, prev);
4663
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4664 4665

	if (likely(prev != next)) {
4666 4667
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4668 4669 4670 4671
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4672
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4673 4674 4675 4676 4677 4678
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4679 4680 4681
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4682 4683 4684
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4685
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4686

L
Linus Torvalds 已提交
4687 4688 4689 4690 4691 4692 4693 4694
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4695
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4696
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4697 4698 4699 4700 4701 4702 4703
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4704

L
Linus Torvalds 已提交
4705 4706
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4707
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4708
	 */
N
Nick Piggin 已提交
4709
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4710 4711
		return;

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		schedule();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4725

4726 4727 4728 4729 4730 4731
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4732 4733 4734 4735
}
EXPORT_SYMBOL(preempt_schedule);

/*
4736
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4737 4738 4739 4740 4741 4742 4743 4744 4745
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4746

4747
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4748 4749
	BUG_ON(ti->preempt_count || !irqs_disabled());

4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		local_irq_enable();
		schedule();
		local_irq_disable();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4765

4766 4767 4768 4769 4770 4771
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4772 4773 4774 4775
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4776 4777
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4778
{
4779
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4780 4781 4782 4783
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4784 4785
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4786 4787 4788
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4789
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4790 4791 4792 4793 4794
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4795
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4796

4797
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4798 4799
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4800
		if (curr->func(curr, mode, sync, key) &&
4801
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4802 4803 4804 4805 4806 4807 4808 4809 4810
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4811
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4812
 */
4813
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4814
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4827
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4828 4829 4830 4831 4832
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4833
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4845
void
I
Ingo Molnar 已提交
4846
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4863
void complete(struct completion *x)
L
Linus Torvalds 已提交
4864 4865 4866 4867 4868
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4869
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4870 4871 4872 4873
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4874
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4875 4876 4877 4878 4879
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4880
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4881 4882 4883 4884
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4885 4886
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4887 4888 4889 4890 4891 4892 4893
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4894 4895 4896 4897
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4898 4899 4900 4901
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4902 4903 4904 4905 4906
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4907
				return timeout;
L
Linus Torvalds 已提交
4908 4909 4910 4911 4912 4913 4914 4915
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4916 4917
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4918 4919 4920 4921
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4922
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4923
	spin_unlock_irq(&x->wait.lock);
4924 4925
	return timeout;
}
L
Linus Torvalds 已提交
4926

4927
void __sched wait_for_completion(struct completion *x)
4928 4929
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4930
}
4931
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4932

4933
unsigned long __sched
4934
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4935
{
4936
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4937
}
4938
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4939

4940
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4941
{
4942 4943 4944 4945
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4946
}
4947
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4948

4949
unsigned long __sched
4950 4951
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4952
{
4953
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4954
}
4955
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4956

M
Matthew Wilcox 已提交
4957 4958 4959 4960 4961 4962 4963 4964 4965
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4966 4967
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4968
{
I
Ingo Molnar 已提交
4969 4970 4971 4972
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4973

4974
	__set_current_state(state);
L
Linus Torvalds 已提交
4975

4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4990 4991 4992
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4993
long __sched
I
Ingo Molnar 已提交
4994
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4995
{
4996
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4997 4998 4999
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5000
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5001
{
5002
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5003 5004 5005
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5006
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5007
{
5008
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5009 5010 5011
}
EXPORT_SYMBOL(sleep_on_timeout);

5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5024
void rt_mutex_setprio(struct task_struct *p, int prio)
5025 5026
{
	unsigned long flags;
5027
	int oldprio, on_rq, running;
5028
	struct rq *rq;
5029
	const struct sched_class *prev_class = p->sched_class;
5030 5031 5032 5033

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5034
	update_rq_clock(rq);
5035

5036
	oldprio = p->prio;
I
Ingo Molnar 已提交
5037
	on_rq = p->se.on_rq;
5038
	running = task_current(rq, p);
5039
	if (on_rq)
5040
		dequeue_task(rq, p, 0);
5041 5042
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5043 5044 5045 5046 5047 5048

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5049 5050
	p->prio = prio;

5051 5052
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5053
	if (on_rq) {
5054
		enqueue_task(rq, p, 0);
5055 5056

		check_class_changed(rq, p, prev_class, oldprio, running);
5057 5058 5059 5060 5061 5062
	}
	task_rq_unlock(rq, &flags);
}

#endif

5063
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5064
{
I
Ingo Molnar 已提交
5065
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5066
	unsigned long flags;
5067
	struct rq *rq;
L
Linus Torvalds 已提交
5068 5069 5070 5071 5072 5073 5074 5075

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5076
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5077 5078 5079 5080
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5081
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5082
	 */
5083
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5084 5085 5086
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5087
	on_rq = p->se.on_rq;
5088
	if (on_rq)
5089
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5090 5091

	p->static_prio = NICE_TO_PRIO(nice);
5092
	set_load_weight(p);
5093 5094 5095
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5096

I
Ingo Molnar 已提交
5097
	if (on_rq) {
5098
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5099
		/*
5100 5101
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5102
		 */
5103
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5104 5105 5106 5107 5108 5109 5110
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5111 5112 5113 5114 5115
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5116
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5117
{
5118 5119
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5120

M
Matt Mackall 已提交
5121 5122 5123 5124
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5136
	long nice, retval;
L
Linus Torvalds 已提交
5137 5138 5139 5140 5141 5142

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5143 5144
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5145 5146 5147 5148 5149 5150 5151 5152 5153
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5154 5155 5156
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5175
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5176 5177 5178 5179 5180 5181 5182 5183
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5184
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5185 5186 5187
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5188
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5203
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5204 5205 5206 5207 5208 5209 5210 5211
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5212
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5213
{
5214
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5215 5216 5217
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5218 5219
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5220
{
I
Ingo Molnar 已提交
5221
	BUG_ON(p->se.on_rq);
5222

L
Linus Torvalds 已提交
5223
	p->policy = policy;
I
Ingo Molnar 已提交
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5236
	p->rt_priority = prio;
5237 5238 5239
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5240
	set_load_weight(p);
L
Linus Torvalds 已提交
5241 5242 5243
}

/**
5244
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
5245 5246 5247
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
5248
 *
5249
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
5250
 */
I
Ingo Molnar 已提交
5251 5252
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
5253
{
5254
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5255
	unsigned long flags;
5256
	const struct sched_class *prev_class = p->sched_class;
5257
	struct rq *rq;
L
Linus Torvalds 已提交
5258

5259 5260
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5261 5262 5263 5264 5265
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5266 5267
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5268
		return -EINVAL;
L
Linus Torvalds 已提交
5269 5270
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5271 5272
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5273 5274
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5275
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5276
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5277
		return -EINVAL;
5278
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5279 5280
		return -EINVAL;

5281 5282 5283 5284
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
5285
		if (rt_policy(policy)) {
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5302 5303 5304 5305 5306 5307
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5308

5309 5310 5311 5312 5313
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5314

5315 5316 5317 5318 5319
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
5320
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5321 5322 5323
		return -EPERM;
#endif

L
Linus Torvalds 已提交
5324 5325 5326
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
5327 5328 5329 5330 5331
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5332 5333 5334 5335
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5336
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5337 5338 5339
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5340 5341
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5342 5343
		goto recheck;
	}
I
Ingo Molnar 已提交
5344
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5345
	on_rq = p->se.on_rq;
5346
	running = task_current(rq, p);
5347
	if (on_rq)
5348
		deactivate_task(rq, p, 0);
5349 5350
	if (running)
		p->sched_class->put_prev_task(rq, p);
5351

L
Linus Torvalds 已提交
5352
	oldprio = p->prio;
I
Ingo Molnar 已提交
5353
	__setscheduler(rq, p, policy, param->sched_priority);
5354

5355 5356
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5357 5358
	if (on_rq) {
		activate_task(rq, p, 0);
5359 5360

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5361
	}
5362 5363 5364
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5365 5366
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5367 5368 5369 5370
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
5371 5372
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5373 5374 5375
{
	struct sched_param lparam;
	struct task_struct *p;
5376
	int retval;
L
Linus Torvalds 已提交
5377 5378 5379 5380 5381

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5382 5383 5384

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5385
	p = find_process_by_pid(pid);
5386 5387 5388
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5389

L
Linus Torvalds 已提交
5390 5391 5392 5393 5394 5395 5396 5397 5398
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5399 5400
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5401
{
5402 5403 5404 5405
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5425
	struct task_struct *p;
5426
	int retval;
L
Linus Torvalds 已提交
5427 5428

	if (pid < 0)
5429
		return -EINVAL;
L
Linus Torvalds 已提交
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5451
	struct task_struct *p;
5452
	int retval;
L
Linus Torvalds 已提交
5453 5454

	if (!param || pid < 0)
5455
		return -EINVAL;
L
Linus Torvalds 已提交
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5482
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5483 5484
{
	cpumask_t cpus_allowed;
5485
	cpumask_t new_mask = *in_mask;
5486 5487
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5488

5489
	get_online_cpus();
L
Linus Torvalds 已提交
5490 5491 5492 5493 5494
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5495
		put_online_cpus();
L
Linus Torvalds 已提交
5496 5497 5498 5499 5500
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5501
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5512 5513 5514 5515
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5516
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5517
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5518
 again:
5519
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5520

P
Paul Menage 已提交
5521
	if (!retval) {
5522
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5533 5534
out_unlock:
	put_task_struct(p);
5535
	put_online_cpus();
L
Linus Torvalds 已提交
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5566
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5567 5568 5569 5570 5571 5572 5573 5574 5575
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

5576
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
5577 5578 5579
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
5580
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5581 5582
EXPORT_SYMBOL(cpu_online_map);

5583
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5584
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
5585 5586 5587 5588
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5589
	struct task_struct *p;
L
Linus Torvalds 已提交
5590 5591
	int retval;

5592
	get_online_cpus();
L
Linus Torvalds 已提交
5593 5594 5595 5596 5597 5598 5599
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5600 5601 5602 5603
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5604
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5605 5606 5607

out_unlock:
	read_unlock(&tasklist_lock);
5608
	put_online_cpus();
L
Linus Torvalds 已提交
5609

5610
	return retval;
L
Linus Torvalds 已提交
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5641 5642
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5643 5644 5645
 */
asmlinkage long sys_sched_yield(void)
{
5646
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5647

5648
	schedstat_inc(rq, yld_count);
5649
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5650 5651 5652 5653 5654 5655

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5656
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5657 5658 5659 5660 5661 5662 5663 5664
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5665
static void __cond_resched(void)
L
Linus Torvalds 已提交
5666
{
5667 5668 5669
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5670 5671 5672 5673 5674
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5675 5676 5677 5678 5679 5680 5681
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5682 5683
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5684
{
5685 5686
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5687 5688 5689 5690 5691
		__cond_resched();
		return 1;
	}
	return 0;
}
5692 5693
EXPORT_SYMBOL(_cond_resched);
#endif
L
Linus Torvalds 已提交
5694 5695 5696 5697 5698

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5699
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5700 5701 5702
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5703
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5704
{
N
Nick Piggin 已提交
5705
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5706 5707
	int ret = 0;

N
Nick Piggin 已提交
5708
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5709
		spin_unlock(lock);
N
Nick Piggin 已提交
5710 5711 5712 5713
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5714
		ret = 1;
L
Linus Torvalds 已提交
5715 5716
		spin_lock(lock);
	}
J
Jan Kara 已提交
5717
	return ret;
L
Linus Torvalds 已提交
5718 5719 5720 5721 5722 5723 5724
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5725
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5726
		local_bh_enable();
L
Linus Torvalds 已提交
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5738
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5749
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5750 5751 5752 5753 5754 5755 5756
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5757
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5758

5759
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5760 5761 5762
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5763
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5764 5765 5766 5767 5768
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5769
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5770 5771
	long ret;

5772
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5773 5774 5775
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5776
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5797
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5798
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5822
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5823
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5840
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5841
	unsigned int time_slice;
5842
	int retval;
L
Linus Torvalds 已提交
5843 5844 5845
	struct timespec t;

	if (pid < 0)
5846
		return -EINVAL;
L
Linus Torvalds 已提交
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5858 5859 5860 5861 5862 5863
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5864
		time_slice = DEF_TIMESLICE;
5865
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5866 5867 5868 5869 5870
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5871 5872
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5873 5874
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5875
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5876
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5877 5878
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5879

L
Linus Torvalds 已提交
5880 5881 5882 5883 5884
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5885
static const char stat_nam[] = "RSDTtZX";
5886

5887
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5888 5889
{
	unsigned long free = 0;
5890
	unsigned state;
L
Linus Torvalds 已提交
5891 5892

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5893
	printk(KERN_INFO "%-13.13s %c", p->comm,
5894
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5895
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5896
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5897
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5898
	else
I
Ingo Molnar 已提交
5899
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5900 5901
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5902
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5903
	else
I
Ingo Molnar 已提交
5904
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5905 5906 5907
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5908
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5909 5910
		while (!*n)
			n++;
5911
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5912 5913
	}
#endif
5914
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5915
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5916

5917
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5918 5919
}

I
Ingo Molnar 已提交
5920
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5921
{
5922
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5923

5924 5925 5926
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5927
#else
5928 5929
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5930 5931 5932 5933 5934 5935 5936 5937
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5938
		if (!state_filter || (p->state & state_filter))
5939
			sched_show_task(p);
L
Linus Torvalds 已提交
5940 5941
	} while_each_thread(g, p);

5942 5943
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5944 5945 5946
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5947
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5948 5949 5950 5951 5952
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5953 5954
}

I
Ingo Molnar 已提交
5955 5956
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5957
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5958 5959
}

5960 5961 5962 5963 5964 5965 5966 5967
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5968
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5969
{
5970
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5971 5972
	unsigned long flags;

I
Ingo Molnar 已提交
5973 5974 5975
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5976
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5977
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5978
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5979 5980 5981

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5982 5983 5984
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5985 5986 5987
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5988
	task_thread_info(idle)->preempt_count = 0;
5989

I
Ingo Molnar 已提交
5990 5991 5992 5993
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
6030 6031 6032 6033
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6034
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6053
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6054 6055
 * call is not atomic; no spinlocks may be held.
 */
6056
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
6057
{
6058
	struct migration_req req;
L
Linus Torvalds 已提交
6059
	unsigned long flags;
6060
	struct rq *rq;
6061
	int ret = 0;
L
Linus Torvalds 已提交
6062 6063

	rq = task_rq_lock(p, &flags);
6064
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
6065 6066 6067 6068
		ret = -EINVAL;
		goto out;
	}

6069
	if (p->sched_class->set_cpus_allowed)
6070
		p->sched_class->set_cpus_allowed(p, new_mask);
6071
	else {
6072 6073
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
6074 6075
	}

L
Linus Torvalds 已提交
6076
	/* Can the task run on the task's current CPU? If so, we're done */
6077
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
6078 6079
		goto out;

6080
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
6081 6082 6083 6084 6085 6086 6087 6088 6089
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6090

L
Linus Torvalds 已提交
6091 6092
	return ret;
}
6093
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6094 6095

/*
I
Ingo Molnar 已提交
6096
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6097 6098 6099 6100 6101 6102
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6103 6104
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6105
 */
6106
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6107
{
6108
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6109
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6110 6111

	if (unlikely(cpu_is_offline(dest_cpu)))
6112
		return ret;
L
Linus Torvalds 已提交
6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
6125
	on_rq = p->se.on_rq;
6126
	if (on_rq)
6127
		deactivate_task(rq_src, p, 0);
6128

L
Linus Torvalds 已提交
6129
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6130 6131 6132
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
6133
	}
6134
	ret = 1;
L
Linus Torvalds 已提交
6135 6136
out:
	double_rq_unlock(rq_src, rq_dest);
6137
	return ret;
L
Linus Torvalds 已提交
6138 6139 6140 6141 6142 6143 6144
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6145
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6146 6147
{
	int cpu = (long)data;
6148
	struct rq *rq;
L
Linus Torvalds 已提交
6149 6150 6151 6152 6153 6154

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6155
		struct migration_req *req;
L
Linus Torvalds 已提交
6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6178
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6179 6180
		list_del_init(head->next);

N
Nick Piggin 已提交
6181 6182 6183
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6213
/*
6214
 * Figure out where task on dead CPU should go, use force if necessary.
6215 6216
 * NOTE: interrupts should be disabled by the caller
 */
6217
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6218
{
6219
	unsigned long flags;
L
Linus Torvalds 已提交
6220
	cpumask_t mask;
6221 6222
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6223

6224 6225 6226 6227 6228 6229 6230
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6231
		if (dest_cpu >= nr_cpu_ids)
6232 6233 6234
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6235
		if (dest_cpu >= nr_cpu_ids) {
6236 6237 6238
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6239 6240 6241 6242
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6243
			 * cpuset_cpus_allowed() will not block. It must be
6244 6245
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6246
			rq = task_rq_lock(p, &flags);
6247
			p->cpus_allowed = cpus_allowed;
6248 6249
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6250

6251 6252 6253 6254 6255
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6256
			if (p->mm && printk_ratelimit()) {
6257 6258
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6259 6260
					task_pid_nr(p), p->comm, dead_cpu);
			}
6261
		}
6262
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6263 6264 6265 6266 6267 6268 6269 6270 6271
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6272
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6273
{
6274
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6288
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6289

6290
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6291

6292 6293
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6294 6295
			continue;

6296 6297 6298
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6299

6300
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6301 6302
}

I
Ingo Molnar 已提交
6303 6304
/*
 * Schedules idle task to be the next runnable task on current CPU.
6305 6306
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6307 6308 6309
 */
void sched_idle_next(void)
{
6310
	int this_cpu = smp_processor_id();
6311
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6312 6313 6314 6315
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6316
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6317

6318 6319 6320
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6321 6322 6323
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6324
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6325

6326 6327
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6328 6329 6330 6331

	spin_unlock_irqrestore(&rq->lock, flags);
}

6332 6333
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6347
/* called under rq->lock with disabled interrupts */
6348
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6349
{
6350
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6351 6352

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6353
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6354 6355

	/* Cannot have done final schedule yet: would have vanished. */
6356
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6357

6358
	get_task_struct(p);
L
Linus Torvalds 已提交
6359 6360 6361

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6362
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6363 6364
	 * fine.
	 */
6365
	spin_unlock_irq(&rq->lock);
6366
	move_task_off_dead_cpu(dead_cpu, p);
6367
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6368

6369
	put_task_struct(p);
L
Linus Torvalds 已提交
6370 6371 6372 6373 6374
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6375
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6376
	struct task_struct *next;
6377

I
Ingo Molnar 已提交
6378 6379 6380
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6381
		update_rq_clock(rq);
6382
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6383 6384 6385
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
6386

L
Linus Torvalds 已提交
6387 6388 6389 6390
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6391 6392 6393
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6394 6395
	{
		.procname	= "sched_domain",
6396
		.mode		= 0555,
6397
	},
I
Ingo Molnar 已提交
6398
	{0, },
6399 6400 6401
};

static struct ctl_table sd_ctl_root[] = {
6402
	{
6403
		.ctl_name	= CTL_KERN,
6404
		.procname	= "kernel",
6405
		.mode		= 0555,
6406 6407
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6408
	{0, },
6409 6410 6411 6412 6413
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6414
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6415 6416 6417 6418

	return entry;
}

6419 6420
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6421
	struct ctl_table *entry;
6422

6423 6424 6425
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6426
	 * will always be set. In the lowest directory the names are
6427 6428 6429
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6430 6431
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6432 6433 6434
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6435 6436 6437 6438 6439

	kfree(*tablep);
	*tablep = NULL;
}

6440
static void
6441
set_table_entry(struct ctl_table *entry,
6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6455
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6456

6457 6458 6459
	if (table == NULL)
		return NULL;

6460
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6461
		sizeof(long), 0644, proc_doulongvec_minmax);
6462
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6463
		sizeof(long), 0644, proc_doulongvec_minmax);
6464
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6465
		sizeof(int), 0644, proc_dointvec_minmax);
6466
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6467
		sizeof(int), 0644, proc_dointvec_minmax);
6468
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6469
		sizeof(int), 0644, proc_dointvec_minmax);
6470
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6471
		sizeof(int), 0644, proc_dointvec_minmax);
6472
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6473
		sizeof(int), 0644, proc_dointvec_minmax);
6474
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6475
		sizeof(int), 0644, proc_dointvec_minmax);
6476
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6477
		sizeof(int), 0644, proc_dointvec_minmax);
6478
	set_table_entry(&table[9], "cache_nice_tries",
6479 6480
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6481
	set_table_entry(&table[10], "flags", &sd->flags,
6482
		sizeof(int), 0644, proc_dointvec_minmax);
6483
	/* &table[11] is terminator */
6484 6485 6486 6487

	return table;
}

6488
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6489 6490 6491 6492 6493 6494 6495 6496 6497
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6498 6499
	if (table == NULL)
		return NULL;
6500 6501 6502 6503 6504

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6505
		entry->mode = 0555;
6506 6507 6508 6509 6510 6511 6512 6513
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6514
static void register_sched_domain_sysctl(void)
6515 6516 6517 6518 6519
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6520 6521 6522
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6523 6524 6525
	if (entry == NULL)
		return;

6526
	for_each_online_cpu(i) {
6527 6528
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6529
		entry->mode = 0555;
6530
		entry->child = sd_alloc_ctl_cpu_table(i);
6531
		entry++;
6532
	}
6533 6534

	WARN_ON(sd_sysctl_header);
6535 6536
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6537

6538
/* may be called multiple times per register */
6539 6540
static void unregister_sched_domain_sysctl(void)
{
6541 6542
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6543
	sd_sysctl_header = NULL;
6544 6545
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6546
}
6547
#else
6548 6549 6550 6551
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6552 6553 6554 6555
{
}
#endif

L
Linus Torvalds 已提交
6556 6557 6558 6559
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6560 6561
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6562 6563
{
	struct task_struct *p;
6564
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6565
	unsigned long flags;
6566
	struct rq *rq;
L
Linus Torvalds 已提交
6567 6568

	switch (action) {
6569

L
Linus Torvalds 已提交
6570
	case CPU_UP_PREPARE:
6571
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6572
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6573 6574 6575 6576 6577
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6578
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6579 6580 6581
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6582

L
Linus Torvalds 已提交
6583
	case CPU_ONLINE:
6584
	case CPU_ONLINE_FROZEN:
6585
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6586
		wake_up_process(cpu_rq(cpu)->migration_thread);
6587 6588 6589 6590 6591 6592 6593 6594 6595

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6596
		break;
6597

L
Linus Torvalds 已提交
6598 6599
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6600
	case CPU_UP_CANCELED_FROZEN:
6601 6602
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6603
		/* Unbind it from offline cpu so it can run. Fall thru. */
6604 6605
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6606 6607 6608
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6609

L
Linus Torvalds 已提交
6610
	case CPU_DEAD:
6611
	case CPU_DEAD_FROZEN:
6612
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6613 6614 6615 6616 6617
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6618
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6619
		update_rq_clock(rq);
6620
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6621
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6622 6623
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6624
		migrate_dead_tasks(cpu);
6625
		spin_unlock_irq(&rq->lock);
6626
		cpuset_unlock();
L
Linus Torvalds 已提交
6627 6628 6629
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6630 6631 6632 6633 6634
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6635 6636
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6637 6638
			struct migration_req *req;

L
Linus Torvalds 已提交
6639
			req = list_entry(rq->migration_queue.next,
6640
					 struct migration_req, list);
L
Linus Torvalds 已提交
6641 6642 6643 6644 6645
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6646

6647 6648
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6649 6650 6651 6652 6653 6654 6655 6656 6657
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6658 6659 6660 6661 6662 6663 6664 6665
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6666
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6667 6668 6669 6670
	.notifier_call = migration_call,
	.priority = 10
};

6671
void __init migration_init(void)
L
Linus Torvalds 已提交
6672 6673
{
	void *cpu = (void *)(long)smp_processor_id();
6674
	int err;
6675 6676

	/* Start one for the boot CPU: */
6677 6678
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6679 6680 6681 6682 6683 6684
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6685

6686
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6687

6688 6689
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6690
{
I
Ingo Molnar 已提交
6691
	struct sched_group *group = sd->groups;
6692
	char str[256];
L
Linus Torvalds 已提交
6693

6694
	cpulist_scnprintf(str, sizeof(str), sd->span);
6695
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6696 6697 6698 6699 6700 6701 6702 6703 6704

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6705 6706
	}

I
Ingo Molnar 已提交
6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6717

I
Ingo Molnar 已提交
6718
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6719
	do {
I
Ingo Molnar 已提交
6720 6721 6722
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6723 6724 6725
			break;
		}

I
Ingo Molnar 已提交
6726 6727 6728 6729 6730 6731
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6732

I
Ingo Molnar 已提交
6733 6734 6735 6736 6737
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6738

6739
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6740 6741 6742 6743
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6744

6745
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6746

6747
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6748
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6749

I
Ingo Molnar 已提交
6750 6751 6752
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6753

6754
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6755
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6756

6757
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6758 6759 6760 6761
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6762

I
Ingo Molnar 已提交
6763 6764
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6765
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6766
	int level = 0;
L
Linus Torvalds 已提交
6767

I
Ingo Molnar 已提交
6768 6769 6770 6771
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6772

I
Ingo Molnar 已提交
6773 6774
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6775 6776 6777 6778 6779 6780
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6781
	for (;;) {
6782
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6783
			break;
L
Linus Torvalds 已提交
6784 6785
		level++;
		sd = sd->parent;
6786
		if (!sd)
I
Ingo Molnar 已提交
6787 6788
			break;
	}
6789
	kfree(groupmask);
L
Linus Torvalds 已提交
6790 6791
}
#else
6792
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6793 6794
#endif

6795
static int sd_degenerate(struct sched_domain *sd)
6796 6797 6798 6799 6800 6801 6802 6803
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6804 6805 6806
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6820 6821
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6840 6841 6842
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6843 6844 6845 6846 6847 6848 6849
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6860
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6861 6862
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6863
		}
G
Gregory Haskins 已提交
6864

6865 6866 6867
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6868 6869 6870 6871 6872 6873 6874
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6875
	cpu_set(rq->cpu, rd->span);
6876 6877
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);
6878

I
Ingo Molnar 已提交
6879
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6880 6881
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6882
	}
G
Gregory Haskins 已提交
6883 6884 6885 6886

	spin_unlock_irqrestore(&rq->lock, flags);
}

6887
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6888 6889 6890
{
	memset(rd, 0, sizeof(*rd));

6891 6892
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6893 6894 6895 6896
}

static void init_defrootdomain(void)
{
6897
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6898 6899 6900
	atomic_set(&def_root_domain.refcount, 1);
}

6901
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6902 6903 6904 6905 6906 6907 6908
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6909
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6910 6911 6912 6913

	return rd;
}

L
Linus Torvalds 已提交
6914
/*
I
Ingo Molnar 已提交
6915
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6916 6917
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6918 6919
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6920
{
6921
	struct rq *rq = cpu_rq(cpu);
6922 6923 6924 6925 6926 6927 6928
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6929
		if (sd_parent_degenerate(tmp, parent)) {
6930
			tmp->parent = parent->parent;
6931 6932 6933
			if (parent->parent)
				parent->parent->child = tmp;
		}
6934 6935
	}

6936
	if (sd && sd_degenerate(sd)) {
6937
		sd = sd->parent;
6938 6939 6940
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6941 6942 6943

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6944
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6945
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6946 6947 6948
}

/* cpus with isolated domains */
6949
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6964
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6965 6966

/*
6967 6968 6969 6970
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6971 6972 6973 6974 6975
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6976
static void
6977
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6978
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6979 6980 6981
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6982 6983 6984 6985
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6986 6987 6988
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6989
		struct sched_group *sg;
6990
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6991 6992
		int j;

6993
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6994 6995
			continue;

6996
		cpus_clear(sg->cpumask);
6997
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6998

6999 7000
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7001 7002
				continue;

7003
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7015
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7016

7017
#ifdef CONFIG_NUMA
7018

7019 7020 7021 7022 7023
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7024
 * Find the next node to include in a given scheduling domain. Simply
7025 7026 7027 7028
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7029
static int find_next_best_node(int node, nodemask_t *used_nodes)
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7043
		if (node_isset(n, *used_nodes))
7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7055
	node_set(best_node, *used_nodes);
7056 7057 7058 7059 7060 7061
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7062
 * @span: resulting cpumask
7063
 *
I
Ingo Molnar 已提交
7064
 * Given a node, construct a good cpumask for its sched_domain to span. It
7065 7066 7067
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7068
static void sched_domain_node_span(int node, cpumask_t *span)
7069
{
7070 7071
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
7072
	int i;
7073

7074
	cpus_clear(*span);
7075
	nodes_clear(used_nodes);
7076

7077
	cpus_or(*span, *span, *nodemask);
7078
	node_set(node, used_nodes);
7079 7080

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7081
		int next_node = find_next_best_node(node, &used_nodes);
7082

7083
		node_to_cpumask_ptr_next(nodemask, next_node);
7084
		cpus_or(*span, *span, *nodemask);
7085 7086 7087 7088
	}
}
#endif

7089
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7090

7091
/*
7092
 * SMT sched-domains:
7093
 */
L
Linus Torvalds 已提交
7094 7095
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7096
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7097

I
Ingo Molnar 已提交
7098
static int
7099 7100
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7101
{
7102 7103
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
7104 7105 7106 7107
	return cpu;
}
#endif

7108 7109 7110
/*
 * multi-core sched-domains:
 */
7111 7112
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
7113
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7114 7115 7116
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7117
static int
7118 7119
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7120
{
7121
	int group;
7122 7123 7124 7125

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7126 7127 7128
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7129 7130
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7131
static int
7132 7133
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7134
{
7135 7136
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7137 7138 7139 7140
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7141
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7142
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7143

I
Ingo Molnar 已提交
7144
static int
7145 7146
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7147
{
7148
	int group;
7149
#ifdef CONFIG_SCHED_MC
7150 7151 7152
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7153
#elif defined(CONFIG_SCHED_SMT)
7154 7155 7156
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7157
#else
7158
	group = cpu;
L
Linus Torvalds 已提交
7159
#endif
7160 7161 7162
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7163 7164 7165 7166
}

#ifdef CONFIG_NUMA
/*
7167 7168 7169
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7170
 */
7171
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7172
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7173

7174
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7175
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7176

7177
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7178
				 struct sched_group **sg, cpumask_t *nodemask)
7179
{
7180 7181
	int group;

7182 7183 7184
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7185 7186 7187 7188

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7189
}
7190

7191 7192 7193 7194 7195 7196 7197
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7198 7199 7200
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
7201

7202 7203 7204 7205 7206 7207 7208 7209
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7210

7211 7212 7213 7214
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7215
}
L
Linus Torvalds 已提交
7216 7217
#endif

7218
#ifdef CONFIG_NUMA
7219
/* Free memory allocated for various sched_group structures */
7220
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7221
{
7222
	int cpu, i;
7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7234 7235 7236
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7253
#else
7254
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7255 7256 7257
{
}
#endif
7258

7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7285 7286
	sd->groups->__cpu_power = 0;

7287 7288 7289 7290 7291 7292 7293 7294 7295 7296
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7297
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7298 7299 7300 7301 7302 7303 7304 7305
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7306
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7307 7308 7309 7310
		group = group->next;
	} while (group != child->groups);
}

7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7322
	sd->level = SD_LV_##type;				\
7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
	default_relax_domain_level = simple_strtoul(str, NULL, 0);
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7401
/*
7402 7403
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7404
 */
7405 7406
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7407 7408
{
	int i;
G
Gregory Haskins 已提交
7409
	struct root_domain *rd;
7410 7411
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7412 7413
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7414
	int sd_allnodes = 0;
7415 7416 7417 7418

	/*
	 * Allocate the per-node list of sched groups
	 */
7419
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7420
				    GFP_KERNEL);
7421 7422
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7423
		return -ENOMEM;
7424 7425
	}
#endif
L
Linus Torvalds 已提交
7426

7427
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7428 7429
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7430 7431 7432
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7433 7434 7435
		return -ENOMEM;
	}

7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7455
	/*
7456
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7457
	 */
7458
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7459
		struct sched_domain *sd = NULL, *p;
7460
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7461

7462 7463
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7464 7465

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7466
		if (cpus_weight(*cpu_map) >
7467
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7468
			sd = &per_cpu(allnodes_domains, i);
7469
			SD_INIT(sd, ALLNODES);
7470
			set_domain_attribute(sd, attr);
7471
			sd->span = *cpu_map;
7472
			sd->first_cpu = first_cpu(sd->span);
7473
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7474
			p = sd;
7475
			sd_allnodes = 1;
7476 7477 7478
		} else
			p = NULL;

L
Linus Torvalds 已提交
7479
		sd = &per_cpu(node_domains, i);
7480
		SD_INIT(sd, NODE);
7481
		set_domain_attribute(sd, attr);
7482
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7483
		sd->first_cpu = first_cpu(sd->span);
7484
		sd->parent = p;
7485 7486
		if (p)
			p->child = sd;
7487
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7488 7489 7490 7491
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7492
		SD_INIT(sd, CPU);
7493
		set_domain_attribute(sd, attr);
7494
		sd->span = *nodemask;
7495
		sd->first_cpu = first_cpu(sd->span);
L
Linus Torvalds 已提交
7496
		sd->parent = p;
7497 7498
		if (p)
			p->child = sd;
7499
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7500

7501 7502 7503
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7504
		SD_INIT(sd, MC);
7505
		set_domain_attribute(sd, attr);
7506
		sd->span = cpu_coregroup_map(i);
7507
		sd->first_cpu = first_cpu(sd->span);
7508 7509
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7510
		p->child = sd;
7511
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7512 7513
#endif

L
Linus Torvalds 已提交
7514 7515 7516
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7517
		SD_INIT(sd, SIBLING);
7518
		set_domain_attribute(sd, attr);
7519
		sd->span = per_cpu(cpu_sibling_map, i);
7520
		sd->first_cpu = first_cpu(sd->span);
7521
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7522
		sd->parent = p;
7523
		p->child = sd;
7524
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7525 7526 7527 7528 7529
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7530
	for_each_cpu_mask(i, *cpu_map) {
7531 7532 7533 7534 7535 7536
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7537 7538
			continue;

I
Ingo Molnar 已提交
7539
		init_sched_build_groups(this_sibling_map, cpu_map,
7540 7541
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7542 7543 7544
	}
#endif

7545 7546 7547
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7548 7549 7550 7551 7552 7553
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7554
			continue;
7555

I
Ingo Molnar 已提交
7556
		init_sched_build_groups(this_core_map, cpu_map,
7557 7558
					&cpu_to_core_group,
					send_covered, tmpmask);
7559 7560 7561
	}
#endif

L
Linus Torvalds 已提交
7562 7563
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7564 7565
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7566

7567 7568 7569
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7570 7571
			continue;

7572 7573 7574
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7575 7576 7577 7578
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7579 7580 7581 7582 7583 7584 7585
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7586 7587 7588 7589

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7590 7591 7592
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7593 7594
		int j;

7595 7596 7597 7598 7599
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7600
			sched_group_nodes[i] = NULL;
7601
			continue;
7602
		}
7603

7604
		sched_domain_node_span(i, domainspan);
7605
		cpus_and(*domainspan, *domainspan, *cpu_map);
7606

7607
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7608 7609 7610 7611 7612
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7613
		sched_group_nodes[i] = sg;
7614
		for_each_cpu_mask(j, *nodemask) {
7615
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7616

7617 7618 7619
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7620
		sg->__cpu_power = 0;
7621
		sg->cpumask = *nodemask;
7622
		sg->next = sg;
7623
		cpus_or(*covered, *covered, *nodemask);
7624 7625 7626
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7627
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7628
			int n = (i + j) % MAX_NUMNODES;
7629
			node_to_cpumask_ptr(pnodemask, n);
7630

7631 7632 7633 7634
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7635 7636
				break;

7637 7638
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7639 7640
				continue;

7641 7642
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7643 7644 7645
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7646
				goto error;
7647
			}
7648
			sg->__cpu_power = 0;
7649
			sg->cpumask = *tmpmask;
7650
			sg->next = prev->next;
7651
			cpus_or(*covered, *covered, *tmpmask);
7652 7653 7654 7655
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7656 7657 7658
#endif

	/* Calculate CPU power for physical packages and nodes */
7659
#ifdef CONFIG_SCHED_SMT
7660
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7661 7662
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7663
		init_sched_groups_power(i, sd);
7664
	}
L
Linus Torvalds 已提交
7665
#endif
7666
#ifdef CONFIG_SCHED_MC
7667
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7668 7669
		struct sched_domain *sd = &per_cpu(core_domains, i);

7670
		init_sched_groups_power(i, sd);
7671 7672
	}
#endif
7673

7674
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7675 7676
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7677
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7678 7679
	}

7680
#ifdef CONFIG_NUMA
7681 7682
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7683

7684 7685
	if (sd_allnodes) {
		struct sched_group *sg;
7686

7687 7688
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7689 7690
		init_numa_sched_groups_power(sg);
	}
7691 7692
#endif

L
Linus Torvalds 已提交
7693
	/* Attach the domains */
7694
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7695 7696 7697
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7698 7699
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7700 7701 7702
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7703
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7704
	}
7705

7706
	SCHED_CPUMASK_FREE((void *)allmasks);
7707 7708
	return 0;

7709
#ifdef CONFIG_NUMA
7710
error:
7711 7712
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7713
	return -ENOMEM;
7714
#endif
L
Linus Torvalds 已提交
7715
}
P
Paul Jackson 已提交
7716

7717 7718 7719 7720 7721
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7722 7723
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
7724 7725
static struct sched_domain_attr *dattr_cur;	/* attribues of custom domains
						   in 'doms_cur' */
P
Paul Jackson 已提交
7726 7727 7728 7729 7730 7731 7732 7733

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7734 7735 7736 7737
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7738
/*
I
Ingo Molnar 已提交
7739
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7740 7741
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7742
 */
7743
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7744
{
7745 7746
	int err;

7747
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7748 7749 7750 7751 7752
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7753
	dattr_cur = NULL;
7754
	err = build_sched_domains(doms_cur);
7755
	register_sched_domain_sysctl();
7756 7757

	return err;
7758 7759
}

7760 7761
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7762
{
7763
	free_sched_groups(cpu_map, tmpmask);
7764
}
L
Linus Torvalds 已提交
7765

7766 7767 7768 7769
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7770
static void detach_destroy_domains(const cpumask_t *cpu_map)
7771
{
7772
	cpumask_t tmpmask;
7773 7774
	int i;

7775 7776
	unregister_sched_domain_sysctl();

7777
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7778
		cpu_attach_domain(NULL, &def_root_domain, i);
7779
	synchronize_sched();
7780
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7781 7782
}

7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7799 7800
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7801
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7802 7803 7804 7805
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7806 7807 7808
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7809 7810 7811
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7812 7813
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7814 7815 7816 7817 7818 7819
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7820 7821
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7822 7823 7824
{
	int i, j;

7825 7826
	lock_doms_cur();

7827 7828 7829
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7830 7831 7832 7833
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7834
		dattr_new = NULL;
P
Paul Jackson 已提交
7835 7836 7837 7838 7839
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7840 7841
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7853 7854
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7855 7856 7857
				goto match2;
		}
		/* no match - add a new doms_new */
7858 7859
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7860 7861 7862 7863 7864 7865 7866
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7867
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7868
	doms_cur = doms_new;
7869
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7870
	ndoms_cur = ndoms_new;
7871 7872

	register_sched_domain_sysctl();
7873 7874

	unlock_doms_cur();
P
Paul Jackson 已提交
7875 7876
}

7877
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7878
int arch_reinit_sched_domains(void)
7879 7880 7881
{
	int err;

7882
	get_online_cpus();
7883 7884
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
7885
	put_online_cpus();
7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7912 7913
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7914 7915 7916
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7917 7918
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7919 7920 7921 7922 7923 7924 7925
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7926 7927
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7928 7929 7930
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7951 7952
#endif

L
Linus Torvalds 已提交
7953
/*
I
Ingo Molnar 已提交
7954
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7955
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7956
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7957 7958 7959 7960 7961 7962 7963
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7964
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7965
	case CPU_DOWN_PREPARE:
7966
	case CPU_DOWN_PREPARE_FROZEN:
7967
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7968 7969 7970
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7971
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7972
	case CPU_DOWN_FAILED:
7973
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7974
	case CPU_ONLINE:
7975
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7976
	case CPU_DEAD:
7977
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7978 7979 7980 7981 7982 7983 7984 7985 7986
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7987
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7988 7989 7990 7991 7992 7993

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7994 7995
	cpumask_t non_isolated_cpus;

7996 7997 7998 7999 8000
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8001
	get_online_cpus();
8002
	arch_init_sched_domains(&cpu_online_map);
8003
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
8004 8005
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
8006
	put_online_cpus();
L
Linus Torvalds 已提交
8007 8008
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8009
	init_hrtick();
8010 8011

	/* Move init over to a non-isolated CPU */
8012
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8013
		BUG();
I
Ingo Molnar 已提交
8014
	sched_init_granularity();
L
Linus Torvalds 已提交
8015 8016 8017 8018
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8019
	sched_init_granularity();
L
Linus Torvalds 已提交
8020 8021 8022 8023 8024 8025 8026 8027 8028 8029
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8030
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8031 8032
{
	cfs_rq->tasks_timeline = RB_ROOT;
8033
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8034 8035 8036
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8037
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8038 8039
}

P
Peter Zijlstra 已提交
8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8053
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8054 8055
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8056 8057 8058 8059 8060 8061 8062
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8063 8064
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8065

8066
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8067
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8068 8069
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8070 8071
}

P
Peter Zijlstra 已提交
8072
#ifdef CONFIG_FAIR_GROUP_SCHED
8073 8074 8075
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8076
{
8077
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8078 8079 8080 8081 8082 8083 8084
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8085 8086 8087 8088
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8089 8090 8091 8092 8093
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8094 8095
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8096
	se->load.inv_weight = 0;
8097
	se->parent = parent;
P
Peter Zijlstra 已提交
8098
}
8099
#endif
P
Peter Zijlstra 已提交
8100

8101
#ifdef CONFIG_RT_GROUP_SCHED
8102 8103 8104
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8105
{
8106 8107
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8108 8109 8110 8111
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8112
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8113 8114 8115 8116
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8117 8118 8119
	if (!rt_se)
		return;

8120 8121 8122 8123 8124
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8125 8126
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
8127
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8128 8129 8130 8131
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8132 8133
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8134
	int i, j;
8135 8136 8137 8138 8139 8140 8141
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8142 8143 8144
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8145 8146 8147 8148 8149 8150
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8151
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8152 8153 8154 8155 8156 8157 8158

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8159 8160 8161 8162 8163 8164 8165 8166

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
8167 8168 8169 8170 8171 8172
#endif
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8173 8174 8175 8176 8177 8178 8179 8180 8181
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
8182 8183
#endif
	}
I
Ingo Molnar 已提交
8184

G
Gregory Haskins 已提交
8185
#ifdef CONFIG_SMP
8186
	init_aggregate();
G
Gregory Haskins 已提交
8187 8188 8189
	init_defrootdomain();
#endif

8190 8191 8192 8193 8194 8195
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8196 8197 8198 8199
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
#endif
8200 8201
#endif

8202
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8203
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8204 8205 8206 8207 8208 8209 8210
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
#endif
P
Peter Zijlstra 已提交
8211 8212
#endif

8213
	for_each_possible_cpu(i) {
8214
		struct rq *rq;
L
Linus Torvalds 已提交
8215 8216 8217

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
8218
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
8219
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8220
		rq->clock = 1;
8221
		update_last_tick_seen(rq);
I
Ingo Molnar 已提交
8222
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8223
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8224
#ifdef CONFIG_FAIR_GROUP_SCHED
8225
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8226
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8247
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8248
#elif defined CONFIG_USER_SCHED
8249 8250
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8262
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8263
				&per_cpu(init_cfs_rq, i),
8264 8265
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8266

8267
#endif
D
Dhaval Giani 已提交
8268 8269 8270
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8271
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8272
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8273
#ifdef CONFIG_CGROUP_SCHED
8274
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8275
#elif defined CONFIG_USER_SCHED
8276
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8277
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8278
				&per_cpu(init_rt_rq, i),
8279 8280
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8281
#endif
I
Ingo Molnar 已提交
8282
#endif
L
Linus Torvalds 已提交
8283

I
Ingo Molnar 已提交
8284 8285
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8286
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8287
		rq->sd = NULL;
G
Gregory Haskins 已提交
8288
		rq->rd = NULL;
L
Linus Torvalds 已提交
8289
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8290
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8291
		rq->push_cpu = 0;
8292
		rq->cpu = i;
L
Linus Torvalds 已提交
8293 8294
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8295
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8296
#endif
P
Peter Zijlstra 已提交
8297
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8298 8299 8300
		atomic_set(&rq->nr_iowait, 0);
	}

8301
	set_load_weight(&init_task);
8302

8303 8304 8305 8306
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8307 8308 8309 8310
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

8311 8312 8313 8314
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8328 8329 8330 8331
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8332 8333

	scheduler_running = 1;
L
Linus Torvalds 已提交
8334 8335 8336 8337 8338
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8339
#ifdef in_atomic
L
Linus Torvalds 已提交
8340 8341 8342 8343 8344 8345 8346
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8347
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8348 8349 8350
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8351
		debug_show_held_locks(current);
8352 8353
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8354 8355 8356 8357 8358 8359 8360 8361
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8376 8377
void normalize_rt_tasks(void)
{
8378
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8379
	unsigned long flags;
8380
	struct rq *rq;
L
Linus Torvalds 已提交
8381

8382
	read_lock_irqsave(&tasklist_lock, flags);
8383
	do_each_thread(g, p) {
8384 8385 8386 8387 8388 8389
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8390 8391
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8392 8393 8394
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8395
#endif
I
Ingo Molnar 已提交
8396 8397 8398 8399 8400 8401 8402 8403 8404
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8405
			continue;
I
Ingo Molnar 已提交
8406
		}
L
Linus Torvalds 已提交
8407

8408
		spin_lock(&p->pi_lock);
8409
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8410

8411
		normalize_task(rq, p);
8412

8413
		__task_rq_unlock(rq);
8414
		spin_unlock(&p->pi_lock);
8415 8416
	} while_each_thread(g, p);

8417
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8418 8419 8420
}

#endif /* CONFIG_MAGIC_SYSRQ */
8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8439
struct task_struct *curr_task(int cpu)
8440 8441 8442 8443 8444 8445 8446 8447 8448 8449
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8450 8451
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8452 8453 8454 8455 8456 8457 8458
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8459
void set_curr_task(int cpu, struct task_struct *p)
8460 8461 8462 8463 8464
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8465

8466 8467
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8482 8483
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8484 8485
{
	struct cfs_rq *cfs_rq;
8486
	struct sched_entity *se, *parent_se;
8487
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8488 8489
	int i;

8490
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8491 8492
	if (!tg->cfs_rq)
		goto err;
8493
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8494 8495
	if (!tg->se)
		goto err;
8496 8497

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8498 8499

	for_each_possible_cpu(i) {
8500
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8501

P
Peter Zijlstra 已提交
8502 8503
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8504 8505 8506
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8507 8508
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8509 8510 8511
		if (!se)
			goto err;

8512 8513
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8537 8538
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8550 8551 8552
#endif

#ifdef CONFIG_RT_GROUP_SCHED
8553 8554 8555 8556
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8557 8558
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8570 8571
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8572 8573
{
	struct rt_rq *rt_rq;
8574
	struct sched_rt_entity *rt_se, *parent_se;
8575 8576 8577
	struct rq *rq;
	int i;

8578
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8579 8580
	if (!tg->rt_rq)
		goto err;
8581
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8582 8583 8584
	if (!tg->rt_se)
		goto err;

8585 8586
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8587 8588 8589 8590

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8591 8592 8593 8594
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8595

P
Peter Zijlstra 已提交
8596 8597 8598 8599
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8600

8601 8602
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8603 8604
	}

8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8626 8627
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

8641
#ifdef CONFIG_GROUP_SCHED
8642 8643 8644 8645 8646 8647 8648 8649
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8650
struct task_group *sched_create_group(struct task_group *parent)
8651 8652 8653 8654 8655 8656 8657 8658 8659
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8660
	if (!alloc_fair_sched_group(tg, parent))
8661 8662
		goto err;

8663
	if (!alloc_rt_sched_group(tg, parent))
8664 8665
		goto err;

8666
	spin_lock_irqsave(&task_group_lock, flags);
8667
	for_each_possible_cpu(i) {
8668 8669
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8670
	}
P
Peter Zijlstra 已提交
8671
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8672 8673 8674 8675 8676 8677

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8678
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8679

8680
	return tg;
S
Srivatsa Vaddagiri 已提交
8681 8682

err:
P
Peter Zijlstra 已提交
8683
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8684 8685 8686
	return ERR_PTR(-ENOMEM);
}

8687
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8688
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8689 8690
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8691
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8692 8693
}

8694
/* Destroy runqueue etc associated with a task group */
8695
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8696
{
8697
	unsigned long flags;
8698
	int i;
S
Srivatsa Vaddagiri 已提交
8699

8700
	spin_lock_irqsave(&task_group_lock, flags);
8701
	for_each_possible_cpu(i) {
8702 8703
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8704
	}
P
Peter Zijlstra 已提交
8705
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8706
	list_del_rcu(&tg->siblings);
8707
	spin_unlock_irqrestore(&task_group_lock, flags);
8708 8709

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8710
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8711 8712
}

8713
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8714 8715 8716
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8717 8718
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8719 8720 8721 8722 8723 8724 8725 8726 8727
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8728
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8729 8730
	on_rq = tsk->se.on_rq;

8731
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8732
		dequeue_task(rq, tsk, 0);
8733 8734
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8735

P
Peter Zijlstra 已提交
8736
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8737

P
Peter Zijlstra 已提交
8738 8739 8740 8741 8742
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8743 8744 8745
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8746
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8747 8748 8749

	task_rq_unlock(rq, &flags);
}
8750
#endif
S
Srivatsa Vaddagiri 已提交
8751

8752
#ifdef CONFIG_FAIR_GROUP_SCHED
8753
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8754 8755 8756 8757 8758
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8759
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8760 8761 8762
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8763
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8764

8765
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8766
		enqueue_entity(cfs_rq, se, 0);
8767
}
8768

8769 8770 8771 8772 8773 8774 8775 8776 8777
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8778 8779
}

8780 8781
static DEFINE_MUTEX(shares_mutex);

8782
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8783 8784
{
	int i;
8785
	unsigned long flags;
8786

8787 8788 8789 8790 8791 8792
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8793 8794 8795 8796 8797
	/*
	 * A weight of 0 or 1 can cause arithmetics problems.
	 * (The default weight is 1024 - so there's no practical
	 *  limitation from this.)
	 */
8798 8799
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8800

8801
	mutex_lock(&shares_mutex);
8802
	if (tg->shares == shares)
8803
		goto done;
S
Srivatsa Vaddagiri 已提交
8804

8805
	spin_lock_irqsave(&task_group_lock, flags);
8806 8807
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8808
	list_del_rcu(&tg->siblings);
8809
	spin_unlock_irqrestore(&task_group_lock, flags);
8810 8811 8812 8813 8814 8815 8816 8817

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8818
	tg->shares = shares;
8819 8820 8821 8822 8823 8824 8825
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
		set_se_shares(tg->se[i], shares/nr_cpu_ids);
	}
S
Srivatsa Vaddagiri 已提交
8826

8827 8828 8829 8830
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8831
	spin_lock_irqsave(&task_group_lock, flags);
8832 8833
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8834
	list_add_rcu(&tg->siblings, &tg->parent->children);
8835
	spin_unlock_irqrestore(&task_group_lock, flags);
8836
done:
8837
	mutex_unlock(&shares_mutex);
8838
	return 0;
S
Srivatsa Vaddagiri 已提交
8839 8840
}

8841 8842 8843 8844
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8845
#endif
8846

8847
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8848
/*
P
Peter Zijlstra 已提交
8849
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8850
 */
P
Peter Zijlstra 已提交
8851 8852 8853 8854 8855 8856 8857
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8858
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8859 8860
}

8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
	struct task_group *tgi, *parent = tg->parent;
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

	return total + to_ratio(period, runtime) <
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8893
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8894 8895 8896
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8897
	unsigned long global_ratio =
8898
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8899 8900

	rcu_read_lock();
P
Peter Zijlstra 已提交
8901 8902 8903
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8904

8905 8906
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8907 8908
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8909

P
Peter Zijlstra 已提交
8910
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8911
}
8912
#endif
P
Peter Zijlstra 已提交
8913

8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8925 8926
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8927
{
P
Peter Zijlstra 已提交
8928
	int i, err = 0;
P
Peter Zijlstra 已提交
8929 8930

	mutex_lock(&rt_constraints_mutex);
8931
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8932
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8933 8934 8935
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8936 8937 8938 8939
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8940 8941

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8942 8943
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8944 8945 8946 8947 8948 8949 8950 8951 8952

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8953
 unlock:
8954
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8955 8956 8957
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8958 8959
}

8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8972 8973 8974 8975
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8976
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8977 8978
		return -1;

8979
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8980 8981 8982
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(NULL, 1, 0))
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
#else
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9030 9031
	return 0;
}
9032
#endif
9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9063

9064
#ifdef CONFIG_CGROUP_SCHED
9065 9066

/* return corresponding task_group object of a cgroup */
9067
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9068
{
9069 9070
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9071 9072 9073
}

static struct cgroup_subsys_state *
9074
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9075
{
9076
	struct task_group *tg, *parent;
9077

9078
	if (!cgrp->parent) {
9079
		/* This is early initialization for the top cgroup */
9080
		init_task_group.css.cgroup = cgrp;
9081 9082 9083
		return &init_task_group.css;
	}

9084 9085
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9086 9087 9088 9089
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
9090
	tg->css.cgroup = cgrp;
9091 9092 9093 9094

	return &tg->css;
}

I
Ingo Molnar 已提交
9095 9096
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9097
{
9098
	struct task_group *tg = cgroup_tg(cgrp);
9099 9100 9101 9102

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9103 9104 9105
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9106
{
9107 9108
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9109
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9110 9111
		return -EINVAL;
#else
9112 9113 9114
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9115
#endif
9116 9117 9118 9119 9120

	return 0;
}

static void
9121
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9122 9123 9124 9125 9126
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9127
#ifdef CONFIG_FAIR_GROUP_SCHED
9128
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9129
				u64 shareval)
9130
{
9131
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9132 9133
}

9134
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9135
{
9136
	struct task_group *tg = cgroup_tg(cgrp);
9137 9138 9139

	return (u64) tg->shares;
}
9140
#endif
9141

9142
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9143
static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9144
				s64 val)
P
Peter Zijlstra 已提交
9145
{
9146
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9147 9148
}

9149
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9150
{
9151
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9152
}
9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9164
#endif
P
Peter Zijlstra 已提交
9165

9166
static struct cftype cpu_files[] = {
9167
#ifdef CONFIG_FAIR_GROUP_SCHED
9168 9169
	{
		.name = "shares",
9170 9171
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9172
	},
9173 9174
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9175
	{
P
Peter Zijlstra 已提交
9176
		.name = "rt_runtime_us",
9177 9178
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9179
	},
9180 9181
	{
		.name = "rt_period_us",
9182 9183
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9184
	},
9185
#endif
9186 9187 9188 9189
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9190
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9191 9192 9193
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9194 9195 9196 9197 9198 9199 9200
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9201 9202 9203
	.early_init	= 1,
};

9204
#endif	/* CONFIG_CGROUP_SCHED */
9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9225
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9226
{
9227
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9240
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9257
static void
9258
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9259
{
9260
	struct cpuacct *ca = cgroup_ca(cgrp);
9261 9262 9263 9264 9265 9266

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9267
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9268
{
9269
	struct cpuacct *ca = cgroup_ca(cgrp);
9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9311 9312 9313
static struct cftype files[] = {
	{
		.name = "usage",
9314 9315
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9316 9317 9318
	},
};

9319
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9320
{
9321
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */