sched.c 265.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143 144 145 146 147
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
181 182
	spin_lock_init(&rt_b->rt_runtime_lock);

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219 220 221 222 223 224 225 226 227 228 229
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

236
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
#ifdef CONFIG_CGROUP_SCHED
247 248
	struct cgroup_subsys_state css;
#endif
249

250 251 252 253
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

254
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
255 256 257 258 259
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
275 276
};

D
Dhaval Giani 已提交
277
#ifdef CONFIG_USER_SCHED
278

279 280 281 282 283 284
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

285 286
/*
 * Root task group.
287 288
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
289 290 291
 */
struct task_group root_task_group;

292
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
293 294 295
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
296
static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
297
#endif /* CONFIG_FAIR_GROUP_SCHED */
298 299 300 301

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
302
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
303
#else /* !CONFIG_USER_SCHED */
304
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
305
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
306

307
/* task_group_lock serializes add/remove of task groups and also changes to
308 309
 * a task group's cpu shares.
 */
310
static DEFINE_SPINLOCK(task_group_lock);
311

312 313 314 315 316 317 318
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

319 320 321
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
322
#else /* !CONFIG_USER_SCHED */
323
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
324
#endif /* CONFIG_USER_SCHED */
325

326
/*
327 328 329 330
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
331 332 333
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
334
#define MIN_SHARES	2
335
#define MAX_SHARES	(1UL << 18)
336

337 338 339
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
340
/* Default task group.
I
Ingo Molnar 已提交
341
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
342
 */
343
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
344 345

/* return group to which a task belongs */
346
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
347
{
348
	struct task_group *tg;
349

350
#ifdef CONFIG_USER_SCHED
351 352 353
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
354
#elif defined(CONFIG_CGROUP_SCHED)
355 356
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
357
#else
I
Ingo Molnar 已提交
358
	tg = &init_task_group;
359
#endif
360
	return tg;
S
Srivatsa Vaddagiri 已提交
361 362 363
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
364
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
365
{
366
#ifdef CONFIG_FAIR_GROUP_SCHED
367 368
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
369
#endif
P
Peter Zijlstra 已提交
370

371
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
372 373
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
374
#endif
S
Srivatsa Vaddagiri 已提交
375 376 377 378
}

#else

379 380 381 382 383 384 385
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
386
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
387 388 389 390
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
391

392
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
393

I
Ingo Molnar 已提交
394 395 396 397 398 399
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
400
	u64 min_vruntime;
I
Ingo Molnar 已提交
401 402 403

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
404 405 406 407 408 409

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
410 411
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
412
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
413

P
Peter Zijlstra 已提交
414
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
415

416
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
417 418
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
419 420
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
421 422 423 424 425 426
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
427 428
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
429 430 431

#ifdef CONFIG_SMP
	/*
432
	 * the part of load.weight contributed by tasks
433
	 */
434
	unsigned long task_weight;
435

436 437 438 439 440 441 442
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
443

444 445 446 447
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
448 449 450 451 452

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
453
#endif
I
Ingo Molnar 已提交
454 455
#endif
};
L
Linus Torvalds 已提交
456

I
Ingo Molnar 已提交
457 458 459
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
460
	unsigned long rt_nr_running;
461
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
462 463
	struct {
		int curr; /* highest queued rt task prio */
464
#ifdef CONFIG_SMP
465
		int next; /* next highest */
466
#endif
467
	} highest_prio;
P
Peter Zijlstra 已提交
468
#endif
P
Peter Zijlstra 已提交
469
#ifdef CONFIG_SMP
470
	unsigned long rt_nr_migratory;
471
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
472
	int overloaded;
473
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
474
#endif
P
Peter Zijlstra 已提交
475
	int rt_throttled;
P
Peter Zijlstra 已提交
476
	u64 rt_time;
P
Peter Zijlstra 已提交
477
	u64 rt_runtime;
I
Ingo Molnar 已提交
478
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
479
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
480

481
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
482 483
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
484 485 486 487 488
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
489 490
};

G
Gregory Haskins 已提交
491 492 493 494
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
495 496
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
497 498 499 500 501 502
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
503 504
	cpumask_var_t span;
	cpumask_var_t online;
505

I
Ingo Molnar 已提交
506
	/*
507 508 509
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
510
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
511
	atomic_t rto_count;
512 513 514
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
515 516
};

517 518 519 520
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
521 522 523 524
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
525 526 527 528 529 530 531
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
532
struct rq {
533 534
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
535 536 537 538 539 540

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
541 542
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
543
#ifdef CONFIG_NO_HZ
544
	unsigned long last_tick_seen;
545 546
	unsigned char in_nohz_recently;
#endif
547 548
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
549 550
	unsigned long nr_load_updates;
	u64 nr_switches;
551
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
552 553

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
554 555
	struct rt_rq rt;

I
Ingo Molnar 已提交
556
#ifdef CONFIG_FAIR_GROUP_SCHED
557 558
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
559 560
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
561
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
562 563 564 565 566 567 568 569 570 571
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

572
	struct task_struct *curr, *idle;
573
	unsigned long next_balance;
L
Linus Torvalds 已提交
574
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
575

576
	u64 clock;
I
Ingo Molnar 已提交
577

L
Linus Torvalds 已提交
578 579 580
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
581
	struct root_domain *rd;
L
Linus Torvalds 已提交
582 583
	struct sched_domain *sd;

584
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
585
	/* For active balancing */
586
	int post_schedule;
L
Linus Torvalds 已提交
587 588
	int active_balance;
	int push_cpu;
589 590
	/* cpu of this runqueue: */
	int cpu;
591
	int online;
L
Linus Torvalds 已提交
592

593
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
594

595
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
596
	struct list_head migration_queue;
597 598 599

	u64 rt_avg;
	u64 age_stamp;
L
Linus Torvalds 已提交
600 601
#endif

602 603 604 605
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
606
#ifdef CONFIG_SCHED_HRTICK
607 608 609 610
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
611 612 613
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
614 615 616
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
617 618
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
619 620

	/* sys_sched_yield() stats */
621
	unsigned int yld_count;
L
Linus Torvalds 已提交
622 623

	/* schedule() stats */
624 625 626
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
627 628

	/* try_to_wake_up() stats */
629 630
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
631 632

	/* BKL stats */
633
	unsigned int bkl_count;
L
Linus Torvalds 已提交
634 635 636
#endif
};

637
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
638

P
Peter Zijlstra 已提交
639 640
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
641
{
P
Peter Zijlstra 已提交
642
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
643 644
}

645 646 647 648 649 650 651 652 653
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
654 655
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
656
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
657 658 659 660
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
661 662
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
663 664 665 666 667

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
668
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
669

I
Ingo Molnar 已提交
670
inline void update_rq_clock(struct rq *rq)
671 672 673 674
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
675 676 677 678 679 680 681 682 683
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
702 703 704
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
705 706 707 708

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
709
enum {
P
Peter Zijlstra 已提交
710
#include "sched_features.h"
I
Ingo Molnar 已提交
711 712
};

P
Peter Zijlstra 已提交
713 714 715 716 717
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
718
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
719 720 721 722 723 724 725 726 727
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

728
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
729 730 731 732 733 734
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
735
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
736 737 738 739
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
740 741 742
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
743
	}
L
Li Zefan 已提交
744
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
745

L
Li Zefan 已提交
746
	return 0;
P
Peter Zijlstra 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
766
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
791 792 793 794 795
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
796
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
797 798 799 800 801
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
816

817 818 819 820 821 822
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
823 824
/*
 * ratelimit for updating the group shares.
825
 * default: 0.25ms
P
Peter Zijlstra 已提交
826
 */
827
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
828

829 830 831 832 833 834 835
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

836 837 838 839 840 841 842 843
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
844
/*
P
Peter Zijlstra 已提交
845
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
846 847
 * default: 1s
 */
P
Peter Zijlstra 已提交
848
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
849

850 851
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
852 853 854 855 856
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
857

858 859 860 861 862 863 864
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
865
	if (sysctl_sched_rt_runtime < 0)
866 867 868 869
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
870

L
Linus Torvalds 已提交
871
#ifndef prepare_arch_switch
872 873 874 875 876 877
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

878 879 880 881 882
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

883
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
884
static inline int task_running(struct rq *rq, struct task_struct *p)
885
{
886
	return task_current(rq, p);
887 888
}

889
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
890 891 892
{
}

893
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
894
{
895 896 897 898
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
899 900 901 902 903 904 905
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

906 907 908 909
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
910
static inline int task_running(struct rq *rq, struct task_struct *p)
911 912 913 914
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
915
	return task_current(rq, p);
916 917 918
#endif
}

919
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

936
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
937 938 939 940 941 942 943 944 945 946 947 948
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
949
#endif
950 951
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
952

953 954 955 956
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
957
static inline struct rq *__task_rq_lock(struct task_struct *p)
958 959
	__acquires(rq->lock)
{
960 961 962 963 964
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
965 966 967 968
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
969 970
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
971
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
972 973
 * explicitly disabling preemption.
 */
974
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
975 976
	__acquires(rq->lock)
{
977
	struct rq *rq;
L
Linus Torvalds 已提交
978

979 980 981 982 983 984
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
985 986 987 988
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

989 990 991 992 993 994 995 996
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
997
static void __task_rq_unlock(struct rq *rq)
998 999 1000 1001 1002
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1003
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1004 1005 1006 1007 1008 1009
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1010
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1011
 */
A
Alexey Dobriyan 已提交
1012
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1013 1014
	__acquires(rq->lock)
{
1015
	struct rq *rq;
L
Linus Torvalds 已提交
1016 1017 1018 1019 1020 1021 1022 1023

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1045
	if (!cpu_active(cpu_of(rq)))
1046
		return 0;
P
Peter Zijlstra 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1067
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1068 1069 1070 1071 1072 1073
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1074
#ifdef CONFIG_SMP
1075 1076 1077 1078
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1079
{
1080
	struct rq *rq = arg;
1081

1082 1083 1084 1085
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1086 1087
}

1088 1089 1090 1091 1092 1093
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1094
{
1095 1096
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1097

1098
	hrtimer_set_expires(timer, time);
1099 1100 1101 1102

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1103
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1104 1105
		rq->hrtick_csd_pending = 1;
	}
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1120
		hrtick_clear(cpu_rq(cpu));
1121 1122 1123 1124 1125 1126
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1127
static __init void init_hrtick(void)
1128 1129 1130
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1131 1132 1133 1134 1135 1136 1137 1138
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1139
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1140
			HRTIMER_MODE_REL_PINNED, 0);
1141
}
1142

A
Andrew Morton 已提交
1143
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1144 1145
{
}
1146
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1147

1148
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1149
{
1150 1151
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1152

1153 1154 1155 1156
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1157

1158 1159
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1160
}
A
Andrew Morton 已提交
1161
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1162 1163 1164 1165 1166 1167 1168 1169
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1170 1171 1172
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1173
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1174

I
Ingo Molnar 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1188
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1189 1190 1191 1192 1193
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1194
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1195 1196
		return;

1197
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1253
	set_tsk_need_resched(rq->idle);
1254 1255 1256 1257 1258 1259

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1260
#endif /* CONFIG_NO_HZ */
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1283
#else /* !CONFIG_SMP */
1284
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1285 1286
{
	assert_spin_locked(&task_rq(p)->lock);
1287
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1288
}
1289 1290 1291 1292

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1293
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1294

1295 1296 1297 1298 1299 1300 1301 1302
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1303 1304 1305
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1306
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1307

1308 1309 1310
/*
 * delta *= weight / lw
 */
1311
static unsigned long
1312 1313 1314 1315 1316
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1317 1318 1319 1320 1321 1322 1323
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1324 1325 1326 1327 1328

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1329
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1330
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1331 1332
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1333
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1334

1335
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1336 1337
}

1338
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1339 1340
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1341
	lw->inv_weight = 0;
1342 1343
}

1344
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1345 1346
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1347
	lw->inv_weight = 0;
1348 1349
}

1350 1351 1352 1353
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1354
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1355 1356 1357 1358
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1359 1360
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1370 1371 1372
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1373 1374
 */
static const int prio_to_weight[40] = {
1375 1376 1377 1378 1379 1380 1381 1382
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1383 1384
};

1385 1386 1387 1388 1389 1390 1391
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1392
static const u32 prio_to_wmult[40] = {
1393 1394 1395 1396 1397 1398 1399 1400
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1401
};
1402

I
Ingo Molnar 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1428

1429 1430 1431 1432 1433 1434 1435 1436
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1437 1438
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1439 1440
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1441 1442
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1443 1444
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1445 1446
#endif

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1457
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1458
typedef int (*tg_visitor)(struct task_group *, void *);
1459 1460 1461 1462 1463

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1464
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1465 1466
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1467
	int ret;
1468 1469 1470 1471

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1472 1473 1474
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1475 1476 1477 1478 1479 1480 1481
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1482 1483 1484
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1485 1486 1487 1488 1489

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1490
out_unlock:
1491
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1492 1493

	return ret;
1494 1495
}

P
Peter Zijlstra 已提交
1496 1497 1498
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1499
}
P
Peter Zijlstra 已提交
1500 1501 1502
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1562 1563 1564 1565 1566
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1567
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1568

1569 1570
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1571 1572
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1573 1574 1575 1576 1577

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1578

1579 1580 1581 1582 1583 1584
struct update_shares_data {
	unsigned long rq_weight[NR_CPUS];
};

static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);

1585 1586 1587 1588 1589
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1590 1591 1592 1593
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
				    struct update_shares_data *usd)
1594
{
1595
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1596
	int boost = 0;
1597

1598
	rq_weight = usd->rq_weight[cpu];
P
Peter Zijlstra 已提交
1599 1600 1601 1602
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1603

1604
	/*
P
Peter Zijlstra 已提交
1605 1606 1607
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1608
	 */
1609
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1610
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1611

1612 1613 1614 1615
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1616

1617
		spin_lock_irqsave(&rq->lock, flags);
1618
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1619
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1620 1621 1622
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1623
}
1624 1625

/*
1626 1627 1628
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1629
 */
P
Peter Zijlstra 已提交
1630
static int tg_shares_up(struct task_group *tg, void *data)
1631
{
1632 1633
	unsigned long weight, rq_weight = 0, shares = 0;
	struct update_shares_data *usd;
P
Peter Zijlstra 已提交
1634
	struct sched_domain *sd = data;
1635
	unsigned long flags;
1636
	int i;
1637

1638 1639 1640 1641 1642 1643
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
	usd = &__get_cpu_var(update_shares_data);

1644
	for_each_cpu(i, sched_domain_span(sd)) {
1645 1646 1647
		weight = tg->cfs_rq[i]->load.weight;
		usd->rq_weight[i] = weight;

1648 1649 1650 1651 1652 1653 1654 1655 1656
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

		rq_weight += weight;
1657
		shares += tg->cfs_rq[i]->shares;
1658 1659
	}

1660 1661 1662 1663 1664
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1665

1666
	for_each_cpu(i, sched_domain_span(sd))
1667 1668 1669
		update_group_shares_cpu(tg, i, shares, rq_weight, usd);

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1670 1671

	return 0;
1672 1673 1674
}

/*
1675 1676 1677
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1678
 */
P
Peter Zijlstra 已提交
1679
static int tg_load_down(struct task_group *tg, void *data)
1680
{
1681
	unsigned long load;
P
Peter Zijlstra 已提交
1682
	long cpu = (long)data;
1683

1684 1685 1686 1687 1688 1689 1690
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1691

1692
	tg->cfs_rq[cpu]->h_load = load;
1693

P
Peter Zijlstra 已提交
1694
	return 0;
1695 1696
}

1697
static void update_shares(struct sched_domain *sd)
1698
{
1699 1700 1701 1702 1703 1704 1705 1706
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1707 1708 1709

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1710
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1711
	}
1712 1713
}

1714 1715
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1716 1717 1718
	if (root_task_group_empty())
		return;

1719 1720 1721 1722 1723
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1724
static void update_h_load(long cpu)
1725
{
1726 1727 1728
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1729
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1730 1731 1732 1733
}

#else

1734
static inline void update_shares(struct sched_domain *sd)
1735 1736 1737
{
}

1738 1739 1740 1741
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1742 1743
#endif

1744 1745
#ifdef CONFIG_PREEMPT

1746 1747
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1748
/*
1749 1750 1751 1752 1753 1754
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1755
 */
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1810 1811 1812 1813 1814 1815
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1816 1817
#endif

V
Vegard Nossum 已提交
1818
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1819 1820
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1821
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1822 1823 1824
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1825
#endif
1826

1827 1828
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1829 1830
#include "sched_stats.h"
#include "sched_idletask.c"
1831 1832
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1833 1834 1835 1836 1837
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1838 1839
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1840

1841
static void inc_nr_running(struct rq *rq)
1842 1843 1844 1845
{
	rq->nr_running++;
}

1846
static void dec_nr_running(struct rq *rq)
1847 1848 1849 1850
{
	rq->nr_running--;
}

1851 1852 1853
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1854 1855 1856 1857
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1858

I
Ingo Molnar 已提交
1859 1860 1861 1862 1863 1864 1865 1866
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1867

I
Ingo Molnar 已提交
1868 1869
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1870 1871
}

1872 1873 1874 1875 1876 1877
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1878
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1879
{
P
Peter Zijlstra 已提交
1880 1881 1882
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1883
	sched_info_queued(p);
1884
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1885
	p->se.on_rq = 1;
1886 1887
}

1888
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1889
{
P
Peter Zijlstra 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1899 1900
	}

1901
	sched_info_dequeued(p);
1902
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1903
	p->se.on_rq = 0;
1904 1905
}

1906
/*
I
Ingo Molnar 已提交
1907
 * __normal_prio - return the priority that is based on the static prio
1908 1909 1910
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1911
	return p->static_prio;
1912 1913
}

1914 1915 1916 1917 1918 1919 1920
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1921
static inline int normal_prio(struct task_struct *p)
1922 1923 1924
{
	int prio;

1925
	if (task_has_rt_policy(p))
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1939
static int effective_prio(struct task_struct *p)
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1952
/*
I
Ingo Molnar 已提交
1953
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1954
 */
I
Ingo Molnar 已提交
1955
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1956
{
1957
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1958
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1959

1960
	enqueue_task(rq, p, wakeup);
1961
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1962 1963 1964 1965 1966
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1967
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1968
{
1969
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1970 1971
		rq->nr_uninterruptible++;

1972
	dequeue_task(rq, p, sleep);
1973
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1974 1975 1976 1977 1978 1979
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1980
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1981 1982 1983 1984
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1985 1986
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1987
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1988
#ifdef CONFIG_SMP
1989 1990 1991 1992 1993 1994
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1995 1996
	task_thread_info(p)->cpu = cpu;
#endif
1997 1998
}

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2011
#ifdef CONFIG_SMP
2012 2013 2014
/*
 * Is this task likely cache-hot:
 */
2015
static int
2016 2017 2018 2019
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2020 2021 2022
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
2023 2024 2025
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2026 2027
		return 1;

2028 2029 2030
	if (p->sched_class != &fair_sched_class)
		return 0;

2031 2032 2033 2034 2035
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2036 2037 2038 2039 2040 2041
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2042
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2043
{
I
Ingo Molnar 已提交
2044 2045
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2046 2047
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2048
	u64 clock_offset;
I
Ingo Molnar 已提交
2049 2050

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2051

2052
	trace_sched_migrate_task(p, new_cpu);
2053

I
Ingo Molnar 已提交
2054 2055 2056
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2057 2058 2059 2060
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2061
#endif
2062
	if (old_cpu != new_cpu) {
2063
		p->se.nr_migrations++;
2064
		new_rq->nr_migrations_in++;
2065
#ifdef CONFIG_SCHEDSTATS
2066 2067
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2068
#endif
2069 2070
		perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
				     1, 1, NULL, 0);
2071
	}
2072 2073
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2074 2075

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2076 2077
}

2078
struct migration_req {
L
Linus Torvalds 已提交
2079 2080
	struct list_head list;

2081
	struct task_struct *task;
L
Linus Torvalds 已提交
2082 2083 2084
	int dest_cpu;

	struct completion done;
2085
};
L
Linus Torvalds 已提交
2086 2087 2088 2089 2090

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2091
static int
2092
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2093
{
2094
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2095 2096 2097 2098 2099

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2100
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2101 2102 2103 2104 2105 2106 2107 2108
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2109

L
Linus Torvalds 已提交
2110 2111 2112
	return 1;
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2156 2157 2158
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2159 2160 2161 2162 2163 2164 2165
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2166 2167 2168 2169 2170 2171
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2172
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2173 2174
{
	unsigned long flags;
I
Ingo Molnar 已提交
2175
	int running, on_rq;
R
Roland McGrath 已提交
2176
	unsigned long ncsw;
2177
	struct rq *rq;
L
Linus Torvalds 已提交
2178

2179 2180 2181 2182 2183 2184 2185 2186
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2187

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2199 2200 2201
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2202
			cpu_relax();
R
Roland McGrath 已提交
2203
		}
2204

2205 2206 2207 2208 2209 2210
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2211
		trace_sched_wait_task(rq, p);
2212 2213
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2214
		ncsw = 0;
2215
		if (!match_state || p->state == match_state)
2216
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2217
		task_rq_unlock(rq, &flags);
2218

R
Roland McGrath 已提交
2219 2220 2221 2222 2223 2224
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2235

2236 2237 2238 2239 2240
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2241
		 * So if it was still runnable (but just not actively
2242 2243 2244 2245 2246 2247 2248
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2249

2250 2251 2252 2253 2254 2255 2256
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2257 2258

	return ncsw;
L
Linus Torvalds 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2274
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2284
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2285
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2286

T
Thomas Gleixner 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2322 2323
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2324
{
2325
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2326
	unsigned long flags;
2327
	struct rq *rq;
L
Linus Torvalds 已提交
2328

2329
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2330
		wake_flags &= ~WF_SYNC;
2331

P
Peter Zijlstra 已提交
2332 2333
	this_cpu = get_cpu();

2334
	smp_wmb();
L
Linus Torvalds 已提交
2335
	rq = task_rq_lock(p, &flags);
2336
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2337
	if (!(p->state & state))
L
Linus Torvalds 已提交
2338 2339
		goto out;

I
Ingo Molnar 已提交
2340
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2341 2342 2343
		goto out_running;

	cpu = task_cpu(p);
2344
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2345 2346 2347 2348 2349

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2350 2351 2352 2353 2354 2355 2356
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
	 */
	p->state = TASK_WAKING;
	task_rq_unlock(rq, &flags);

P
Peter Zijlstra 已提交
2357
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
P
Peter Zijlstra 已提交
2358
	if (cpu != orig_cpu)
2359
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2360

P
Peter Zijlstra 已提交
2361 2362 2363
	rq = task_rq_lock(p, &flags);
	WARN_ON(p->state != TASK_WAKING);
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
2364

2365 2366 2367 2368 2369 2370 2371
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2372
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2373 2374 2375 2376 2377
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2378
#endif /* CONFIG_SCHEDSTATS */
2379

L
Linus Torvalds 已提交
2380 2381
out_activate:
#endif /* CONFIG_SMP */
2382
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2383
	if (wake_flags & WF_SYNC)
2384 2385 2386 2387 2388 2389 2390
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2391
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2392 2393
	success = 1;

P
Peter Zijlstra 已提交
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2410
out_running:
2411
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2412
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2413

L
Linus Torvalds 已提交
2414
	p->state = TASK_RUNNING;
2415 2416 2417 2418
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2419 2420
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2421
	put_cpu();
L
Linus Torvalds 已提交
2422 2423 2424 2425

	return success;
}

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2437
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2438
{
2439
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2440 2441 2442
}
EXPORT_SYMBOL(wake_up_process);

2443
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2444 2445 2446 2447 2448 2449 2450
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2451 2452 2453 2454 2455 2456 2457
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2458
	p->se.prev_sum_exec_runtime	= 0;
2459
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2460 2461
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2462 2463
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2464 2465

#ifdef CONFIG_SCHEDSTATS
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2497
#endif
N
Nick Piggin 已提交
2498

P
Peter Zijlstra 已提交
2499
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2500
	p->se.on_rq = 0;
2501
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2502

2503 2504 2505 2506
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2507 2508 2509 2510 2511 2512 2513
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

2525
	/*
2526
	 * Make sure we do not leak PI boosting priority to the child.
2527 2528
	 */
	p->prio = current->normal_prio;
2529

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
			p->policy = SCHED_NORMAL;

		if (p->normal_prio < DEFAULT_PRIO)
			p->prio = DEFAULT_PRIO;

2540 2541 2542 2543 2544
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
			set_load_weight(p);
		}

2545 2546 2547 2548 2549 2550
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2551

H
Hiroshi Shimamoto 已提交
2552 2553
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2554

2555 2556 2557 2558 2559
#ifdef CONFIG_SMP
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
#endif
	set_task_cpu(p, cpu);

2560
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2561
	if (likely(sched_info_on()))
2562
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2563
#endif
2564
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2565 2566
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2567
#ifdef CONFIG_PREEMPT
2568
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2569
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2570
#endif
2571 2572
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2573
	put_cpu();
L
Linus Torvalds 已提交
2574 2575 2576 2577 2578 2579 2580 2581 2582
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2583
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2584 2585
{
	unsigned long flags;
I
Ingo Molnar 已提交
2586
	struct rq *rq;
L
Linus Torvalds 已提交
2587 2588

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2589
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2590
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2591 2592 2593

	p->prio = effective_prio(p);

2594
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2595
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2596 2597
	} else {
		/*
I
Ingo Molnar 已提交
2598 2599
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2600
		 */
2601
		p->sched_class->task_new(rq, p);
2602
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2603
	}
2604
	trace_sched_wakeup_new(rq, p, 1);
2605
	check_preempt_curr(rq, p, 0);
2606 2607 2608 2609
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2610
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2611 2612
}

2613 2614 2615
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2616
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2617
 * @notifier: notifier struct to register
2618 2619 2620 2621 2622 2623 2624 2625 2626
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2627
 * @notifier: notifier struct to unregister
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2657
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2669
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2670

2671 2672 2673
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2674
 * @prev: the current task that is being switched out
2675 2676 2677 2678 2679 2680 2681 2682 2683
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2684 2685 2686
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2687
{
2688
	fire_sched_out_preempt_notifiers(prev, next);
2689 2690 2691 2692
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2693 2694
/**
 * finish_task_switch - clean up after a task-switch
2695
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2696 2697
 * @prev: the thread we just switched away from.
 *
2698 2699 2700 2701
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2702 2703
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2704
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2705 2706 2707
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2708
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2709 2710 2711
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2712
	long prev_state;
L
Linus Torvalds 已提交
2713 2714 2715 2716 2717

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2718
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2719 2720
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2721
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2722 2723 2724 2725 2726
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2727
	prev_state = prev->state;
2728
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2729
	perf_counter_task_sched_in(current, cpu_of(rq));
2730
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2731

2732
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2733 2734
	if (mm)
		mmdrop(mm);
2735
	if (unlikely(prev_state == TASK_DEAD)) {
2736 2737 2738
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2739
		 */
2740
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2741
		put_task_struct(prev);
2742
	}
L
Linus Torvalds 已提交
2743 2744
}

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2770

2771 2772 2773 2774 2775 2776
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2777 2778
}

2779 2780
#endif

L
Linus Torvalds 已提交
2781 2782 2783 2784
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2785
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2786 2787
	__releases(rq->lock)
{
2788 2789
	struct rq *rq = this_rq();

2790
	finish_task_switch(rq, prev);
2791

2792 2793 2794 2795 2796
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2797

2798 2799 2800 2801
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2802
	if (current->set_child_tid)
2803
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2804 2805 2806 2807 2808 2809
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2810
static inline void
2811
context_switch(struct rq *rq, struct task_struct *prev,
2812
	       struct task_struct *next)
L
Linus Torvalds 已提交
2813
{
I
Ingo Molnar 已提交
2814
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2815

2816
	prepare_task_switch(rq, prev, next);
2817
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2818 2819
	mm = next->mm;
	oldmm = prev->active_mm;
2820 2821 2822 2823 2824
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2825
	arch_start_context_switch(prev);
2826

I
Ingo Molnar 已提交
2827
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2828 2829 2830 2831 2832 2833
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2834
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2835 2836 2837
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2838 2839 2840 2841 2842 2843 2844
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2845
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2846
#endif
L
Linus Torvalds 已提交
2847 2848 2849 2850

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2851 2852 2853 2854 2855 2856 2857
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2881
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2896 2897
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2898

2899
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2900 2901 2902 2903 2904 2905 2906 2907 2908
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2909
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2910 2911 2912 2913 2914
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2915 2916 2917 2918 2919 2920
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2936 2937
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2938
{
2939 2940 2941 2942
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2943

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
2955

2956 2957
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2958

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
2981 2982
}

2983 2984 2985 2986 2987 2988 2989 2990 2991
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

2992
/*
I
Ingo Molnar 已提交
2993 2994
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2995
 */
I
Ingo Molnar 已提交
2996
static void update_cpu_load(struct rq *this_rq)
2997
{
2998
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3011 3012 3013 3014 3015 3016 3017
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3018 3019
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3020 3021 3022 3023 3024

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3025 3026
}

I
Ingo Molnar 已提交
3027 3028
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3029 3030 3031 3032 3033 3034
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3035
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3036 3037 3038
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3039
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3040 3041 3042 3043
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3044
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3045
			spin_lock(&rq1->lock);
3046
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3047 3048
		} else {
			spin_lock(&rq2->lock);
3049
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3050 3051
		}
	}
3052 3053
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3054 3055 3056 3057 3058 3059 3060 3061
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3062
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3076
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3077 3078
 * the cpu_allowed mask is restored.
 */
3079
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3080
{
3081
	struct migration_req req;
L
Linus Torvalds 已提交
3082
	unsigned long flags;
3083
	struct rq *rq;
L
Linus Torvalds 已提交
3084 3085

	rq = task_rq_lock(p, &flags);
3086
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3087
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3088 3089 3090 3091 3092 3093
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3094

L
Linus Torvalds 已提交
3095 3096 3097 3098 3099
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3100

L
Linus Torvalds 已提交
3101 3102 3103 3104 3105 3106 3107
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3108 3109
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3110 3111 3112 3113
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
3114
	new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
L
Linus Torvalds 已提交
3115
	put_cpu();
N
Nick Piggin 已提交
3116 3117
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3118 3119 3120 3121 3122 3123
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3124 3125
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3126
{
3127
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3128
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3129
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3130 3131 3132 3133
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3134
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3135 3136 3137 3138 3139
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3140
static
3141
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3142
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3143
		     int *all_pinned)
L
Linus Torvalds 已提交
3144
{
3145
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3146 3147 3148 3149 3150 3151
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3152
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3153
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3154
		return 0;
3155
	}
3156 3157
	*all_pinned = 0;

3158 3159
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3160
		return 0;
3161
	}
L
Linus Torvalds 已提交
3162

3163 3164 3165 3166 3167 3168
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3169 3170 3171
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3172
#ifdef CONFIG_SCHEDSTATS
3173
		if (tsk_cache_hot) {
3174
			schedstat_inc(sd, lb_hot_gained[idle]);
3175 3176
			schedstat_inc(p, se.nr_forced_migrations);
		}
3177 3178 3179 3180
#endif
		return 1;
	}

3181
	if (tsk_cache_hot) {
3182
		schedstat_inc(p, se.nr_failed_migrations_hot);
3183
		return 0;
3184
	}
L
Linus Torvalds 已提交
3185 3186 3187
	return 1;
}

3188 3189 3190 3191 3192
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3193
{
3194
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3195 3196
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3197

3198
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3199 3200
		goto out;

3201 3202
	pinned = 1;

L
Linus Torvalds 已提交
3203
	/*
I
Ingo Molnar 已提交
3204
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3205
	 */
I
Ingo Molnar 已提交
3206 3207
	p = iterator->start(iterator->arg);
next:
3208
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3209
		goto out;
3210 3211

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3212 3213 3214
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3215 3216
	}

I
Ingo Molnar 已提交
3217
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3218
	pulled++;
I
Ingo Molnar 已提交
3219
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3220

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3231
	/*
3232
	 * We only want to steal up to the prescribed amount of weighted load.
3233
	 */
3234
	if (rem_load_move > 0) {
3235 3236
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3237 3238
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3239 3240 3241
	}
out:
	/*
3242
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3243 3244 3245 3246
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3247 3248 3249

	if (all_pinned)
		*all_pinned = pinned;
3250 3251

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3252 3253
}

I
Ingo Molnar 已提交
3254
/*
P
Peter Williams 已提交
3255 3256 3257
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3258 3259 3260 3261
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3262
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3263 3264 3265
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3266
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3267
	unsigned long total_load_moved = 0;
3268
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3269 3270

	do {
P
Peter Williams 已提交
3271 3272
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3273
				max_load_move - total_load_moved,
3274
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3275
		class = class->next;
3276

3277 3278 3279 3280 3281 3282
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3283 3284
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3285
#endif
P
Peter Williams 已提交
3286
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3287

P
Peter Williams 已提交
3288 3289 3290
	return total_load_moved > 0;
}

3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3327
	const struct sched_class *class;
P
Peter Williams 已提交
3328

3329
	for_each_class(class) {
3330
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3331
			return 1;
3332
	}
P
Peter Williams 已提交
3333 3334

	return 0;
I
Ingo Molnar 已提交
3335
}
3336
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3337
/*
3338 3339
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3340
 */
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3359
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3360 3361 3362 3363 3364 3365
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3366
#endif
3367
};
L
Linus Torvalds 已提交
3368

3369
/*
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3380

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3402
		load_idx = sd->busy_idx;
3403 3404 3405
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3406
		load_idx = sd->newidle_idx;
3407 3408
		break;
	default:
N
Nick Piggin 已提交
3409
		load_idx = sd->idle_idx;
3410 3411
		break;
	}
L
Linus Torvalds 已提交
3412

3413 3414
	return load_idx;
}
L
Linus Torvalds 已提交
3415 3416


3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3441

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3455

3456 3457
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3458

3459 3460 3461 3462 3463 3464 3465
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3466

3467 3468 3469 3470 3471 3472 3473 3474
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3475

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3489

3490 3491 3492 3493 3494
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3495
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3496
		return;
L
Linus Torvalds 已提交
3497

3498 3499 3500 3501 3502 3503 3504
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3505

3506
/**
3507
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3508 3509 3510 3511 3512
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3513 3514 3515 3516 3517
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3518 3519 3520 3521 3522 3523 3524 3525
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3526

3527 3528 3529
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3530

3531 3532
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3533

3534
	return 1;
L
Linus Torvalds 已提交
3535

3536 3537 3538 3539 3540 3541 3542
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3543

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3569 3570 3571 3572 3573 3574 3575 3576 3577
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3578 3579 3580 3581 3582
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3601 3602 3603 3604 3605 3606
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

3607 3608 3609 3610 3611
	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3612
	power >>= SCHED_LOAD_SHIFT;
3613 3614

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3615 3616 3617 3618 3619
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3620 3621 3622
		power >>= SCHED_LOAD_SHIFT;
	}

3623 3624 3625 3626 3627
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3628

3629
	sdg->cpu_power = power;
3630 3631 3632
}

static void update_group_power(struct sched_domain *sd, int cpu)
3633 3634 3635
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
3636
	unsigned long power;
3637 3638

	if (!child) {
3639
		update_cpu_power(sd, cpu);
3640 3641 3642
		return;
	}

3643
	power = 0;
3644 3645 3646

	group = child->groups;
	do {
3647
		power += group->cpu_power;
3648 3649
		group = group->next;
	} while (group != child->groups);
3650 3651

	sdg->cpu_power = power;
3652
}
3653

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3666 3667
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3678
	if (local_group) {
3679
		balance_cpu = group_first_cpu(group);
3680
		if (balance_cpu == this_cpu)
3681
			update_group_power(sd, this_cpu);
3682
	}
3683 3684 3685 3686 3687

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3688

3689 3690
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3691

3692 3693
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3694

3695
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3696
		if (local_group) {
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3709
		}
3710

3711 3712 3713
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3714

3715 3716
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3717

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3729

3730
	/* Adjust by relative CPU power of the group */
3731
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3732

3733 3734 3735 3736 3737 3738 3739 3740 3741 3742

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3743 3744
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3745 3746 3747 3748

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3749
	sgs->group_capacity =
3750
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3751
}
I
Ingo Molnar 已提交
3752

3753 3754 3755 3756 3757 3758 3759 3760 3761
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3762
 */
3763 3764 3765 3766
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3767
{
P
Peter Zijlstra 已提交
3768
	struct sched_domain *child = sd->child;
3769
	struct sched_group *group = sd->groups;
3770
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3771 3772 3773 3774
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3775

3776
	init_sd_power_savings_stats(sd, sds, idle);
3777
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3778 3779 3780 3781

	do {
		int local_group;

3782 3783
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3784
		memset(&sgs, 0, sizeof(sgs));
3785
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3786
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3787

3788 3789
		if (local_group && balance && !(*balance))
			return;
3790

3791
		sds->total_load += sgs.group_load;
3792
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3793

P
Peter Zijlstra 已提交
3794 3795 3796 3797 3798 3799
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3800
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
L
Linus Torvalds 已提交
3801 3802

		if (local_group) {
3803 3804 3805 3806 3807
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3808 3809
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3810 3811 3812 3813 3814
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3815
		}
3816

3817
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3818 3819
		group = group->next;
	} while (group != sd->groups);
3820
}
L
Linus Torvalds 已提交
3821

3822 3823
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3824 3825
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3844

3845 3846 3847 3848 3849
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3850

L
Linus Torvalds 已提交
3851
	/*
3852 3853 3854
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3855
	 */
3856

3857
	pwr_now += sds->busiest->cpu_power *
3858
			min(sds->busiest_load_per_task, sds->max_load);
3859
	pwr_now += sds->this->cpu_power *
3860 3861 3862 3863
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3864 3865
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3866
	if (sds->max_load > tmp)
3867
		pwr_move += sds->busiest->cpu_power *
3868 3869 3870
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3871
	if (sds->max_load * sds->busiest->cpu_power <
3872
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3873 3874
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
3875
	else
3876 3877 3878
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
3879 3880 3881 3882 3883 3884 3885
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3898 3899 3900 3901 3902
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3903
	if (sds->max_load < sds->avg_load) {
3904
		*imbalance = 0;
3905
		return fix_small_imbalance(sds, this_cpu, imbalance);
3906
	}
3907 3908

	/* Don't want to pull so many tasks that a group would go idle */
3909 3910
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3911

L
Linus Torvalds 已提交
3912
	/* How much load to actually move to equalise the imbalance */
3913 3914
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
3915 3916
			/ SCHED_LOAD_SCALE;

3917 3918 3919 3920 3921 3922
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3923 3924
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3925

3926
}
3927
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3928

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3953 3954 3955 3956 3957 3958 3959
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3960

3961
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3962

3963 3964 3965 3966 3967 3968 3969
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3980 3981
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3982

3983 3984
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3985

3986
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3987 3988
		goto out_balanced;

3989
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3990

3991 3992 3993 3994
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3995 3996
		goto out_balanced;

3997 3998 3999 4000
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4001

L
Linus Torvalds 已提交
4002 4003 4004 4005 4006 4007 4008 4009
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4010
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4011 4012
	 * appear as very large values with unsigned longs.
	 */
4013
	if (sds.max_load <= sds.busiest_load_per_task)
4014 4015
		goto out_balanced;

4016 4017
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4018
	return sds.busiest;
L
Linus Torvalds 已提交
4019 4020

out_balanced:
4021 4022 4023 4024 4025 4026
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4027
ret:
L
Linus Torvalds 已提交
4028 4029 4030 4031 4032 4033 4034
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4035
static struct rq *
I
Ingo Molnar 已提交
4036
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4037
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4038
{
4039
	struct rq *busiest = NULL, *rq;
4040
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4041 4042
	int i;

4043
	for_each_cpu(i, sched_group_cpus(group)) {
4044 4045
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4046
		unsigned long wl;
4047

4048
		if (!cpumask_test_cpu(i, cpus))
4049 4050
			continue;

4051
		rq = cpu_rq(i);
4052 4053
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4054

4055
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4056
			continue;
L
Linus Torvalds 已提交
4057

I
Ingo Molnar 已提交
4058 4059
		if (wl > max_load) {
			max_load = wl;
4060
			busiest = rq;
L
Linus Torvalds 已提交
4061 4062 4063 4064 4065 4066
		}
	}

	return busiest;
}

4067 4068 4069 4070 4071 4072
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4073 4074 4075
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4076 4077 4078 4079
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4080
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4081
			struct sched_domain *sd, enum cpu_idle_type idle,
4082
			int *balance)
L
Linus Torvalds 已提交
4083
{
P
Peter Williams 已提交
4084
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4085 4086
	struct sched_group *group;
	unsigned long imbalance;
4087
	struct rq *busiest;
4088
	unsigned long flags;
4089
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4090

4091
	cpumask_setall(cpus);
4092

4093 4094 4095
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4096
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4097
	 * portraying it as CPU_NOT_IDLE.
4098
	 */
I
Ingo Molnar 已提交
4099
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4100
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4101
		sd_idle = 1;
L
Linus Torvalds 已提交
4102

4103
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4104

4105
redo:
4106
	update_shares(sd);
4107
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4108
				   cpus, balance);
4109

4110
	if (*balance == 0)
4111 4112
		goto out_balanced;

L
Linus Torvalds 已提交
4113 4114 4115 4116 4117
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4118
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4119 4120 4121 4122 4123
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4124
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4125 4126 4127

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4128
	ld_moved = 0;
L
Linus Torvalds 已提交
4129 4130 4131 4132
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4133
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4134 4135
		 * correctly treated as an imbalance.
		 */
4136
		local_irq_save(flags);
N
Nick Piggin 已提交
4137
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4138
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4139
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4140
		double_rq_unlock(this_rq, busiest);
4141
		local_irq_restore(flags);
4142

4143 4144 4145
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4146
		if (ld_moved && this_cpu != smp_processor_id())
4147 4148
			resched_cpu(this_cpu);

4149
		/* All tasks on this runqueue were pinned by CPU affinity */
4150
		if (unlikely(all_pinned)) {
4151 4152
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4153
				goto redo;
4154
			goto out_balanced;
4155
		}
L
Linus Torvalds 已提交
4156
	}
4157

P
Peter Williams 已提交
4158
	if (!ld_moved) {
L
Linus Torvalds 已提交
4159 4160 4161 4162 4163
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4164
			spin_lock_irqsave(&busiest->lock, flags);
4165 4166 4167 4168

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4169 4170
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4171
				spin_unlock_irqrestore(&busiest->lock, flags);
4172 4173 4174 4175
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4176 4177 4178
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4179
				active_balance = 1;
L
Linus Torvalds 已提交
4180
			}
4181
			spin_unlock_irqrestore(&busiest->lock, flags);
4182
			if (active_balance)
L
Linus Torvalds 已提交
4183 4184 4185 4186 4187 4188
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4189
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4190
		}
4191
	} else
L
Linus Torvalds 已提交
4192 4193
		sd->nr_balance_failed = 0;

4194
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4195 4196
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4197 4198 4199 4200 4201 4202 4203 4204 4205
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4206 4207
	}

P
Peter Williams 已提交
4208
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4209
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4210 4211 4212
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4213 4214 4215 4216

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4217
	sd->nr_balance_failed = 0;
4218 4219

out_one_pinned:
L
Linus Torvalds 已提交
4220
	/* tune up the balancing interval */
4221 4222
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4223 4224
		sd->balance_interval *= 2;

4225
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4226
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4227 4228 4229 4230
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4231 4232
	if (ld_moved)
		update_shares(sd);
4233
	return ld_moved;
L
Linus Torvalds 已提交
4234 4235 4236 4237 4238 4239
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4240
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4241 4242
 * this_rq is locked.
 */
4243
static int
4244
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4245 4246
{
	struct sched_group *group;
4247
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4248
	unsigned long imbalance;
P
Peter Williams 已提交
4249
	int ld_moved = 0;
N
Nick Piggin 已提交
4250
	int sd_idle = 0;
4251
	int all_pinned = 0;
4252
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4253

4254
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4255

4256 4257 4258 4259
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4260
	 * portraying it as CPU_NOT_IDLE.
4261 4262 4263
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4264
		sd_idle = 1;
L
Linus Torvalds 已提交
4265

4266
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4267
redo:
4268
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4269
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4270
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4271
	if (!group) {
I
Ingo Molnar 已提交
4272
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4273
		goto out_balanced;
L
Linus Torvalds 已提交
4274 4275
	}

4276
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4277
	if (!busiest) {
I
Ingo Molnar 已提交
4278
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4279
		goto out_balanced;
L
Linus Torvalds 已提交
4280 4281
	}

N
Nick Piggin 已提交
4282 4283
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4284
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4285

P
Peter Williams 已提交
4286
	ld_moved = 0;
4287 4288 4289
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4290 4291
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4292
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4293 4294
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4295
		double_unlock_balance(this_rq, busiest);
4296

4297
		if (unlikely(all_pinned)) {
4298 4299
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4300 4301
				goto redo;
		}
4302 4303
	}

P
Peter Williams 已提交
4304
	if (!ld_moved) {
4305
		int active_balance = 0;
4306

I
Ingo Molnar 已提交
4307
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4308 4309
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4310
			return -1;
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4347
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4360 4361 4362 4363
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4364 4365
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4366
		spin_lock(&this_rq->lock);
4367

N
Nick Piggin 已提交
4368
	} else
4369
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4370

4371
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4372
	return ld_moved;
4373 4374

out_balanced:
I
Ingo Molnar 已提交
4375
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4376
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4377
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4378
		return -1;
4379
	sd->nr_balance_failed = 0;
4380

4381
	return 0;
L
Linus Torvalds 已提交
4382 4383 4384 4385 4386 4387
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4388
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4389 4390
{
	struct sched_domain *sd;
4391
	int pulled_task = 0;
I
Ingo Molnar 已提交
4392
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4393 4394

	for_each_domain(this_cpu, sd) {
4395 4396 4397 4398 4399 4400
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4401
			/* If we've pulled tasks over stop searching: */
4402
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4403
							   sd);
4404 4405 4406 4407 4408 4409

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4410
	}
I
Ingo Molnar 已提交
4411
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4412 4413 4414 4415 4416
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4417
	}
L
Linus Torvalds 已提交
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4428
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4429
{
4430
	int target_cpu = busiest_rq->push_cpu;
4431 4432
	struct sched_domain *sd;
	struct rq *target_rq;
4433

4434
	/* Is there any task to move? */
4435 4436 4437 4438
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4439 4440

	/*
4441
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4442
	 * we need to fix it. Originally reported by
4443
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4444
	 */
4445
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4446

4447 4448
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4449 4450
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4451 4452

	/* Search for an sd spanning us and the target CPU. */
4453
	for_each_domain(target_cpu, sd) {
4454
		if ((sd->flags & SD_LOAD_BALANCE) &&
4455
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4456
				break;
4457
	}
4458

4459
	if (likely(sd)) {
4460
		schedstat_inc(sd, alb_count);
4461

P
Peter Williams 已提交
4462 4463
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4464 4465 4466 4467
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4468
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4469 4470
}

4471 4472 4473
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4474
	cpumask_var_t cpu_mask;
4475
	cpumask_var_t ilb_grp_nohz_mask;
4476 4477 4478 4479
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4480 4481 4482 4483 4484
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4596
	return cpumask_first(nohz.cpu_mask);
4597 4598 4599
}
#endif

4600
/*
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4611
 *
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4627 4628 4629 4630 4631 4632 4633 4634
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4635 4636
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4637

4638 4639 4640
			return 0;
		}

4641 4642
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4643
		/* time for ilb owner also to sleep */
4644
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4645 4646 4647 4648 4649 4650 4651 4652 4653
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4670
			return 1;
4671
		}
4672
	} else {
4673
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4674 4675
			return 0;

4676
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4689 4690 4691 4692 4693
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4694
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4695
{
4696 4697
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4698 4699
	unsigned long interval;
	struct sched_domain *sd;
4700
	/* Earliest time when we have to do rebalance again */
4701
	unsigned long next_balance = jiffies + 60*HZ;
4702
	int update_next_balance = 0;
4703
	int need_serialize;
L
Linus Torvalds 已提交
4704

4705
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4706 4707 4708 4709
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4710
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4711 4712 4713 4714 4715 4716
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4717 4718 4719
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4720
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4721

4722
		if (need_serialize) {
4723 4724 4725 4726
			if (!spin_trylock(&balancing))
				goto out;
		}

4727
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4728
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4729 4730
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4731 4732 4733
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4734
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4735
			}
4736
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4737
		}
4738
		if (need_serialize)
4739 4740
			spin_unlock(&balancing);
out:
4741
		if (time_after(next_balance, sd->last_balance + interval)) {
4742
			next_balance = sd->last_balance + interval;
4743 4744
			update_next_balance = 1;
		}
4745 4746 4747 4748 4749 4750 4751 4752

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4753
	}
4754 4755 4756 4757 4758 4759 4760 4761

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4762 4763 4764 4765 4766 4767 4768 4769 4770
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4771 4772 4773 4774
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4775

I
Ingo Molnar 已提交
4776
	rebalance_domains(this_cpu, idle);
4777 4778 4779 4780 4781 4782 4783

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4784 4785
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4786 4787 4788
		struct rq *rq;
		int balance_cpu;

4789 4790 4791 4792
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4793 4794 4795 4796 4797 4798 4799 4800
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4801
			rebalance_domains(balance_cpu, CPU_IDLE);
4802 4803

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4804 4805
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4806 4807 4808 4809 4810
		}
	}
#endif
}

4811 4812 4813 4814 4815
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4816 4817 4818 4819 4820 4821 4822
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4823
static inline void trigger_load_balance(struct rq *rq, int cpu)
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4835
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4836 4837 4838 4839
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4840
			int ilb = find_new_ilb(cpu);
4841

4842
			if (ilb < nr_cpu_ids)
4843 4844 4845 4846 4847 4848 4849 4850 4851
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4852
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4853 4854 4855 4856 4857 4858 4859 4860 4861
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4862
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4863 4864
		return;
#endif
4865 4866 4867
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4868
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4869
}
I
Ingo Molnar 已提交
4870 4871 4872

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4873 4874 4875
/*
 * on UP we do not need to balance between CPUs:
 */
4876
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4877 4878
{
}
I
Ingo Molnar 已提交
4879

L
Linus Torvalds 已提交
4880 4881 4882 4883 4884 4885 4886
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4887
 * Return any ns on the sched_clock that have not yet been accounted in
4888
 * @p in case that task is currently running.
4889 4890
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4891
 */
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4906
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4907 4908
{
	unsigned long flags;
4909
	struct rq *rq;
4910
	u64 ns = 0;
4911

4912
	rq = task_rq_lock(p, &flags);
4913 4914
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4915

4916 4917
	return ns;
}
4918

4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4936

4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4956
	task_rq_unlock(rq, &flags);
4957

L
Linus Torvalds 已提交
4958 4959 4960 4961 4962 4963 4964
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4965
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4966
 */
4967 4968
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4969 4970 4971 4972
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4973
	/* Add user time to process. */
L
Linus Torvalds 已提交
4974
	p->utime = cputime_add(p->utime, cputime);
4975
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4976
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4977 4978 4979 4980 4981 4982 4983

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4984 4985

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4986 4987
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4988 4989
}

4990 4991 4992 4993
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4994
 * @cputime_scaled: cputime scaled by cpu frequency
4995
 */
4996 4997
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4998 4999 5000 5001 5002 5003
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5004
	/* Add guest time to process. */
5005
	p->utime = cputime_add(p->utime, cputime);
5006
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5007
	account_group_user_time(p, cputime);
5008 5009
	p->gtime = cputime_add(p->gtime, cputime);

5010
	/* Add guest time to cpustat. */
5011 5012 5013 5014
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
5015 5016 5017 5018 5019
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5020
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5021 5022
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5023
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5024 5025 5026 5027
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5028
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5029
		account_guest_time(p, cputime, cputime_scaled);
5030 5031
		return;
	}
5032

5033
	/* Add system time to process. */
L
Linus Torvalds 已提交
5034
	p->stime = cputime_add(p->stime, cputime);
5035
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5036
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5037 5038 5039 5040 5041 5042 5043 5044

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5045 5046
		cpustat->system = cputime64_add(cpustat->system, tmp);

5047 5048
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5049 5050 5051 5052
	/* Account for system time used */
	acct_update_integrals(p);
}

5053
/*
L
Linus Torvalds 已提交
5054 5055
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5056
 */
5057
void account_steal_time(cputime_t cputime)
5058
{
5059 5060 5061 5062
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5063 5064
}

L
Linus Torvalds 已提交
5065
/*
5066 5067
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5068
 */
5069
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5070 5071
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5072
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5073
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5074

5075 5076 5077 5078
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5079 5080
}

5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
5096
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5120 5121
}

5122 5123
#endif

5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5194
	struct task_struct *curr = rq->curr;
5195 5196

	sched_clock_tick();
I
Ingo Molnar 已提交
5197 5198

	spin_lock(&rq->lock);
5199
	update_rq_clock(rq);
5200
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5201
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5202
	spin_unlock(&rq->lock);
5203

5204 5205
	perf_counter_task_tick(curr, cpu);

5206
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5207 5208
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5209
#endif
L
Linus Torvalds 已提交
5210 5211
}

5212
notrace unsigned long get_parent_ip(unsigned long addr)
5213 5214 5215 5216 5217 5218 5219 5220
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5221

5222 5223 5224
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5225
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5226
{
5227
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5228 5229 5230
	/*
	 * Underflow?
	 */
5231 5232
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5233
#endif
L
Linus Torvalds 已提交
5234
	preempt_count() += val;
5235
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5236 5237 5238
	/*
	 * Spinlock count overflowing soon?
	 */
5239 5240
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5241 5242 5243
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5244 5245 5246
}
EXPORT_SYMBOL(add_preempt_count);

5247
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5248
{
5249
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5250 5251 5252
	/*
	 * Underflow?
	 */
5253
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5254
		return;
L
Linus Torvalds 已提交
5255 5256 5257
	/*
	 * Is the spinlock portion underflowing?
	 */
5258 5259 5260
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5261
#endif
5262

5263 5264
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5265 5266 5267 5268 5269 5270 5271
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5272
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5273
 */
I
Ingo Molnar 已提交
5274
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5275
{
5276 5277 5278 5279 5280
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5281
	debug_show_held_locks(prev);
5282
	print_modules();
I
Ingo Molnar 已提交
5283 5284
	if (irqs_disabled())
		print_irqtrace_events(prev);
5285 5286 5287 5288 5289

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5290
}
L
Linus Torvalds 已提交
5291

I
Ingo Molnar 已提交
5292 5293 5294 5295 5296
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5297
	/*
I
Ingo Molnar 已提交
5298
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5299 5300 5301
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5302
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5303 5304
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5305 5306
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5307
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5308 5309
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5310 5311
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5312 5313
	}
#endif
I
Ingo Molnar 已提交
5314 5315
}

M
Mike Galbraith 已提交
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5338 5339 5340 5341
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5342
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5343
{
5344
	const struct sched_class *class;
I
Ingo Molnar 已提交
5345
	struct task_struct *p;
L
Linus Torvalds 已提交
5346 5347

	/*
I
Ingo Molnar 已提交
5348 5349
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5350
	 */
I
Ingo Molnar 已提交
5351
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5352
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5353 5354
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5355 5356
	}

I
Ingo Molnar 已提交
5357 5358
	class = sched_class_highest;
	for ( ; ; ) {
5359
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5360 5361 5362 5363 5364 5365 5366 5367 5368
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5369

I
Ingo Molnar 已提交
5370 5371 5372
/*
 * schedule() is the main scheduler function.
 */
5373
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5374 5375
{
	struct task_struct *prev, *next;
5376
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5377
	struct rq *rq;
5378
	int cpu;
I
Ingo Molnar 已提交
5379

5380 5381
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5382 5383
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
5384
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
5385 5386 5387 5388 5389 5390 5391
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5392

5393
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5394
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5395

5396
	spin_lock_irq(&rq->lock);
5397
	update_rq_clock(rq);
5398
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5399 5400

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5401
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5402
			prev->state = TASK_RUNNING;
5403
		else
5404
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5405
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5406 5407
	}

5408
	pre_schedule(rq, prev);
5409

I
Ingo Molnar 已提交
5410
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5411 5412
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5413
	put_prev_task(rq, prev);
5414
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5415 5416

	if (likely(prev != next)) {
5417
		sched_info_switch(prev, next);
5418
		perf_counter_task_sched_out(prev, next, cpu);
5419

L
Linus Torvalds 已提交
5420 5421 5422 5423
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5424
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5425 5426 5427 5428 5429 5430
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5431 5432 5433
	} else
		spin_unlock_irq(&rq->lock);

5434
	post_schedule(rq);
L
Linus Torvalds 已提交
5435

P
Peter Zijlstra 已提交
5436
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5437
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5438

L
Linus Torvalds 已提交
5439
	preempt_enable_no_resched();
5440
	if (need_resched())
L
Linus Torvalds 已提交
5441 5442 5443 5444
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5506 5507
#ifdef CONFIG_PREEMPT
/*
5508
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5509
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5510 5511 5512 5513 5514
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5515

L
Linus Torvalds 已提交
5516 5517
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5518
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5519
	 */
N
Nick Piggin 已提交
5520
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5521 5522
		return;

5523 5524 5525 5526
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5527

5528 5529 5530 5531 5532
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5533
	} while (need_resched());
L
Linus Torvalds 已提交
5534 5535 5536 5537
}
EXPORT_SYMBOL(preempt_schedule);

/*
5538
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5539 5540 5541 5542 5543 5544 5545
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5546

5547
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5548 5549
	BUG_ON(ti->preempt_count || !irqs_disabled());

5550 5551 5552 5553 5554 5555
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5556

5557 5558 5559 5560 5561
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5562
	} while (need_resched());
L
Linus Torvalds 已提交
5563 5564 5565 5566
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
5567
int default_wake_function(wait_queue_t *curr, unsigned mode, int flags,
I
Ingo Molnar 已提交
5568
			  void *key)
L
Linus Torvalds 已提交
5569
{
P
Peter Zijlstra 已提交
5570
	return try_to_wake_up(curr->private, mode, flags);
L
Linus Torvalds 已提交
5571 5572 5573 5574
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5575 5576
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5577 5578 5579
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5580
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5581 5582
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5583
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
5584
			int nr_exclusive, int flags, void *key)
L
Linus Torvalds 已提交
5585
{
5586
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5587

5588
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5589 5590
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
5591
		if (curr->func(curr, mode, flags, key) &&
5592
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5593 5594 5595 5596 5597 5598 5599 5600 5601
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5602
 * @key: is directly passed to the wakeup function
5603 5604 5605
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5606
 */
5607
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5608
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5621
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5622 5623 5624 5625
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5626 5627 5628 5629 5630
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5631
/**
5632
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5633 5634 5635
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5636
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5637 5638 5639 5640 5641 5642 5643
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5644 5645 5646
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5647
 */
5648 5649
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5650 5651
{
	unsigned long flags;
P
Peter Zijlstra 已提交
5652
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
5653 5654 5655 5656 5657

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
5658
		wake_flags = 0;
L
Linus Torvalds 已提交
5659 5660

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
5661
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
5662 5663
	spin_unlock_irqrestore(&q->lock, flags);
}
5664 5665 5666 5667 5668 5669 5670 5671 5672
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5673 5674
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5675 5676 5677 5678 5679 5680 5681 5682
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5683 5684 5685
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5686
 */
5687
void complete(struct completion *x)
L
Linus Torvalds 已提交
5688 5689 5690 5691 5692
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5693
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5694 5695 5696 5697
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5698 5699 5700 5701 5702
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5703 5704 5705
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5706
 */
5707
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5708 5709 5710 5711 5712
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5713
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5714 5715 5716 5717
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5718 5719
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5720 5721 5722 5723 5724 5725 5726
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5727
			if (signal_pending_state(state, current)) {
5728 5729
				timeout = -ERESTARTSYS;
				break;
5730 5731
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5732 5733 5734
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5735
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5736
		__remove_wait_queue(&x->wait, &wait);
5737 5738
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5739 5740
	}
	x->done--;
5741
	return timeout ?: 1;
L
Linus Torvalds 已提交
5742 5743
}

5744 5745
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5746 5747 5748 5749
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5750
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5751
	spin_unlock_irq(&x->wait.lock);
5752 5753
	return timeout;
}
L
Linus Torvalds 已提交
5754

5755 5756 5757 5758 5759 5760 5761 5762 5763 5764
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5765
void __sched wait_for_completion(struct completion *x)
5766 5767
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5768
}
5769
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5770

5771 5772 5773 5774 5775 5776 5777 5778 5779
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5780
unsigned long __sched
5781
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5782
{
5783
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5784
}
5785
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5786

5787 5788 5789 5790 5791 5792 5793
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5794
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5795
{
5796 5797 5798 5799
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5800
}
5801
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5802

5803 5804 5805 5806 5807 5808 5809 5810
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5811
unsigned long __sched
5812 5813
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5814
{
5815
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5816
}
5817
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5818

5819 5820 5821 5822 5823 5824 5825
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5826 5827 5828 5829 5830 5831 5832 5833 5834
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5881 5882
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5883
{
I
Ingo Molnar 已提交
5884 5885 5886 5887
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5888

5889
	__set_current_state(state);
L
Linus Torvalds 已提交
5890

5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5905 5906 5907
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5908
long __sched
I
Ingo Molnar 已提交
5909
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5910
{
5911
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5912 5913 5914
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5915
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5916
{
5917
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5918 5919 5920
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5921
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5922
{
5923
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5924 5925 5926
}
EXPORT_SYMBOL(sleep_on_timeout);

5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5939
void rt_mutex_setprio(struct task_struct *p, int prio)
5940 5941
{
	unsigned long flags;
5942
	int oldprio, on_rq, running;
5943
	struct rq *rq;
5944
	const struct sched_class *prev_class = p->sched_class;
5945 5946 5947 5948

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5949
	update_rq_clock(rq);
5950

5951
	oldprio = p->prio;
I
Ingo Molnar 已提交
5952
	on_rq = p->se.on_rq;
5953
	running = task_current(rq, p);
5954
	if (on_rq)
5955
		dequeue_task(rq, p, 0);
5956 5957
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5958 5959 5960 5961 5962 5963

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5964 5965
	p->prio = prio;

5966 5967
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5968
	if (on_rq) {
5969
		enqueue_task(rq, p, 0);
5970 5971

		check_class_changed(rq, p, prev_class, oldprio, running);
5972 5973 5974 5975 5976 5977
	}
	task_rq_unlock(rq, &flags);
}

#endif

5978
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5979
{
I
Ingo Molnar 已提交
5980
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5981
	unsigned long flags;
5982
	struct rq *rq;
L
Linus Torvalds 已提交
5983 5984 5985 5986 5987 5988 5989 5990

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5991
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5992 5993 5994 5995
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5996
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5997
	 */
5998
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5999 6000 6001
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6002
	on_rq = p->se.on_rq;
6003
	if (on_rq)
6004
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6005 6006

	p->static_prio = NICE_TO_PRIO(nice);
6007
	set_load_weight(p);
6008 6009 6010
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6011

I
Ingo Molnar 已提交
6012
	if (on_rq) {
6013
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6014
		/*
6015 6016
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6017
		 */
6018
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6019 6020 6021 6022 6023 6024 6025
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6026 6027 6028 6029 6030
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6031
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6032
{
6033 6034
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6035

M
Matt Mackall 已提交
6036 6037 6038 6039
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6040 6041 6042 6043 6044 6045 6046 6047 6048
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6049
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6050
{
6051
	long nice, retval;
L
Linus Torvalds 已提交
6052 6053 6054 6055 6056 6057

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6058 6059
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6060 6061 6062
	if (increment > 40)
		increment = 40;

6063
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6064 6065 6066 6067 6068
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6069 6070 6071
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6090
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6091 6092 6093 6094 6095 6096 6097 6098
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6099
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6100 6101 6102
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6103
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6118
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6119 6120 6121 6122 6123 6124 6125 6126
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6127
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6128
{
6129
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6130 6131 6132
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6133 6134
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6135
{
I
Ingo Molnar 已提交
6136
	BUG_ON(p->se.on_rq);
6137

L
Linus Torvalds 已提交
6138
	p->policy = policy;
I
Ingo Molnar 已提交
6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6151
	p->rt_priority = prio;
6152 6153 6154
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6155
	set_load_weight(p);
L
Linus Torvalds 已提交
6156 6157
}

6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6174 6175
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6176
{
6177
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6178
	unsigned long flags;
6179
	const struct sched_class *prev_class = p->sched_class;
6180
	struct rq *rq;
6181
	int reset_on_fork;
L
Linus Torvalds 已提交
6182

6183 6184
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6185 6186
recheck:
	/* double check policy once rq lock held */
6187 6188
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6189
		policy = oldpolicy = p->policy;
6190 6191 6192 6193 6194 6195 6196 6197 6198 6199
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6200 6201
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6202 6203
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6204 6205
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6206
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6207
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6208
		return -EINVAL;
6209
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6210 6211
		return -EINVAL;

6212 6213 6214
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6215
	if (user && !capable(CAP_SYS_NICE)) {
6216
		if (rt_policy(policy)) {
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6233 6234 6235 6236 6237 6238
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6239

6240
		/* can't change other user's priorities */
6241
		if (!check_same_owner(p))
6242
			return -EPERM;
6243 6244 6245 6246

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6247
	}
L
Linus Torvalds 已提交
6248

6249
	if (user) {
6250
#ifdef CONFIG_RT_GROUP_SCHED
6251 6252 6253 6254
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6255 6256
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6257
			return -EPERM;
6258 6259
#endif

6260 6261 6262 6263 6264
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6265 6266 6267 6268 6269
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6270 6271 6272 6273
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6274
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6275 6276 6277
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6278 6279
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6280 6281
		goto recheck;
	}
I
Ingo Molnar 已提交
6282
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6283
	on_rq = p->se.on_rq;
6284
	running = task_current(rq, p);
6285
	if (on_rq)
6286
		deactivate_task(rq, p, 0);
6287 6288
	if (running)
		p->sched_class->put_prev_task(rq, p);
6289

6290 6291
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6292
	oldprio = p->prio;
I
Ingo Molnar 已提交
6293
	__setscheduler(rq, p, policy, param->sched_priority);
6294

6295 6296
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6297 6298
	if (on_rq) {
		activate_task(rq, p, 0);
6299 6300

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6301
	}
6302 6303 6304
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6305 6306
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6307 6308
	return 0;
}
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6323 6324
EXPORT_SYMBOL_GPL(sched_setscheduler);

6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6342 6343
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6344 6345 6346
{
	struct sched_param lparam;
	struct task_struct *p;
6347
	int retval;
L
Linus Torvalds 已提交
6348 6349 6350 6351 6352

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6353 6354 6355

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6356
	p = find_process_by_pid(pid);
6357 6358 6359
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6360

L
Linus Torvalds 已提交
6361 6362 6363 6364 6365 6366 6367 6368 6369
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6370 6371
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6372
{
6373 6374 6375 6376
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6377 6378 6379 6380 6381 6382 6383 6384
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6385
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6386 6387 6388 6389 6390 6391 6392 6393
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6394
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6395
{
6396
	struct task_struct *p;
6397
	int retval;
L
Linus Torvalds 已提交
6398 6399

	if (pid < 0)
6400
		return -EINVAL;
L
Linus Torvalds 已提交
6401 6402 6403 6404 6405 6406 6407

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6408 6409
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6410 6411 6412 6413 6414 6415
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6416
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6417 6418 6419
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6420
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6421 6422
{
	struct sched_param lp;
6423
	struct task_struct *p;
6424
	int retval;
L
Linus Torvalds 已提交
6425 6426

	if (!param || pid < 0)
6427
		return -EINVAL;
L
Linus Torvalds 已提交
6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6454
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6455
{
6456
	cpumask_var_t cpus_allowed, new_mask;
6457 6458
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6459

6460
	get_online_cpus();
L
Linus Torvalds 已提交
6461 6462 6463 6464 6465
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6466
		put_online_cpus();
L
Linus Torvalds 已提交
6467 6468 6469 6470 6471
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6472
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6473 6474 6475 6476 6477
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6478 6479 6480 6481 6482 6483 6484 6485
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6486
	retval = -EPERM;
6487
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6488 6489
		goto out_unlock;

6490 6491 6492 6493
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6494 6495
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6496
 again:
6497
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6498

P
Paul Menage 已提交
6499
	if (!retval) {
6500 6501
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6502 6503 6504 6505 6506
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6507
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6508 6509 6510
			goto again;
		}
	}
L
Linus Torvalds 已提交
6511
out_unlock:
6512 6513 6514 6515
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6516
	put_task_struct(p);
6517
	put_online_cpus();
L
Linus Torvalds 已提交
6518 6519 6520 6521
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6522
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6523
{
6524 6525 6526 6527 6528
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6529 6530 6531 6532 6533 6534 6535 6536 6537
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6538 6539
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6540
{
6541
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6542 6543
	int retval;

6544 6545
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6546

6547 6548 6549 6550 6551
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6552 6553
}

6554
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6555
{
6556
	struct task_struct *p;
L
Linus Torvalds 已提交
6557 6558
	int retval;

6559
	get_online_cpus();
L
Linus Torvalds 已提交
6560 6561 6562 6563 6564 6565 6566
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6567 6568 6569 6570
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6571
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6572 6573 6574

out_unlock:
	read_unlock(&tasklist_lock);
6575
	put_online_cpus();
L
Linus Torvalds 已提交
6576

6577
	return retval;
L
Linus Torvalds 已提交
6578 6579 6580 6581 6582 6583 6584 6585
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6586 6587
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6588 6589
{
	int ret;
6590
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6591

6592
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6593 6594
		return -EINVAL;

6595 6596
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6597

6598 6599 6600 6601 6602 6603 6604 6605
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6606

6607
	return ret;
L
Linus Torvalds 已提交
6608 6609 6610 6611 6612
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6613 6614
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6615
 */
6616
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6617
{
6618
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6619

6620
	schedstat_inc(rq, yld_count);
6621
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6622 6623 6624 6625 6626 6627

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6628
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6629 6630 6631 6632 6633 6634 6635 6636
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6637 6638 6639 6640 6641
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6642
static void __cond_resched(void)
L
Linus Torvalds 已提交
6643
{
6644 6645 6646
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6647 6648
}

6649
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6650
{
P
Peter Zijlstra 已提交
6651
	if (should_resched()) {
L
Linus Torvalds 已提交
6652 6653 6654 6655 6656
		__cond_resched();
		return 1;
	}
	return 0;
}
6657
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6658 6659

/*
6660
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6661 6662
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6663
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6664 6665 6666
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6667
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6668
{
P
Peter Zijlstra 已提交
6669
	int resched = should_resched();
J
Jan Kara 已提交
6670 6671
	int ret = 0;

6672 6673
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
6674
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6675
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6676
		if (resched)
N
Nick Piggin 已提交
6677 6678 6679
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6680
		ret = 1;
L
Linus Torvalds 已提交
6681 6682
		spin_lock(lock);
	}
J
Jan Kara 已提交
6683
	return ret;
L
Linus Torvalds 已提交
6684
}
6685
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6686

6687
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6688 6689 6690
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6691
	if (should_resched()) {
6692
		local_bh_enable();
L
Linus Torvalds 已提交
6693 6694 6695 6696 6697 6698
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6699
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6700 6701 6702 6703

/**
 * yield - yield the current processor to other threads.
 *
6704
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6705 6706 6707 6708 6709 6710 6711 6712 6713 6714
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6715
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6716 6717 6718 6719 6720 6721 6722
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6723
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6724

6725
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6726
	atomic_inc(&rq->nr_iowait);
6727
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6728
	schedule();
6729
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6730
	atomic_dec(&rq->nr_iowait);
6731
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6732 6733 6734 6735 6736
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6737
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6738 6739
	long ret;

6740
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6741
	atomic_inc(&rq->nr_iowait);
6742
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6743
	ret = schedule_timeout(timeout);
6744
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6745
	atomic_dec(&rq->nr_iowait);
6746
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6757
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6758 6759 6760 6761 6762 6763 6764 6765 6766
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6767
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6768
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6782
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6783 6784 6785 6786 6787 6788 6789 6790 6791
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6792
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6793
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6807
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6808
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6809
{
6810
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6811
	unsigned int time_slice;
6812
	int retval;
L
Linus Torvalds 已提交
6813 6814 6815
	struct timespec t;

	if (pid < 0)
6816
		return -EINVAL;
L
Linus Torvalds 已提交
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6828 6829 6830 6831 6832 6833
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6834
		time_slice = DEF_TIMESLICE;
6835
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6836 6837 6838 6839 6840
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6841 6842
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6843 6844
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6845
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6846
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6847 6848
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6849

L
Linus Torvalds 已提交
6850 6851 6852 6853 6854
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6855
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6856

6857
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6858 6859
{
	unsigned long free = 0;
6860
	unsigned state;
L
Linus Torvalds 已提交
6861 6862

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6863
	printk(KERN_INFO "%-13.13s %c", p->comm,
6864
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6865
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6866
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6867
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6868
	else
I
Ingo Molnar 已提交
6869
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6870 6871
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6872
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6873
	else
I
Ingo Molnar 已提交
6874
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6875 6876
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6877
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6878
#endif
6879 6880 6881
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6882

6883
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6884 6885
}

I
Ingo Molnar 已提交
6886
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6887
{
6888
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6889

6890 6891 6892
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6893
#else
6894 6895
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6896 6897 6898 6899 6900 6901 6902 6903
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6904
		if (!state_filter || (p->state & state_filter))
6905
			sched_show_task(p);
L
Linus Torvalds 已提交
6906 6907
	} while_each_thread(g, p);

6908 6909
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6910 6911 6912
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6913
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6914 6915 6916 6917 6918
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6919 6920
}

I
Ingo Molnar 已提交
6921 6922
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6923
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6924 6925
}

6926 6927 6928 6929 6930 6931 6932 6933
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6934
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6935
{
6936
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6937 6938
	unsigned long flags;

6939 6940
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6941 6942 6943
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6944
	idle->prio = idle->normal_prio = MAX_PRIO;
6945
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6946
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6947 6948

	rq->curr = rq->idle = idle;
6949 6950 6951
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6952 6953 6954
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6955 6956 6957
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6958
	task_thread_info(idle)->preempt_count = 0;
6959
#endif
I
Ingo Molnar 已提交
6960 6961 6962 6963
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6964
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6965 6966 6967 6968 6969 6970 6971
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6972
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6973
 */
6974
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6975

I
Ingo Molnar 已提交
6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6999 7000

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
7001 7002
}

L
Linus Torvalds 已提交
7003 7004 7005 7006
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7007
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7026
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7027 7028
 * call is not atomic; no spinlocks may be held.
 */
7029
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7030
{
7031
	struct migration_req req;
L
Linus Torvalds 已提交
7032
	unsigned long flags;
7033
	struct rq *rq;
7034
	int ret = 0;
L
Linus Torvalds 已提交
7035 7036

	rq = task_rq_lock(p, &flags);
7037
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
7038 7039 7040 7041
		ret = -EINVAL;
		goto out;
	}

7042
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7043
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7044 7045 7046 7047
		ret = -EINVAL;
		goto out;
	}

7048
	if (p->sched_class->set_cpus_allowed)
7049
		p->sched_class->set_cpus_allowed(p, new_mask);
7050
	else {
7051 7052
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7053 7054
	}

L
Linus Torvalds 已提交
7055
	/* Can the task run on the task's current CPU? If so, we're done */
7056
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7057 7058
		goto out;

R
Rusty Russell 已提交
7059
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7060
		/* Need help from migration thread: drop lock and wait. */
7061 7062 7063
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7064 7065
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7066
		put_task_struct(mt);
L
Linus Torvalds 已提交
7067 7068 7069 7070 7071 7072
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7073

L
Linus Torvalds 已提交
7074 7075
	return ret;
}
7076
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7077 7078

/*
I
Ingo Molnar 已提交
7079
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7080 7081 7082 7083 7084 7085
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7086 7087
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7088
 */
7089
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7090
{
7091
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7092
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7093

7094
	if (unlikely(!cpu_active(dest_cpu)))
7095
		return ret;
L
Linus Torvalds 已提交
7096 7097 7098 7099 7100 7101 7102

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7103
		goto done;
L
Linus Torvalds 已提交
7104
	/* Affinity changed (again). */
7105
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7106
		goto fail;
L
Linus Torvalds 已提交
7107

I
Ingo Molnar 已提交
7108
	on_rq = p->se.on_rq;
7109
	if (on_rq)
7110
		deactivate_task(rq_src, p, 0);
7111

L
Linus Torvalds 已提交
7112
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7113 7114
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7115
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7116
	}
L
Linus Torvalds 已提交
7117
done:
7118
	ret = 1;
L
Linus Torvalds 已提交
7119
fail:
L
Linus Torvalds 已提交
7120
	double_rq_unlock(rq_src, rq_dest);
7121
	return ret;
L
Linus Torvalds 已提交
7122 7123
}

7124 7125 7126 7127 7128
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
7129 7130 7131 7132 7133
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7134
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7135
{
7136
	int badcpu;
L
Linus Torvalds 已提交
7137
	int cpu = (long)data;
7138
	struct rq *rq;
L
Linus Torvalds 已提交
7139 7140 7141 7142 7143 7144

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7145
		struct migration_req *req;
L
Linus Torvalds 已提交
7146 7147 7148 7149 7150 7151
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7152
			break;
L
Linus Torvalds 已提交
7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7168
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7169 7170
		list_del_init(head->next);

7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
		if (req->task != NULL) {
			spin_unlock(&rq->lock);
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
			spin_unlock(&rq->lock);
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
			spin_unlock(&rq->lock);
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
7182
		local_irq_enable();
L
Linus Torvalds 已提交
7183 7184 7185 7186 7187 7188 7189 7190 7191

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7203
/*
7204
 * Figure out where task on dead CPU should go, use force if necessary.
7205
 */
7206
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7207
{
7208
	int dest_cpu;
7209
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7226

7227 7228 7229 7230 7231 7232 7233 7234 7235
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7236
		}
7237 7238 7239 7240 7241 7242
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7243 7244 7245 7246 7247 7248 7249 7250 7251
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7252
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7253
{
R
Rusty Russell 已提交
7254
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7268
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7269

7270
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7271

7272 7273
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7274 7275
			continue;

7276 7277 7278
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7279

7280
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7281 7282
}

I
Ingo Molnar 已提交
7283 7284
/*
 * Schedules idle task to be the next runnable task on current CPU.
7285 7286
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7287 7288 7289
 */
void sched_idle_next(void)
{
7290
	int this_cpu = smp_processor_id();
7291
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7292 7293 7294 7295
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7296
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7297

7298 7299 7300
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7301 7302 7303
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7304
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7305

7306 7307
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7308 7309 7310 7311

	spin_unlock_irqrestore(&rq->lock, flags);
}

7312 7313
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7327
/* called under rq->lock with disabled interrupts */
7328
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7329
{
7330
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7331 7332

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7333
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7334 7335

	/* Cannot have done final schedule yet: would have vanished. */
7336
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7337

7338
	get_task_struct(p);
L
Linus Torvalds 已提交
7339 7340 7341

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7342
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7343 7344
	 * fine.
	 */
7345
	spin_unlock_irq(&rq->lock);
7346
	move_task_off_dead_cpu(dead_cpu, p);
7347
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7348

7349
	put_task_struct(p);
L
Linus Torvalds 已提交
7350 7351 7352 7353 7354
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7355
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7356
	struct task_struct *next;
7357

I
Ingo Molnar 已提交
7358 7359 7360
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7361
		update_rq_clock(rq);
7362
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7363 7364
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7365
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7366
		migrate_dead(dead_cpu, next);
7367

L
Linus Torvalds 已提交
7368 7369
	}
}
7370 7371 7372 7373 7374 7375 7376

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7377
	rq->calc_load_active = 0;
7378
}
L
Linus Torvalds 已提交
7379 7380
#endif /* CONFIG_HOTPLUG_CPU */

7381 7382 7383
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7384 7385
	{
		.procname	= "sched_domain",
7386
		.mode		= 0555,
7387
	},
I
Ingo Molnar 已提交
7388
	{0, },
7389 7390 7391
};

static struct ctl_table sd_ctl_root[] = {
7392
	{
7393
		.ctl_name	= CTL_KERN,
7394
		.procname	= "kernel",
7395
		.mode		= 0555,
7396 7397
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7398
	{0, },
7399 7400 7401 7402 7403
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7404
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7405 7406 7407 7408

	return entry;
}

7409 7410
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7411
	struct ctl_table *entry;
7412

7413 7414 7415
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7416
	 * will always be set. In the lowest directory the names are
7417 7418 7419
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7420 7421
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7422 7423 7424
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7425 7426 7427 7428 7429

	kfree(*tablep);
	*tablep = NULL;
}

7430
static void
7431
set_table_entry(struct ctl_table *entry,
7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7445
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7446

7447 7448 7449
	if (table == NULL)
		return NULL;

7450
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7451
		sizeof(long), 0644, proc_doulongvec_minmax);
7452
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7453
		sizeof(long), 0644, proc_doulongvec_minmax);
7454
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7455
		sizeof(int), 0644, proc_dointvec_minmax);
7456
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7457
		sizeof(int), 0644, proc_dointvec_minmax);
7458
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7459
		sizeof(int), 0644, proc_dointvec_minmax);
7460
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7461
		sizeof(int), 0644, proc_dointvec_minmax);
7462
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7463
		sizeof(int), 0644, proc_dointvec_minmax);
7464
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7465
		sizeof(int), 0644, proc_dointvec_minmax);
7466
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7467
		sizeof(int), 0644, proc_dointvec_minmax);
7468
	set_table_entry(&table[9], "cache_nice_tries",
7469 7470
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7471
	set_table_entry(&table[10], "flags", &sd->flags,
7472
		sizeof(int), 0644, proc_dointvec_minmax);
7473 7474 7475
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7476 7477 7478 7479

	return table;
}

7480
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7481 7482 7483 7484 7485 7486 7487 7488 7489
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7490 7491
	if (table == NULL)
		return NULL;
7492 7493 7494 7495 7496

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7497
		entry->mode = 0555;
7498 7499 7500 7501 7502 7503 7504 7505
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7506
static void register_sched_domain_sysctl(void)
7507 7508 7509 7510 7511
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7512 7513 7514
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7515 7516 7517
	if (entry == NULL)
		return;

7518
	for_each_online_cpu(i) {
7519 7520
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7521
		entry->mode = 0555;
7522
		entry->child = sd_alloc_ctl_cpu_table(i);
7523
		entry++;
7524
	}
7525 7526

	WARN_ON(sd_sysctl_header);
7527 7528
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7529

7530
/* may be called multiple times per register */
7531 7532
static void unregister_sched_domain_sysctl(void)
{
7533 7534
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7535
	sd_sysctl_header = NULL;
7536 7537
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7538
}
7539
#else
7540 7541 7542 7543
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7544 7545 7546 7547
{
}
#endif

7548 7549 7550 7551 7552
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7553
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7573
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7574 7575 7576 7577
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7578 7579 7580 7581
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7582 7583
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7584 7585
{
	struct task_struct *p;
7586
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7587
	unsigned long flags;
7588
	struct rq *rq;
L
Linus Torvalds 已提交
7589 7590

	switch (action) {
7591

L
Linus Torvalds 已提交
7592
	case CPU_UP_PREPARE:
7593
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7594
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7595 7596 7597 7598 7599
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7600
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7601
		task_rq_unlock(rq, &flags);
7602
		get_task_struct(p);
L
Linus Torvalds 已提交
7603
		cpu_rq(cpu)->migration_thread = p;
7604
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7605
		break;
7606

L
Linus Torvalds 已提交
7607
	case CPU_ONLINE:
7608
	case CPU_ONLINE_FROZEN:
7609
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7610
		wake_up_process(cpu_rq(cpu)->migration_thread);
7611 7612 7613 7614 7615

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7616
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7617 7618

			set_rq_online(rq);
7619 7620
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7621
		break;
7622

L
Linus Torvalds 已提交
7623 7624
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7625
	case CPU_UP_CANCELED_FROZEN:
7626 7627
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7628
		/* Unbind it from offline cpu so it can run. Fall thru. */
7629
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7630
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7631
		kthread_stop(cpu_rq(cpu)->migration_thread);
7632
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7633 7634
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7635

L
Linus Torvalds 已提交
7636
	case CPU_DEAD:
7637
	case CPU_DEAD_FROZEN:
7638
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7639 7640 7641
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7642
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7643 7644
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7645
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7646
		update_rq_clock(rq);
7647
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7648
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7649 7650
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7651
		migrate_dead_tasks(cpu);
7652
		spin_unlock_irq(&rq->lock);
7653
		cpuset_unlock();
L
Linus Torvalds 已提交
7654 7655
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7656
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7657 7658 7659 7660 7661
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7662 7663
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7664 7665
			struct migration_req *req;

L
Linus Torvalds 已提交
7666
			req = list_entry(rq->migration_queue.next,
7667
					 struct migration_req, list);
L
Linus Torvalds 已提交
7668
			list_del_init(&req->list);
B
Brian King 已提交
7669
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7670
			complete(&req->done);
B
Brian King 已提交
7671
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7672 7673 7674
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7675

7676 7677
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7678 7679 7680 7681
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7682
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7683
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7684 7685 7686
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7687 7688 7689 7690 7691
#endif
	}
	return NOTIFY_OK;
}

7692 7693 7694 7695
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
 * the notifier in the perf_counter subsystem, though.
L
Linus Torvalds 已提交
7696
 */
7697
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7698 7699 7700 7701
	.notifier_call = migration_call,
	.priority = 10
};

7702
static int __init migration_init(void)
L
Linus Torvalds 已提交
7703 7704
{
	void *cpu = (void *)(long)smp_processor_id();
7705
	int err;
7706 7707

	/* Start one for the boot CPU: */
7708 7709
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7710 7711
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7712

7713
	return 0;
L
Linus Torvalds 已提交
7714
}
7715
early_initcall(migration_init);
L
Linus Torvalds 已提交
7716 7717 7718
#endif

#ifdef CONFIG_SMP
7719

7720
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7721

7722
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7723
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7724
{
I
Ingo Molnar 已提交
7725
	struct sched_group *group = sd->groups;
7726
	char str[256];
L
Linus Torvalds 已提交
7727

R
Rusty Russell 已提交
7728
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7729
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7730 7731 7732 7733 7734 7735 7736 7737 7738

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7739 7740
	}

7741
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7742

7743
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7744 7745 7746
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7747
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7748 7749 7750
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7751

I
Ingo Molnar 已提交
7752
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7753
	do {
I
Ingo Molnar 已提交
7754 7755 7756
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7757 7758 7759
			break;
		}

7760
		if (!group->cpu_power) {
I
Ingo Molnar 已提交
7761 7762 7763 7764 7765
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7766

7767
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7768 7769 7770 7771
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7772

7773
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7774 7775 7776 7777
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7778

7779
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7780

R
Rusty Russell 已提交
7781
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7782 7783

		printk(KERN_CONT " %s", str);
7784 7785 7786
		if (group->cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
7787
		}
L
Linus Torvalds 已提交
7788

I
Ingo Molnar 已提交
7789 7790 7791
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7792

7793
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7794
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7795

7796 7797
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7798 7799 7800 7801
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7802

I
Ingo Molnar 已提交
7803 7804
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7805
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7806
	int level = 0;
L
Linus Torvalds 已提交
7807

I
Ingo Molnar 已提交
7808 7809 7810 7811
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7812

I
Ingo Molnar 已提交
7813 7814
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7815
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7816 7817 7818 7819
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7820
	for (;;) {
7821
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7822
			break;
L
Linus Torvalds 已提交
7823 7824
		level++;
		sd = sd->parent;
7825
		if (!sd)
I
Ingo Molnar 已提交
7826 7827
			break;
	}
7828
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7829
}
7830
#else /* !CONFIG_SCHED_DEBUG */
7831
# define sched_domain_debug(sd, cpu) do { } while (0)
7832
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7833

7834
static int sd_degenerate(struct sched_domain *sd)
7835
{
7836
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7837 7838 7839 7840 7841 7842
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7843 7844 7845
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7846 7847 7848 7849 7850
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
7851
	if (sd->flags & (SD_WAKE_AFFINE))
7852 7853 7854 7855 7856
		return 0;

	return 1;
}

7857 7858
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7859 7860 7861 7862 7863 7864
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7865
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7866 7867 7868 7869 7870 7871 7872
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7873 7874 7875
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7876 7877
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7878 7879 7880 7881 7882 7883 7884
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7885 7886
static void free_rootdomain(struct root_domain *rd)
{
7887 7888
	cpupri_cleanup(&rd->cpupri);

7889 7890 7891 7892 7893 7894
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7895 7896
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7897
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7898 7899 7900 7901 7902
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7903
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7904

7905
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7906
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7907

7908
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7909

I
Ingo Molnar 已提交
7910 7911 7912 7913 7914 7915 7916
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7917 7918 7919 7920 7921
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7922
	cpumask_set_cpu(rq->cpu, rd->span);
7923
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7924
		set_rq_online(rq);
G
Gregory Haskins 已提交
7925 7926

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7927 7928 7929

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7930 7931
}

L
Li Zefan 已提交
7932
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7933
{
7934 7935
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7936 7937
	memset(rd, 0, sizeof(*rd));

7938 7939
	if (bootmem)
		gfp = GFP_NOWAIT;
7940

7941
	if (!alloc_cpumask_var(&rd->span, gfp))
7942
		goto out;
7943
	if (!alloc_cpumask_var(&rd->online, gfp))
7944
		goto free_span;
7945
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7946
		goto free_online;
7947

P
Pekka Enberg 已提交
7948
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7949
		goto free_rto_mask;
7950
	return 0;
7951

7952 7953
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7954 7955 7956 7957
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7958
out:
7959
	return -ENOMEM;
G
Gregory Haskins 已提交
7960 7961 7962 7963
}

static void init_defrootdomain(void)
{
7964 7965
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7966 7967 7968
	atomic_set(&def_root_domain.refcount, 1);
}

7969
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7970 7971 7972 7973 7974 7975 7976
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7977 7978 7979 7980
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7981 7982 7983 7984

	return rd;
}

L
Linus Torvalds 已提交
7985
/*
I
Ingo Molnar 已提交
7986
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7987 7988
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7989 7990
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7991
{
7992
	struct rq *rq = cpu_rq(cpu);
7993 7994 7995
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7996
	for (tmp = sd; tmp; ) {
7997 7998 7999
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8000

8001
		if (sd_parent_degenerate(tmp, parent)) {
8002
			tmp->parent = parent->parent;
8003 8004
			if (parent->parent)
				parent->parent->child = tmp;
8005 8006
		} else
			tmp = tmp->parent;
8007 8008
	}

8009
	if (sd && sd_degenerate(sd)) {
8010
		sd = sd->parent;
8011 8012 8013
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8014 8015 8016

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8017
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8018
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8019 8020 8021
}

/* cpus with isolated domains */
8022
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8023 8024 8025 8026

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8027
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8028 8029 8030
	return 1;
}

I
Ingo Molnar 已提交
8031
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8032 8033

/*
8034 8035
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8036 8037
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8038 8039 8040 8041 8042
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8043
static void
8044 8045 8046
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8047
					struct sched_group **sg,
8048 8049
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8050 8051 8052 8053
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8054
	cpumask_clear(covered);
8055

8056
	for_each_cpu(i, span) {
8057
		struct sched_group *sg;
8058
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8059 8060
		int j;

8061
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8062 8063
			continue;

8064
		cpumask_clear(sched_group_cpus(sg));
8065
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8066

8067
		for_each_cpu(j, span) {
8068
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8069 8070
				continue;

8071
			cpumask_set_cpu(j, covered);
8072
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8073 8074 8075 8076 8077 8078 8079 8080 8081 8082
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8083
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8084

8085
#ifdef CONFIG_NUMA
8086

8087 8088 8089 8090 8091
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8092
 * Find the next node to include in a given scheduling domain. Simply
8093 8094 8095 8096
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8097
static int find_next_best_node(int node, nodemask_t *used_nodes)
8098 8099 8100 8101 8102
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8103
	for (i = 0; i < nr_node_ids; i++) {
8104
		/* Start at @node */
8105
		n = (node + i) % nr_node_ids;
8106 8107 8108 8109 8110

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8111
		if (node_isset(n, *used_nodes))
8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8123
	node_set(best_node, *used_nodes);
8124 8125 8126 8127 8128 8129
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8130
 * @span: resulting cpumask
8131
 *
I
Ingo Molnar 已提交
8132
 * Given a node, construct a good cpumask for its sched_domain to span. It
8133 8134 8135
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8136
static void sched_domain_node_span(int node, struct cpumask *span)
8137
{
8138
	nodemask_t used_nodes;
8139
	int i;
8140

8141
	cpumask_clear(span);
8142
	nodes_clear(used_nodes);
8143

8144
	cpumask_or(span, span, cpumask_of_node(node));
8145
	node_set(node, used_nodes);
8146 8147

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8148
		int next_node = find_next_best_node(node, &used_nodes);
8149

8150
		cpumask_or(span, span, cpumask_of_node(next_node));
8151 8152
	}
}
8153
#endif /* CONFIG_NUMA */
8154

8155
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8156

8157 8158
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8159 8160 8161
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8206
/*
8207
 * SMT sched-domains:
8208
 */
L
Linus Torvalds 已提交
8209
#ifdef CONFIG_SCHED_SMT
8210 8211
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8212

I
Ingo Molnar 已提交
8213
static int
8214 8215
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8216
{
8217
	if (sg)
8218
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8219 8220
	return cpu;
}
8221
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8222

8223 8224 8225
/*
 * multi-core sched-domains:
 */
8226
#ifdef CONFIG_SCHED_MC
8227 8228
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8229
#endif /* CONFIG_SCHED_MC */
8230 8231

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8232
static int
8233 8234
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8235
{
8236
	int group;
8237

8238
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8239
	group = cpumask_first(mask);
8240
	if (sg)
8241
		*sg = &per_cpu(sched_group_core, group).sg;
8242
	return group;
8243 8244
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8245
static int
8246 8247
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8248
{
8249
	if (sg)
8250
		*sg = &per_cpu(sched_group_core, cpu).sg;
8251 8252 8253 8254
	return cpu;
}
#endif

8255 8256
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8257

I
Ingo Molnar 已提交
8258
static int
8259 8260
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8261
{
8262
	int group;
8263
#ifdef CONFIG_SCHED_MC
8264
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8265
	group = cpumask_first(mask);
8266
#elif defined(CONFIG_SCHED_SMT)
8267
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8268
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8269
#else
8270
	group = cpu;
L
Linus Torvalds 已提交
8271
#endif
8272
	if (sg)
8273
		*sg = &per_cpu(sched_group_phys, group).sg;
8274
	return group;
L
Linus Torvalds 已提交
8275 8276 8277 8278
}

#ifdef CONFIG_NUMA
/*
8279 8280 8281
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8282
 */
8283
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8284
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8285

8286
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8287
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8288

8289 8290 8291
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8292
{
8293 8294
	int group;

8295
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8296
	group = cpumask_first(nodemask);
8297 8298

	if (sg)
8299
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8300
	return group;
L
Linus Torvalds 已提交
8301
}
8302

8303 8304 8305 8306 8307 8308 8309
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8310
	do {
8311
		for_each_cpu(j, sched_group_cpus(sg)) {
8312
			struct sched_domain *sd;
8313

8314
			sd = &per_cpu(phys_domains, j).sd;
8315
			if (j != group_first_cpu(sd->groups)) {
8316 8317 8318 8319 8320 8321
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8322

8323
			sg->cpu_power += sd->groups->cpu_power;
8324 8325 8326
		}
		sg = sg->next;
	} while (sg != group_head);
8327
}
8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8360
	sg->cpu_power = 0;
8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
8383
		sg->cpu_power = 0;
8384 8385 8386 8387 8388 8389 8390 8391 8392
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8393
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8394

8395
#ifdef CONFIG_NUMA
8396
/* Free memory allocated for various sched_group structures */
8397 8398
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8399
{
8400
	int cpu, i;
8401

8402
	for_each_cpu(cpu, cpu_map) {
8403 8404 8405 8406 8407 8408
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8409
		for (i = 0; i < nr_node_ids; i++) {
8410 8411
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8412
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8413
			if (cpumask_empty(nodemask))
8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8430
#else /* !CONFIG_NUMA */
8431 8432
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8433 8434
{
}
8435
#endif /* CONFIG_NUMA */
8436

8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8451 8452
	long power;
	int weight;
8453 8454 8455

	WARN_ON(!sd || !sd->groups);

8456
	if (cpu != group_first_cpu(sd->groups))
8457 8458 8459 8460
		return;

	child = sd->child;

8461
	sd->groups->cpu_power = 0;
8462

8463 8464 8465 8466 8467
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8468 8469 8470
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8471
		 */
P
Peter Zijlstra 已提交
8472 8473
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8474
			power /= weight;
P
Peter Zijlstra 已提交
8475 8476
			power >>= SCHED_LOAD_SHIFT;
		}
8477
		sd->groups->cpu_power += power;
8478 8479 8480 8481
		return;
	}

	/*
8482
	 * Add cpu_power of each child group to this groups cpu_power.
8483 8484 8485
	 */
	group = child->groups;
	do {
8486
		sd->groups->cpu_power += group->cpu_power;
8487 8488 8489 8490
		group = group->next;
	} while (group != child->groups);
}

8491 8492 8493 8494 8495
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8496 8497 8498 8499 8500 8501
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8502
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8503

8504 8505 8506 8507 8508
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8509
	sd->level = SD_LV_##type;				\
8510
	SD_INIT_NAME(sd, type);					\
8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8525 8526 8527 8528
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8529 8530 8531 8532 8533 8534
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
8553
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8554 8555
	} else {
		/* turn on idle balance on this domain */
8556
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8557 8558 8559
	}
}

8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8580
#ifdef CONFIG_NUMA
8581 8582 8583 8584 8585 8586 8587
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8588
#endif
8589 8590 8591 8592
	case sa_none:
		break;
	}
}
8593

8594 8595 8596
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8597
#ifdef CONFIG_NUMA
8598 8599 8600 8601 8602 8603 8604 8605 8606 8607
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
8608
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8609
		return sa_notcovered;
8610
	}
8611
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8612
#endif
8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
G
Gregory Haskins 已提交
8625
		printk(KERN_WARNING "Cannot alloc root domain\n");
8626
		return sa_tmpmask;
G
Gregory Haskins 已提交
8627
	}
8628 8629
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8630

8631 8632 8633 8634
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8635
#ifdef CONFIG_NUMA
8636
	struct sched_domain *parent;
L
Linus Torvalds 已提交
8637

8638 8639 8640 8641 8642
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8643
		set_domain_attribute(sd, attr);
8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8658
#endif
8659 8660
	return sd;
}
L
Linus Torvalds 已提交
8661

8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8677

8678 8679 8680 8681 8682
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8683
#ifdef CONFIG_SCHED_MC
8684 8685 8686 8687 8688 8689 8690
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8691
#endif
8692 8693
	return sd;
}
8694

8695 8696 8697 8698 8699
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8700
#ifdef CONFIG_SCHED_SMT
8701 8702 8703 8704 8705 8706 8707
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8708
#endif
8709 8710
	return sd;
}
L
Linus Torvalds 已提交
8711

8712 8713 8714 8715
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8716
#ifdef CONFIG_SCHED_SMT
8717 8718 8719 8720 8721 8722 8723 8724
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8725
#endif
8726
#ifdef CONFIG_SCHED_MC
8727 8728 8729 8730 8731 8732 8733
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8734
#endif
8735 8736 8737 8738 8739 8740 8741
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8742
#ifdef CONFIG_NUMA
8743 8744 8745 8746 8747
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8748 8749
	default:
		break;
8750
	}
8751
}
8752

8753 8754 8755 8756 8757 8758 8759 8760 8761
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8762
	struct sched_domain *sd;
8763
	int i;
8764
#ifdef CONFIG_NUMA
8765
	d.sd_allnodes = 0;
8766
#endif
8767

8768 8769 8770 8771
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8772

L
Linus Torvalds 已提交
8773
	/*
8774
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8775
	 */
8776
	for_each_cpu(i, cpu_map) {
8777 8778
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8779

8780
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8781
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8782
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8783
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8784
	}
8785

8786
	for_each_cpu(i, cpu_map) {
8787
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8788
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8789
	}
8790

L
Linus Torvalds 已提交
8791
	/* Set up physical groups */
8792 8793
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8794

L
Linus Torvalds 已提交
8795 8796
#ifdef CONFIG_NUMA
	/* Set up node groups */
8797 8798
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8799

8800 8801
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8802
			goto error;
L
Linus Torvalds 已提交
8803 8804 8805
#endif

	/* Calculate CPU power for physical packages and nodes */
8806
#ifdef CONFIG_SCHED_SMT
8807
	for_each_cpu(i, cpu_map) {
8808
		sd = &per_cpu(cpu_domains, i).sd;
8809
		init_sched_groups_power(i, sd);
8810
	}
L
Linus Torvalds 已提交
8811
#endif
8812
#ifdef CONFIG_SCHED_MC
8813
	for_each_cpu(i, cpu_map) {
8814
		sd = &per_cpu(core_domains, i).sd;
8815
		init_sched_groups_power(i, sd);
8816 8817
	}
#endif
8818

8819
	for_each_cpu(i, cpu_map) {
8820
		sd = &per_cpu(phys_domains, i).sd;
8821
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8822 8823
	}

8824
#ifdef CONFIG_NUMA
8825
	for (i = 0; i < nr_node_ids; i++)
8826
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8827

8828
	if (d.sd_allnodes) {
8829
		struct sched_group *sg;
8830

8831
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8832
								d.tmpmask);
8833 8834
		init_numa_sched_groups_power(sg);
	}
8835 8836
#endif

L
Linus Torvalds 已提交
8837
	/* Attach the domains */
8838
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8839
#ifdef CONFIG_SCHED_SMT
8840
		sd = &per_cpu(cpu_domains, i).sd;
8841
#elif defined(CONFIG_SCHED_MC)
8842
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8843
#else
8844
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8845
#endif
8846
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8847
	}
8848

8849 8850 8851
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8852 8853

error:
8854 8855
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8856
}
P
Paul Jackson 已提交
8857

8858
static int build_sched_domains(const struct cpumask *cpu_map)
8859 8860 8861 8862
{
	return __build_sched_domains(cpu_map, NULL);
}

8863
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8864
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8865 8866
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8867 8868 8869

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8870 8871
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8872
 */
8873
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8874

8875 8876 8877 8878 8879 8880
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8881
{
8882
	return 0;
8883 8884
}

8885
/*
I
Ingo Molnar 已提交
8886
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8887 8888
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8889
 */
8890
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8891
{
8892 8893
	int err;

8894
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8895
	ndoms_cur = 1;
8896
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8897
	if (!doms_cur)
8898
		doms_cur = fallback_doms;
8899
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8900
	dattr_cur = NULL;
8901
	err = build_sched_domains(doms_cur);
8902
	register_sched_domain_sysctl();
8903 8904

	return err;
8905 8906
}

8907 8908
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8909
{
8910
	free_sched_groups(cpu_map, tmpmask);
8911
}
L
Linus Torvalds 已提交
8912

8913 8914 8915 8916
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8917
static void detach_destroy_domains(const struct cpumask *cpu_map)
8918
{
8919 8920
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8921 8922
	int i;

8923
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8924
		cpu_attach_domain(NULL, &def_root_domain, i);
8925
	synchronize_sched();
8926
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8927 8928
}

8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8945 8946
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8947
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8948 8949 8950
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8951
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8952 8953 8954
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8955 8956 8957
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8958 8959
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8960 8961 8962 8963
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8964
 *
8965
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8966 8967
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8968
 *
P
Paul Jackson 已提交
8969 8970
 * Call with hotplug lock held
 */
8971 8972
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8973
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8974
{
8975
	int i, j, n;
8976
	int new_topology;
P
Paul Jackson 已提交
8977

8978
	mutex_lock(&sched_domains_mutex);
8979

8980 8981 8982
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8983 8984 8985
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8986
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8987 8988 8989

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8990
		for (j = 0; j < n && !new_topology; j++) {
8991
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8992
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8993 8994 8995 8996 8997 8998 8999 9000
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

9001 9002
	if (doms_new == NULL) {
		ndoms_cur = 0;
9003
		doms_new = fallback_doms;
9004
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9005
		WARN_ON_ONCE(dattr_new);
9006 9007
	}

P
Paul Jackson 已提交
9008 9009
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9010
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9011
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
9012
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9013 9014 9015
				goto match2;
		}
		/* no match - add a new doms_new */
9016 9017
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9018 9019 9020 9021 9022
match2:
		;
	}

	/* Remember the new sched domains */
9023
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
9024
		kfree(doms_cur);
9025
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9026
	doms_cur = doms_new;
9027
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9028
	ndoms_cur = ndoms_new;
9029 9030

	register_sched_domain_sysctl();
9031

9032
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9033 9034
}

9035
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9036
static void arch_reinit_sched_domains(void)
9037
{
9038
	get_online_cpus();
9039 9040 9041 9042

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9043
	rebuild_sched_domains();
9044
	put_online_cpus();
9045 9046 9047 9048
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9049
	unsigned int level = 0;
9050

9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9062 9063 9064
		return -EINVAL;

	if (smt)
9065
		sched_smt_power_savings = level;
9066
	else
9067
		sched_mc_power_savings = level;
9068

9069
	arch_reinit_sched_domains();
9070

9071
	return count;
9072 9073 9074
}

#ifdef CONFIG_SCHED_MC
9075 9076
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9077 9078 9079
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9080
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9081
					    const char *buf, size_t count)
9082 9083 9084
{
	return sched_power_savings_store(buf, count, 0);
}
9085 9086 9087
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9088 9089 9090
#endif

#ifdef CONFIG_SCHED_SMT
9091 9092
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9093 9094 9095
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9096
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9097
					     const char *buf, size_t count)
9098 9099 9100
{
	return sched_power_savings_store(buf, count, 1);
}
9101 9102
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9103 9104 9105
		   sched_smt_power_savings_store);
#endif

9106
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9122
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9123

9124
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9125
/*
9126 9127
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9128 9129 9130
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9131 9132 9133 9134 9135 9136
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
9137
		partition_sched_domains(1, NULL, NULL);
9138 9139 9140 9141 9142 9143 9144 9145 9146 9147
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9148
{
P
Peter Zijlstra 已提交
9149 9150
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9151 9152
	switch (action) {
	case CPU_DOWN_PREPARE:
9153
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9154
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9155 9156 9157
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9158
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9159
	case CPU_ONLINE:
9160
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9161
		enable_runtime(cpu_rq(cpu));
9162 9163
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9164 9165 9166 9167 9168 9169 9170
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9171 9172 9173
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9174

9175 9176 9177 9178 9179
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9180
	get_online_cpus();
9181
	mutex_lock(&sched_domains_mutex);
9182 9183 9184 9185
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9186
	mutex_unlock(&sched_domains_mutex);
9187
	put_online_cpus();
9188 9189

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9190 9191
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9192 9193 9194 9195 9196
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9197
	init_hrtick();
9198 9199

	/* Move init over to a non-isolated CPU */
9200
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9201
		BUG();
I
Ingo Molnar 已提交
9202
	sched_init_granularity();
9203
	free_cpumask_var(non_isolated_cpus);
9204 9205

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9206
	init_sched_rt_class();
L
Linus Torvalds 已提交
9207 9208 9209 9210
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9211
	sched_init_granularity();
L
Linus Torvalds 已提交
9212 9213 9214
}
#endif /* CONFIG_SMP */

9215 9216
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9217 9218 9219 9220 9221 9222 9223
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9224
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9225 9226
{
	cfs_rq->tasks_timeline = RB_ROOT;
9227
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9228 9229 9230
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9231
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9232 9233
}

P
Peter Zijlstra 已提交
9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9247
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9248
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9249
#ifdef CONFIG_SMP
9250
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9251 9252
#endif
#endif
P
Peter Zijlstra 已提交
9253 9254 9255
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9256
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9257 9258 9259 9260
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9261 9262
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9263

9264
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9265
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9266 9267
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9268 9269
}

P
Peter Zijlstra 已提交
9270
#ifdef CONFIG_FAIR_GROUP_SCHED
9271 9272 9273
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9274
{
9275
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9276 9277 9278 9279 9280 9281 9282
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9283 9284 9285 9286
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9287 9288 9289 9290 9291
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9292 9293
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9294
	se->load.inv_weight = 0;
9295
	se->parent = parent;
P
Peter Zijlstra 已提交
9296
}
9297
#endif
P
Peter Zijlstra 已提交
9298

9299
#ifdef CONFIG_RT_GROUP_SCHED
9300 9301 9302
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9303
{
9304 9305
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9306 9307 9308 9309
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9310
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9311 9312 9313 9314
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9315 9316 9317
	if (!rt_se)
		return;

9318 9319 9320 9321 9322
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9323
	rt_se->my_q = rt_rq;
9324
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9325 9326 9327 9328
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9329 9330
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9331
	int i, j;
9332 9333 9334 9335 9336 9337 9338
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9339 9340 9341
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9342 9343
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9344
	alloc_size += num_possible_cpus() * cpumask_size();
9345 9346 9347 9348 9349 9350
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9351
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9352 9353 9354 9355 9356 9357 9358

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9359 9360 9361 9362 9363 9364 9365

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9366 9367
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9368 9369 9370 9371 9372
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9373 9374 9375 9376 9377 9378 9379 9380
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9381 9382
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9383 9384 9385 9386 9387 9388
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9389
	}
I
Ingo Molnar 已提交
9390

G
Gregory Haskins 已提交
9391 9392 9393 9394
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9395 9396 9397 9398 9399 9400
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9401 9402 9403
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9404 9405
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9406

9407
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9408
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9409 9410 9411 9412 9413 9414
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9415 9416
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9417

9418
	for_each_possible_cpu(i) {
9419
		struct rq *rq;
L
Linus Torvalds 已提交
9420 9421 9422

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9423
		rq->nr_running = 0;
9424 9425
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9426
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9427
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9428
#ifdef CONFIG_FAIR_GROUP_SCHED
9429
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9430
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9446
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9447 9448 9449 9450
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9451
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9452
#elif defined CONFIG_USER_SCHED
9453 9454
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9455 9456 9457 9458 9459 9460 9461 9462
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9463
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9464 9465
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9466
		init_tg_cfs_entry(&init_task_group,
9467
				&per_cpu(init_tg_cfs_rq, i),
9468 9469
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9470

9471
#endif
D
Dhaval Giani 已提交
9472 9473 9474
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9475
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9476
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9477
#ifdef CONFIG_CGROUP_SCHED
9478
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9479
#elif defined CONFIG_USER_SCHED
9480
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9481
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9482
				&per_cpu(init_rt_rq, i),
9483 9484
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9485
#endif
I
Ingo Molnar 已提交
9486
#endif
L
Linus Torvalds 已提交
9487

I
Ingo Molnar 已提交
9488 9489
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9490
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9491
		rq->sd = NULL;
G
Gregory Haskins 已提交
9492
		rq->rd = NULL;
9493
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9494
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9495
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9496
		rq->push_cpu = 0;
9497
		rq->cpu = i;
9498
		rq->online = 0;
L
Linus Torvalds 已提交
9499 9500
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9501
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9502
#endif
P
Peter Zijlstra 已提交
9503
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9504 9505 9506
		atomic_set(&rq->nr_iowait, 0);
	}

9507
	set_load_weight(&init_task);
9508

9509 9510 9511 9512
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9513
#ifdef CONFIG_SMP
9514
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9515 9516
#endif

9517 9518 9519 9520
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9534 9535 9536

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9537 9538 9539 9540
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9541

9542
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9543
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9544
#ifdef CONFIG_SMP
9545
#ifdef CONFIG_NO_HZ
9546 9547
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9548
#endif
9549
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9550
#endif /* SMP */
9551

9552 9553
	perf_counter_init();

9554
	scheduler_running = 1;
L
Linus Torvalds 已提交
9555 9556 9557
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9558 9559 9560 9561 9562 9563 9564 9565
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9566
{
9567
#ifdef in_atomic
L
Linus Torvalds 已提交
9568 9569
	static unsigned long prev_jiffy;	/* ratelimiting */

9570 9571
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9589 9590 9591 9592 9593 9594
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9595 9596 9597
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9598

9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9610 9611
void normalize_rt_tasks(void)
{
9612
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9613
	unsigned long flags;
9614
	struct rq *rq;
L
Linus Torvalds 已提交
9615

9616
	read_lock_irqsave(&tasklist_lock, flags);
9617
	do_each_thread(g, p) {
9618 9619 9620 9621 9622 9623
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9624 9625
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9626 9627 9628
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9629
#endif
I
Ingo Molnar 已提交
9630 9631 9632 9633 9634 9635 9636 9637

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9638
			continue;
I
Ingo Molnar 已提交
9639
		}
L
Linus Torvalds 已提交
9640

9641
		spin_lock(&p->pi_lock);
9642
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9643

9644
		normalize_task(rq, p);
9645

9646
		__task_rq_unlock(rq);
9647
		spin_unlock(&p->pi_lock);
9648 9649
	} while_each_thread(g, p);

9650
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9651 9652 9653
}

#endif /* CONFIG_MAGIC_SYSRQ */
9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9672
struct task_struct *curr_task(int cpu)
9673 9674 9675 9676 9677 9678 9679 9680 9681 9682
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9683 9684
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9685 9686 9687 9688 9689 9690 9691
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9692
void set_curr_task(int cpu, struct task_struct *p)
9693 9694 9695 9696 9697
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9698

9699 9700
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9715 9716
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9717 9718
{
	struct cfs_rq *cfs_rq;
9719
	struct sched_entity *se;
9720
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9721 9722
	int i;

9723
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9724 9725
	if (!tg->cfs_rq)
		goto err;
9726
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9727 9728
	if (!tg->se)
		goto err;
9729 9730

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9731 9732

	for_each_possible_cpu(i) {
9733
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9734

9735 9736
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9737 9738 9739
		if (!cfs_rq)
			goto err;

9740 9741
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9742 9743 9744
		if (!se)
			goto err;

9745
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9764
#else /* !CONFG_FAIR_GROUP_SCHED */
9765 9766 9767 9768
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9769 9770
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9782
#endif /* CONFIG_FAIR_GROUP_SCHED */
9783 9784

#ifdef CONFIG_RT_GROUP_SCHED
9785 9786 9787 9788
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9789 9790
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9802 9803
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9804 9805
{
	struct rt_rq *rt_rq;
9806
	struct sched_rt_entity *rt_se;
9807 9808 9809
	struct rq *rq;
	int i;

9810
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9811 9812
	if (!tg->rt_rq)
		goto err;
9813
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9814 9815 9816
	if (!tg->rt_se)
		goto err;

9817 9818
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9819 9820 9821 9822

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9823 9824
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9825 9826
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9827

9828 9829
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9830 9831
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9832

9833
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9834 9835
	}

9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9852
#else /* !CONFIG_RT_GROUP_SCHED */
9853 9854 9855 9856
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9857 9858
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9870
#endif /* CONFIG_RT_GROUP_SCHED */
9871

9872
#ifdef CONFIG_GROUP_SCHED
9873 9874 9875 9876 9877 9878 9879 9880
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9881
struct task_group *sched_create_group(struct task_group *parent)
9882 9883 9884 9885 9886 9887 9888 9889 9890
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9891
	if (!alloc_fair_sched_group(tg, parent))
9892 9893
		goto err;

9894
	if (!alloc_rt_sched_group(tg, parent))
9895 9896
		goto err;

9897
	spin_lock_irqsave(&task_group_lock, flags);
9898
	for_each_possible_cpu(i) {
9899 9900
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9901
	}
P
Peter Zijlstra 已提交
9902
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9903 9904 9905 9906 9907

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9908
	list_add_rcu(&tg->siblings, &parent->children);
9909
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9910

9911
	return tg;
S
Srivatsa Vaddagiri 已提交
9912 9913

err:
P
Peter Zijlstra 已提交
9914
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9915 9916 9917
	return ERR_PTR(-ENOMEM);
}

9918
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9919
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9920 9921
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9922
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9923 9924
}

9925
/* Destroy runqueue etc associated with a task group */
9926
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9927
{
9928
	unsigned long flags;
9929
	int i;
S
Srivatsa Vaddagiri 已提交
9930

9931
	spin_lock_irqsave(&task_group_lock, flags);
9932
	for_each_possible_cpu(i) {
9933 9934
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9935
	}
P
Peter Zijlstra 已提交
9936
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9937
	list_del_rcu(&tg->siblings);
9938
	spin_unlock_irqrestore(&task_group_lock, flags);
9939 9940

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9941
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9942 9943
}

9944
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9945 9946 9947
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9948 9949
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9950 9951 9952 9953 9954 9955 9956 9957 9958
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9959
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9960 9961
	on_rq = tsk->se.on_rq;

9962
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9963
		dequeue_task(rq, tsk, 0);
9964 9965
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9966

P
Peter Zijlstra 已提交
9967
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9968

P
Peter Zijlstra 已提交
9969 9970 9971 9972 9973
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9974 9975 9976
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9977
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9978 9979 9980

	task_rq_unlock(rq, &flags);
}
9981
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9982

9983
#ifdef CONFIG_FAIR_GROUP_SCHED
9984
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9985 9986 9987 9988 9989
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9990
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9991 9992 9993
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9994
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9995

9996
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9997
		enqueue_entity(cfs_rq, se, 0);
9998
}
9999

10000 10001 10002 10003 10004 10005 10006 10007 10008
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10009 10010
}

10011 10012
static DEFINE_MUTEX(shares_mutex);

10013
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10014 10015
{
	int i;
10016
	unsigned long flags;
10017

10018 10019 10020 10021 10022 10023
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10024 10025
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10026 10027
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10028

10029
	mutex_lock(&shares_mutex);
10030
	if (tg->shares == shares)
10031
		goto done;
S
Srivatsa Vaddagiri 已提交
10032

10033
	spin_lock_irqsave(&task_group_lock, flags);
10034 10035
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10036
	list_del_rcu(&tg->siblings);
10037
	spin_unlock_irqrestore(&task_group_lock, flags);
10038 10039 10040 10041 10042 10043 10044 10045

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10046
	tg->shares = shares;
10047 10048 10049 10050 10051
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10052
		set_se_shares(tg->se[i], shares);
10053
	}
S
Srivatsa Vaddagiri 已提交
10054

10055 10056 10057 10058
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10059
	spin_lock_irqsave(&task_group_lock, flags);
10060 10061
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10062
	list_add_rcu(&tg->siblings, &tg->parent->children);
10063
	spin_unlock_irqrestore(&task_group_lock, flags);
10064
done:
10065
	mutex_unlock(&shares_mutex);
10066
	return 0;
S
Srivatsa Vaddagiri 已提交
10067 10068
}

10069 10070 10071 10072
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10073
#endif
10074

10075
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10076
/*
P
Peter Zijlstra 已提交
10077
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10078
 */
P
Peter Zijlstra 已提交
10079 10080 10081 10082 10083
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10084
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10085

P
Peter Zijlstra 已提交
10086
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10087 10088
}

P
Peter Zijlstra 已提交
10089 10090
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10091
{
P
Peter Zijlstra 已提交
10092
	struct task_struct *g, *p;
10093

P
Peter Zijlstra 已提交
10094 10095 10096 10097
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10098

P
Peter Zijlstra 已提交
10099 10100
	return 0;
}
10101

P
Peter Zijlstra 已提交
10102 10103 10104 10105 10106
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10107

P
Peter Zijlstra 已提交
10108 10109 10110 10111 10112 10113
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10114

P
Peter Zijlstra 已提交
10115 10116
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10117

P
Peter Zijlstra 已提交
10118 10119 10120
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10121 10122
	}

10123 10124 10125 10126 10127 10128 10129
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10130 10131 10132 10133 10134
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10135

10136 10137 10138
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10139 10140
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10141

P
Peter Zijlstra 已提交
10142
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10143

10144 10145 10146 10147 10148
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10149

10150 10151 10152
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10153 10154 10155
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10156

P
Peter Zijlstra 已提交
10157 10158 10159 10160
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10161

P
Peter Zijlstra 已提交
10162
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10163
	}
P
Peter Zijlstra 已提交
10164

P
Peter Zijlstra 已提交
10165 10166 10167 10168
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10169 10170
}

P
Peter Zijlstra 已提交
10171
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10172
{
P
Peter Zijlstra 已提交
10173 10174 10175 10176 10177 10178 10179
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10180 10181
}

10182 10183
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10184
{
P
Peter Zijlstra 已提交
10185
	int i, err = 0;
P
Peter Zijlstra 已提交
10186 10187

	mutex_lock(&rt_constraints_mutex);
10188
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10189 10190
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10191
		goto unlock;
P
Peter Zijlstra 已提交
10192 10193

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10194 10195
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10196 10197 10198 10199 10200 10201 10202 10203 10204

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10205
 unlock:
10206
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10207 10208 10209
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10210 10211
}

10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10224 10225 10226 10227
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10228
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10229 10230
		return -1;

10231
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10232 10233 10234
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10235 10236 10237 10238 10239 10240 10241 10242

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10243 10244 10245
	if (rt_period == 0)
		return -EINVAL;

10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10260
	u64 runtime, period;
10261 10262
	int ret = 0;

10263 10264 10265
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10266 10267 10268 10269 10270 10271 10272 10273
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10274

10275
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10276
	read_lock(&tasklist_lock);
10277
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10278
	read_unlock(&tasklist_lock);
10279 10280 10281 10282
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10283 10284 10285 10286 10287 10288 10289 10290 10291 10292

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10293
#else /* !CONFIG_RT_GROUP_SCHED */
10294 10295
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10296 10297 10298
	unsigned long flags;
	int i;

10299 10300 10301
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10302 10303 10304 10305 10306 10307 10308
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10309 10310 10311 10312 10313 10314 10315 10316 10317 10318
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10319 10320
	return 0;
}
10321
#endif /* CONFIG_RT_GROUP_SCHED */
10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10352

10353
#ifdef CONFIG_CGROUP_SCHED
10354 10355

/* return corresponding task_group object of a cgroup */
10356
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10357
{
10358 10359
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10360 10361 10362
}

static struct cgroup_subsys_state *
10363
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10364
{
10365
	struct task_group *tg, *parent;
10366

10367
	if (!cgrp->parent) {
10368 10369 10370 10371
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10372 10373
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10374 10375 10376 10377 10378 10379
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10380 10381
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10382
{
10383
	struct task_group *tg = cgroup_tg(cgrp);
10384 10385 10386 10387

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10388 10389 10390
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10391
{
10392
#ifdef CONFIG_RT_GROUP_SCHED
10393
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10394 10395
		return -EINVAL;
#else
10396 10397 10398
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10399
#endif
10400 10401 10402 10403 10404

	return 0;
}

static void
10405
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10406 10407 10408 10409 10410
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10411
#ifdef CONFIG_FAIR_GROUP_SCHED
10412
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10413
				u64 shareval)
10414
{
10415
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10416 10417
}

10418
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10419
{
10420
	struct task_group *tg = cgroup_tg(cgrp);
10421 10422 10423

	return (u64) tg->shares;
}
10424
#endif /* CONFIG_FAIR_GROUP_SCHED */
10425

10426
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10427
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10428
				s64 val)
P
Peter Zijlstra 已提交
10429
{
10430
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10431 10432
}

10433
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10434
{
10435
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10436
}
10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10448
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10449

10450
static struct cftype cpu_files[] = {
10451
#ifdef CONFIG_FAIR_GROUP_SCHED
10452 10453
	{
		.name = "shares",
10454 10455
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10456
	},
10457 10458
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10459
	{
P
Peter Zijlstra 已提交
10460
		.name = "rt_runtime_us",
10461 10462
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10463
	},
10464 10465
	{
		.name = "rt_period_us",
10466 10467
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10468
	},
10469
#endif
10470 10471 10472 10473
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10474
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10475 10476 10477
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10478 10479 10480 10481 10482 10483 10484
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10485 10486 10487
	.early_init	= 1,
};

10488
#endif	/* CONFIG_CGROUP_SCHED */
10489 10490 10491 10492 10493 10494 10495 10496 10497 10498

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10499
/* track cpu usage of a group of tasks and its child groups */
10500 10501 10502 10503
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10504
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10505
	struct cpuacct *parent;
10506 10507 10508 10509 10510
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10511
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10512
{
10513
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10526
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10527 10528
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10529
	int i;
10530 10531

	if (!ca)
10532
		goto out;
10533 10534

	ca->cpuusage = alloc_percpu(u64);
10535 10536 10537 10538 10539 10540
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10541

10542 10543 10544
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10545
	return &ca->css;
10546 10547 10548 10549 10550 10551 10552 10553 10554

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10555 10556 10557
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10558
static void
10559
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10560
{
10561
	struct cpuacct *ca = cgroup_ca(cgrp);
10562
	int i;
10563

10564 10565
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10566 10567 10568 10569
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10570 10571
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10572
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10591
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10605
/* return total cpu usage (in nanoseconds) of a group */
10606
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10607
{
10608
	struct cpuacct *ca = cgroup_ca(cgrp);
10609 10610 10611
	u64 totalcpuusage = 0;
	int i;

10612 10613
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10614 10615 10616 10617

	return totalcpuusage;
}

10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10630 10631
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10632 10633 10634 10635 10636

out:
	return err;
}

10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10671 10672 10673
static struct cftype files[] = {
	{
		.name = "usage",
10674 10675
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10676
	},
10677 10678 10679 10680
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10681 10682 10683 10684
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10685 10686
};

10687
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10688
{
10689
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10690 10691 10692 10693 10694 10695 10696 10697 10698 10699
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10700
	int cpu;
10701

L
Li Zefan 已提交
10702
	if (unlikely(!cpuacct_subsys.active))
10703 10704
		return;

10705
	cpu = task_cpu(tsk);
10706 10707 10708

	rcu_read_lock();

10709 10710
	ca = task_ca(tsk);

10711
	for (; ca; ca = ca->parent) {
10712
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10713 10714
		*cpuusage += cputime;
	}
10715 10716

	rcu_read_unlock();
10717 10718
}

10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10740 10741 10742 10743 10744 10745 10746 10747
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
		spin_lock_irqsave(&rq->lock, flags);
		list_add(&req->list, &rq->migration_queue);
		spin_unlock_irqrestore(&rq->lock, flags);
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
		spin_lock_irqsave(&rq->lock, flags);
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
		spin_unlock_irqrestore(&rq->lock, flags);
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */