sched.c 181.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
30
#include <linux/capability.h>
L
Linus Torvalds 已提交
31 32
#include <linux/completion.h>
#include <linux/kernel_stat.h>
33
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
37
#include <linux/freezer.h>
38
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/times.h>
52
#include <linux/tsacct_kern.h>
53
#include <linux/kprobes.h>
54
#include <linux/delayacct.h>
55
#include <linux/reciprocal_div.h>
L
Linus Torvalds 已提交
56

57
#include <asm/tlb.h>
L
Linus Torvalds 已提交
58 59
#include <asm/unistd.h>

60 61 62 63 64 65 66 67 68 69
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
#define ON_RUNQUEUE_WEIGHT	 30
#define CHILD_PENALTY		 95
#define PARENT_PENALTY		100
#define EXIT_WEIGHT		  3
#define PRIO_BONUS_RATIO	 25
#define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
#define INTERACTIVE_DELTA	  2
#define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS)
#define STARVATION_LIMIT	(MAX_SLEEP_AVG)
#define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG))

/*
 * If a task is 'interactive' then we reinsert it in the active
 * array after it has expired its current timeslice. (it will not
 * continue to run immediately, it will still roundrobin with
 * other interactive tasks.)
 *
 * This part scales the interactivity limit depending on niceness.
 *
 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
 * Here are a few examples of different nice levels:
 *
 *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
 *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
 *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
 *
 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
 *  priority range a task can explore, a value of '1' means the
 *  task is rated interactive.)
 *
 * Ie. nice +19 tasks can never get 'interactive' enough to be
 * reinserted into the active array. And only heavily CPU-hog nice -20
 * tasks will be expired. Default nice 0 tasks are somewhere between,
 * it takes some effort for them to get interactive, but it's not
 * too hard.
 */

#define CURRENT_BONUS(p) \
	(NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
		MAX_SLEEP_AVG)

#define GRANULARITY	(10 * HZ / 1000 ? : 1)

#ifdef CONFIG_SMP
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
			num_online_cpus())
#else
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
#endif

#define SCALE(v1,v1_max,v2_max) \
	(v1) * (v2_max) / (v1_max)

#define DELTA(p) \
161 162
	(SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
		INTERACTIVE_DELTA)
L
Linus Torvalds 已提交
163 164 165 166 167 168 169 170 171

#define TASK_INTERACTIVE(p) \
	((p)->prio <= (p)->static_prio - DELTA(p))

#define INTERACTIVE_SLEEP(p) \
	(JIFFIES_TO_NS(MAX_SLEEP_AVG * \
		(MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))

#define TASK_PREEMPTS_CURR(p, rq) \
172
	((p)->prio < (rq)->curr->prio)
L
Linus Torvalds 已提交
173 174

#define SCALE_PRIO(x, prio) \
175
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
L
Linus Torvalds 已提交
176

177
static unsigned int static_prio_timeslice(int static_prio)
L
Linus Torvalds 已提交
178
{
179 180
	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
L
Linus Torvalds 已提交
181
	else
182
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
L
Linus Torvalds 已提交
183
}
184

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

206 207 208 209 210 211 212 213 214
/*
 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
 * to time slice values: [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */

215
static inline unsigned int task_timeslice(struct task_struct *p)
216 217 218 219
{
	return static_prio_timeslice(p->static_prio);
}

L
Linus Torvalds 已提交
220 221 222 223 224 225
/*
 * These are the runqueue data structures:
 */

struct prio_array {
	unsigned int nr_active;
226
	DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236
	struct list_head queue[MAX_PRIO];
};

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
237
struct rq {
L
Linus Torvalds 已提交
238 239 240 241 242 243 244
	spinlock_t lock;

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
245
	unsigned long raw_weighted_load;
L
Linus Torvalds 已提交
246
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
247
	unsigned long cpu_load[3];
248
	unsigned char idle_at_tick;
249 250 251
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
L
Linus Torvalds 已提交
252 253 254 255 256 257 258 259 260 261 262 263
#endif
	unsigned long long nr_switches;

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

	unsigned long expired_timestamp;
264 265
	/* Cached timestamp set by update_cpu_clock() */
	unsigned long long most_recent_timestamp;
266
	struct task_struct *curr, *idle;
267
	unsigned long next_balance;
L
Linus Torvalds 已提交
268
	struct mm_struct *prev_mm;
269
	struct prio_array *active, *expired, arrays[2];
L
Linus Torvalds 已提交
270 271 272 273 274 275 276 277 278
	int best_expired_prio;
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
279
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
280

281
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
304
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
305 306
};

307
static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
308
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
309

310 311 312 313 314 315 316 317 318
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
319 320
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
321
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
322 323 324 325
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
326 327
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
328 329 330 331 332 333 334

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

#ifndef prepare_arch_switch
335 336 337 338 339 340 341
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
342
static inline int task_running(struct rq *rq, struct task_struct *p)
343 344 345 346
{
	return rq->curr == p;
}

347
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
348 349 350
{
}

351
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
352
{
353 354 355 356
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
357 358 359 360 361 362 363
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

364 365 366 367
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
368
static inline int task_running(struct rq *rq, struct task_struct *p)
369 370 371 372 373 374 375 376
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

377
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

394
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
395 396 397 398 399 400 401 402 403 404 405 406
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
407
#endif
408 409
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
410

411 412 413 414
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
415
static inline struct rq *__task_rq_lock(struct task_struct *p)
416 417
	__acquires(rq->lock)
{
418
	struct rq *rq;
419 420 421 422 423 424 425 426 427 428 429

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
430 431 432 433 434
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
435
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
436 437
	__acquires(rq->lock)
{
438
	struct rq *rq;
L
Linus Torvalds 已提交
439 440 441 442 443 444 445 446 447 448 449 450

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

451
static inline void __task_rq_unlock(struct rq *rq)
452 453 454 455 456
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

457
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
458 459 460 461 462 463 464 465 466 467
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

#ifdef CONFIG_SCHEDSTATS
/*
 * bump this up when changing the output format or the meaning of an existing
 * format, so that tools can adapt (or abort)
 */
468
#define SCHEDSTAT_VERSION 14
L
Linus Torvalds 已提交
469 470 471 472 473 474 475 476

static int show_schedstat(struct seq_file *seq, void *v)
{
	int cpu;

	seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
	seq_printf(seq, "timestamp %lu\n", jiffies);
	for_each_online_cpu(cpu) {
477
		struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
#ifdef CONFIG_SMP
		struct sched_domain *sd;
		int dcnt = 0;
#endif

		/* runqueue-specific stats */
		seq_printf(seq,
		    "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
		    cpu, rq->yld_both_empty,
		    rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
		    rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
		    rq->ttwu_cnt, rq->ttwu_local,
		    rq->rq_sched_info.cpu_time,
		    rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);

		seq_printf(seq, "\n");

#ifdef CONFIG_SMP
		/* domain-specific stats */
N
Nick Piggin 已提交
497
		preempt_disable();
L
Linus Torvalds 已提交
498 499 500 501 502 503 504 505
		for_each_domain(cpu, sd) {
			enum idle_type itype;
			char mask_str[NR_CPUS];

			cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
			seq_printf(seq, "domain%d %s", dcnt++, mask_str);
			for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
					itype++) {
506 507
				seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
						"%lu",
L
Linus Torvalds 已提交
508 509 510 511 512 513 514
				    sd->lb_cnt[itype],
				    sd->lb_balanced[itype],
				    sd->lb_failed[itype],
				    sd->lb_imbalance[itype],
				    sd->lb_gained[itype],
				    sd->lb_hot_gained[itype],
				    sd->lb_nobusyq[itype],
515
				    sd->lb_nobusyg[itype]);
L
Linus Torvalds 已提交
516
			}
517 518
			seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
			    " %lu %lu %lu\n",
L
Linus Torvalds 已提交
519
			    sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
520 521
			    sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
			    sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
522 523
			    sd->ttwu_wake_remote, sd->ttwu_move_affine,
			    sd->ttwu_move_balance);
L
Linus Torvalds 已提交
524
		}
N
Nick Piggin 已提交
525
		preempt_enable();
L
Linus Torvalds 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
#endif
	}
	return 0;
}

static int schedstat_open(struct inode *inode, struct file *file)
{
	unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
	char *buf = kmalloc(size, GFP_KERNEL);
	struct seq_file *m;
	int res;

	if (!buf)
		return -ENOMEM;
	res = single_open(file, show_schedstat, NULL);
	if (!res) {
		m = file->private_data;
		m->buf = buf;
		m->size = size;
	} else
		kfree(buf);
	return res;
}

550
const struct file_operations proc_schedstat_operations = {
L
Linus Torvalds 已提交
551 552 553 554 555 556
	.open    = schedstat_open,
	.read    = seq_read,
	.llseek  = seq_lseek,
	.release = single_release,
};

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
/*
 * Expects runqueue lock to be held for atomicity of update
 */
static inline void
rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
{
	if (rq) {
		rq->rq_sched_info.run_delay += delta_jiffies;
		rq->rq_sched_info.pcnt++;
	}
}

/*
 * Expects runqueue lock to be held for atomicity of update
 */
static inline void
rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
{
	if (rq)
		rq->rq_sched_info.cpu_time += delta_jiffies;
}
L
Linus Torvalds 已提交
578 579 580
# define schedstat_inc(rq, field)	do { (rq)->field++; } while (0)
# define schedstat_add(rq, field, amt)	do { (rq)->field += (amt); } while (0)
#else /* !CONFIG_SCHEDSTATS */
581 582 583 584 585 586
static inline void
rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
{}
static inline void
rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
{}
L
Linus Torvalds 已提交
587 588 589 590 591
# define schedstat_inc(rq, field)	do { } while (0)
# define schedstat_add(rq, field, amt)	do { } while (0)
#endif

/*
592
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
593
 */
594
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
595 596
	__acquires(rq->lock)
{
597
	struct rq *rq;
L
Linus Torvalds 已提交
598 599 600 601 602 603 604 605

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

606
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
L
Linus Torvalds 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
/*
 * Called when a process is dequeued from the active array and given
 * the cpu.  We should note that with the exception of interactive
 * tasks, the expired queue will become the active queue after the active
 * queue is empty, without explicitly dequeuing and requeuing tasks in the
 * expired queue.  (Interactive tasks may be requeued directly to the
 * active queue, thus delaying tasks in the expired queue from running;
 * see scheduler_tick()).
 *
 * This function is only called from sched_info_arrive(), rather than
 * dequeue_task(). Even though a task may be queued and dequeued multiple
 * times as it is shuffled about, we're really interested in knowing how
 * long it was from the *first* time it was queued to the time that it
 * finally hit a cpu.
 */
622
static inline void sched_info_dequeued(struct task_struct *t)
L
Linus Torvalds 已提交
623 624 625 626 627 628 629 630 631
{
	t->sched_info.last_queued = 0;
}

/*
 * Called when a task finally hits the cpu.  We can now calculate how
 * long it was waiting to run.  We also note when it began so that we
 * can keep stats on how long its timeslice is.
 */
632
static void sched_info_arrive(struct task_struct *t)
L
Linus Torvalds 已提交
633
{
634
	unsigned long now = jiffies, delta_jiffies = 0;
L
Linus Torvalds 已提交
635 636

	if (t->sched_info.last_queued)
637
		delta_jiffies = now - t->sched_info.last_queued;
L
Linus Torvalds 已提交
638
	sched_info_dequeued(t);
639
	t->sched_info.run_delay += delta_jiffies;
L
Linus Torvalds 已提交
640 641 642
	t->sched_info.last_arrival = now;
	t->sched_info.pcnt++;

643
	rq_sched_info_arrive(task_rq(t), delta_jiffies);
L
Linus Torvalds 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
}

/*
 * Called when a process is queued into either the active or expired
 * array.  The time is noted and later used to determine how long we
 * had to wait for us to reach the cpu.  Since the expired queue will
 * become the active queue after active queue is empty, without dequeuing
 * and requeuing any tasks, we are interested in queuing to either. It
 * is unusual but not impossible for tasks to be dequeued and immediately
 * requeued in the same or another array: this can happen in sched_yield(),
 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
 * to runqueue.
 *
 * This function is only called from enqueue_task(), but also only updates
 * the timestamp if it is already not set.  It's assumed that
 * sched_info_dequeued() will clear that stamp when appropriate.
 */
661
static inline void sched_info_queued(struct task_struct *t)
L
Linus Torvalds 已提交
662
{
663 664 665
	if (unlikely(sched_info_on()))
		if (!t->sched_info.last_queued)
			t->sched_info.last_queued = jiffies;
L
Linus Torvalds 已提交
666 667 668 669 670 671
}

/*
 * Called when a process ceases being the active-running process, either
 * voluntarily or involuntarily.  Now we can calculate how long we ran.
 */
672
static inline void sched_info_depart(struct task_struct *t)
L
Linus Torvalds 已提交
673
{
674
	unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
L
Linus Torvalds 已提交
675

676 677
	t->sched_info.cpu_time += delta_jiffies;
	rq_sched_info_depart(task_rq(t), delta_jiffies);
L
Linus Torvalds 已提交
678 679 680 681 682 683 684
}

/*
 * Called when tasks are switched involuntarily due, typically, to expiring
 * their time slice.  (This may also be called when switching to or from
 * the idle task.)  We are only called when prev != next.
 */
685
static inline void
686
__sched_info_switch(struct task_struct *prev, struct task_struct *next)
L
Linus Torvalds 已提交
687
{
688
	struct rq *rq = task_rq(prev);
L
Linus Torvalds 已提交
689 690 691 692 693 694 695 696 697 698 699 700

	/*
	 * prev now departs the cpu.  It's not interesting to record
	 * stats about how efficient we were at scheduling the idle
	 * process, however.
	 */
	if (prev != rq->idle)
		sched_info_depart(prev);

	if (next != rq->idle)
		sched_info_arrive(next);
}
701 702 703 704 705 706
static inline void
sched_info_switch(struct task_struct *prev, struct task_struct *next)
{
	if (unlikely(sched_info_on()))
		__sched_info_switch(prev, next);
}
L
Linus Torvalds 已提交
707 708 709
#else
#define sched_info_queued(t)		do { } while (0)
#define sched_info_switch(t, next)	do { } while (0)
710
#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
L
Linus Torvalds 已提交
711 712 713 714

/*
 * Adding/removing a task to/from a priority array:
 */
715
static void dequeue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
716 717 718 719 720 721 722
{
	array->nr_active--;
	list_del(&p->run_list);
	if (list_empty(array->queue + p->prio))
		__clear_bit(p->prio, array->bitmap);
}

723
static void enqueue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
724 725 726 727 728 729 730 731 732 733 734 735
{
	sched_info_queued(p);
	list_add_tail(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
736
static void requeue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
737 738 739 740
{
	list_move_tail(&p->run_list, array->queue + p->prio);
}

741 742
static inline void
enqueue_task_head(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
743 744 745 746 747 748 749 750
{
	list_add(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

/*
751
 * __normal_prio - return the priority that is based on the static
L
Linus Torvalds 已提交
752 753 754 755 756 757 758 759 760 761 762 763
 * priority but is modified by bonuses/penalties.
 *
 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
 * into the -5 ... 0 ... +5 bonus/penalty range.
 *
 * We use 25% of the full 0...39 priority range so that:
 *
 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
 *
 * Both properties are important to certain workloads.
 */
764

765
static inline int __normal_prio(struct task_struct *p)
L
Linus Torvalds 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778
{
	int bonus, prio;

	bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;

	prio = p->static_prio - bonus;
	if (prio < MAX_RT_PRIO)
		prio = MAX_RT_PRIO;
	if (prio > MAX_PRIO-1)
		prio = MAX_PRIO-1;
	return prio;
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

/*
 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
 * If static_prio_timeslice() is ever changed to break this assumption then
 * this code will need modification
 */
#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
#define LOAD_WEIGHT(lp) \
	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
#define PRIO_TO_LOAD_WEIGHT(prio) \
	LOAD_WEIGHT(static_prio_timeslice(prio))
#define RTPRIO_TO_LOAD_WEIGHT(rp) \
	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))

801
static void set_load_weight(struct task_struct *p)
802
{
803
	if (has_rt_policy(p)) {
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
#ifdef CONFIG_SMP
		if (p == task_rq(p)->migration_thread)
			/*
			 * The migration thread does the actual balancing.
			 * Giving its load any weight will skew balancing
			 * adversely.
			 */
			p->load_weight = 0;
		else
#endif
			p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
	} else
		p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
}

819
static inline void
820
inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
821 822 823 824
{
	rq->raw_weighted_load += p->load_weight;
}

825
static inline void
826
dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
827 828 829 830
{
	rq->raw_weighted_load -= p->load_weight;
}

831
static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
832 833 834 835 836
{
	rq->nr_running++;
	inc_raw_weighted_load(rq, p);
}

837
static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
838 839 840 841 842
{
	rq->nr_running--;
	dec_raw_weighted_load(rq, p);
}

843 844 845 846 847 848 849
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
850
static inline int normal_prio(struct task_struct *p)
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
{
	int prio;

	if (has_rt_policy(p))
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
868
static int effective_prio(struct task_struct *p)
869 870 871 872 873 874 875 876 877 878 879 880
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
881 882 883
/*
 * __activate_task - move a task to the runqueue.
 */
884
static void __activate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
885
{
886
	struct prio_array *target = rq->active;
887

888
	if (batch_task(p))
889 890
		target = rq->expired;
	enqueue_task(p, target);
891
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
892 893 894 895 896
}

/*
 * __activate_idle_task - move idle task to the _front_ of runqueue.
 */
897
static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
898 899
{
	enqueue_task_head(p, rq->active);
900
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
901 902
}

903 904 905 906
/*
 * Recalculate p->normal_prio and p->prio after having slept,
 * updating the sleep-average too:
 */
907
static int recalc_task_prio(struct task_struct *p, unsigned long long now)
L
Linus Torvalds 已提交
908 909
{
	/* Caller must always ensure 'now >= p->timestamp' */
910
	unsigned long sleep_time = now - p->timestamp;
L
Linus Torvalds 已提交
911

912
	if (batch_task(p))
913
		sleep_time = 0;
L
Linus Torvalds 已提交
914 915 916

	if (likely(sleep_time > 0)) {
		/*
917 918 919
		 * This ceiling is set to the lowest priority that would allow
		 * a task to be reinserted into the active array on timeslice
		 * completion.
L
Linus Torvalds 已提交
920
		 */
921
		unsigned long ceiling = INTERACTIVE_SLEEP(p);
922

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
		if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
			/*
			 * Prevents user tasks from achieving best priority
			 * with one single large enough sleep.
			 */
			p->sleep_avg = ceiling;
			/*
			 * Using INTERACTIVE_SLEEP() as a ceiling places a
			 * nice(0) task 1ms sleep away from promotion, and
			 * gives it 700ms to round-robin with no chance of
			 * being demoted.  This is more than generous, so
			 * mark this sleep as non-interactive to prevent the
			 * on-runqueue bonus logic from intervening should
			 * this task not receive cpu immediately.
			 */
			p->sleep_type = SLEEP_NONINTERACTIVE;
L
Linus Torvalds 已提交
939 940 941 942 943 944
		} else {
			/*
			 * Tasks waking from uninterruptible sleep are
			 * limited in their sleep_avg rise as they
			 * are likely to be waiting on I/O
			 */
945
			if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
946
				if (p->sleep_avg >= ceiling)
L
Linus Torvalds 已提交
947 948
					sleep_time = 0;
				else if (p->sleep_avg + sleep_time >=
949 950 951
					 ceiling) {
						p->sleep_avg = ceiling;
						sleep_time = 0;
L
Linus Torvalds 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965
				}
			}

			/*
			 * This code gives a bonus to interactive tasks.
			 *
			 * The boost works by updating the 'average sleep time'
			 * value here, based on ->timestamp. The more time a
			 * task spends sleeping, the higher the average gets -
			 * and the higher the priority boost gets as well.
			 */
			p->sleep_avg += sleep_time;

		}
966 967
		if (p->sleep_avg > NS_MAX_SLEEP_AVG)
			p->sleep_avg = NS_MAX_SLEEP_AVG;
L
Linus Torvalds 已提交
968 969
	}

970
	return effective_prio(p);
L
Linus Torvalds 已提交
971 972 973 974 975 976 977 978
}

/*
 * activate_task - move a task to the runqueue and do priority recalculation
 *
 * Update all the scheduling statistics stuff. (sleep average
 * calculation, priority modifiers, etc.)
 */
979
static void activate_task(struct task_struct *p, struct rq *rq, int local)
L
Linus Torvalds 已提交
980 981 982
{
	unsigned long long now;

983 984 985
	if (rt_task(p))
		goto out;

L
Linus Torvalds 已提交
986 987 988 989
	now = sched_clock();
#ifdef CONFIG_SMP
	if (!local) {
		/* Compensate for drifting sched_clock */
990
		struct rq *this_rq = this_rq();
991 992
		now = (now - this_rq->most_recent_timestamp)
			+ rq->most_recent_timestamp;
L
Linus Torvalds 已提交
993 994 995
	}
#endif

I
Ingo Molnar 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	/*
	 * Sleep time is in units of nanosecs, so shift by 20 to get a
	 * milliseconds-range estimation of the amount of time that the task
	 * spent sleeping:
	 */
	if (unlikely(prof_on == SLEEP_PROFILING)) {
		if (p->state == TASK_UNINTERRUPTIBLE)
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
				     (now - p->timestamp) >> 20);
	}

1007
	p->prio = recalc_task_prio(p, now);
L
Linus Torvalds 已提交
1008 1009 1010 1011 1012

	/*
	 * This checks to make sure it's not an uninterruptible task
	 * that is now waking up.
	 */
1013
	if (p->sleep_type == SLEEP_NORMAL) {
L
Linus Torvalds 已提交
1014 1015 1016 1017 1018 1019 1020 1021
		/*
		 * Tasks which were woken up by interrupts (ie. hw events)
		 * are most likely of interactive nature. So we give them
		 * the credit of extending their sleep time to the period
		 * of time they spend on the runqueue, waiting for execution
		 * on a CPU, first time around:
		 */
		if (in_interrupt())
1022
			p->sleep_type = SLEEP_INTERRUPTED;
L
Linus Torvalds 已提交
1023 1024 1025 1026 1027
		else {
			/*
			 * Normal first-time wakeups get a credit too for
			 * on-runqueue time, but it will be weighted down:
			 */
1028
			p->sleep_type = SLEEP_INTERACTIVE;
L
Linus Torvalds 已提交
1029 1030 1031
		}
	}
	p->timestamp = now;
1032
out:
L
Linus Torvalds 已提交
1033 1034 1035 1036 1037 1038
	__activate_task(p, rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1039
static void deactivate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
1040
{
1041
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	dequeue_task(p, p->array);
	p->array = NULL;
}

/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP
1054 1055 1056 1057 1058

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1059
static void resched_task(struct task_struct *p)
L
Linus Torvalds 已提交
1060
{
1061
	int cpu;
L
Linus Torvalds 已提交
1062 1063 1064

	assert_spin_locked(&task_rq(p)->lock);

1065 1066 1067 1068
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
L
Linus Torvalds 已提交
1069

1070 1071 1072 1073
	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

1074
	/* NEED_RESCHED must be visible before we test polling */
1075
	smp_mb();
1076
	if (!tsk_is_polling(p))
1077
		smp_send_reschedule(cpu);
L
Linus Torvalds 已提交
1078
}
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
L
Linus Torvalds 已提交
1090
#else
1091
static inline void resched_task(struct task_struct *p)
L
Linus Torvalds 已提交
1092
{
1093
	assert_spin_locked(&task_rq(p)->lock);
L
Linus Torvalds 已提交
1094 1095 1096 1097 1098 1099 1100 1101
	set_tsk_need_resched(p);
}
#endif

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1102
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1103 1104 1105 1106
{
	return cpu_curr(task_cpu(p)) == p;
}

1107 1108 1109 1110 1111 1112
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->raw_weighted_load;
}

L
Linus Torvalds 已提交
1113
#ifdef CONFIG_SMP
1114
struct migration_req {
L
Linus Torvalds 已提交
1115 1116
	struct list_head list;

1117
	struct task_struct *task;
L
Linus Torvalds 已提交
1118 1119 1120
	int dest_cpu;

	struct completion done;
1121
};
L
Linus Torvalds 已提交
1122 1123 1124 1125 1126

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1127
static int
1128
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1129
{
1130
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
	if (!p->array && !task_running(rq, p)) {
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1145

L
Linus Torvalds 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1158
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1159 1160
{
	unsigned long flags;
1161
	struct rq *rq;
1162 1163
	struct prio_array *array;
	int running;
L
Linus Torvalds 已提交
1164 1165

repeat:
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1193
	rq = task_rq_lock(p, &flags);
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	running = task_running(rq, p);
	array = p->array;
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1205 1206 1207
		cpu_relax();
		goto repeat;
	}
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
	if (unlikely(array)) {
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1243
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1255 1256
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1257 1258 1259 1260
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1261
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1262
{
1263
	struct rq *rq = cpu_rq(cpu);
1264

1265
	if (type == 0)
1266
		return rq->raw_weighted_load;
1267

1268
	return min(rq->cpu_load[type-1], rq->raw_weighted_load);
L
Linus Torvalds 已提交
1269 1270 1271
}

/*
1272 1273
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1274
 */
N
Nick Piggin 已提交
1275
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1276
{
1277
	struct rq *rq = cpu_rq(cpu);
1278

N
Nick Piggin 已提交
1279
	if (type == 0)
1280
		return rq->raw_weighted_load;
1281

1282 1283 1284 1285 1286 1287 1288 1289
	return max(rq->cpu_load[type-1], rq->raw_weighted_load);
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1290
	struct rq *rq = cpu_rq(cpu);
1291 1292
	unsigned long n = rq->nr_running;

1293
	return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1294 1295
}

N
Nick Piggin 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1313 1314 1315 1316
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1333 1334
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1335 1336 1337 1338 1339 1340 1341 1342

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1343
nextgroup:
N
Nick Piggin 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1353
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1354
 */
I
Ingo Molnar 已提交
1355 1356
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1357
{
1358
	cpumask_t tmp;
N
Nick Piggin 已提交
1359 1360 1361 1362
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1363 1364 1365 1366
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1367
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1393

1394
	for_each_domain(cpu, tmp) {
1395 1396 1397 1398 1399
 		/*
 	 	 * If power savings logic is enabled for a domain, stop there.
 	 	 */
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1400 1401
		if (tmp->flags & flag)
			sd = tmp;
1402
	}
N
Nick Piggin 已提交
1403 1404 1405 1406

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1407 1408 1409 1410 1411 1412
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1413 1414 1415

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1416 1417 1418 1419
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1420

1421
		new_cpu = find_idlest_cpu(group, t, cpu);
1422 1423 1424 1425 1426
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1427

1428
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1455
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1456 1457 1458 1459 1460
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1471 1472 1473 1474
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1475
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1476 1477 1478 1479 1480
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
		}
N
Nick Piggin 已提交
1481 1482
		else
			break;
L
Linus Torvalds 已提交
1483 1484 1485 1486
	}
	return cpu;
}
#else
1487
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1507
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1508 1509 1510 1511
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1512
	struct rq *rq;
L
Linus Torvalds 已提交
1513
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1514
	struct sched_domain *sd, *this_sd = NULL;
1515
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

	if (p->array)
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1534 1535
	new_cpu = cpu;

L
Linus Torvalds 已提交
1536 1537 1538
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1539 1540 1541 1542 1543 1544 1545 1546
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1547 1548 1549
		}
	}

N
Nick Piggin 已提交
1550
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1551 1552 1553
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1554
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1555
	 */
N
Nick Piggin 已提交
1556 1557 1558
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1559

1560 1561
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1562 1563
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1564

N
Nick Piggin 已提交
1565 1566
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1567 1568
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1569 1570 1571
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1572

L
Linus Torvalds 已提交
1573
			/*
1574 1575 1576
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1577
			 */
1578
			if (sync)
1579
				tl -= current->load_weight;
1580 1581

			if ((tl <= load &&
1582 1583
				tl + target_load(cpu, idx) <= tl_per_task) ||
				100*(tl + p->load_weight) <= imbalance*load) {
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
		if (p->array)
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
	if (old_state == TASK_UNINTERRUPTIBLE) {
		rq->nr_uninterruptible--;
		/*
		 * Tasks on involuntary sleep don't earn
		 * sleep_avg beyond just interactive state.
		 */
1632
		p->sleep_type = SLEEP_NONINTERACTIVE;
1633
	} else
L
Linus Torvalds 已提交
1634

I
Ingo Molnar 已提交
1635 1636
	/*
	 * Tasks that have marked their sleep as noninteractive get
1637 1638
	 * woken up with their sleep average not weighted in an
	 * interactive way.
I
Ingo Molnar 已提交
1639
	 */
1640 1641 1642 1643 1644
		if (old_state & TASK_NONINTERACTIVE)
			p->sleep_type = SLEEP_NONINTERACTIVE;


	activate_task(p, rq, cpu == this_cpu);
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
	if (!sync || cpu != this_cpu) {
		if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);
	}
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1667
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1668 1669 1670 1671 1672 1673
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1674
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1675 1676 1677 1678
{
	return try_to_wake_up(p, state, 0);
}

1679
static void task_running_tick(struct rq *rq, struct task_struct *p);
L
Linus Torvalds 已提交
1680 1681 1682 1683
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
 */
1684
void fastcall sched_fork(struct task_struct *p, int clone_flags)
L
Linus Torvalds 已提交
1685
{
N
Nick Piggin 已提交
1686 1687 1688 1689 1690 1691 1692
	int cpu = get_cpu();

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	set_task_cpu(p, cpu);

L
Linus Torvalds 已提交
1693 1694 1695 1696 1697 1698 1699
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
1700 1701 1702 1703 1704 1705

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

L
Linus Torvalds 已提交
1706 1707
	INIT_LIST_HEAD(&p->run_list);
	p->array = NULL;
1708 1709 1710
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
	if (unlikely(sched_info_on()))
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1711
#endif
1712
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1713 1714
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1715
#ifdef CONFIG_PREEMPT
1716
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1717
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
#endif
	/*
	 * Share the timeslice between parent and child, thus the
	 * total amount of pending timeslices in the system doesn't change,
	 * resulting in more scheduling fairness.
	 */
	local_irq_disable();
	p->time_slice = (current->time_slice + 1) >> 1;
	/*
	 * The remainder of the first timeslice might be recovered by
	 * the parent if the child exits early enough.
	 */
	p->first_time_slice = 1;
	current->time_slice >>= 1;
	p->timestamp = sched_clock();
	if (unlikely(!current->time_slice)) {
		/*
		 * This case is rare, it happens when the parent has only
		 * a single jiffy left from its timeslice. Taking the
		 * runqueue lock is not a problem.
		 */
		current->time_slice = 1;
1740
		task_running_tick(cpu_rq(cpu), current);
N
Nick Piggin 已提交
1741 1742 1743
	}
	local_irq_enable();
	put_cpu();
L
Linus Torvalds 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1753
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1754
{
1755
	struct rq *rq, *this_rq;
L
Linus Torvalds 已提交
1756 1757 1758 1759
	unsigned long flags;
	int this_cpu, cpu;

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1760
	BUG_ON(p->state != TASK_RUNNING);
L
Linus Torvalds 已提交
1761
	this_cpu = smp_processor_id();
N
Nick Piggin 已提交
1762
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

	/*
	 * We decrease the sleep average of forking parents
	 * and children as well, to keep max-interactive tasks
	 * from forking tasks that are max-interactive. The parent
	 * (current) is done further down, under its lock.
	 */
	p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
		CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);

	p->prio = effective_prio(p);

	if (likely(cpu == this_cpu)) {
		if (!(clone_flags & CLONE_VM)) {
			/*
			 * The VM isn't cloned, so we're in a good position to
			 * do child-runs-first in anticipation of an exec. This
			 * usually avoids a lot of COW overhead.
			 */
			if (unlikely(!current->array))
				__activate_task(p, rq);
			else {
				p->prio = current->prio;
1786
				p->normal_prio = current->normal_prio;
L
Linus Torvalds 已提交
1787 1788 1789
				list_add_tail(&p->run_list, &current->run_list);
				p->array = current->array;
				p->array->nr_active++;
1790
				inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
			}
			set_need_resched();
		} else
			/* Run child last */
			__activate_task(p, rq);
		/*
		 * We skip the following code due to cpu == this_cpu
	 	 *
		 *   task_rq_unlock(rq, &flags);
		 *   this_rq = task_rq_lock(current, &flags);
		 */
		this_rq = rq;
	} else {
		this_rq = cpu_rq(this_cpu);

		/*
		 * Not the local CPU - must adjust timestamp. This should
		 * get optimised away in the !CONFIG_SMP case.
		 */
1810 1811
		p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
					+ rq->most_recent_timestamp;
L
Linus Torvalds 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
		__activate_task(p, rq);
		if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);

		/*
		 * Parent and child are on different CPUs, now get the
		 * parent runqueue to update the parent's ->sleep_avg:
		 */
		task_rq_unlock(rq, &flags);
		this_rq = task_rq_lock(current, &flags);
	}
	current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
		PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
	task_rq_unlock(this_rq, &flags);
}

/*
 * Potentially available exiting-child timeslices are
 * retrieved here - this way the parent does not get
 * penalized for creating too many threads.
 *
 * (this cannot be used to 'generate' timeslices
 * artificially, because any timeslice recovered here
 * was given away by the parent in the first place.)
 */
1837
void fastcall sched_exit(struct task_struct *p)
L
Linus Torvalds 已提交
1838 1839
{
	unsigned long flags;
1840
	struct rq *rq;
L
Linus Torvalds 已提交
1841 1842 1843 1844 1845 1846

	/*
	 * If the child was a (relative-) CPU hog then decrease
	 * the sleep_avg of the parent as well.
	 */
	rq = task_rq_lock(p->parent, &flags);
1847
	if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
L
Linus Torvalds 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
		p->parent->time_slice += p->time_slice;
		if (unlikely(p->parent->time_slice > task_timeslice(p)))
			p->parent->time_slice = task_timeslice(p);
	}
	if (p->sleep_avg < p->parent->sleep_avg)
		p->parent->sleep_avg = p->parent->sleep_avg /
		(EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
		(EXIT_WEIGHT + 1);
	task_rq_unlock(rq, &flags);
}

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1871
static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1872 1873 1874 1875 1876
{
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1877 1878
/**
 * finish_task_switch - clean up after a task-switch
1879
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1880 1881
 * @prev: the thread we just switched away from.
 *
1882 1883 1884 1885
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1886 1887 1888 1889 1890 1891
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1892
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1893 1894 1895
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1896
	long prev_state;
L
Linus Torvalds 已提交
1897 1898 1899 1900 1901

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1902
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1903 1904
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1905
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1906 1907 1908 1909 1910
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1911
	prev_state = prev->state;
1912 1913
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
L
Linus Torvalds 已提交
1914 1915
	if (mm)
		mmdrop(mm);
1916
	if (unlikely(prev_state == TASK_DEAD)) {
1917 1918 1919 1920 1921
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
	 	 */
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1922
		put_task_struct(prev);
1923
	}
L
Linus Torvalds 已提交
1924 1925 1926 1927 1928 1929
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1930
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1931 1932
	__releases(rq->lock)
{
1933 1934
	struct rq *rq = this_rq();

1935 1936 1937 1938 1939
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1940 1941 1942 1943 1944 1945 1946 1947
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
1948
static inline struct task_struct *
1949
context_switch(struct rq *rq, struct task_struct *prev,
1950
	       struct task_struct *next)
L
Linus Torvalds 已提交
1951 1952 1953 1954
{
	struct mm_struct *mm = next->mm;
	struct mm_struct *oldmm = prev->active_mm;

1955 1956 1957 1958 1959 1960 1961
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

N
Nick Piggin 已提交
1962
	if (!mm) {
L
Linus Torvalds 已提交
1963 1964 1965 1966 1967 1968
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

N
Nick Piggin 已提交
1969
	if (!prev->mm) {
L
Linus Torvalds 已提交
1970 1971 1972 1973
		prev->active_mm = NULL;
		WARN_ON(rq->prev_mm);
		rq->prev_mm = oldmm;
	}
1974 1975 1976 1977 1978 1979 1980
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1981
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1982
#endif
L
Linus Torvalds 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

	return prev;
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2011
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2026 2027
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2028

2029
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2039
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2040 2041 2042 2043 2044
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

L
Linus Torvalds 已提交
2060 2061
#ifdef CONFIG_SMP

2062 2063 2064 2065 2066 2067 2068 2069 2070
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
{
	return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
}

L
Linus Torvalds 已提交
2071 2072 2073 2074 2075 2076
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2077
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2078 2079 2080
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2081
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2082 2083 2084 2085
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2086
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2102
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2116
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2117 2118 2119 2120
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2121 2122 2123 2124 2125
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2126
	if (unlikely(!spin_trylock(&busiest->lock))) {
2127
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2142
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2143
{
2144
	struct migration_req req;
L
Linus Torvalds 已提交
2145
	unsigned long flags;
2146
	struct rq *rq;
L
Linus Torvalds 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2157

L
Linus Torvalds 已提交
2158 2159 2160 2161 2162
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2163

L
Linus Torvalds 已提交
2164 2165 2166 2167 2168 2169 2170
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2171 2172
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2173 2174 2175 2176
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2177
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2178
	put_cpu();
N
Nick Piggin 已提交
2179 2180
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2181 2182 2183 2184 2185 2186
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
2187 2188 2189
static void pull_task(struct rq *src_rq, struct prio_array *src_array,
		      struct task_struct *p, struct rq *this_rq,
		      struct prio_array *this_array, int this_cpu)
L
Linus Torvalds 已提交
2190 2191
{
	dequeue_task(p, src_array);
2192
	dec_nr_running(p, src_rq);
L
Linus Torvalds 已提交
2193
	set_task_cpu(p, this_cpu);
2194
	inc_nr_running(p, this_rq);
L
Linus Torvalds 已提交
2195
	enqueue_task(p, this_array);
2196 2197
	p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
				+ this_rq->most_recent_timestamp;
L
Linus Torvalds 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
	if (TASK_PREEMPTS_CURR(p, this_rq))
		resched_task(this_rq->curr);
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2209
static
2210
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2211 2212
		     struct sched_domain *sd, enum idle_type idle,
		     int *all_pinned)
L
Linus Torvalds 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2222 2223 2224 2225
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2226 2227 2228

	/*
	 * Aggressive migration if:
2229
	 * 1) task is cache cold, or
L
Linus Torvalds 已提交
2230 2231 2232
	 * 2) too many balance attempts have failed.
	 */

2233 2234 2235 2236 2237
	if (sd->nr_balance_failed > sd->cache_nice_tries) {
#ifdef CONFIG_SCHEDSTATS
		if (task_hot(p, rq->most_recent_timestamp, sd))
			schedstat_inc(sd, lb_hot_gained[idle]);
#endif
L
Linus Torvalds 已提交
2238
		return 1;
2239
	}
L
Linus Torvalds 已提交
2240

2241
	if (task_hot(p, rq->most_recent_timestamp, sd))
2242
		return 0;
L
Linus Torvalds 已提交
2243 2244 2245
	return 1;
}

2246
#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2247

L
Linus Torvalds 已提交
2248
/*
2249 2250 2251
 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
 * load from busiest to this_rq, as part of a balancing operation within
 * "domain". Returns the number of tasks moved.
L
Linus Torvalds 已提交
2252 2253 2254
 *
 * Called with both runqueues locked.
 */
2255
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2256 2257 2258
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum idle_type idle,
		      int *all_pinned)
L
Linus Torvalds 已提交
2259
{
2260 2261
	int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
	    best_prio_seen, skip_for_load;
2262
	struct prio_array *array, *dst_array;
L
Linus Torvalds 已提交
2263
	struct list_head *head, *curr;
2264
	struct task_struct *tmp;
2265
	long rem_load_move;
L
Linus Torvalds 已提交
2266

2267
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2268 2269
		goto out;

2270
	rem_load_move = max_load_move;
2271
	pinned = 1;
2272
	this_best_prio = rq_best_prio(this_rq);
2273
	best_prio = rq_best_prio(busiest);
2274 2275 2276
	/*
	 * Enable handling of the case where there is more than one task
	 * with the best priority.   If the current running task is one
2277
	 * of those with prio==best_prio we know it won't be moved
2278 2279 2280
	 * and therefore it's safe to override the skip (based on load) of
	 * any task we find with that prio.
	 */
2281
	best_prio_seen = best_prio == busiest->curr->prio;
2282

L
Linus Torvalds 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
	/*
	 * We first consider expired tasks. Those will likely not be
	 * executed in the near future, and they are most likely to
	 * be cache-cold, thus switching CPUs has the least effect
	 * on them.
	 */
	if (busiest->expired->nr_active) {
		array = busiest->expired;
		dst_array = this_rq->expired;
	} else {
		array = busiest->active;
		dst_array = this_rq->active;
	}

new_array:
	/* Start searching at priority 0: */
	idx = 0;
skip_bitmap:
	if (!idx)
		idx = sched_find_first_bit(array->bitmap);
	else
		idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
	if (idx >= MAX_PRIO) {
		if (array == busiest->expired && busiest->active->nr_active) {
			array = busiest->active;
			dst_array = this_rq->active;
			goto new_array;
		}
		goto out;
	}

	head = array->queue + idx;
	curr = head->prev;
skip_queue:
2317
	tmp = list_entry(curr, struct task_struct, run_list);
L
Linus Torvalds 已提交
2318 2319 2320

	curr = curr->prev;

2321 2322 2323 2324 2325
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
2326 2327
	skip_for_load = tmp->load_weight > rem_load_move;
	if (skip_for_load && idx < this_best_prio)
2328
		skip_for_load = !best_prio_seen && idx == best_prio;
2329
	if (skip_for_load ||
2330
	    !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2331 2332

		best_prio_seen |= idx == best_prio;
L
Linus Torvalds 已提交
2333 2334 2335 2336 2337 2338 2339 2340
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}

	pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
	pulled++;
2341
	rem_load_move -= tmp->load_weight;
L
Linus Torvalds 已提交
2342

2343 2344 2345 2346 2347
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2348 2349
		if (idx < this_best_prio)
			this_best_prio = idx;
L
Linus Torvalds 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2362 2363 2364

	if (all_pinned)
		*all_pinned = pinned;
L
Linus Torvalds 已提交
2365 2366 2367 2368 2369
	return pulled;
}

/*
 * find_busiest_group finds and returns the busiest CPU group within the
2370 2371
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2372 2373 2374
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
2375
		   unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2376
		   cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2377 2378 2379
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2380
	unsigned long max_pull;
2381 2382
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2383
	int load_idx;
2384 2385 2386 2387 2388 2389
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2390 2391

	max_load = this_load = total_load = total_pwr = 0;
2392 2393
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
N
Nick Piggin 已提交
2394 2395 2396 2397 2398 2399
	if (idle == NOT_IDLE)
		load_idx = sd->busy_idx;
	else if (idle == NEWLY_IDLE)
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2400 2401

	do {
2402
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2403 2404
		int local_group;
		int i;
2405
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2406
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2407 2408 2409

		local_group = cpu_isset(this_cpu, group->cpumask);

2410 2411 2412
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2413
		/* Tally up the load of all CPUs in the group */
2414
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2415 2416

		for_each_cpu_mask(i, group->cpumask) {
2417 2418 2419 2420 2421 2422
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2423

N
Nick Piggin 已提交
2424 2425 2426
			if (*sd_idle && !idle_cpu(i))
				*sd_idle = 0;

L
Linus Torvalds 已提交
2427
			/* Bias balancing toward cpus of our domain */
2428 2429 2430 2431 2432 2433
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2434
				load = target_load(i, load_idx);
2435
			} else
N
Nick Piggin 已提交
2436
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2437 2438

			avg_load += load;
2439 2440
			sum_nr_running += rq->nr_running;
			sum_weighted_load += rq->raw_weighted_load;
L
Linus Torvalds 已提交
2441 2442
		}

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
		 * domains.
		 */
		if (local_group && balance_cpu != this_cpu && balance) {
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2453
		total_load += avg_load;
2454
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2455 2456

		/* Adjust by relative CPU power of the group */
2457 2458
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2459

2460
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2461

L
Linus Torvalds 已提交
2462 2463 2464
		if (local_group) {
			this_load = avg_load;
			this = group;
2465 2466 2467
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2468
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2469 2470
			max_load = avg_load;
			busiest = group;
2471 2472
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2473
		}
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
 		if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
 			goto group_next;

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

 		/*
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
 		 */
 		if (!power_savings_balance || sum_nr_running >= group_capacity
		    || !sum_nr_running)
 			goto group_next;

 		/*
		 * Calculate the group which has the least non-idle load.
 		 * This is the group from where we need to pick up the load
 		 * for saving power
 		 */
 		if ((sum_nr_running < min_nr_running) ||
 		    (sum_nr_running == min_nr_running &&
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
 			group_min = group;
 			min_nr_running = sum_nr_running;
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
 		}

 		/*
		 * Calculate the group which is almost near its
 		 * capacity but still has some space to pick up some load
 		 * from other group and save more power
 		 */
2519
 		if (sum_nr_running <= group_capacity - 1) {
2520 2521 2522 2523 2524 2525 2526
 			if (sum_nr_running > leader_nr_running ||
 			    (sum_nr_running == leader_nr_running &&
 			     first_cpu(group->cpumask) >
 			      first_cpu(group_leader->cpumask))) {
 				group_leader = group;
 				leader_nr_running = sum_nr_running;
 			}
2527
		}
2528 2529
group_next:
#endif
L
Linus Torvalds 已提交
2530 2531 2532
		group = group->next;
	} while (group != sd->groups);

2533
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2534 2535 2536 2537 2538 2539 2540 2541
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2542
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2566 2567

	/* Don't want to pull so many tasks that a group would go idle */
2568
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2569

L
Linus Torvalds 已提交
2570
	/* How much load to actually move to equalise the imbalance */
2571 2572
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2573 2574
			/ SCHED_LOAD_SCALE;

2575 2576 2577 2578 2579 2580 2581
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (*imbalance < busiest_load_per_task) {
2582
		unsigned long tmp, pwr_now, pwr_move;
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2594

2595 2596
		if (max_load - this_load >= busiest_load_per_task * imbn) {
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2597 2598 2599 2600 2601 2602 2603 2604 2605
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2606 2607 2608 2609
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2610 2611 2612
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2613 2614
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2615
		if (max_load > tmp)
2616
			pwr_move += busiest->__cpu_power *
2617
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2618 2619

		/* Amount of load we'd add */
2620
		if (max_load * busiest->__cpu_power <
2621
				busiest_load_per_task * SCHED_LOAD_SCALE)
2622 2623
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2624
		else
2625 2626 2627 2628
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2629 2630 2631 2632 2633 2634
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2635
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2636 2637 2638 2639 2640
	}

	return busiest;

out_balanced:
2641 2642 2643
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		goto ret;
L
Linus Torvalds 已提交
2644

2645 2646 2647 2648 2649
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2650
ret:
L
Linus Torvalds 已提交
2651 2652 2653 2654 2655 2656 2657
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2658
static struct rq *
2659
find_busiest_queue(struct sched_group *group, enum idle_type idle,
2660
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2661
{
2662
	struct rq *busiest = NULL, *rq;
2663
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2664 2665 2666
	int i;

	for_each_cpu_mask(i, group->cpumask) {
2667 2668 2669 2670

		if (!cpu_isset(i, *cpus))
			continue;

2671
		rq = cpu_rq(i);
2672

2673
		if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2674
			continue;
L
Linus Torvalds 已提交
2675

2676 2677 2678
		if (rq->raw_weighted_load > max_load) {
			max_load = rq->raw_weighted_load;
			busiest = rq;
L
Linus Torvalds 已提交
2679 2680 2681 2682 2683 2684
		}
	}

	return busiest;
}

2685 2686 2687 2688 2689 2690
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

2691 2692 2693 2694 2695
static inline unsigned long minus_1_or_zero(unsigned long n)
{
	return n > 0 ? n - 1 : 0;
}

L
Linus Torvalds 已提交
2696 2697 2698 2699
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2700
static int load_balance(int this_cpu, struct rq *this_rq,
2701 2702
			struct sched_domain *sd, enum idle_type idle,
			int *balance)
L
Linus Torvalds 已提交
2703
{
2704
	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2705 2706
	struct sched_group *group;
	unsigned long imbalance;
2707
	struct rq *busiest;
2708
	cpumask_t cpus = CPU_MASK_ALL;
2709
	unsigned long flags;
N
Nick Piggin 已提交
2710

2711 2712 2713 2714 2715 2716
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
	 * portraying it as NOT_IDLE.
	 */
2717
	if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2718
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2719
		sd_idle = 1;
L
Linus Torvalds 已提交
2720 2721 2722

	schedstat_inc(sd, lb_cnt[idle]);

2723 2724
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2725 2726
				   &cpus, balance);

2727
	if (*balance == 0)
2728 2729
		goto out_balanced;

L
Linus Torvalds 已提交
2730 2731 2732 2733 2734
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2735
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2736 2737 2738 2739 2740
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2741
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. nr_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
2753
		local_irq_save(flags);
N
Nick Piggin 已提交
2754
		double_rq_lock(this_rq, busiest);
L
Linus Torvalds 已提交
2755
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2756 2757
				      minus_1_or_zero(busiest->nr_running),
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2758
		double_rq_unlock(this_rq, busiest);
2759
		local_irq_restore(flags);
2760

2761 2762 2763 2764 2765 2766
		/*
		 * some other cpu did the load balance for us.
		 */
		if (nr_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

2767
		/* All tasks on this runqueue were pinned by CPU affinity */
2768 2769 2770 2771
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2772
			goto out_balanced;
2773
		}
L
Linus Torvalds 已提交
2774
	}
2775

L
Linus Torvalds 已提交
2776 2777 2778 2779 2780 2781
	if (!nr_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2782
			spin_lock_irqsave(&busiest->lock, flags);
2783 2784 2785 2786 2787

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2788
				spin_unlock_irqrestore(&busiest->lock, flags);
2789 2790 2791 2792
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2793 2794 2795
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2796
				active_balance = 1;
L
Linus Torvalds 已提交
2797
			}
2798
			spin_unlock_irqrestore(&busiest->lock, flags);
2799
			if (active_balance)
L
Linus Torvalds 已提交
2800 2801 2802 2803 2804 2805
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2806
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2807
		}
2808
	} else
L
Linus Torvalds 已提交
2809 2810
		sd->nr_balance_failed = 0;

2811
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2812 2813
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2814 2815 2816 2817 2818 2819 2820 2821 2822
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2823 2824
	}

2825
	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2826
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2827
		return -1;
L
Linus Torvalds 已提交
2828 2829 2830 2831 2832
	return nr_moved;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2833
	sd->nr_balance_failed = 0;
2834 2835

out_one_pinned:
L
Linus Torvalds 已提交
2836
	/* tune up the balancing interval */
2837 2838
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2839 2840
		sd->balance_interval *= 2;

2841
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2842
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2843
		return -1;
L
Linus Torvalds 已提交
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
 * this_rq is locked.
 */
2854
static int
2855
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2856 2857
{
	struct sched_group *group;
2858
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2859 2860
	unsigned long imbalance;
	int nr_moved = 0;
N
Nick Piggin 已提交
2861
	int sd_idle = 0;
2862
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2863

2864 2865 2866 2867 2868 2869 2870 2871
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
	 * portraying it as NOT_IDLE.
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2872
		sd_idle = 1;
L
Linus Torvalds 已提交
2873 2874

	schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2875 2876
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2877
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2878 2879
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2880
		goto out_balanced;
L
Linus Torvalds 已提交
2881 2882
	}

2883 2884
	busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
				&cpus);
N
Nick Piggin 已提交
2885
	if (!busiest) {
L
Linus Torvalds 已提交
2886
		schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2887
		goto out_balanced;
L
Linus Torvalds 已提交
2888 2889
	}

N
Nick Piggin 已提交
2890 2891
	BUG_ON(busiest == this_rq);

L
Linus Torvalds 已提交
2892
	schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2893 2894 2895 2896 2897 2898

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2899
					minus_1_or_zero(busiest->nr_running),
2900
					imbalance, sd, NEWLY_IDLE, NULL);
2901
		spin_unlock(&busiest->lock);
2902 2903 2904 2905 2906 2907

		if (!nr_moved) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2908 2909
	}

N
Nick Piggin 已提交
2910
	if (!nr_moved) {
L
Linus Torvalds 已提交
2911
		schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2912 2913
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2914 2915
			return -1;
	} else
2916
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2917 2918

	return nr_moved;
2919 2920 2921

out_balanced:
	schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2922
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2923
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2924
		return -1;
2925
	sd->nr_balance_failed = 0;
2926

2927
	return 0;
L
Linus Torvalds 已提交
2928 2929 2930 2931 2932 2933
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2934
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2935 2936
{
	struct sched_domain *sd;
2937 2938
	int pulled_task = 0;
	unsigned long next_balance = jiffies + 60 *  HZ;
L
Linus Torvalds 已提交
2939 2940

	for_each_domain(this_cpu, sd) {
2941 2942 2943 2944 2945 2946
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2947
			/* If we've pulled tasks over stop searching: */
2948
			pulled_task = load_balance_newidle(this_cpu,
2949 2950 2951 2952 2953 2954 2955
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2956
	}
2957 2958 2959 2960 2961 2962
	if (!pulled_task)
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
L
Linus Torvalds 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2973
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2974
{
2975
	int target_cpu = busiest_rq->push_cpu;
2976 2977
	struct sched_domain *sd;
	struct rq *target_rq;
2978

2979
	/* Is there any task to move? */
2980 2981 2982 2983
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2984 2985

	/*
2986 2987 2988
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2989
	 */
2990
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2991

2992 2993 2994 2995
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2996
	for_each_domain(target_cpu, sd) {
2997
		if ((sd->flags & SD_LOAD_BALANCE) &&
2998
		    cpu_isset(busiest_cpu, sd->span))
2999
				break;
3000
	}
3001

3002 3003
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
3004

3005 3006 3007 3008 3009 3010 3011
		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
			       RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
			       NULL))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3012
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3013 3014
}

3015
static void update_load(struct rq *this_rq)
L
Linus Torvalds 已提交
3016
{
3017
	unsigned long this_load;
3018
	unsigned int i, scale;
L
Linus Torvalds 已提交
3019

3020
	this_load = this_rq->raw_weighted_load;
3021 3022

	/* Update our load: */
3023
	for (i = 0, scale = 1; i < 3; i++, scale += scale) {
3024 3025
		unsigned long old_load, new_load;

3026 3027
		/* scale is effectively 1 << i now, and >> i divides by scale */

N
Nick Piggin 已提交
3028
		old_load = this_rq->cpu_load[i];
3029
		new_load = this_load;
N
Nick Piggin 已提交
3030 3031 3032 3033 3034 3035 3036
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
3037
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
N
Nick Piggin 已提交
3038
	}
3039 3040
}

3041 3042 3043 3044 3045 3046 3047 3048 3049
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3050
/*
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3061
 *
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3118 3119 3120 3121 3122
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
3123
static inline void rebalance_domains(int cpu, enum idle_type idle)
3124
{
3125 3126
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3127 3128
	unsigned long interval;
	struct sched_domain *sd;
3129
	/* Earliest time when we have to do rebalance again */
3130
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
3131

3132
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
		if (idle != SCHED_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;

3145 3146 3147 3148 3149
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3150
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3151
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3152 3153
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3154 3155 3156
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
L
Linus Torvalds 已提交
3157 3158
				idle = NOT_IDLE;
			}
3159
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3160
		}
3161 3162 3163
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3164 3165
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
3166 3167 3168 3169 3170 3171 3172 3173

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3174
	}
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
	int local_cpu = smp_processor_id();
	struct rq *local_rq = cpu_rq(local_cpu);
	enum idle_type idle = local_rq->idle_at_tick ? SCHED_IDLE : NOT_IDLE;

	rebalance_domains(local_cpu, idle);

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
	if (local_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == local_cpu) {
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

		cpu_clear(local_cpu, cpus);
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

			rebalance_domains(balance_cpu, SCHED_IDLE);

			rq = cpu_rq(balance_cpu);
			if (time_after(local_rq->next_balance, rq->next_balance))
				local_rq->next_balance = rq->next_balance;
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
static inline void trigger_load_balance(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3283 3284 3285 3286 3287
}
#else
/*
 * on UP we do not need to balance between CPUs:
 */
3288
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
{
}
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
 * This is called on clock ticks and on context switches.
 * Bank in p->sched_time the ns elapsed since the last tick or switch.
 */
3301
static inline void
3302
update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
L
Linus Torvalds 已提交
3303
{
3304 3305
	p->sched_time += now - p->last_ran;
	p->last_ran = rq->most_recent_timestamp = now;
L
Linus Torvalds 已提交
3306 3307 3308 3309 3310 3311
}

/*
 * Return current->sched_time plus any more ns on the sched_clock
 * that have not yet been banked.
 */
3312
unsigned long long current_sched_time(const struct task_struct *p)
L
Linus Torvalds 已提交
3313 3314 3315
{
	unsigned long long ns;
	unsigned long flags;
3316

L
Linus Torvalds 已提交
3317
	local_irq_save(flags);
3318
	ns = p->sched_time + sched_clock() - p->last_ran;
L
Linus Torvalds 已提交
3319
	local_irq_restore(flags);
3320

L
Linus Torvalds 已提交
3321 3322 3323
	return ns;
}

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
/*
 * We place interactive tasks back into the active array, if possible.
 *
 * To guarantee that this does not starve expired tasks we ignore the
 * interactivity of a task if the first expired task had to wait more
 * than a 'reasonable' amount of time. This deadline timeout is
 * load-dependent, as the frequency of array switched decreases with
 * increasing number of running tasks. We also ignore the interactivity
 * if a better static_prio task has expired:
 */
3334
static inline int expired_starving(struct rq *rq)
3335 3336 3337 3338 3339 3340 3341 3342 3343
{
	if (rq->curr->static_prio > rq->best_expired_prio)
		return 1;
	if (!STARVATION_LIMIT || !rq->expired_timestamp)
		return 0;
	if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
		return 1;
	return 0;
}
3344

L
Linus Torvalds 已提交
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3376
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3406
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3418
static void task_running_tick(struct rq *rq, struct task_struct *p)
L
Linus Torvalds 已提交
3419 3420
{
	if (p->array != rq->active) {
3421
		/* Task has expired but was not scheduled yet */
L
Linus Torvalds 已提交
3422
		set_tsk_need_resched(p);
3423
		return;
L
Linus Torvalds 已提交
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
	}
	spin_lock(&rq->lock);
	/*
	 * The task was running during this tick - update the
	 * time slice counter. Note: we do not update a thread's
	 * priority until it either goes to sleep or uses up its
	 * timeslice. This makes it possible for interactive tasks
	 * to use up their timeslices at their highest priority levels.
	 */
	if (rt_task(p)) {
		/*
		 * RR tasks need a special form of timeslice management.
		 * FIFO tasks have no timeslices.
		 */
		if ((p->policy == SCHED_RR) && !--p->time_slice) {
			p->time_slice = task_timeslice(p);
			p->first_time_slice = 0;
			set_tsk_need_resched(p);

			/* put it at the end of the queue: */
			requeue_task(p, rq->active);
		}
		goto out_unlock;
	}
	if (!--p->time_slice) {
		dequeue_task(p, rq->active);
		set_tsk_need_resched(p);
		p->prio = effective_prio(p);
		p->time_slice = task_timeslice(p);
		p->first_time_slice = 0;

		if (!rq->expired_timestamp)
			rq->expired_timestamp = jiffies;
3457
		if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
L
Linus Torvalds 已提交
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
			enqueue_task(p, rq->expired);
			if (p->static_prio < rq->best_expired_prio)
				rq->best_expired_prio = p->static_prio;
		} else
			enqueue_task(p, rq->active);
	} else {
		/*
		 * Prevent a too long timeslice allowing a task to monopolize
		 * the CPU. We do this by splitting up the timeslice into
		 * smaller pieces.
		 *
		 * Note: this does not mean the task's timeslices expire or
		 * get lost in any way, they just might be preempted by
		 * another task of equal priority. (one with higher
		 * priority would have preempted this task already.) We
		 * requeue this task to the end of the list on this priority
		 * level, which is in essence a round-robin of tasks with
		 * equal priority.
		 *
		 * This only applies to tasks in the interactive
		 * delta range with at least TIMESLICE_GRANULARITY to requeue.
		 */
		if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
			p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
			(p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
			(p->array == rq->active)) {

			requeue_task(p, rq->active);
			set_tsk_need_resched(p);
		}
	}
out_unlock:
	spin_unlock(&rq->lock);
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
}

/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	unsigned long long now = sched_clock();
	struct task_struct *p = current;
	int cpu = smp_processor_id();
3505
	int idle_at_tick = idle_cpu(cpu);
3506 3507 3508 3509
	struct rq *rq = cpu_rq(cpu);

	update_cpu_clock(p, rq, now);

3510
	if (!idle_at_tick)
3511
		task_running_tick(rq, p);
3512
#ifdef CONFIG_SMP
3513
	update_load(rq);
3514
	rq->idle_at_tick = idle_at_tick;
3515
	trigger_load_balance(cpu);
3516
#endif
L
Linus Torvalds 已提交
3517 3518 3519 3520 3521 3522 3523 3524 3525
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3526 3527
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3528 3529 3530 3531
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3532 3533
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3534 3535 3536 3537 3538 3539 3540 3541
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3542 3543
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3544 3545 3546
	/*
	 * Is the spinlock portion underflowing?
	 */
3547 3548 3549 3550
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3551 3552 3553 3554 3555 3556
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

3557 3558 3559 3560 3561 3562
static inline int interactive_sleep(enum sleep_type sleep_type)
{
	return (sleep_type == SLEEP_INTERACTIVE ||
		sleep_type == SLEEP_INTERRUPTED);
}

L
Linus Torvalds 已提交
3563 3564 3565 3566 3567
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
3568
	struct task_struct *prev, *next;
3569
	struct prio_array *array;
L
Linus Torvalds 已提交
3570 3571 3572
	struct list_head *queue;
	unsigned long long now;
	unsigned long run_time;
3573
	int cpu, idx, new_prio;
3574
	long *switch_count;
3575
	struct rq *rq;
L
Linus Torvalds 已提交
3576 3577 3578 3579 3580 3581

	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3582 3583 3584 3585
	if (unlikely(in_atomic() && !current->exit_state)) {
		printk(KERN_ERR "BUG: scheduling while atomic: "
			"%s/0x%08x/%d\n",
			current->comm, preempt_count(), current->pid);
3586
		debug_show_held_locks(current);
3587 3588
		if (irqs_disabled())
			print_irqtrace_events(current);
3589
		dump_stack();
L
Linus Torvalds 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
	}
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

need_resched:
	preempt_disable();
	prev = current;
	release_kernel_lock(prev);
need_resched_nonpreemptible:
	rq = this_rq();

	/*
	 * The idle thread is not allowed to schedule!
	 * Remove this check after it has been exercised a bit.
	 */
	if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
		printk(KERN_ERR "bad: scheduling from the idle thread!\n");
		dump_stack();
	}

	schedstat_inc(rq, sched_cnt);
	now = sched_clock();
3611
	if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
L
Linus Torvalds 已提交
3612
		run_time = now - prev->timestamp;
3613
		if (unlikely((long long)(now - prev->timestamp) < 0))
L
Linus Torvalds 已提交
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
			run_time = 0;
	} else
		run_time = NS_MAX_SLEEP_AVG;

	/*
	 * Tasks charged proportionately less run_time at high sleep_avg to
	 * delay them losing their interactive status
	 */
	run_time /= (CURRENT_BONUS(prev) ? : 1);

	spin_lock_irq(&rq->lock);

	switch_count = &prev->nivcsw;
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		switch_count = &prev->nvcsw;
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
				unlikely(signal_pending(prev))))
			prev->state = TASK_RUNNING;
		else {
			if (prev->state == TASK_UNINTERRUPTIBLE)
				rq->nr_uninterruptible++;
			deactivate_task(prev, rq);
		}
	}

	cpu = smp_processor_id();
	if (unlikely(!rq->nr_running)) {
		idle_balance(cpu, rq);
		if (!rq->nr_running) {
			next = rq->idle;
			rq->expired_timestamp = 0;
			goto switch_tasks;
		}
	}

	array = rq->active;
	if (unlikely(!array->nr_active)) {
		/*
		 * Switch the active and expired arrays.
		 */
		schedstat_inc(rq, sched_switch);
		rq->active = rq->expired;
		rq->expired = array;
		array = rq->active;
		rq->expired_timestamp = 0;
		rq->best_expired_prio = MAX_PRIO;
	}

	idx = sched_find_first_bit(array->bitmap);
	queue = array->queue + idx;
3664
	next = list_entry(queue->next, struct task_struct, run_list);
L
Linus Torvalds 已提交
3665

3666
	if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
L
Linus Torvalds 已提交
3667
		unsigned long long delta = now - next->timestamp;
3668
		if (unlikely((long long)(now - next->timestamp) < 0))
L
Linus Torvalds 已提交
3669 3670
			delta = 0;

3671
		if (next->sleep_type == SLEEP_INTERACTIVE)
L
Linus Torvalds 已提交
3672 3673 3674
			delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;

		array = next->array;
3675 3676 3677 3678 3679 3680
		new_prio = recalc_task_prio(next, next->timestamp + delta);

		if (unlikely(next->prio != new_prio)) {
			dequeue_task(next, array);
			next->prio = new_prio;
			enqueue_task(next, array);
3681
		}
L
Linus Torvalds 已提交
3682
	}
3683
	next->sleep_type = SLEEP_NORMAL;
L
Linus Torvalds 已提交
3684 3685 3686 3687
switch_tasks:
	if (next == rq->idle)
		schedstat_inc(rq, sched_goidle);
	prefetch(next);
3688
	prefetch_stack(next);
L
Linus Torvalds 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
	clear_tsk_need_resched(prev);
	rcu_qsctr_inc(task_cpu(prev));

	update_cpu_clock(prev, rq, now);

	prev->sleep_avg -= run_time;
	if ((long)prev->sleep_avg <= 0)
		prev->sleep_avg = 0;
	prev->timestamp = prev->last_ran = now;

	sched_info_switch(prev, next);
	if (likely(prev != next)) {
3701
		next->timestamp = next->last_ran = now;
L
Linus Torvalds 已提交
3702 3703 3704 3705
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3706
		prepare_task_switch(rq, next);
L
Linus Torvalds 已提交
3707 3708
		prev = context_switch(rq, prev, next);
		barrier();
3709 3710 3711 3712 3713 3714
		/*
		 * this_rq must be evaluated again because prev may have moved
		 * CPUs since it called schedule(), thus the 'rq' on its stack
		 * frame will be invalid.
		 */
		finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
	} else
		spin_unlock_irq(&rq->lock);

	prev = current;
	if (unlikely(reacquire_kernel_lock(prev) < 0))
		goto need_resched_nonpreemptible;
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3729
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3744
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3772
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3784
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3814 3815
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3816
{
3817
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3836 3837 3838
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3839
		if (curr->func(curr, mode, sync, key) &&
3840
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3841 3842 3843 3844 3845 3846 3847 3848 3849
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3850
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3851 3852
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3853
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3872
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3884 3885
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3929

L
Linus Torvalds 已提交
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);


#define	SLEEP_ON_VAR					\
	unsigned long flags;				\
	wait_queue_t wait;				\
	init_waitqueue_entry(&wait, current);

#define SLEEP_ON_HEAD					\
	spin_lock_irqsave(&q->lock,flags);		\
	__add_wait_queue(q, &wait);			\
	spin_unlock(&q->lock);

#define	SLEEP_ON_TAIL					\
	spin_lock_irq(&q->lock);			\
	__remove_wait_queue(q, &wait);			\
	spin_unlock_irqrestore(&q->lock, flags);

void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4076 4077
long fastcall __sched
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

void fastcall __sched sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(sleep_on);

long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}

EXPORT_SYMBOL(sleep_on_timeout);

4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4130
void rt_mutex_setprio(struct task_struct *p, int prio)
4131
{
4132
	struct prio_array *array;
4133
	unsigned long flags;
4134
	struct rq *rq;
4135
	int oldprio;
4136 4137 4138 4139 4140

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4141
	oldprio = p->prio;
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
	array = p->array;
	if (array)
		dequeue_task(p, array);
	p->prio = prio;

	if (array) {
		/*
		 * If changing to an RT priority then queue it
		 * in the active array!
		 */
		if (rt_task(p))
			array = rq->active;
		enqueue_task(p, array);
		/*
		 * Reschedule if we are currently running on this runqueue and
4157 4158
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4159
		 */
4160 4161 4162 4163
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
		} else if (TASK_PREEMPTS_CURR(p, rq))
4164 4165 4166 4167 4168 4169 4170
			resched_task(rq->curr);
	}
	task_rq_unlock(rq, &flags);
}

#endif

4171
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4172
{
4173
	struct prio_array *array;
4174
	int old_prio, delta;
L
Linus Torvalds 已提交
4175
	unsigned long flags;
4176
	struct rq *rq;
L
Linus Torvalds 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
4189
	 * not SCHED_NORMAL/SCHED_BATCH:
L
Linus Torvalds 已提交
4190
	 */
4191
	if (has_rt_policy(p)) {
L
Linus Torvalds 已提交
4192 4193 4194 4195
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
	array = p->array;
4196
	if (array) {
L
Linus Torvalds 已提交
4197
		dequeue_task(p, array);
4198 4199
		dec_raw_weighted_load(rq, p);
	}
L
Linus Torvalds 已提交
4200 4201

	p->static_prio = NICE_TO_PRIO(nice);
4202
	set_load_weight(p);
4203 4204 4205
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4206 4207 4208

	if (array) {
		enqueue_task(p, array);
4209
		inc_raw_weighted_load(rq, p);
L
Linus Torvalds 已提交
4210
		/*
4211 4212
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4213
		 */
4214
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4215 4216 4217 4218 4219 4220 4221
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4222 4223 4224 4225 4226
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4227
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4228
{
4229 4230
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4231

M
Matt Mackall 已提交
4232 4233 4234 4235
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4247
	long nice, retval;
L
Linus Torvalds 已提交
4248 4249 4250 4251 4252 4253

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4254 4255
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4265 4266 4267
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4286
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4287 4288 4289 4290 4291 4292 4293 4294
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4295
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4314
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4315 4316 4317 4318 4319 4320 4321 4322
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4323
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4324 4325 4326 4327 4328 4329 4330 4331
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
static void __setscheduler(struct task_struct *p, int policy, int prio)
{
	BUG_ON(p->array);
4332

L
Linus Torvalds 已提交
4333 4334
	p->policy = policy;
	p->rt_priority = prio;
4335 4336 4337 4338 4339 4340 4341 4342
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
	/*
	 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
	 */
	if (policy == SCHED_BATCH)
		p->sleep_avg = 0;
4343
	set_load_weight(p);
L
Linus Torvalds 已提交
4344 4345 4346
}

/**
4347
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4348 4349 4350
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4351
 *
4352
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4353
 */
I
Ingo Molnar 已提交
4354 4355
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4356
{
4357
	int retval, oldprio, oldpolicy = -1;
4358
	struct prio_array *array;
L
Linus Torvalds 已提交
4359
	unsigned long flags;
4360
	struct rq *rq;
L
Linus Torvalds 已提交
4361

4362 4363
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4364 4365 4366 4367 4368
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4369 4370
			policy != SCHED_NORMAL && policy != SCHED_BATCH)
		return -EINVAL;
L
Linus Torvalds 已提交
4371 4372
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4373 4374
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
	 * SCHED_BATCH is 0.
L
Linus Torvalds 已提交
4375 4376
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4377
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4378
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4379
		return -EINVAL;
4380
	if (is_rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4381 4382
		return -EINVAL;

4383 4384 4385 4386
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
		if (is_rt_policy(policy)) {
			unsigned long rlim_rtprio;
			unsigned long flags;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4405

4406 4407 4408 4409 4410
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4411 4412 4413 4414

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4415 4416 4417 4418 4419
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4420 4421 4422 4423
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4424
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4425 4426 4427
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4428 4429
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
		goto recheck;
	}
	array = p->array;
	if (array)
		deactivate_task(p, rq);
	oldprio = p->prio;
	__setscheduler(p, policy, param->sched_priority);
	if (array) {
		__activate_task(p, rq);
		/*
		 * Reschedule if we are currently running on this runqueue and
4441 4442
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4443
		 */
4444 4445 4446 4447
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
		} else if (TASK_PREEMPTS_CURR(p, rq))
L
Linus Torvalds 已提交
4448 4449
			resched_task(rq->curr);
	}
4450 4451 4452
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4453 4454
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4455 4456 4457 4458
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4459 4460
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4461 4462 4463
{
	struct sched_param lparam;
	struct task_struct *p;
4464
	int retval;
L
Linus Torvalds 已提交
4465 4466 4467 4468 4469

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4470 4471 4472

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4473
	p = find_process_by_pid(pid);
4474 4475 4476
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4477

L
Linus Torvalds 已提交
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4490 4491 4492 4493
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4513
	struct task_struct *p;
L
Linus Torvalds 已提交
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4541
	struct task_struct *p;
L
Linus Torvalds 已提交
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4576 4577
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4578

4579
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4580 4581 4582 4583 4584
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4585
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4602 4603 4604 4605
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4606 4607 4608 4609 4610 4611
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4612
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4653
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4654 4655 4656
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4657
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4658 4659
EXPORT_SYMBOL(cpu_online_map);

4660
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4661
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4662 4663 4664 4665
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4666
	struct task_struct *p;
L
Linus Torvalds 已提交
4667 4668
	int retval;

4669
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4670 4671 4672 4673 4674 4675 4676
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4677 4678 4679 4680
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4681
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4682 4683 4684

out_unlock:
	read_unlock(&tasklist_lock);
4685
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
	if (retval)
		return retval;

	return 0;
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
4720
 * This function yields the current CPU by moving the calling thread
L
Linus Torvalds 已提交
4721 4722 4723 4724 4725
 * to the expired array. If there are no other threads running on this
 * CPU then this function will return.
 */
asmlinkage long sys_sched_yield(void)
{
4726 4727
	struct rq *rq = this_rq_lock();
	struct prio_array *array = current->array, *target = rq->expired;
L
Linus Torvalds 已提交
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739

	schedstat_inc(rq, yld_cnt);
	/*
	 * We implement yielding by moving the task into the expired
	 * queue.
	 *
	 * (special rule: RT tasks will just roundrobin in the active
	 *  array.)
	 */
	if (rt_task(current))
		target = rq->active;

4740
	if (array->nr_active == 1) {
L
Linus Torvalds 已提交
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
		schedstat_inc(rq, yld_act_empty);
		if (!rq->expired->nr_active)
			schedstat_inc(rq, yld_both_empty);
	} else if (!rq->expired->nr_active)
		schedstat_inc(rq, yld_exp_empty);

	if (array != target) {
		dequeue_task(current, array);
		enqueue_task(current, target);
	} else
		/*
		 * requeue_task is cheaper so perform that if possible.
		 */
		requeue_task(current, array);

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4761
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4762 4763 4764 4765 4766 4767 4768 4769
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4770
static void __cond_resched(void)
L
Linus Torvalds 已提交
4771
{
4772 4773 4774
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4775 4776 4777 4778 4779
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4780 4781 4782 4783 4784 4785 4786 4787 4788
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4789 4790
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4806
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4807
{
J
Jan Kara 已提交
4808 4809
	int ret = 0;

L
Linus Torvalds 已提交
4810 4811 4812
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4813
		ret = 1;
L
Linus Torvalds 已提交
4814 4815
		spin_lock(lock);
	}
4816
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4817
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4818 4819 4820
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4821
		ret = 1;
L
Linus Torvalds 已提交
4822 4823
		spin_lock(lock);
	}
J
Jan Kara 已提交
4824
	return ret;
L
Linus Torvalds 已提交
4825 4826 4827 4828 4829 4830 4831
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4832
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4833
		local_bh_enable();
L
Linus Torvalds 已提交
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4845
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4864
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4865

4866
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4867 4868 4869
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4870
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4871 4872 4873 4874 4875
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4876
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4877 4878
	long ret;

4879
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4880 4881 4882
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4883
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4904
	case SCHED_BATCH:
L
Linus Torvalds 已提交
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4928
	case SCHED_BATCH:
L
Linus Torvalds 已提交
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4945
	struct task_struct *p;
L
Linus Torvalds 已提交
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4962
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
L
Linus Torvalds 已提交
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
				0 : task_timeslice(p), &t);
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4973
static const char stat_nam[] = "RSDTtZX";
4974 4975

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4976 4977
{
	unsigned long free = 0;
4978
	unsigned state;
L
Linus Torvalds 已提交
4979 4980

	state = p->state ? __ffs(p->state) + 1 : 0;
4981 4982
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
#if (BITS_PER_LONG == 32)
	if (state == TASK_RUNNING)
		printk(" running ");
	else
		printk(" %08lX ", thread_saved_pc(p));
#else
	if (state == TASK_RUNNING)
		printk("  running task   ");
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4996
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4997 4998
		while (!*n)
			n++;
4999
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5000 5001
	}
#endif
5002
	printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
5003 5004 5005 5006 5007 5008 5009 5010 5011
	if (!p->mm)
		printk(" (L-TLB)\n");
	else
		printk(" (NOTLB)\n");

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
5012
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5013
{
5014
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5015 5016 5017

#if (BITS_PER_LONG == 32)
	printk("\n"
5018 5019
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
L
Linus Torvalds 已提交
5020 5021
#else
	printk("\n"
5022 5023
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
L
Linus Torvalds 已提交
5024 5025 5026 5027 5028 5029 5030 5031
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5032
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
5033
			show_task(p);
L
Linus Torvalds 已提交
5034 5035
	} while_each_thread(g, p);

5036 5037
	touch_all_softlockup_watchdogs();

L
Linus Torvalds 已提交
5038
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5039 5040 5041 5042 5043
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5044 5045
}

5046 5047 5048 5049 5050 5051 5052 5053
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5054
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5055
{
5056
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5057 5058
	unsigned long flags;

5059
	idle->timestamp = sched_clock();
L
Linus Torvalds 已提交
5060 5061
	idle->sleep_avg = 0;
	idle->array = NULL;
5062
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5063 5064 5065 5066 5067 5068
	idle->state = TASK_RUNNING;
	idle->cpus_allowed = cpumask_of_cpu(cpu);
	set_task_cpu(idle, cpu);

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5069 5070 5071
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5072 5073 5074 5075
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
5076
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
5077
#else
A
Al Viro 已提交
5078
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
#endif
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5095
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
5117
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5118
{
5119
	struct migration_req req;
L
Linus Torvalds 已提交
5120
	unsigned long flags;
5121
	struct rq *rq;
5122
	int ret = 0;
L
Linus Torvalds 已提交
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5145

L
Linus Torvalds 已提交
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5158 5159
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5160
 */
5161
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5162
{
5163
	struct rq *rq_dest, *rq_src;
5164
	int ret = 0;
L
Linus Torvalds 已提交
5165 5166

	if (unlikely(cpu_is_offline(dest_cpu)))
5167
		return ret;
L
Linus Torvalds 已提交
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

	set_task_cpu(p, dest_cpu);
	if (p->array) {
		/*
		 * Sync timestamp with rq_dest's before activating.
		 * The same thing could be achieved by doing this step
		 * afterwards, and pretending it was a local activate.
		 * This way is cleaner and logically correct.
		 */
5188 5189
		p->timestamp = p->timestamp - rq_src->most_recent_timestamp
				+ rq_dest->most_recent_timestamp;
L
Linus Torvalds 已提交
5190
		deactivate_task(p, rq_src);
5191
		__activate_task(p, rq_dest);
L
Linus Torvalds 已提交
5192 5193 5194
		if (TASK_PREEMPTS_CURR(p, rq_dest))
			resched_task(rq_dest->curr);
	}
5195
	ret = 1;
L
Linus Torvalds 已提交
5196 5197
out:
	double_rq_unlock(rq_src, rq_dest);
5198
	return ret;
L
Linus Torvalds 已提交
5199 5200 5201 5202 5203 5204 5205
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5206
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5207 5208
{
	int cpu = (long)data;
5209
	struct rq *rq;
L
Linus Torvalds 已提交
5210 5211 5212 5213 5214 5215

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5216
		struct migration_req *req;
L
Linus Torvalds 已提交
5217 5218
		struct list_head *head;

5219
		try_to_freeze();
L
Linus Torvalds 已提交
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5241
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5242 5243
		list_del_init(head->next);

N
Nick Piggin 已提交
5244 5245 5246
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5265 5266 5267 5268
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5269
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5270
{
5271
	unsigned long flags;
L
Linus Torvalds 已提交
5272
	cpumask_t mask;
5273 5274
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5275

5276
restart:
L
Linus Torvalds 已提交
5277 5278
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5279
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5280 5281 5282 5283
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5284
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5285 5286 5287

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5288 5289 5290
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5291
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5292 5293 5294 5295 5296 5297

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5298
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5299 5300
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5301
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5302
	}
5303
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5304
		goto restart;
L
Linus Torvalds 已提交
5305 5306 5307 5308 5309 5310 5311 5312 5313
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5314
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5315
{
5316
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5330
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5331 5332 5333

	write_lock_irq(&tasklist_lock);

5334 5335
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5336 5337
			continue;

5338 5339 5340
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5341 5342 5343 5344 5345 5346

	write_unlock_irq(&tasklist_lock);
}

/* Schedules idle task to be the next runnable task on current CPU.
 * It does so by boosting its priority to highest possible and adding it to
5347
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5348 5349 5350
 */
void sched_idle_next(void)
{
5351
	int this_cpu = smp_processor_id();
5352
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5353 5354 5355 5356
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5357
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5358

5359 5360 5361
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5362 5363 5364 5365
	 */
	spin_lock_irqsave(&rq->lock, flags);

	__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5366 5367

	/* Add idle task to the _front_ of its priority queue: */
L
Linus Torvalds 已提交
5368 5369 5370 5371 5372
	__activate_idle_task(p, rq);

	spin_unlock_irqrestore(&rq->lock, flags);
}

5373 5374
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5388
/* called under rq->lock with disabled interrupts */
5389
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5390
{
5391
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5392 5393

	/* Must be exiting, otherwise would be on tasklist. */
5394
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5395 5396

	/* Cannot have done final schedule yet: would have vanished. */
5397
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5398

5399
	get_task_struct(p);
L
Linus Torvalds 已提交
5400 5401 5402 5403 5404

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5405
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5406
	 */
5407
	spin_unlock(&rq->lock);
5408
	move_task_off_dead_cpu(dead_cpu, p);
5409
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5410

5411
	put_task_struct(p);
L
Linus Torvalds 已提交
5412 5413 5414 5415 5416
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5417
	struct rq *rq = cpu_rq(dead_cpu);
5418
	unsigned int arr, i;
L
Linus Torvalds 已提交
5419 5420 5421 5422

	for (arr = 0; arr < 2; arr++) {
		for (i = 0; i < MAX_PRIO; i++) {
			struct list_head *list = &rq->arrays[arr].queue[i];
5423

L
Linus Torvalds 已提交
5424
			while (!list_empty(list))
5425 5426
				migrate_dead(dead_cpu, list_entry(list->next,
					     struct task_struct, run_list));
L
Linus Torvalds 已提交
5427 5428 5429 5430 5431 5432 5433 5434 5435
		}
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5436 5437
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5438 5439
{
	struct task_struct *p;
5440
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5441
	unsigned long flags;
5442
	struct rq *rq;
L
Linus Torvalds 已提交
5443 5444

	switch (action) {
5445 5446 5447 5448
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5449
	case CPU_UP_PREPARE:
5450
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
		p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
		if (IS_ERR(p))
			return NOTIFY_BAD;
		p->flags |= PF_NOFREEZE;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
		__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5462

L
Linus Torvalds 已提交
5463
	case CPU_ONLINE:
5464
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5465 5466 5467
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5468

L
Linus Torvalds 已提交
5469 5470
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5471
	case CPU_UP_CANCELED_FROZEN:
5472 5473
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5474
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5475 5476
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5477 5478 5479
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5480

L
Linus Torvalds 已提交
5481
	case CPU_DEAD:
5482
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
		deactivate_task(rq->idle, rq);
		rq->idle->static_prio = MAX_PRIO;
		__setscheduler(rq->idle, SCHED_NORMAL, 0);
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5498
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5499 5500 5501
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5502 5503
			struct migration_req *req;

L
Linus Torvalds 已提交
5504
			req = list_entry(rq->migration_queue.next,
5505
					 struct migration_req, list);
L
Linus Torvalds 已提交
5506 5507 5508 5509 5510 5511
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5512 5513 5514
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5515 5516 5517 5518 5519 5520 5521
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5522
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5523 5524 5525 5526 5527 5528 5529
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5530
	int err;
5531 5532

	/* Start one for the boot CPU: */
5533 5534
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5535 5536
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5537

L
Linus Torvalds 已提交
5538 5539 5540 5541 5542
	return 0;
}
#endif

#ifdef CONFIG_SMP
5543 5544 5545 5546 5547

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5548
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5549 5550 5551 5552 5553
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5554 5555 5556 5557 5558
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5578 5579
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5580 5581 5582 5583 5584 5585
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5586 5587
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5588
		if (!cpu_isset(cpu, group->cpumask))
5589 5590
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5603
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5604
				printk("\n");
5605 5606
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5629 5630
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5631 5632 5633

		level++;
		sd = sd->parent;
5634 5635
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5636

5637 5638 5639
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5640 5641 5642 5643

	} while (sd);
}
#else
5644
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5645 5646
#endif

5647
static int sd_degenerate(struct sched_domain *sd)
5648 5649 5650 5651 5652 5653 5654 5655
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5656 5657 5658
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5672 5673
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5692 5693 5694
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5695 5696 5697 5698 5699 5700 5701
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5702 5703 5704 5705
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5706
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5707
{
5708
	struct rq *rq = cpu_rq(cpu);
5709 5710 5711 5712 5713 5714 5715
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5716
		if (sd_parent_degenerate(tmp, parent)) {
5717
			tmp->parent = parent->parent;
5718 5719 5720
			if (parent->parent)
				parent->parent->child = tmp;
		}
5721 5722
	}

5723
	if (sd && sd_degenerate(sd)) {
5724
		sd = sd->parent;
5725 5726 5727
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5728 5729 5730

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5731
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5732 5733 5734
}

/* cpus with isolated domains */
5735
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5753 5754 5755 5756
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5757 5758 5759 5760 5761
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5762
static void
5763 5764 5765
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5766 5767 5768 5769 5770 5771
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5772 5773
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5774 5775 5776 5777 5778 5779
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5780
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5781 5782

		for_each_cpu_mask(j, span) {
5783
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5798
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5799

5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
/*
 * Self-tuning task migration cost measurement between source and target CPUs.
 *
 * This is done by measuring the cost of manipulating buffers of varying
 * sizes. For a given buffer-size here are the steps that are taken:
 *
 * 1) the source CPU reads+dirties a shared buffer
 * 2) the target CPU reads+dirties the same shared buffer
 *
 * We measure how long they take, in the following 4 scenarios:
 *
 *  - source: CPU1, target: CPU2 | cost1
 *  - source: CPU2, target: CPU1 | cost2
 *  - source: CPU1, target: CPU1 | cost3
 *  - source: CPU2, target: CPU2 | cost4
 *
 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
 * the cost of migration.
 *
 * We then start off from a small buffer-size and iterate up to larger
 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
 * doing a maximum search for the cost. (The maximum cost for a migration
 * normally occurs when the working set size is around the effective cache
 * size.)
 */
#define SEARCH_SCOPE		2
#define MIN_CACHE_SIZE		(64*1024U)
#define DEFAULT_CACHE_SIZE	(5*1024*1024U)
5828
#define ITERATIONS		1
5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845
#define SIZE_THRESH		130
#define COST_THRESH		130

/*
 * The migration cost is a function of 'domain distance'. Domain
 * distance is the number of steps a CPU has to iterate down its
 * domain tree to share a domain with the other CPU. The farther
 * two CPUs are from each other, the larger the distance gets.
 *
 * Note that we use the distance only to cache measurement results,
 * the distance value is not used numerically otherwise. When two
 * CPUs have the same distance it is assumed that the migration
 * cost is the same. (this is a simplification but quite practical)
 */
#define MAX_DOMAIN_DISTANCE 32

static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857
		{ [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
/*
 * Architectures may override the migration cost and thus avoid
 * boot-time calibration. Unit is nanoseconds. Mostly useful for
 * virtualized hardware:
 */
#ifdef CONFIG_DEFAULT_MIGRATION_COST
			CONFIG_DEFAULT_MIGRATION_COST
#else
			-1LL
#endif
};
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956

/*
 * Allow override of migration cost - in units of microseconds.
 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
 */
static int __init migration_cost_setup(char *str)
{
	int ints[MAX_DOMAIN_DISTANCE+1], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);

	printk("#ints: %d\n", ints[0]);
	for (i = 1; i <= ints[0]; i++) {
		migration_cost[i-1] = (unsigned long long)ints[i]*1000;
		printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
	}
	return 1;
}

__setup ("migration_cost=", migration_cost_setup);

/*
 * Global multiplier (divisor) for migration-cutoff values,
 * in percentiles. E.g. use a value of 150 to get 1.5 times
 * longer cache-hot cutoff times.
 *
 * (We scale it from 100 to 128 to long long handling easier.)
 */

#define MIGRATION_FACTOR_SCALE 128

static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;

static int __init setup_migration_factor(char *str)
{
	get_option(&str, &migration_factor);
	migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
	return 1;
}

__setup("migration_factor=", setup_migration_factor);

/*
 * Estimated distance of two CPUs, measured via the number of domains
 * we have to pass for the two CPUs to be in the same span:
 */
static unsigned long domain_distance(int cpu1, int cpu2)
{
	unsigned long distance = 0;
	struct sched_domain *sd;

	for_each_domain(cpu1, sd) {
		WARN_ON(!cpu_isset(cpu1, sd->span));
		if (cpu_isset(cpu2, sd->span))
			return distance;
		distance++;
	}
	if (distance >= MAX_DOMAIN_DISTANCE) {
		WARN_ON(1);
		distance = MAX_DOMAIN_DISTANCE-1;
	}

	return distance;
}

static unsigned int migration_debug;

static int __init setup_migration_debug(char *str)
{
	get_option(&str, &migration_debug);
	return 1;
}

__setup("migration_debug=", setup_migration_debug);

/*
 * Maximum cache-size that the scheduler should try to measure.
 * Architectures with larger caches should tune this up during
 * bootup. Gets used in the domain-setup code (i.e. during SMP
 * bootup).
 */
unsigned int max_cache_size;

static int __init setup_max_cache_size(char *str)
{
	get_option(&str, &max_cache_size);
	return 1;
}

__setup("max_cache_size=", setup_max_cache_size);

/*
 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
 * is the operation that is timed, so we try to generate unpredictable
 * cachemisses that still end up filling the L2 cache:
 */
static void touch_cache(void *__cache, unsigned long __size)
{
5957 5958 5959
	unsigned long size = __size / sizeof(long);
	unsigned long chunk1 = size / 3;
	unsigned long chunk2 = 2 * size / 3;
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
	unsigned long *cache = __cache;
	int i;

	for (i = 0; i < size/6; i += 8) {
		switch (i % 6) {
			case 0: cache[i]++;
			case 1: cache[size-1-i]++;
			case 2: cache[chunk1-i]++;
			case 3: cache[chunk1+i]++;
			case 4: cache[chunk2-i]++;
			case 5: cache[chunk2+i]++;
		}
	}
}

/*
 * Measure the cache-cost of one task migration. Returns in units of nsec.
 */
5978 5979
static unsigned long long
measure_one(void *cache, unsigned long size, int source, int target)
5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
{
	cpumask_t mask, saved_mask;
	unsigned long long t0, t1, t2, t3, cost;

	saved_mask = current->cpus_allowed;

	/*
	 * Flush source caches to RAM and invalidate them:
	 */
	sched_cacheflush();

	/*
	 * Migrate to the source CPU:
	 */
	mask = cpumask_of_cpu(source);
	set_cpus_allowed(current, mask);
	WARN_ON(smp_processor_id() != source);

	/*
	 * Dirty the working set:
	 */
	t0 = sched_clock();
	touch_cache(cache, size);
	t1 = sched_clock();

	/*
	 * Migrate to the target CPU, dirty the L2 cache and access
	 * the shared buffer. (which represents the working set
	 * of a migrated task.)
	 */
	mask = cpumask_of_cpu(target);
	set_cpus_allowed(current, mask);
	WARN_ON(smp_processor_id() != target);

	t2 = sched_clock();
	touch_cache(cache, size);
	t3 = sched_clock();

	cost = t1-t0 + t3-t2;

	if (migration_debug >= 2)
		printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
			source, target, t1-t0, t1-t0, t3-t2, cost);
	/*
	 * Flush target caches to RAM and invalidate them:
	 */
	sched_cacheflush();

	set_cpus_allowed(current, saved_mask);

	return cost;
}

/*
 * Measure a series of task migrations and return the average
 * result. Since this code runs early during bootup the system
 * is 'undisturbed' and the average latency makes sense.
 *
 * The algorithm in essence auto-detects the relevant cache-size,
 * so it will properly detect different cachesizes for different
 * cache-hierarchies, depending on how the CPUs are connected.
 *
 * Architectures can prime the upper limit of the search range via
 * max_cache_size, otherwise the search range defaults to 20MB...64K.
 */
static unsigned long long
measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
{
	unsigned long long cost1, cost2;
	int i;

	/*
	 * Measure the migration cost of 'size' bytes, over an
	 * average of 10 runs:
	 *
	 * (We perturb the cache size by a small (0..4k)
	 *  value to compensate size/alignment related artifacts.
	 *  We also subtract the cost of the operation done on
	 *  the same CPU.)
	 */
	cost1 = 0;

	/*
	 * dry run, to make sure we start off cache-cold on cpu1,
	 * and to get any vmalloc pagefaults in advance:
	 */
	measure_one(cache, size, cpu1, cpu2);
	for (i = 0; i < ITERATIONS; i++)
6068
		cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
6069 6070 6071

	measure_one(cache, size, cpu2, cpu1);
	for (i = 0; i < ITERATIONS; i++)
6072
		cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
6073 6074 6075 6076 6077 6078 6079 6080 6081

	/*
	 * (We measure the non-migrating [cached] cost on both
	 *  cpu1 and cpu2, to handle CPUs with different speeds)
	 */
	cost2 = 0;

	measure_one(cache, size, cpu1, cpu1);
	for (i = 0; i < ITERATIONS; i++)
6082
		cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
6083 6084 6085

	measure_one(cache, size, cpu2, cpu2);
	for (i = 0; i < ITERATIONS; i++)
6086
		cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
6087 6088 6089 6090

	/*
	 * Get the per-iteration migration cost:
	 */
6091 6092
	do_div(cost1, 2 * ITERATIONS);
	do_div(cost2, 2 * ITERATIONS);
6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129

	return cost1 - cost2;
}

static unsigned long long measure_migration_cost(int cpu1, int cpu2)
{
	unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
	unsigned int max_size, size, size_found = 0;
	long long cost = 0, prev_cost;
	void *cache;

	/*
	 * Search from max_cache_size*5 down to 64K - the real relevant
	 * cachesize has to lie somewhere inbetween.
	 */
	if (max_cache_size) {
		max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
		size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
	} else {
		/*
		 * Since we have no estimation about the relevant
		 * search range
		 */
		max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
		size = MIN_CACHE_SIZE;
	}

	if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
		printk("cpu %d and %d not both online!\n", cpu1, cpu2);
		return 0;
	}

	/*
	 * Allocate the working set:
	 */
	cache = vmalloc(max_size);
	if (!cache) {
6130
		printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
6131
		return 1000000; /* return 1 msec on very small boxen */
6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
	}

	while (size <= max_size) {
		prev_cost = cost;
		cost = measure_cost(cpu1, cpu2, cache, size);

		/*
		 * Update the max:
		 */
		if (cost > 0) {
			if (max_cost < cost) {
				max_cost = cost;
				size_found = size;
			}
		}
		/*
		 * Calculate average fluctuation, we use this to prevent
		 * noise from triggering an early break out of the loop:
		 */
		fluct = abs(cost - prev_cost);
		avg_fluct = (avg_fluct + fluct)/2;

		if (migration_debug)
6155 6156
			printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
				"(%8Ld %8Ld)\n",
6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
				cpu1, cpu2, size,
				(long)cost / 1000000,
				((long)cost / 100000) % 10,
				(long)max_cost / 1000000,
				((long)max_cost / 100000) % 10,
				domain_distance(cpu1, cpu2),
				cost, avg_fluct);

		/*
		 * If we iterated at least 20% past the previous maximum,
		 * and the cost has dropped by more than 20% already,
		 * (taking fluctuations into account) then we assume to
		 * have found the maximum and break out of the loop early:
		 */
		if (size_found && (size*100 > size_found*SIZE_THRESH))
			if (cost+avg_fluct <= 0 ||
				max_cost*100 > (cost+avg_fluct)*COST_THRESH) {

				if (migration_debug)
					printk("-> found max.\n");
				break;
			}
		/*
6180
		 * Increase the cachesize in 10% steps:
6181
		 */
6182
		size = size * 10 / 9;
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
	}

	if (migration_debug)
		printk("[%d][%d] working set size found: %d, cost: %Ld\n",
			cpu1, cpu2, size_found, max_cost);

	vfree(cache);

	/*
	 * A task is considered 'cache cold' if at least 2 times
	 * the worst-case cost of migration has passed.
	 *
	 * (this limit is only listened to if the load-balancing
	 * situation is 'nice' - if there is a large imbalance we
	 * ignore it for the sake of CPU utilization and
	 * processing fairness.)
	 */
	return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
}

static void calibrate_migration_costs(const cpumask_t *cpu_map)
{
	int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
	unsigned long j0, j1, distance, max_distance = 0;
	struct sched_domain *sd;

	j0 = jiffies;

	/*
	 * First pass - calculate the cacheflush times:
	 */
	for_each_cpu_mask(cpu1, *cpu_map) {
		for_each_cpu_mask(cpu2, *cpu_map) {
			if (cpu1 == cpu2)
				continue;
			distance = domain_distance(cpu1, cpu2);
			max_distance = max(max_distance, distance);
			/*
			 * No result cached yet?
			 */
			if (migration_cost[distance] == -1LL)
				migration_cost[distance] =
					measure_migration_cost(cpu1, cpu2);
		}
	}
	/*
	 * Second pass - update the sched domain hierarchy with
	 * the new cache-hot-time estimations:
	 */
	for_each_cpu_mask(cpu, *cpu_map) {
		distance = 0;
		for_each_domain(cpu, sd) {
			sd->cache_hot_time = migration_cost[distance];
			distance++;
		}
	}
	/*
	 * Print the matrix:
	 */
	if (migration_debug)
		printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
			max_cache_size,
#ifdef CONFIG_X86
			cpu_khz/1000
#else
			-1
#endif
		);
6251 6252 6253 6254 6255 6256
	if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
		printk("migration_cost=");
		for (distance = 0; distance <= max_distance; distance++) {
			if (distance)
				printk(",");
			printk("%ld", (long)migration_cost[distance] / 1000);
6257
		}
6258
		printk("\n");
6259 6260 6261
	}
	j1 = jiffies;
	if (migration_debug)
6262
		printk("migration: %ld seconds\n", (j1-j0) / HZ);
6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276

	/*
	 * Move back to the original CPU. NUMA-Q gets confused
	 * if we migrate to another quad during bootup.
	 */
	if (raw_smp_processor_id() != orig_cpu) {
		cpumask_t mask = cpumask_of_cpu(orig_cpu),
			saved_mask = current->cpus_allowed;

		set_cpus_allowed(current, mask);
		set_cpus_allowed(current, saved_mask);
	}
}

6277
#ifdef CONFIG_NUMA
6278

6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6331 6332
	cpumask_t span, nodemask;
	int i;
6333 6334 6335 6336 6337 6338 6339 6340 6341 6342

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6343

6344 6345 6346 6347 6348 6349 6350 6351
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6352
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6353

6354
/*
6355
 * SMT sched-domains:
6356
 */
L
Linus Torvalds 已提交
6357 6358
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6359
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6360

6361 6362
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
6363
{
6364 6365
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6366 6367 6368 6369
	return cpu;
}
#endif

6370 6371 6372
/*
 * multi-core sched-domains:
 */
6373 6374
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6375
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6376 6377 6378
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6379 6380
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
6381
{
6382
	int group;
6383 6384
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
6385 6386 6387 6388
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6389 6390
}
#elif defined(CONFIG_SCHED_MC)
6391 6392
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
6393
{
6394 6395
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6396 6397 6398 6399
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6400
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6401
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6402

6403 6404
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
6405
{
6406
	int group;
6407
#ifdef CONFIG_SCHED_MC
6408
	cpumask_t mask = cpu_coregroup_map(cpu);
6409
	cpus_and(mask, mask, *cpu_map);
6410
	group = first_cpu(mask);
6411
#elif defined(CONFIG_SCHED_SMT)
6412 6413
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
6414
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6415
#else
6416
	group = cpu;
L
Linus Torvalds 已提交
6417
#endif
6418 6419 6420
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6421 6422 6423 6424
}

#ifdef CONFIG_NUMA
/*
6425 6426 6427
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6428
 */
6429
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6430
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6431

6432
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6433
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6434

6435 6436
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6437
{
6438 6439 6440 6441 6442 6443 6444 6445 6446
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6447
}
6448

6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

6469
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6470 6471 6472 6473 6474
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
6475 6476
#endif

6477
#ifdef CONFIG_NUMA
6478 6479 6480
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6481
	int cpu, i;
6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6512 6513 6514 6515 6516
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6517

6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6544 6545
	sd->groups->__cpu_power = 0;

6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6556
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6557 6558 6559 6560 6561 6562 6563 6564
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6565
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6566 6567 6568 6569
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6570
/*
6571 6572
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6573
 */
6574
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6575 6576
{
	int i;
6577
	struct sched_domain *sd;
6578 6579
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6580
	int sd_allnodes = 0;
6581 6582 6583 6584

	/*
	 * Allocate the per-node list of sched groups
	 */
6585
	sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6586
					   GFP_KERNEL);
6587 6588
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6589
		return -ENOMEM;
6590 6591 6592
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6593 6594

	/*
6595
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6596
	 */
6597
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6598 6599 6600
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6601
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6602 6603

#ifdef CONFIG_NUMA
6604
		if (cpus_weight(*cpu_map)
6605 6606 6607 6608
				> SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6609
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6610
			p = sd;
6611
			sd_allnodes = 1;
6612 6613 6614
		} else
			p = NULL;

L
Linus Torvalds 已提交
6615 6616
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6617 6618
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6619 6620
		if (p)
			p->child = sd;
6621
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6622 6623 6624 6625 6626 6627 6628
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6629 6630
		if (p)
			p->child = sd;
6631
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6632

6633 6634 6635 6636 6637 6638 6639
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6640
		p->child = sd;
6641
		cpu_to_core_group(i, cpu_map, &sd->groups);
6642 6643
#endif

L
Linus Torvalds 已提交
6644 6645 6646 6647 6648
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6649
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6650
		sd->parent = p;
6651
		p->child = sd;
6652
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6653 6654 6655 6656 6657
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6658
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6659
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6660
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6661 6662 6663
		if (i != first_cpu(this_sibling_map))
			continue;

6664
		init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
L
Linus Torvalds 已提交
6665 6666 6667
	}
#endif

6668 6669 6670 6671 6672 6673 6674
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
6675
		init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
6676 6677 6678 6679
	}
#endif


L
Linus Torvalds 已提交
6680 6681 6682 6683
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6684
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6685 6686 6687
		if (cpus_empty(nodemask))
			continue;

6688
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6689 6690 6691 6692
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6693 6694
	if (sd_allnodes)
		init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6705 6706
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6707
			continue;
6708
		}
6709 6710 6711 6712

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6713
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6714 6715 6716 6717 6718
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6719 6720 6721 6722 6723 6724
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6725
		sg->__cpu_power = 0;
6726
		sg->cpumask = nodemask;
6727
		sg->next = sg;
6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6746 6747
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6748 6749 6750
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6751
				goto error;
6752
			}
6753
			sg->__cpu_power = 0;
6754
			sg->cpumask = tmp;
6755
			sg->next = prev->next;
6756 6757 6758 6759 6760
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6761 6762 6763
#endif

	/* Calculate CPU power for physical packages and nodes */
6764
#ifdef CONFIG_SCHED_SMT
6765
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6766
		sd = &per_cpu(cpu_domains, i);
6767
		init_sched_groups_power(i, sd);
6768
	}
L
Linus Torvalds 已提交
6769
#endif
6770
#ifdef CONFIG_SCHED_MC
6771
	for_each_cpu_mask(i, *cpu_map) {
6772
		sd = &per_cpu(core_domains, i);
6773
		init_sched_groups_power(i, sd);
6774 6775
	}
#endif
6776

6777
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6778
		sd = &per_cpu(phys_domains, i);
6779
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6780 6781
	}

6782
#ifdef CONFIG_NUMA
6783 6784
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6785

6786 6787
	if (sd_allnodes) {
		struct sched_group *sg;
6788

6789
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6790 6791
		init_numa_sched_groups_power(sg);
	}
6792 6793
#endif

L
Linus Torvalds 已提交
6794
	/* Attach the domains */
6795
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6796 6797 6798
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6799 6800
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6801 6802 6803 6804 6805
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6806 6807 6808 6809
	/*
	 * Tune cache-hot values:
	 */
	calibrate_migration_costs(cpu_map);
6810 6811 6812

	return 0;

6813
#ifdef CONFIG_NUMA
6814 6815 6816
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6817
#endif
L
Linus Torvalds 已提交
6818
}
6819 6820 6821
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6822
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6823 6824
{
	cpumask_t cpu_default_map;
6825
	int err;
L
Linus Torvalds 已提交
6826

6827 6828 6829 6830 6831 6832 6833
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6834 6835 6836
	err = build_sched_domains(&cpu_default_map);

	return err;
6837 6838 6839
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6840
{
6841
	free_sched_groups(cpu_map);
6842
}
L
Linus Torvalds 已提交
6843

6844 6845 6846 6847
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6848
static void detach_destroy_domains(const cpumask_t *cpu_map)
6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6866
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6867 6868
{
	cpumask_t change_map;
6869
	int err = 0;
6870 6871 6872 6873 6874 6875 6876 6877

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6878 6879 6880 6881 6882
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6883 6884
}

6885 6886 6887 6888 6889
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6890
	mutex_lock(&sched_hotcpu_mutex);
6891 6892
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6893
	mutex_unlock(&sched_hotcpu_mutex);
6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6918

6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6938 6939
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6952 6953
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6954 6955 6956 6957 6958 6959 6960
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6961 6962 6963
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6964
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6965 6966 6967 6968 6969 6970 6971
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6972
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6973
	case CPU_DOWN_PREPARE:
6974
	case CPU_DOWN_PREPARE_FROZEN:
6975
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6976 6977 6978
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6979
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6980
	case CPU_DOWN_FAILED:
6981
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6982
	case CPU_ONLINE:
6983
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6984
	case CPU_DEAD:
6985
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6986 6987 6988 6989 6990 6991 6992 6993 6994
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6995
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6996 6997 6998 6999 7000 7001

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7002 7003
	cpumask_t non_isolated_cpus;

7004
	mutex_lock(&sched_hotcpu_mutex);
7005
	arch_init_sched_domains(&cpu_online_map);
7006
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7007 7008
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7009
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
7010 7011
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7012 7013 7014 7015

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
7027

L
Linus Torvalds 已提交
7028 7029 7030 7031 7032 7033 7034 7035
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

void __init sched_init(void)
{
	int i, j, k;
7036
	int highest_cpu = 0;
L
Linus Torvalds 已提交
7037

7038
	for_each_possible_cpu(i) {
7039 7040
		struct prio_array *array;
		struct rq *rq;
L
Linus Torvalds 已提交
7041 7042 7043

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7044
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7045
		rq->nr_running = 0;
L
Linus Torvalds 已提交
7046 7047 7048 7049 7050
		rq->active = rq->arrays;
		rq->expired = rq->arrays + 1;
		rq->best_expired_prio = MAX_PRIO;

#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7051
		rq->sd = NULL;
N
Nick Piggin 已提交
7052 7053
		for (j = 1; j < 3; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7054 7055
		rq->active_balance = 0;
		rq->push_cpu = 0;
7056
		rq->cpu = i;
L
Linus Torvalds 已提交
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

		for (j = 0; j < 2; j++) {
			array = rq->arrays + j;
			for (k = 0; k < MAX_PRIO; k++) {
				INIT_LIST_HEAD(array->queue + k);
				__clear_bit(k, array->bitmap);
			}
			// delimiter for bitsearch
			__set_bit(MAX_PRIO, array->bitmap);
		}
7071
		highest_cpu = i;
L
Linus Torvalds 已提交
7072 7073
	}

7074
	set_load_weight(&init_task);
7075

7076
#ifdef CONFIG_SMP
7077
	nr_cpu_ids = highest_cpu + 1;
7078 7079 7080
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7081 7082 7083 7084
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7103
#ifdef in_atomic
L
Linus Torvalds 已提交
7104 7105 7106 7107 7108 7109 7110
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7111
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7112 7113 7114
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7115
		debug_show_held_locks(current);
7116 7117
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7118 7119 7120 7121 7122 7123 7124 7125 7126 7127
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
7128
	struct prio_array *array;
7129
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7130
	unsigned long flags;
7131
	struct rq *rq;
L
Linus Torvalds 已提交
7132 7133

	read_lock_irq(&tasklist_lock);
7134 7135

	do_each_thread(g, p) {
L
Linus Torvalds 已提交
7136 7137 7138
		if (!rt_task(p))
			continue;

7139 7140
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7141 7142 7143 7144 7145 7146 7147 7148 7149 7150

		array = p->array;
		if (array)
			deactivate_task(p, task_rq(p));
		__setscheduler(p, SCHED_NORMAL, 0);
		if (array) {
			__activate_task(p, task_rq(p));
			resched_task(rq->curr);
		}

7151 7152
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
7153 7154
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
7155 7156 7157 7158
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7177
struct task_struct *curr_task(int cpu)
7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7197
void set_curr_task(int cpu, struct task_struct *p)
7198 7199 7200 7201 7202
{
	cpu_curr(cpu) = p;
}

#endif